Towards Quantum Gravity in the Lab on Quantum Processors

Illya Shapoval1, Vincent Paul Su2, Wibe de Jong1, Miro Urbanek1, and Brian Swingle3

1Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, CA 94720, USA
2Center for Theoretical Physics and Department of Physics, University of California, Berkeley, CA 94720, U.S.A.
3Brandeis University, Waltham, MA 02453, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The holographic principle and its realization in the AdS/CFT correspondence led to unexpected connections between general relativity and quantum information. This set the stage for studying aspects of quantum gravity models, which are otherwise difficult to access, in table-top quantum-computational experiments. Recent works have designed a special teleportation protocol that realizes a surprising communication phenomenon most naturally explained by the physics of a traversable wormhole. In this work, we have carried out quantum experiments based on this protocol on state-of-the-art quantum computers. The target quantum processing units (QPUs) included the Quantinuum's trapped-ion System Model H1-1 and five IBM superconducting QPUs of various architectures, with public and premium user access. We report the observed teleportation signals from these QPUs with the best one reaching 80% of theoretical predictions. We outline the experimental challenges we have faced in the course of implementation, as well as the new theoretical insights into quantum dynamics the work has led to. We also developed QGLab – an open-source end-to-end software solution that facilitates conducting the wormhole-inspired teleportation experiments on state-of-the-art and emergent generations of QPUs supported by the $Qiskit$ and $tket$ SDKs. We consider our study and deliverables as an early practical step towards the realization of more complex experiments for the indirect probing of quantum gravity in the lab.

A recent teleportation protocol discovered in the context of two-sided black holes was found to work for general chaotic quantum mechanical systems. Here we present the findings of implementing such a protocol for a certain kicked quantum ising model. We were able to achieve up to 80% fidelity of the simulated results with actual quantum hardware which we accessed via the cloud. We show that this system with just a handful of qubits can be used to teleport a classical bit's worth of information.

► BibTeX data

► References

[1] J. D. Bekenstein. Black holes and the second law. Lettere al Nuovo Cimento (1971-1985), 4, 1972. 10.1007/​BF02757029.
https:/​/​doi.org/​10.1007/​BF02757029

[2] Jacob D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7: 2333–2346, Apr 1973. 10.1103/​PhysRevD.7.2333.
https:/​/​doi.org/​10.1103/​PhysRevD.7.2333

[3] Jacob D. Bekenstein. Generalized second law of thermodynamics in black hole physics. Phys. Rev. D, 9: 3292–3300, 1974. 10.1103/​PhysRevD.9.3292.
https:/​/​doi.org/​10.1103/​PhysRevD.9.3292

[4] S. W. Hawking. Black hole explosions? Nature, 248 (5443): 30–31, March 1974. 10.1038/​248030a0.
https:/​/​doi.org/​10.1038/​248030a0

[5] Andrew Strominger and Cumrun Vafa. Microscopic origin of the bekenstein-hawking entropy. Physics Letters B, 379 (1): 99–104, 1996. ISSN 0370-2693. https:/​/​doi.org/​10.1016/​0370-2693(96)00345-0.
https:/​/​doi.org/​10.1016/​0370-2693(96)00345-0

[6] Juan Martin Maldacena. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2: 231–252, 1998. 10.1023/​A:1026654312961.
https:/​/​doi.org/​10.1023/​A:1026654312961

[7] S.S. Gubser, I.R. Klebanov, and A.M. Polyakov. Gauge theory correlators from non-critical string theory. Physics Letters B, 428 (1-2): 105–114, may 1998. 10.1016/​s0370-2693(98)00377-3.
https:/​/​doi.org/​10.1016/​s0370-2693(98)00377-3

[8] Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2: 253–291, 1998. 10.4310/​ATMP.1998.v2.n2.a2.
https:/​/​doi.org/​10.4310/​ATMP.1998.v2.n2.a2

[9] John McGreevy. Holographic duality with a view toward many-body physics. Advances in High Energy Physics, 2010: 1–54, 2010. 10.1155/​2010/​723105.
https:/​/​doi.org/​10.1155/​2010/​723105

[10] L. García-Álvarez, I. L. Egusquiza, L. Lamata, A. del Campo, J. Sonner, and E. Solano. Digital Quantum Simulation of Minimal AdS/​CFT. Phys. Rev. Lett., 119 (4): 040501, 2017. 10.1103/​PhysRevLett.119.040501.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.040501

[11] Ippei Danshita, Masanori Hanada, and Masaki Tezuka. Creating and probing the sachdev–ye–kitaev model with ultracold gases: Towards experimental studies of quantum gravity. Progress of Theoretical and Experimental Physics, 2017 (8), Aug 2017. ISSN 2050-3911. 10.1093/​ptep/​ptx108.
https:/​/​doi.org/​10.1093/​ptep/​ptx108

[12] M. Franz and M. Rozali. Mimicking black hole event horizons in atomic and solid-state systems. Nature Rev. Mater., 3: 491–501, 2018. 10.1038/​s41578-018-0058-z.
https:/​/​doi.org/​10.1038/​s41578-018-0058-z

[13] Adam R. Brown, Hrant Gharibyan, Stefan Leichenauer, Henry W. Lin, Sepehr Nezami, Grant Salton, Leonard Susskind, Brian Swingle, and Michael Walter. Quantum Gravity in the Lab. I. Teleportation by Size and Traversable Wormholes. PRX Quantum, 4 (1): 010320, 2023. 10.1103/​PRXQuantum.4.010320.
https:/​/​doi.org/​10.1103/​PRXQuantum.4.010320

[14] Matt Visser, Carlos Barcelo, and Stefano Liberati. Analogue models of and for gravity. Gen. Rel. Grav., 34: 1719–1734, 2002. 10.1023/​A:1020180409214.
https:/​/​doi.org/​10.1023/​A:1020180409214

[15] Daniel Carney, Philip C E Stamp, and Jacob M Taylor. Tabletop experiments for quantum gravity: a user's manual. Classical and Quantum Gravity, 36 (3): 034001, jan 2019. 10.1088/​1361-6382/​aaf9ca.
https:/​/​doi.org/​10.1088/​1361-6382/​aaf9ca

[16] Sepehr Nezami, Henry W. Lin, Adam R. Brown, Hrant Gharibyan, Stefan Leichenauer, Grant Salton, Leonard Susskind, Brian Swingle, and Michael Walter. Quantum Gravity in the Lab. II. Teleportation by Size and Traversable Wormholes. PRX Quantum, 4 (1): 010321, 2023. 10.1103/​PRXQuantum.4.010321.
https:/​/​doi.org/​10.1103/​PRXQuantum.4.010321

[17] Thomas Schuster, Bryce Kobrin, Ping Gao, Iris Cong, Emil T. Khabiboulline, Norbert M. Linke, Mikhail D. Lukin, Christopher Monroe, Beni Yoshida, and Norman Y. Yao. Many-Body Quantum Teleportation via Operator Spreading in the Traversable Wormhole Protocol. Phys. Rev. X, 12 (3): 031013, 2022. 10.1103/​PhysRevX.12.031013.
https:/​/​doi.org/​10.1103/​PhysRevX.12.031013

[18] K. A. Landsman, C. Figgatt, T. Schuster, N. M. Linke, B. Yoshida, N. Y. Yao, and C. Monroe. Verified Quantum Information Scrambling. Nature, 567 (7746): 61–65, 2019. 10.1038/​s41586-019-0952-6.
https:/​/​doi.org/​10.1038/​s41586-019-0952-6

[19] M. S. Blok, V. V. Ramasesh, T. Schuster, K. O'Brien, J. M. Kreikebaum, D. Dahlen, A. Morvan, B. Yoshida, N. Y. Yao, and I. Siddiqi. Quantum Information Scrambling on a Superconducting Qutrit Processor. Phys. Rev. X, 11 (2): 021010, 2021. 10.1103/​PhysRevX.11.021010.
https:/​/​doi.org/​10.1103/​PhysRevX.11.021010

[20] Bruno Bertini, Pavel Kos, and TomažProsen. Exact spectral form factor in a minimal model of many-body quantum chaos. Phys. Rev. Lett., 121: 264101, Dec 2018a. 10.1103/​PhysRevLett.121.264101.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.264101

[21] Bruno Bertini, Pavel Kos, and Tomaž Prosen. Entanglement spreading in a minimal model of maximal many-body quantum chaos. Phys. Rev. X, 9 (2): 021033, 2019. 10.1103/​PhysRevX.9.021033.
https:/​/​doi.org/​10.1103/​PhysRevX.9.021033

[22] Ping Gao, Daniel Louis Jafferis, and Aron C. Wall. Traversable Wormholes via a Double Trace Deformation. JHEP, 12: 151, 2017. 10.1007/​JHEP12(2017)151.
https:/​/​doi.org/​10.1007/​JHEP12(2017)151

[23] Juan Maldacena, Douglas Stanford, and Zhenbin Yang. Diving into traversable wormholes. Fortschritte der Physik, 65 (5): 1700034, May 2017a. ISSN 1521-3978. 10.1002/​prop.201700034. URL http:/​/​dx.doi.org/​10.1002/​prop.201700034.
https:/​/​doi.org/​10.1002/​prop.201700034

[24] Bruno Bertini, Pavel Kos, and Tomaž Prosen. Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos. Phys. Rev. Lett., 121 (26): 264101, 2018b. 10.1103/​PhysRevLett.121.264101.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.264101

[25] Thomas Hartman, Sandipan Kundu, and Amirhossein Tajdini. Averaged Null Energy Condition from Causality. JHEP, 07: 066, 2017. 10.1007/​JHEP07(2017)066.
https:/​/​doi.org/​10.1007/​JHEP07(2017)066

[26] Juan Maldacena and Leonard Susskind. Cool horizons for entangled black holes. Fortsch. Phys., 61: 781–811, 2013. 10.1002/​prop.201300020.
https:/​/​doi.org/​10.1002/​prop.201300020

[27] Juan Maldacena, Douglas Stanford, and Zhenbin Yang. Diving into traversable wormholes. Fortsch. Phys., 65 (5): 1700034, 2017b. 10.1002/​prop.201700034.
https:/​/​doi.org/​10.1002/​prop.201700034

[28] William Cottrell, Ben Freivogel, Diego M. Hofman, and Sagar F. Lokhande. How to build the thermofield double state. Journal of High Energy Physics, 2019 (2), feb 2019. 10.1007/​jhep02(2019)058.
https:/​/​doi.org/​10.1007/​jhep02(2019)058

[29] Juan Maldacena and Xiao-Liang Qi. Eternal traversable wormhole, 4 2018. URL https:/​/​arxiv.org/​abs/​1804.00491.
arXiv:1804.00491

[30] Vincent Paul Su. Variational preparation of the thermofield double state of the sachdev-ye-kitaev model. Phys. Rev. A, 104: 012427, Jul 2021. 10.1103/​PhysRevA.104.012427.
https:/​/​doi.org/​10.1103/​PhysRevA.104.012427

[31] Juan Maldacena and Alexey Milekhin. SYK wormhole formation in real time. JHEP, 04: 258, 2021. 10.1007/​JHEP04(2021)258.
https:/​/​doi.org/​10.1007/​JHEP04(2021)258

[32] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta. Validating quantum computers using randomized model circuits. Phys. Rev. A, 100: 032328, Sep 2019. 10.1103/​PhysRevA.100.032328.
https:/​/​doi.org/​10.1103/​PhysRevA.100.032328

[33] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, USA, 10th edition, 2011. ISBN 1107002176.

[34] IBM Quantum. https:/​/​www.ibm.com/​quantum-computing. Online. Accessed on 19-May-2022.
https:/​/​www.ibm.com/​quantum-computing

[35] Jared B. Hertzberg, Eric J. Zhang, Sami Rosenblatt, Easwar Magesan, John A. Smolin, Jeng-Bang Yau, Vivekananda P. Adiga, Martin Sandberg, Markus Brink, Jerry M. Chow, and Jason S. Orcutt. Laser-annealing josephson junctions for yielding scaled-up superconducting quantum processors. npj Quantum Information, 7 (1), aug 2021. 10.1038/​s41534-021-00464-5.
https:/​/​doi.org/​10.1038/​s41534-021-00464-5

[36] Maika Takita, Andrew W. Cross, A. D. Córcoles, Jerry M. Chow, and Jay M. Gambetta. Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Physical Review Letters, 119 (18), oct 2017. 10.1103/​physrevlett.119.180501.
https:/​/​doi.org/​10.1103/​physrevlett.119.180501

[37] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis. Demonstration of the trapped-ion quantum ccd computer architecture. Nature, 592 (7853): 209–213, Apr 2021. ISSN 1476-4687. 10.1038/​s41586-021-03318-4.
https:/​/​doi.org/​10.1038/​s41586-021-03318-4

[38] Honeywell system model h1 fidelity and quantum volume. https:/​/​www.honeywell.com/​us/​en/​news/​2021/​07/​honeywell-sets-another-record-for-quantum-computing-performance. Accessed: 2021-09-24.
https:/​/​www.honeywell.com/​us/​en/​news/​2021/​07/​honeywell-sets-another-record-for-quantum-computing-performance

[39] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for nisq-era quantum devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS '19, page 1001–1014, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362405. 10.1145/​3297858.3304023.
https:/​/​doi.org/​10.1145/​3297858.3304023

[40] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549 (7671): 242–246, Jan 2017. ISSN 1476-4687. 10.1038/​nature23879.
https:/​/​doi.org/​10.1038/​nature23879

[41] Benjamin Nachman, Miroslav Urbanek, Wibe A. de Jong, and Christian W. Bauer. Unfolding quantum computer readout noise. npj Quantum Inf., 6 (1): 84, Sep 2020. ISSN 2056-6387. 10.1038/​s41534-020-00309-7.
https:/​/​doi.org/​10.1038/​s41534-020-00309-7

[42] Joel J. Wallman and Joseph Emerson. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A, 94: 052325, Nov 2016. 10.1103/​PhysRevA.94.052325.
https:/​/​doi.org/​10.1103/​PhysRevA.94.052325

[43] Miroslav Urbanek, Benjamin Nachman, Vincent R. Pascuzzi, Andre He, Christian W. Bauer, and Wibe A. de Jong. Mitigating depolarizing noise on quantum computers with noise-estimation circuits. Phys. Rev. Lett., 127: 270502, Dec 2021. 10.1103/​PhysRevLett.127.270502.
https:/​/​doi.org/​10.1103/​PhysRevLett.127.270502

[44] Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7: 021050, Jun 2017. 10.1103/​PhysRevX.7.021050.
https:/​/​doi.org/​10.1103/​PhysRevX.7.021050

[45] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 119: 180509, Nov 2017. 10.1103/​PhysRevLett.119.180509.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.180509

[46] Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta. Error mitigation extends the computational reach of a noisy quantum processor. Nature, 567 (7749): 491–495, Mar 2019. ISSN 1476-4687. 10.1038/​s41586-019-1040-7.
https:/​/​doi.org/​10.1038/​s41586-019-1040-7

[47] QGLab. https:/​/​gitlab.com/​ishapova/​qglab. Online. Accessed on 8-Feb-2022.
https:/​/​gitlab.com/​ishapova/​qglab

[48] D. Zhu, S. Johri, N. M. Linke, K. A. Landsman, C. Huerta Alderete, N. H. Nguyen, A. Y. Matsuura, T. H. Hsieh, and C. Monroe. Generation of thermofield double states and critical ground states with a quantum computer. Proceedings of the National Academy of Sciences, 117 (41): 25402–25406, 2020. 10.1073/​pnas.2006337117.
https:/​/​doi.org/​10.1073/​pnas.2006337117

[49] Jingxiang Wu and Timothy H. Hsieh. Variational thermal quantum simulation via thermofield double states. Phys. Rev. Lett., 123: 220502, Nov 2019. 10.1103/​PhysRevLett.123.220502.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.220502

Cited by

[1] M.B. Cruz, R.M.P. Neves, and Celio R. Muniz, "Traversable wormholes from Loop Quantum Gravity", Journal of Cosmology and Astroparticle Physics 2024 05, 016 (2024).

[2] Ran Li, Xuanhua Wang, Kun Zhang, and Jin Wang, "Information retrieval from Hawking radiation in the non-isometric model of black hole interior: Theory and quantum simulation", Physical Review D 109 4, 044005 (2024).

[3] Adam R. Brown and Leonard Susskind, "A holographic wormhole traversed in a quantum computer", Nature 612 7938, 41 (2022).

[4] Masaki Tezuka, Onur Oktay, Enrico Rinaldi, Masanori Hanada, and Franco Nori, "Binary-coupling sparse Sachdev-Ye-Kitaev model: An improved model of quantum chaos and holography", Physical Review B 107 8, L081103 (2023).

[5] Priyanka Mukhopadhyay, Torin F. Stetina, and Nathan Wiebe, "Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian", PRX Quantum 5 1, 010345 (2024).

[6] Ran Li, Xuanhua Wang, Kun Zhang, and Jin Wang, "Page Time as a Transition of Information Channels: High-fidelity Information Retrieval for Radiating Black Holes", arXiv:2309.01917, (2023).

[7] MuSeong Kim, Mi-Ra Hwang, Eylee Jung, and DaeKil Park, "Scrambling and quantum teleportation", Quantum Information Processing 22 4, 176 (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-24 21:02:57) and SAO/NASA ADS (last updated successfully 2024-05-24 21:02:58). The list may be incomplete as not all publishers provide suitable and complete citation data.