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When gravity is sourced by a quantum system, there is tension between its role as the
mediator of a fundamental interaction, which is expected to acquire nonclassical features,
and its role in determining the properties of spacetime, which is inherently classical. Funda-
mentally, this tension should result in breaking one of the fundamental principles of quantum
theory or general relativity, but it is usually hard to assess which one without resorting to
a specific model. Here, we answer this question in a theory-independent way using General
Probabilistic Theories (GPTs). We consider the interactions of the gravitational field with a
single matter system, and derive a no-go theorem showing that when gravity is classical at
least one of the following assumptions needs to be violated: (i) Matter degrees of freedom are
described by fully non-classical degrees of freedom; (ii) Interactions between matter degrees
of freedom and the gravitational field are reversible; (iii) Matter degrees of freedom back-
react on the gravitational field. We argue that this implies that theories of classical gravity
and quantum matter must be fundamentally irreversible, as is the case in the recent model
of Oppenheim et al. Conversely if we require that the interaction between quantum matter
and the gravitational field is reversible, then the gravitational field must be non-classical.

1 Introduction

The gravitational field plays two roles. On the
one hand, gravity is a fundamental interaction
coupled to quantum matter, and as such it is nat-
ural to look for its quantum description. On the
other hand, the gravitational field characterises
the structure of spacetime, which is a classical
concept coming from general relativity. Reconcil-
ing these two roles when the source of gravity is
quantum is one of the most profound conceptual
challenges in finding a unified theory of gravity
and matter.

Recently, the possibility of testing the gravita-
tional field of a quantum source has attracted a
lot of attention [1–30]. No experiment using the
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technology currently available can test this sce-
nario now [31], but these tests are expected to be
feasible in the next couple of decades, and would
bring a major advancement to our understanding
of gravity in regimes so far fully unexplored. On
the theoretical side, the precise implications of
these experiments are still debated [24]. From a
fundamental point of view, however, this regime
gives us the opportunity to test the fundamental
principles of both quantum theory and general
relativity together in a single scenario. Hence, it
is crucial now to assess what the logical implica-
tions of combining the two theories in this regime
are.

Here, we set to this task, and we ask whether
we need to give up any of the fundamental prin-
ciples of our theories. To achieve this goal, we
use a theory-independent approach, analogous to
that used in Bell’s theorem [32], via the frame-
work of General Probabilistic Theories (GPTs)
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[33, 34] in contrast to earlier work which tends
to consider specific, theory-dependent, models of
interactions between matter and gravity, such as
the Schrödinger-Newton equation. In this theory
independent approach, we prove a no-go theorem,
in the spirit of our recent work of Ref. [18], that
states that, if we want to keep a classical descrip-
tion of gravity and we allow quantum matter to
source the gravitational field, then it is impos-
sible to preserve the principle of reversibility of
fundamental interactions. In general, our theo-
rem shows under which conditions non-classical
(including quantum) and classical degrees of free-
dom can couple in a consistent way. This is more
general than previous work which was restricted
to studying classical-quantum coupling [35–39].

We formally state the no-go theorem after in-
troducing the relevant preliminaries of the theory
independent framework which we work in. In-
formally however, the no-go theorem states that
given a general classical system (in our case, the
gravitational field), then a physical system cou-
pled to it cannot at once (i) satisfy the super-
position principle, (ii) interact reversibly with
the classical system, and (iii) back react on the
classical system. Formally, the theorem holds
for finite-dimensional systems. However, oper-
ationally every physical system can be reduced
to a finite dimensional system, because in the
laboratory we can only perform a finite set of
measurements.

From our result, it is clear that if one wants to
preserve these three principles, then the gravita-
tional field ought to be nonclassical. Otherwise,
if one wants to hold to classical gravity, then the
only consistent ways to couple a quantum system
with a classical system such that there is back-
reaction from the quantum to the classical system
are to either a) have an irreversible interaction as
in Refs. [40–42] or b) have a fundamentally su-
perselected quantum system with only the classi-
cal “which sector” degrees of freedom interacting
with the classical system.

In the GPT literature similar theorems have
been proved to study measurement theory [43].
In this case the classical system is a measuring
device and the system being measured is non-
classical. Since a required feature of a measure-
ment interaction is that the state of the measur-
ing device after the interaction is a function of the
state of the system there must be back-reaction.

Thus measurement of non-classical systems must
be irreversible (i.e., involve disturbance in the
language of [43]).

2 General probabilistic theories: a the-
ory independent framework
A generalised probabilistic theory is a mathe-
matical object which precisely captures the op-
erationally relevant content of a physical theory
[44], at least for scenarios involving single agents
and a fixed causal structure. That is, it captures
only the information in the physical theory which
is necessary and sufficient for making predictions
about the outcomes of any such experiments that
can be performed within the theory. Opera-
tionally, the state of a system is characterised
by finitely many measurements, and hence the
state space of the system is finite dimensional.
This entails that quantum systems have finite di-
mensional Hilbert spaces and classical systems
have finite configuration spaces. Alternatively
one could accept the infinite dimensional nature
of systems such as the gravitational field and in-
stead understand the finite dimensional GPT de-
scription as a coarse grained version of the un-
derlying infinite dimensional system.

A given physical theory may of course do
more than describing the operational aspects,
it may also describe ontological or interpreta-
tional aspects. For example, a physical the-
ory could be Bohmian mechanics [45] or Many-
Worlds quantum theory [46], but both would be
associated to the same generalised probabilistic
theory, namely, the standard formalism of quan-
tum (information ) theory. It is therefore natural
to assume that, whatever the underlying theory
of nature actually is, there is a regime in which it
is well described by a GPT1. This regime at least
includes all of the standard kinds of experiments
which we perform, but, the particular formal-
ism that we use here would exclude for example,

1It is, however, often highly nontrivial to determine
which GPT is associated to a given physical theory and
there are often surprising results. For example, the GPT
associated to quantum theory with a non-linear modifi-
cation of the Schrödinger equation is actually a classical
GPT [47], as the non-linearity allows for perfect distin-
guishability of all pure states. For some relevant models,
such as the Reginatto-Hall model [48] the GPT description
is not known, and as such our results do not immediately
apply.

Accepted in Quantum 2023-10-10, click title to verify. Published under CC-BY 4.0. 2



experiments involving indefinite causal structure
[49–51] (in which the pieces of apparatus locally
have a well defined causal structure but in which
no global causal structure exists between them)
or extended Wigner’s friend scenarios [52–57] (in
which the experimenters themselves are treated
as part of the experimental scenario). The
GPT framework that we present here can, how-
ever, also be extended to include these more gen-
eral scenarios, for example [49, 58–62]. Any re-
sults that can be proven in this bare-bones op-
erational framework therefore automatically ap-
ply to most physical theories even if they are not
themselves expressed in the language of GPTs.

More concretely, a GPT describes a set of
preparations, transformations and measurements
and encodes the probabilities of obtaining mea-
surement outcomes given a circuit of prepara-
tions, transformations and measurements. These
probabilities may be given by classical or quan-
tum theory, or some different theory. In this
section we do not provide a full introduction
to GPTs but rather refer the reader to the
works [63–65]. Here, we introduce the notation
and important definitions required for the main
theorem.
In the following we denote by Ω the convex

set of states of a GPT system S, E the set of
effects and T the set of transformations. If V
is the finite dimensional real vector space associ-
ated to S then Ω ⊂ V 2, E ⊂ V ∗ and any t ∈ T
induces a linear transformation on V . In a given
GPT two systems S1 and S2 with associated vec-
tor spaces V1 and V2 compose to a third system
S3 with associated vector space V3 via a bilin-
ear map ⊗ : V1, V2 → V3. When the theory is
locally tomographic [33] (such as is the case for
quantum and classical theory) ⊗ is the standard
tensor product.

Definition 1 (Reversible interaction). A re-
versible interaction between two GPT systems S1
and S2 with respective state spaces Ω1 and Ω2 is
a linear map I : Ω1 ⊗ Ω2 → Ω1 ⊗ Ω2 where there
exists an inverse map I−1 : Ω1 ⊗ Ω2 → Ω1 ⊗ Ω2
such that I−1 ◦ I = IΩ1⊗Ω2 .

Definition 2 (Information flow). Given an in-
teraction I between two GPT systems S1 and S2
with input states s1 and s2 there is information
flow from S1 to S2 if a change in state of system

2Where the symbol ⊂ means “is a convex subset of”.

S1 before the interaction can lead to a change of
the state of system S2 after the interaction.

If we denote the choices of state preparation by
the classical variables s1 and s2 and denote the
outcomes of possible measurements after the in-
teraction by the variables e1 and e2 this is equiva-
lent to saying there is signalling from 1 to 2, that
is, p(e2|s1, s2, I) depends non-trivially on s1.

Definition 3 (Finite dimensional classical sys-
tem). A classical system of dimension n has a
state space given by an n-vertex simplex ∆n with
associated vector space V ∼= Rn+1. Effects be-
long to the hypercube of [0, 1]-valued linear func-
tionals in V ∗ ∼= Rn+1 and transformations are
given by stochastic linear maps. Classical sys-
tems compose with all other systems (both clas-
sical and non-classical) via the tensor product.

Intuitively, this definition states that any two
classical states can be perfectly distinguished
with an operation belonging to the set of clas-
sical effects, and that any combination of two
classical states leads at most to a classical mix-
ture of probabilities (e.g., no quantum interfer-
ence is allowed). Finally, the standard tensor
product composition rule ensures that no entan-
gled states are generated when two classical sys-
tems are combined.

Definition 4 (Reducible GPT system). A GPT
system S, with associated vector space V , is re-
ducible if and only if there is a decomposition
V ∼=

⊕
i Vi such that all states are convex combi-

nations of states having support in a single block.
That is, such that the state space Ω ∼=

⊕
i Ωi

where Ωi is a convex set in Vi.

A reducible GPT system is one that has a clas-
sical degree of freedom, and, hence, is at least
partly classical. For example, the finite dimen-
sional classical systems described above can be
written as ∆n = ∆1 ⊕ · · · ⊕ ∆1︸ ︷︷ ︸

n

and, more gen-

erally, if we have a reducible system of the form
Ω ⊕ · · · ⊕ Ω︸ ︷︷ ︸

n

then this is nothing but Ω⊗∆n, that

is, it factorises as a classical system, ∆n and an-
other system Ω. Finally, any reducible system⊕n

i=1 Ωi can be thought of as a probabilistic mix-
ture of the systems Ωi, where there is some label
i telling us which system we have. This label
cannot be prepared in ‘superpositions’ and so is
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best thought of as a classical degree of freedom.
In the case of quantum theory, reducible systems
are those that have a non-trivial superselection
rule, and the classical label tells us which super-
selection sector the state has been prepared in.
This motivates the following definition:

Definition 5 (Fully nonclassical systems). A
fully nonclassical GPT system S is one that is
irreducible.

Irreducible systems can be characterised by the
fact that their identity transformations cannot be
viewed as a coarse graining of other transforma-
tions, or, equivalently [66], that there do not exist
any non-disturbing measurements for the system.
See also [43, Section 5.1] for more discussion of
reducible GPT systems.

3 Results
Our main technical result is the following no-
go theorem, which follows directly from Theo-
rem 2 proven in Appendix D. Moreover an al-
gebraic version of the proof for the special case
of quantum systems is given in Appendix E.1 for
the reader who is less familiar with diagrammatic
approaches.

Theorem 1. Given two GPT systems S and G
which interact via some interaction I then at
least one of the following conditions must be vi-
olated:

(i) The system S is fully non-classical (Def. 5)
(ii) The interaction I is reversible (Def. 1)
(iii) There is information flow from system S to

system G (Def. 2)
(iv) G is classical (Def. 3)

Furthermore Theorem 2 shows that if S is re-
ducible and G is classical, it is only the classi-
cal (i.e., the which-sector) information which can
flow from S to a G via a reversible interaction I.
Proof sketch: Suppose that conditions (i)−(iv)

of the theorem hold and consider the following
procedure. First evolve G and S by I, which by
condition (iii) constitutes a non-trivial measure-
ment of S (see Example 2). Following this the
state of G state can be copied onto another sys-
tem G′ (in the sense of Equation (41)) since G
is classical by condition (iv). Subsequently the
inverse I−1 evolution (which exists by condition

(ii)) is applied which returns S and G to their ini-
tial states. The information gained about S dur-
ing I is not erased since it has been copied onto
G′. Hence this total procedure constitutes a dis-
turbance free measurement of the irreducible sys-
tem S (condition (i)) with non-trivial information
gain. It follows from the information gain versus
state disturbance trade-offs that this is impossi-
ble and therefore at least one of the assumptions
(i) − (iv) must be violated.

We can intuitively understand this theorem in
the case of quantum theory by appealing to an
example from Ref. [37]. Consider a classical har-
monic oscillator (system G) with free Hamilto-
nian H0 = 1

2p
2 interacting with a quantum spin

system (system S) via the interaction Hamilto-
nian HI = κσ̂3p. The x coordinate cannot satisfy
ẋ = ∂p(H0+HI) = p+κσ̂3, where the dot denotes
the time derivative and ∂p stands for the partial
derivative by p, since σ̂3 is an operator. Hence
we might use the expectation value ⟨σ̂3⟩ instead.
This is then an interaction which is reversible and
admits back-reaction, hence obeys conditions (ii)
and (iii). However, this interaction

“implies that quantum expectations can
be deduced with arbitrary precision from
the measurement of the classical vari-
ables x and p.” [37].

This means that either the classical system must
inherit some of the quantum uncertainty (and no
longer be classical) in order to prevent violation
of the uncertainty principle of the quantum sys-
tem or that the quantum system no longer sat-
isfies the uncertainty principle, and so has inher-
ited classical properties. In other words either
condition (iv) is violated since G has become non-
classical, or condition (i) is violated, since S has
become classical.
Let us emphasise that the proof of the theorem

only requires us to consider interactions between
a classical system and a non-classical system –
in particular, we do not need any assumption on
the properties of a nonclassical theory of grav-
ity (e.g., Hilbert space factorisation, interactions,
etc.).

3.1 Examples
We provide some simple examples of different
types of interactions between systems and which
of the assumptions of the theorem they meet.
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Example 1 (Entangling description of a quan-
tum measurement). Consider two qubits S and
G evolving according to a CNOT gate. This con-
stitutes a Z measurement of S by G when G is
initialised in |0⟩:

(α |0⟩S + β |1⟩S) |0⟩G 7→ α |00⟩SG + β |11⟩SG (1)

Here, conditions (i), (ii) and (iii) are met while
condition (iv) is not. To see that condition (iii)
is met observe that the final state |α|2 |0⟩⟨0|G +
|β|2 |1⟩⟨1|G of G depends on the initial state
α |0⟩S + β |1⟩S of S.

Example 2 (Measurement of a quantum system
by a classical system). We now consider a qubit
S on which a classical two level system G (rep-
resented by a superselected qubit in the Z ba-
sis) performs a Z observable measurement. The
two level system evolves according a decohered
CNOT gate:

|ψ⟩⟨ψ| ⊗ |0⟩⟨0| 7→ |α|2 |00⟩⟨00|SG + |β|2 |11⟩⟨11|SG ,
(2)

where |ψ⟩ = α |0⟩S + β |1⟩S. Here, conditions (i),
(iii) and (iv) are met whilst condition (ii) is not.

Example 3 (Reversible measurement of super-
selection sector by classical systems). Let us con-
sider two spin 1

2 systems with a total angular
momentum super-selection rule; i.e. where there
cannot be coherence between sectors with differ-
ent total angular momentum. Using known de-
composition rules for total angular momentum
we have:

1
2 ⊗ 1

2 ≃ 0 ⊕ 1, (3)

where the Hilbert space decomposes into C1 ⊕C3

corresponding to the anti-symmetric and sym-
metric subspaces of C2 ⊗ C2. A general density
operator for this super-selected system is block
diagonal ρ = ρ0 ⊕ρ1. We can define the following
total angular momentum (i.e. “which sector”)
measurement by a classical two level system:

(ρ0 ⊕ ρ1) ⊗ |0⟩⟨0| 7→ (ρ0 ⊗ |0⟩⟨0|) ⊕ (ρ1 ⊗ |1⟩⟨1|)
(4)

The above example is a specific instance of su-
perselection sectors induced by the action of a
group G on a Hilbert space H [67]. Here, condi-
tions (ii), (iii) and (iv) are met whilst condition
(i) is not.

Example 4 (Semi-classical gravity (see Ap-
pendix B). In semi-classical gravity the stress
energy tensor Tµν in the Einstein equation is re-
placed by the expectation value of the stress en-
ergy tensor ⟨Tµν⟩|ψ⟩ for the matter field |ψ⟩:

Rµν + 1
2gµνR = 8πG

c4 ⟨ψ| T̂µν |ψ⟩ . (5)

From this it follows (under some additional as-
sumptions) that |ψ⟩ evolves according to the
(non-linear) Schrödinger-Newton equation [68]:

i
d

dt
ψ =

[
− ∇2

2m −Gm2
∫
d3r′ |ψ(t, r′)|2

|r − r′|
+ V

]
ψ .

(6)

The key feature of semi-classical gravity (and
semi-classical approximations more generally as
described in Appendix A) is that they induce
dynamics described by a non-linear Schrödinger
equation. Importantly ‘quantum’ systems with
such modified dynamics no longer have the same
operational predictions as quantum theory, and
as such do not correspond to the same GPT. It
was shown in Ref. [47] for the family of NLSE
which are non-linear in |ψ|2 that such systems
are in fact fully classical, with states correspond-
ing to probability measures over the projective
Hilbert space of quantum states. This is anal-
ogous to the ‘classicalisation’ of the quantum
spin system coupled reversibly to the classical
harmonic oscillator discussed above. This then
shows that semi-classical gravity, which claims
to couple quantum matter with a classical gravi-
tational field, violates condition (i) and therefore
describes classical matter interacting with a clas-
sical gravitational field.

In semi-classical gravity the Schödinger-
Newton equation appears as a fundamental de-
scription of quantum matter interacting with
classical gravity [68]. We note that non-
linear Schrödinger equations, including the
Schrödinger-Newton equation also appear in ef-
fective descriptions of quantum systems via
mean-field approximations [68, 69]. We discuss
these in Appendix A and note that whilst the
theorem also applies to them, they are of less
conceptual interest since they are understood to
be useful approximations for describing interact-
ing quantum systems rather than a fundamental
description of quantum-classical interaction.
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4 Discussion

Let us discuss what a rejection of each of the
conditions in Theorem 1 entails:

Condition (i). Rejecting this condition would
mean that any matter degrees of freedom which
have a back-action on the gravitational field (for
example the position of a massive particle) are
modelled by reducible systems, for instance su-
perselected quantum systems or classical sys-
tems. Since massive quantum particles are irre-
ducible systems, this requires us to reject quan-
tum theory as describing any matter degrees of
freedom which back-react on the gravitational
field. Essentially, rejecting condition (i) means
rejecting quantum theory and the superposition
principle. We note that there are two main ways
in which a quantum system can ‘classicalise’. The
first is via a superselection rule, so that superpo-
sitions of states in a given basis are not allowed.
The second is that the projective Hilbert space
of pure quantum states is in fact a classical con-
figuration space and the mixed states are mea-
sures on this space. For a qubit which has pure
states which are isomorphic to a sphere, the cor-
responding classical system consists of all mea-
sures on the sphere with pure states being Dirac
measures 3. In this case a pure state δ 1√

2
(|0⟩+|1⟩) is

perfectly distinguishable from the states δ|0⟩ and
δ|1⟩. This is the case, e.g., of the Schrödinger-
Newton equation, discussed in Appendix B.

Condition (ii). Rejecting this condition can lead
to the introduction of some sort of stochasticity,
as in Refs. [40, 41, 71]. For instance, in [40, 41]
a model of quantum matter coupled to classi-
cal gravity is proposed. The interaction leads
to linear dynamics in the density matrix, unlike
proposals such as the Schrödinger-Newton equa-
tion for instance, meaning that the matter de-
grees of freedom are fully described by quantum
theory and therefore non-classical. The evolution
is stochastic and is equivalent to an open quan-
tum system description for the matter degrees of
freedom. There is back-reaction of the matter
degrees of freedom on the gravitational field. As
such this proposal violates condition (ii), whilst
meeting conditions (i) and (iii).

3This classical system appears in the Beltrametti-
Bugajski model of quantum systems [70].

Condition (iii). The case where there is no back-
reaction from matter onto the gravitational field
may emerge as a good approximation in certain
situations, such as a low mass particle interacting
gravitationally with a large static body. How-
ever, while condition (iii) can be violated in cer-
tain approximations it would be in contradiction
with a fundamental feature of gravity if the grav-
itational field was not influenced by matter.

Condition (iv). In this case the gravitational field
is non-classical. In the context of the current
discussion on the low-energy nature of the grav-
itational field [1–30], the violation of this con-
dition is the only one allowing one to preserve
both reversibility and back-action when gravity
interacts with quantum matter. The violation
of this condition thus consists in a justification
of the search for an (unknown) quantum grav-
ity theory at higher energies, which might have
very different features to those predicted in the
low-energy regime. Whilst non-classicality of the
gravitational field is consistent with the interac-
tion being either reversible or irreversible we note
that all the proposals the authors are aware of are
reversible.

4.1 On reversibility as a feature of quantum
matter interacting with the gravitational field

Let us now apply the theorem to the question
of whether the gravitational field needs to be
quantized. We assume that matter is irreducibly
quantum (condition (i)) and that it back-reacts
on the gravitational field (condition iii).

If one is committed to reversibility as a funda-
mental feature of the interaction between mat-
ter and the gravitational field, then one is forced
to conclude that the gravitational field is non-
classical. If one is not committed to reversibility
then this leaves open the possibility of the grav-
itational field being classical.

Theorem 1 is not normative and gives no rea-
son to prefer rejecting one assumption over an-
other. Rather one must appeal to external argu-
ments to justify different choices. There is ample
discussion about how fundamental reversibility is
in physics. On the one hand, quantum field the-
ory (our best fundamental microscopic theory of
matter) and general relativity (our best theory
of the interaction between classical matter and
space-time) are reversible. Hence, one may ex-
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pect that a theory combining the two should pre-
serve reversibility. On the other hand, we have
potential instances of irreversibility in fundamen-
tal physical theories, such as measurements in
quantum theory and thermodynamical processes.
Even though one may argue that at a more fun-
damental level thermodynamics can be reduced
to statistical mechanics, this reduction is contro-
versial and the status of reversibility within sta-
tistical mechanics is still debated.

Finally, we observe that reversibility is not
straightforward to falsify, since the observation
of an irreversible process does not preclude the
possibility that it is a part of a larger reversible
process.

4.2 Should the gravitational field be quan-
tized?

When studying reversible interactions between
quantum matter and classical gravity Mielnik
concluded that “Either gravity is quantum or
the electron is classical” and therefore “though it
may be very difficult to quantize the gravitation,
it is even more difficult not to do it” [72]. Sim-
ilarly [5] states that “everything must be quan-
tized” using the framework of constructor theory.
This framework assumes reversibility as well as
the assumption that ‘every measurer of a Z ob-
servable’ (which is the CNOT gate of Ex.1 for
quantum theory) can be used to perfectly dis-
criminate states in the X basis (which is met in
quantum theory since the input states |±⟩ |0⟩ are
mapped to orthogonal states). Moreover supers-
elected systems are not considered since the non-
classical system is assumed to have just two ob-
servables, which are incompatible While both
these results [5, 72] form part of a larger de-
bate on the necessity of quantizing the gravita-
tional field, the present work makes precise ex-
actly which assumptions are needed to construct
such arguments, for instance by highlighting the
key roles reversibility and superselection play.

The results of this paper show that the above
statements about the necessity of quantizing the
gravitational field are only true under the as-
sumption of reversibility, and that moreover if
one accepts super-selected quantum matter one
can preserve both reversibility and classicality of
the gravitational field.

A natural extension of the results of this pa-
per is to consider infinite dimensional systems.

For an extension to infinite dimensional classi-
cal systems interacting with irreducible finite di-
mensional quantum systems the algebraic version
of the proof in Appendix E.1 can informally be
adapted by replacing

∑
x →

∫
x dx. The diagram-

matic proof of Appendix D is expected to extend
to the general case, however a fully rigorous ex-
tension to infinite dimensional classical and non-
classical systems is left to future work.

4.3 Classical gravity and quantum matter

If gravity is classical, at least one of the condi-
tions (i)-(iii) has to fail. In summary, this implies
the following.

Fail (i) Reject irreducibly quantum matter

Fail (ii) Reject reversibility

Fail (iii) Reject matter dependence of gravity

Hence, a theory in which classical general relativ-
ity holds and matter is quantum necessarily needs
to break the principle of reversibility. This means
that the main feature of the model of [40, 41]
which one could object to, namely stochastic-
ity of the dynamics, is in fact inevitable for any
model which seeks to combine quantum matter
with classical general relativity.
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Martin Plávala. “No-free-information prin-
ciple in general probabilistic theories”.
Quantum 3, 157 (2019).

[44] Giulio Chiribella, Giacomo Mauro
D‘Ariano, and Paolo Perinotti. “Proba-
bilistic theories with purification”. Physical
Review A 81, 062348 (2010).

[45] David Bohm. “A suggested interpretation

Accepted in Quantum 2023-10-10, click title to verify. Published under CC-BY 4.0. 9

https://dx.doi.org/10.1103/PRXQuantum.2.030330
http://arxiv.org/abs/2101.11629
https://dx.doi.org/10.3390/universe8020058
https://dx.doi.org/10.3390/universe8020058
https://dx.doi.org/10.1103/PhysRevD.105.086001
https://dx.doi.org/10.1103/PhysRevD.105.086001
http://arxiv.org/abs/2112.10798
https://dx.doi.org/10.1103/PhysRevD.104.126030
https://dx.doi.org/10.1103/PhysRevD.104.126030
https://dx.doi.org/10.1103/PhysRevLett.130.100202
https://dx.doi.org/10.1103/PhysRevLett.130.100202
http://arxiv.org/abs/2202.03368
http://arxiv.org/abs/2205.09013
http://arxiv.org/abs/2207.03138
http://arxiv.org/abs/2205.06279
https://dx.doi.org/10.22331/q-2023-03-20-958
https://dx.doi.org/10.22331/q-2023-03-20-958
http://arxiv.org/abs/2207.10592
http://arxiv.org/abs/2208.09489
http://arxiv.org/abs/2209.02214
https://dx.doi.org/10.1007/978-3-030-88781-0_5
https://dx.doi.org/10.1007/978-3-030-88781-0_5
http://arxiv.org/abs/2203.05587
https://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://arxiv.org/abs/quant-ph/0101012
http://arxiv.org/abs/quant-ph/0101012
https://dx.doi.org/10.1103/PhysRevA.75.032304
https://dx.doi.org/10.1103/PhysRevA.75.032304
https://dx.doi.org/10.1103/PhysRevLett.81.2846
https://dx.doi.org/10.1103/PhysRevLett.81.2846
https://dx.doi.org/10.1103/PhysRevA.60.842
https://dx.doi.org/10.1103/PhysRevA.61.022108
https://dx.doi.org/10.1103/PhysRevA.61.022108
https://dx.doi.org/10.1007/s10701-005-9007-y
https://dx.doi.org/10.1007/s10701-005-9007-y
https://dx.doi.org/10.1103/PhysRevA.85.052109
https://dx.doi.org/10.1103/PhysRevA.85.052109
http://arxiv.org/abs/1811.03116
http://arxiv.org/abs/2203.01982
http://arxiv.org/abs/2208.11722
https://dx.doi.org/10.22331/q-2019-07-08-157
https://dx.doi.org/10.1103/PhysRevA.81.062348
https://dx.doi.org/10.1103/PhysRevA.81.062348


of the quantum theory in terms of” hidden”
variables. I”. Physical review 85, 166 (1952).

[46] Hugh Everett. “The theory of the univer-
sal wave function”. In The many-worlds in-
terpretation of quantum mechanics. Pages
1–140. Princeton University Press (2015).

[47] Bogdan Mielnik. “Mobility of nonlinear sys-
tems”. Journal of Mathematical Physics 21,
44–54 (1980).

[48] M Reginatto and M J W Hall. “Quantum-
classical interactions and measurement: a
consistent description using statistical en-
sembles on configuration space”. Jour-
nal of Physics: Conference Series 174,
012038 (2009).

[49] Lucien Hardy. “Probability theories with
dynamic causal structure: a new frame-
work for quantum gravity” (2005). arXiv:gr-
qc/0509120.

[50] Giulio Chiribella, GM D’Ariano, Paolo
Perinotti, and Benoit Valiron. “Be-
yond quantum computers” (2009).
arXiv:0912.0195.

[51] Ognyan Oreshkov, Fabio Costa, and Časlav
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A Semi-classical approximations

In general semi-classical approximations involve modelling some physical quantity by its expectation
value. In some cases quantum fluctuations about the expectation value of the physical quantity are
also included. Moreover these approximations are often accompanied by an assumption of locality,
such as the Hartree-Fock approximation.

Example 5 (Mean field approximation). In a mean field approximation an observable Ôi is replaced
by its mean value and some fluctuation about this value Ôi ≈ ⟨Oi⟩ + δÔi. A Hamiltonian of the
form Ĥ =

∑
iKi +

∑
⟨ij⟩ ÔiÔj , where ⟨ij⟩ indicates nearest neighbours, in this approximation is

Ĥ ≈
∑

⟨ij⟩

(
⟨Ôj⟩Ôi + ⟨Ôi⟩Ôj − ⟨Ôi⟩⟨Ôj⟩

)
. The time evolution generated by this Hamiltonian is a

non-linear Schrodinger equation, as can be seen by the presence of state dependent terms in the
Hamiltonian.

The term mean-field approximation is also used to describe the following approximation: first the
Hartree-Fock approximation is made (multi-particle states are assumed to be product) and then one
assumes that the Hamiltonian for a single system depends on the expectation value of some observable
of the other particles (such as charge density). This leads to non-linear quantum master equations and
non-linear Schrödinger equations [69, Section 3.7], such as the Gross-Pitaevskii equation for describing
bosons.

The Hartree-Fock approximation and mean field limit can also be used in the case of quantum
gravity. Assuming linearized quantum gravity (i.e., an effective quantum field-theoretic description of
gravity in the weak-field limit) and making the assumptions described above one can derive a non-
linear Schödinger equation (the Schödinger-Newton equation) as an effective description of the zeroth-
order dynamics of N particles interacting with a quantum gravitational field in the aforementioned
regime [68, Section 2.1].

B Schrödinger-Newton

The Schrödinger-Newton equation [68] appears in semi-classical gravity, where spacetime is described
using the classical general relativistic framework and only matter degrees of freedom are quantized.
Einstein’s equations describe the coupling between spacetime and matter in general relativity, and can
be generalised to quantum matter by letting the expectation value of the stress energy tensor couple
to the gravitational field:

Rµν + 1
2gµνR = 8πG

c4 ⟨ψ| T̂µν |ψ⟩ , (7)
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From this semi-classical Einstein equation one can derive the Schrödinger-Newton equation describing
the evolution of the matter degrees of freedom [68]:

i
d

dt
ψ =

[
− ∇2

2m −Gm2
∫
d3r′ |ψ(t, r′)|2

|r − r′|
+ V

]
ψ . (8)

This setup seems to at first contradict our theorem. Namely matter is described by an irreducible
quantum system, the interaction is reversible, there is back-reaction from the matter degrees of freedom
onto the gravitational field and the gravitational field is classical.
This apparent contradiction is resolved once one observes that the non-linear dynamics described

by the Schrödinger Newton equation allows one to carry out new non-quantum measurements on the
matter system. These new measurements allow one to distinguish arbitrary pure states, entailing that
the system is essentially classical. Therefore the Schrödinger-Newton model violates condition 1. of
the theorem since it describes matter degrees of freedom as classical [47].

C Mielnik’s generalized quantum mechanics
In his 1974 paper “Generalized quantum mechanics” [72] Mielnik studied modifications to the
Schrödinger equation induced by ‘subtle’ interactions between a quantum system and a classical
gravitational field. In the language of our theorem this corresponds to reversible interactions with
back-reaction. In the light of our no-go theorem, Mielnik showed that imposing Conditions ii), iii) and
that the gravitational field is classical led to a change in the nature of the quantum system. The new
interactions allowed one to measure non-quadratic observables (i.e. non-quantum observables) which
lead to the system being effectively classical, as in the case of the Schrödinger-Newton equation above.
This led him to the following hypothesis: “Either gravity is quantum or the electron is classical”.
Our theorem allows us to turn his hypothesis into a more precise statement: “Under the assumption

of reversibility, either gravity is non-classical or the electron (i.e., matter) is a fundamentally super-
selected (including classical) system”.
More specifically, if we assume that the position of the electron back-reacts on the gravitational

field (as is predicted by Einstein’s field equation) and that the interaction is reversible, then either
gravity is non-classical or the position of the electron cannot be put into superpositions. A similar
story can be told for the energy of the electron, or indeed, any other degree of freedom that we expect
to back-react on the gravitational field. Note that this does not rule out the existence of non-classical
degrees of freedom so long as they do not backreact on the gravitational field.
There exist other models of reversible interactions with back reaction between a classical system

and a quantum system such as [73] where the quantum degree of freedom inherits classical features.
Theorem 2 shows that this is inevitable (unless one allows that classical system to become non-
classical).

D Constraining interactions between classical and non-classical systems
We now give the theorem constraining the possible interactions between non-classical systems and
classical systems which we used to obtain Theorem 1 in the main text.

Theorem 2. There is no reversible interaction between a classical system, G, and fully non-classical
GPT system, S with information flow from the GPT system to the classical system. That is, any such
interaction R must satisfy the no-signalling condition

G
S

R
GS

=
G

r

GS

. (9)
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Moreover, in the case that the system S is reducible, then it is only the label of the sector which can
influence the classical system in a reversible interaction. That is, it satisfies

G
S

R
GS

=

G
r

GS
M
S , (10)

where M is the non-disturbing measurement for S which measures the which-sector information.

In the case of quantum theory this theorem shows that the only interactions between classical and
non-superselected quantum systems where the quantum system influences the classical system are
irreversible. Moreover, if we do have superselected quantum systems, where information other than
the which-sector information to influences the classical system, then this too must be governed by an
irreversible interaction.
Note that we expect the same proof to hold for the case of infinite dimensional classical systems G.

On a formal level, what we need is to identify the relevant symmetric monoidal category for describing
a generalised probabilistic theory coupled to infinite dimensional classical systems, at which point
exactly the same proof that we give below should hold.

D.1 Proof of Theorem 2 for irreducible systems
Proof. Let us assume that we have a classical system G, which in our key application will correspond
to a classical gravitational field, and a fully non-classical system S, which in our key application will
correspond to the matter degree of freedom. Then, let us assume that these two systems are interacting
via a reversible interaction R which we diagrammatically denote as:

R
S G

S G
, (11)

where reversibility means that there exists a physical transformation R−1 such that:

R−1
S G

S G

R
S G

= S G =
R

S G

S G

R−1
S G

(12)

At least in principle, there exist classical measurements, m, of G which are non-disturbing4. We denote
these as:

m

G

CG

(13)

where C is some classical ‘pointer’ degree of freedom which records the measurement outcome. In the
case that G is a finite dimensional classical system, then there is a single non-disturbing measurement
which perfectly records the state of G into C, we, however, do not need to make this assumption
here. The fact that this is a non-disturbing measurement is encoded in the fact that if we discard C
the resulting transformation on Fg is simply the identity. Such a transformation is known as a leak

4This does not necessarily need to be a ‘direct’ measurement of the field, but could constitute a complicated ‘indirect’
procedure by which some test particle interacts with the field and then some property of the test particle is measured to
give the result.
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in the process-theory literature [74–76], in particular, one where the leaked system, C, is classical.
Diagrammatically, these are characterised by the following equation:

m

G

C

G

= G (14)

where represents throwing away/discarding/ignoring the physical system, C. In quantum theory
this is represented by the trace and in classical probability theory by marginalisation. In particular,

P
C (15)

therefore represents the normalisation of the state P and hence any physical state must satisfy:

P
C = 1 (16)

Similarly, any physical transformation must preserve this normalisation, hence we have that:

f = . (17)

Now, consider the following diagram which we can construct out of these elements:

m

G

C

G
R−1

S

R

GS

GS

. (18)

For some initial state of the field, s, and ignoring the final state of the field, we have the following:

m

G

C

G
R−1

S

R

G
S

G

S
s

. (19)

It is then simple to see that the above diagram describes a procedure that implements a non-disturbing

Accepted in Quantum 2023-10-10, click title to verify. Published under CC-BY 4.0. 14



measurement on the system S, i.e., it defines a leak for the system, as:

m

G

C

G
R−1

S

R

G
S

G

S
s

= m

G

C
G

R−1

S

R

G
S

G

S
s

= G

R−1

S

R

G
S

G

S
s

= G
R−1

S

R

G
S

G

S
s

=

G
S

G

S
s

= GS
s

= S (20)

where the second equality uses the fact that m is non-disturbing for the field, the fourth reversibility
of R, and the sixth is the normalisation of the field state s.

Now, it is a well known result that such non-disturbing measurements for irreducible GPT systems
are trivial [66], that is, that they factorise as the identity on the irreducible system and some fixed
preparation of the classical pointer variable, that is:

m

G

C

G
R−1

S

R

G
S

G

S
s

=
S

χm
s

C

(21)

where this state χm
s can depend on the initial state of the field s and the non-disturbing measurement

of the field m. We can compute this state to be given by:

χs
m

C

=

ρ
S

χm
s

C

= m

G

C

G
R−1

S

R

GS

s
G

ρ
S

= m

G

C

G

S

R

s
G

ρ
S

, (22)

which is independent of the arbitrarily chosen initial state ρ. The first equality follows from nor-
malisation of ρ, the second from Eq. (21), and the final one from the fact that R−1 is a physical
transformation and so preserves normalisation.
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Hence, we can rewrite eq. (21) as:

m

G

C

G
R−1

S

R

G
S

G

S
s

= S m

G

C

G

S

R

s
G

ρ
S

. (23)

Now, if we trace out the irreducible system, S in Eq. (23), we obtain

m

G

C

G
R−1

S

R

GS

G

S
s

= S m

G

C

G

S

R

s
G

ρ
S

(24)

which, using the fact that R−1 is physical and hence preserves normalisation gives

m

G

C

G

S

R
G

S
s

=

S

m

G

C

G

S

R

s
G

ρ
S

(25)

Now, this is true for all states s of the field, hence we have

m

G

C

G

S

R
GS

=

S

m

G

C
G

S

R

G
ρ
S

. (26)

Similarly, this holds for all non-disturbing measurements of the field m, and as these suffice for tomog-
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raphy of the classical system G hence we can rewrite this as:

G
S

R
GS

=

S

G
S

R

G
ρ
S

(27)

=:
G

r

GS

. (28)

This is the definition of what it means for an interaction R to be no-signalling from S to G. In other
words, the state of the system S before the interaction has no influence on the state of the classical
gravitational field G after the interaction.

D.2 Proof of Theorem 2 for reducible systems

Up to Eq. 21 the proof is identical, as that is the first point where we have invoked irreducibility of S,
the rest of the proof then proceeds as follows:

Proof. Now, it is a well known result that such non-disturbing measurements for GPT systems reveal
only which-sector information [66], that is, that they can be written as:

m

G

C

G
R−1

S

R

G
S

G

S
s

=

S

Σm
s

C

M

S

(29)

where M is the non-disturbing measurement that reveals the which-sector information, that is, it
satisfies:

ρi
S

M
S

= ρi
S

i (30)

for all i and ρi ∈ Ωi. The process Σm
s is a stochastic map (which can depend on the initial state of the

field s and the non-disturbing measurement of the field m) processing the which-sector information.
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We can compute this stochastic map by looking at its action on point distributions as:

Σm
s

C

i

=

ρi

S

Σm
s

C

M

S

= m

G

C

G
R−1

S

R

GS

s
G

ρi

S

= m

G

C

G

S

R

s
G

ρi

S

, (31)

where ρi is an arbitrarily chosen state in sector Ωi. The first equality follows from the definition of M
together with the normalisation of ρi, the second from Eq. (29), and the final one from the fact that
R−1 is a physical transformation and so preserves normalisation.

Hence, we can rewrite eq. (29) as:

m

G

C

G
R−1

S

R

G
S

G

S
s

=
∑
i

S

Σm
s

C

M

S

i

i =
∑
i

S
M

S

i

m

G

C
G

S

R

s
G

ρi

S

, (32)

where in the first step we have taken Eq. (29) and introduced a resolution of the identity on the RHS,
and in the second we have used the above characterisation of Σm

s.

Now, if we trace out the system, S in Eq. (32), we obtain

m

G

C

G
R−1

S

R

GS

G

S
s

=
∑
i

S
M

S

i

m

G

C
G

S

R

s
G

ρi

S

(33)
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which, using the fact that R−1 is physical and hence preserves normalisation gives

m

G

C

G

S

R
G

S
s

=
∑
i

S
M

S

i

m

G

C
G

S

R

s
G

ρi

S

(34)

Now, this is true for all states s and measurements m of the field, hence we have:

G
S

R
GS

=
∑
i

S

M

S i

G
S

R

G

ρi

S

(35)

=:

G
r

GS
M
S . (36)

This means it is only the variation in the which-sector information of S which signals to G.

E Algebraic version of the proof for classical-quantum systems

E.1 Algebraic proof for irreducible systems

For the reader who is not familiar with diagrammatic notation and GPTs we offer an algebraic ver-
sion of the proof of Theorem 2 for irreducible systems in the case where the non-classical system is
quantum.

This proof broadly follows the diagrammatic proof of Section D.1 and we refer to the diagrammatic
version of equations so that the interested reader can translate between the diagrammatic approach
and the algebraic approach.

Let S be a non-super-selected quantum system Cd and G a finite n-dimensional classical system.
We represent G using diagonal density operators on Cn.

A general classical quantum state is of the following form:

ρ̃GS =
∑
x

p(x) |x⟩⟨x|G ⊗ ρ(x)S, (37)

where p(x) is some probability distribution and ρ(x)S a density operator. The interaction R : SG → SG
is reversible hence there exists a transformation R−1 : SG → SG such that

R−1(R−1(·)) = IGS, (38)
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with IGS the identity super-operator on the classical quantum states.
R is assumed to be signalling from S → G hence for some input states ρS and

∑
x p(x) |x⟩⟨x|G the

output state is:

R

(∑
x

p(x) |x⟩⟨x|G ⊗ ρS

)
=
∑
x

q(x) |x⟩⟨x| ⊗ σS(x), (39)

where the reduced state
∑
x q(x) |x⟩⟨x|C depends on the input state ρS.

The leak of Equation (13) in the case where the measurement is the canonical measurement, i.e.
the measurement in the |x⟩⟨x|G basis is given by the following map:

m : G → CG (40)
m ::

∑
x

p(x) |x⟩⟨x|G 7→
∑
x

p(x) |x⟩⟨x|G ⊗ |x⟩⟨x|C , (41)

where C is a classical system of the same dimension as G. This operation can be understood as a sort
of classical copy operation since the reduced state on C after the transformation m is equal to the
initial state of G. We stress that the diagrammatic proof is more general and applies to any leak, not
the one corresponding to the canonical measurement only.

We observe that tracing out C after m is just the identity on G:

TrC

(
m

(∑
x

p(x) |x⟩⟨x|G

))
= TrC

(∑
x

p(x) |x⟩⟨x|G ⊗ |x⟩⟨x|C

)
=
∑
x

p(x) |x⟩⟨x|G , (42)

showing that this obeys the condition of Equation (14). The diagram of Equation (18) is translated
to:

E : SG → SGC (43)
E :: ρGS 7→ (R−1 ⊗ IC) (m(R(ρGS))) . (44)

The interaction of Equation (19) is obtained from E by fixing an initial state sG =
∑
x p(x) |x⟩⟨x|G of

G and tracing out the state of G after E, this defines a new map:

EsG : S → SC (45)

EsG :: ρS 7→ TrG

(
E

(∑
x

p(x) |x⟩⟨x| ⊗ ρS

))
. (46)

We see that this map is a non-demolition measurement of S since it takes S to some joint state on SC
where C is the classical pointer system. Following Equation (20) we can show that this measurement
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is non-disturbing:

TrC(EsG(·)) : S → S (47)

TrC(EsG(·)) :: ρS 7→ TrGC

(
E

(∑
x

p(x) |x⟩⟨x| ⊗ ρS

))
(48)

=TrGC

(
(R−1 ⊗ IC)

(
m

(
UGS

(∑
x

p(x) |x⟩⟨x| ⊗ ρS

)
U †

GS

)))
(49)

=TrGC

(
(R−1 ⊗ IC)

(
m

(∑
x

q(x) |x⟩⟨x| ⊗ σS(x)
)))

(50)

=TrGC

(
(R−1 ⊗ IC)

(∑
x

q(x) |x⟩⟨x| ⊗ σS(x) ⊗ |x⟩⟨x|C

))
(51)

=TrG

(
R−1

(
TrC

(∑
x

q(x) |x⟩⟨x| ⊗ σS(x) ⊗ |x⟩⟨x|C

)))
(52)

=TrG

(
R−1

(∑
x

q(x) |x⟩⟨x| ⊗ σS(x)
))

(53)

=TrG

(∑
x

p(x) |x⟩⟨x|G ⊗ ρS

)
(54)

=ρS, (55)

where we have used the fact that TrGC
(
(R−1 ⊗ IC)(·)

)
= TrG

(
(R−1(TrC(·)

)
. This is the first step in

Equation (20).
Let us compute the state of the pointer system C after the interaction by tracing out the state of

GS:

TrGS(EsG(·)) : S → C (56)

TrGS(EsG(·)) :: ρS 7→ TrGS

(
E

(∑
x

p(x) |x⟩⟨x| ⊗ ρS

))
(57)

=TrGS

(
(R−1 ⊗ IC)

(
m

(
UGS

(∑
x

p(x) |x⟩⟨x| ⊗ ρS

)
U †

GS

)))
, (58)

and we use the fact that R−1 preserves normalisation, so that TrSG(R−1(ρSG)) = TrSG(ρSG) (the final
step of Equation (22)), then

TrGS(EsG(ρS)) = TrGS

(
m

(
UGS

(∑
x

p(x) |x⟩⟨x| ⊗ ρS

)
U †

GS

))
(59)

= TrGS

(
m

(∑
x

q(x) |x⟩⟨x| ⊗ σS(x)
))

(60)

= TrGS

(∑
x

q(x) |x⟩⟨x| ⊗ σS(x) ⊗ |x⟩⟨x|C

)
(61)

=
∑
x

q(x) |x⟩⟨x|C . (62)

Observe that since we assume that there is information flow from S → G during the interaction R,
this implies that for at least one input state ρS and

∑
x p(x) |x⟩⟨x|G the state

∑
x q(x) |x⟩⟨x|C depends

non-trivially on ρS.
Thus TrGS(EsG(·)) : S → C is a non-trivial measurement of S.
This is a contradiction since we have created an interaction EsG(·) : S → SC which is non-trivial

non-disturbing measurement for an irreducible system.
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E.2 The role of the no-signalling assumption
Observe that

(R−1 ⊗ IC)
(∑

x

q(x) |x⟩⟨x| ⊗ σS(x) ⊗ |x⟩⟨x|C

)
=
∑
x

p(x) |x⟩⟨x|G ⊗ ρS ⊗ |x⟩⟨x|C . (63)

However the state of C before the interaction was
∑
x p(x) |x⟩⟨x|C whereas after the interaction it is∑

x q(x) |x⟩⟨x|C. This is in general inconsistent with the fact that the action of R−1 ⊗ IC should leave
C unchanged.

The assumption that the action of R−1 ⊗ IC should leave C unchanged is sometimes known as no-
signalling, since it says that an operation on SG should not affect C. It is met by quantum theory and
is an assumption of the GPT framework more generally.

If we impose no-signalling then the interaction is only consistent when p(x) = q(x) and hence

R ::
∑
x

p(x) |x⟩⟨x| ⊗ ρS 7→
∑
x

p(x) |x⟩⟨x| ⊗ σS(x), (64)

i.e. there is no back-reaction from S to G. This is consistent with the main theorem.
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