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When two parties, Alice and Bob, share correlated quantum systems and Alice
performs local measurements, Alice’s updated description of Bob’s state can provide
evidence of nonclassical correlations. This simple scenario, famously introduced by
Einstein, Podolsky and Rosen (EPR), can be modified by allowing Bob to also have a
classical or quantum system as an input. In this case, Alice updates her knowledge of
the channel (rather than of a state) in Bob’s lab. In this paper, we provide a unified
framework for studying the nonclassicality of various such generalizations of the
EPR scenario. We do so using a resource theory wherein the free operations are local
operations and shared randomness (LOSR). We derive a semidefinite program for
studying the pre-order of EPR resources and discover possible conversions between
the latter. Moreover, we study conversions between post-quantum resources both
analytically and numerically.
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1 Introduction
It is a well-established fact that nature exhibits phenomena that are not explainable by clas-
sical laws of physics. Some of these phenomena, such as Bell nonclassicality [1, 2], pertain to
correlational aspects of distant physical systems. For instance, Einstein-Podolsky-Rosen (EPR)
‘steering’ [3–5] refers to a scenario where local measurements on half of a system prepared in
an entangled state can generate nonclassical correlations between two distant parties. This
phenomenon is a crucial resource for various information-theoretic tasks [6, 7], such as quantum
cryptography [8, 9], entanglement certification [10, 11], randomness certification [12, 13], and
self-testing [14–16]. The wide applicability of EPR correlations motivates a program of charac-
terizing their resourcefulness [5, 17–21], both in the standard EPR scenario and in multipartite
generalizations thereof.

1.1 Generalizations of the EPR scenario
The standard EPR scenario consists of two parties, Alice and Bob, that share a bipartite system
prepared in an entangled state. By performing measurements on her share of the system, Alice
updates her knowledge about the state of Bob’s subsystem1. Various generalizations of this
standard scenario have been introduced in recent years, wherein Bob also may probe his system
in various ways. In such cases, Alice’s measurements allow her to make inferences not merely
about the state of Bob’s system, but also about the overall process in Bob’s laboratory. Instances
of such scenarios include the channel EPR scenario [25], Bob-with-input EPR scenario [26],
measurement device-independent EPR scenario [27], and the famous Bell scenario [2, 22]. These
scenarios are all closely related, and a unified framework for understanding them was introduced
in Refs. [24, 28]. One can easily understand the basic relationship between these distinct
scenarios by considering Fig. 1. The standard EPR scenario is shown in Fig. 1(a); here, Alice
and Bob share a quantum system, and Alice performs measurements labeled by classical inputs
to obtain classical outputs. When Bob performs measurements with classical input and output
systems as well, as illustrated in Fig. 1(b), one recovers the Bell scenario [2, 22]. More generally,
when Bob’s input and output systems are quantum, as shown in Fig. 1(c), one obtains the
channel EPR scenario [25]. If Bob’s input is quantum and the output is classical, one recovers the
measurement-device-independent EPR scenario [27], shown in Fig. 1(d), wherein Alice makes
inferences about Bob’s measurement channel. Finally, if the input is classical and the output is
quantum, one recovers the Bob-with-input EPR scenario [26], illustrated in Fig. 1(e), wherein
Alice makes inferences about Bob’s state preparation channel. These scenarios all have a similar
common-cause causal structure; what distinguishes them is the type – classical or quantum – of
Bob’s input and output system.

In every type of EPR scenario, Alice chooses from various incompatible methods of refining
her knowledge about Bob’s process. Her knowledge after performing her local measurements is
represented by an ensemble of Bob’s updated processes together with their associated proba-
bilities of arising. In analogy to the traditional EPR scenario, the collection of these ensembles
(one for each of her possible measurements) is termed an assemblage [17]. In other words, the
standard concept of a collection of ensembles of quantum states in the standard EPR scenario

1The fact that Alice learns about Bob’s distant subsystem is sometimes taken to be evidence for action-at-a-
distance. The very term ‘steering’ suggests that Alice has a causal influence on Bob’s system. In this paper, we
do not endorse this view, as we take the causal structure of the EPR scenario to be a common cause one. For
this reason, we will refer to a ‘steering scenario’ as an EPR scenario and say that Alice updates her knowledge
about the state of Bob’s subsystem, rather than ‘steering’ him. For more discussion of and motivation for this
view, see Refs. [21–24]
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(a) (b) (c) (d) (e)

Figure 1: Generalizations of the traditional EPR scenario: (a) traditional bipartite EPR scenario. (b) Bell
scenario. (c) Channel EPR scenario. (d) Measurement-device-independent EPR scenario. (e) Bob-with-input
EPR scenario. Quantum and classical systems are depicted by double and single lines, respectively. In the
special case when the common cause in each scenario is classical, these are all free resources. Thick black lines
depict the possibility that the shared systems may be classical, quantum, or even post-quantum, as discussed
in Section 1.2.

turns into a collection of ensembles of processes in these generalized EPR scenarios. The as-
semblage associated to a given scenario contains all the relevant information for characterizing
the correlational resources shared between the parties in the scenario.

1.2 The resource theory
In every type of EPR scenario, the most basic problem is identifying which assemblages provide
evidence of nonclassicality – that is, which assemblages can only be generated if Alice and Bob
share a nonclassical common cause [21]. One can then ask about the relative nonclassicality of
assemblages, i.e., whether a given assemblage is more or less nonclassical than another. This line
of reasoning leads to the framework of resource theories, a principled approach to quantifying
the value of a broad range of objects. This approach has proved to be useful in many areas of
physics, including coherence [29–31], athermality [32–37], LOCC-entanglement [38–40], LOSR-
entanglement [23, 41], and other common-cause processes [22, 24, 28], including some beyond
what quantum theory allows (i.e., post-quantum processes) [42–44].

In this work, we develop a resource theory which quantifies the nonclassicality of channel as-
semblages in channel EPR scenarios, subsuming all of the special cases in Fig. 1. This resource
theory is itself a special case (where one focuses on EPR scenarios) of the type-independent
resource theory introduced in Refs. [24, 28], which are motivated by the causal modelling per-
spective on studying nonclassicality [45, 46]. Note that the special case of standard EPR sce-
narios (bipartite and multipartite, with quantum common-cause systems) is analyzed in detail
in Ref. [21]; hence, we will not focus on them here. Similarly, the special case of Bell scenarios
was studied in detail in Ref. [22], and so is not studied in detail here.

In this resource theory of channel assemblages, the free resources – that is, classical assem-
blages – are those that can be generated by local operations and classical common causes. This
approach is motivated by previous works [21–24, 28] which argue that the resourcefulness in
scenarios of this type is best characterized as nonclassicality of the common-cause. It follows
that the operations that can be applied to the resources without increasing their nonclassicality
include local operations and classical common causes. In other words, the free operations in
our resource theory are local operations and shared randomness (LOSR).

Another important ingredient in the definition of a resource theory is its enveloping theory,
which specifies the scope of all possible resources under consideration. Refs. [20, 21] study the
case of bipartite and multipartite EPR scenarios where the enveloping theory is taken to be
that of quantum resources, i.e., assemblages that Alice and Bob can prepare in the laboratory
by performing classically-correlated local actions on a shared quantum system that may be
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prepared on an entangled state. In this work, however, we consider the enveloping theory to
contain all assemblages which can be generated by Alice performing measurements on a bipartite
system whose state may be described by an arbitrary theory (a possibility formalized within the
framework of generalized probabilistic theories and depicted by thick lines in Fig. 1) [47]. As
shown by Ref. [47], this enveloping theory contains all and only the no-signalling assemblages.
Notably, not every assemblage that satisfies the no-signalling principle can be generated by Alice
and Bob sharing quantum resources [26, 48]; this is in analogy to Popescu-Rohrlich boxes [49]
in Bell scenarios. An exception is given by assemblages in traditional bipartite EPR scenarios,
where the renowned theorem by Gisin [50] and Hughston, Josza, and Wootters [51] (GHJW)
proves that the most general assemblages – the non-signalling ones – all admit a quantum
realization. Our broadening of the enveloping theory of resources allows for a perspective from
which to study how quantum resources emerge and how their resourcefulness is bounded relative
to all logically possible resources. This is a main advantage of the resource theory presented in
this work over the resource theory we developed in Ref. [21]. For this reason, we mainly focus
on studying post-quantum resources in this paper.

1.3 Summary of main results
In Section 2, we specify the resource theory of channel EPR scenarios. This section includes the
formal definition of the channel EPR scenario and the most general channel assemblage pro-
cessing under LOSR operations. Moreover, we give a semidefinite program for testing resource
conversion under free operations in the corresponding scenario. We then run this program to
study the pre-order of channel assemblages.

In Sections 3 and 4, we focus on two special cases of channel EPR scenarios: Bob-with-input
EPR scenarios and measurement-device-independent EPR scenarios, respectively. We show how
the particular set of free operations emerges in each of these scenarios from the general case
of Section 2 by specifying the necessary system types. We also present simplified semidefinite
programs for testing resource conversion under free operations, and discuss properties of the
pre-order of resources.

Finally, we discuss related work in Section 5. On the one hand, we note that there are
significant conceptual differences between our work and Ref. [25], which first studied channel
EPR scenarios. In particular, Ref. [25] seems to be interested not in nonclassicality in a common-
cause scenario, but rather in scenarios with communication between Bob and Alice. While this
makes no difference for the set of free resources (when one restricts to no-signaling resources),
it does make a significant difference for the overall resource theory. On the other hand, we
highlight the similarities and differences between our approach and the resource theory under
Local Operations and Shared Entanglement from Ref. [42].

2 The channel EPR scenario
In the channel EPR scenario, two distant parties (Alice and Bob) share a physical system AB.
In addition, Bob has a quantum system defined on HBin which he acts on locally by applying
a quantum channel ΛBin→Bout . As a result, he obtains a quantum system defined on HBout .

It is possible that the channel ΛBin→Bout (or its application to system Bin) is being influenced
by the presence of system B in Bob’s lab. If this were the case, the effective channel ΛBin→Bout

would instead be a larger process ΓBBin→Bout acting on both the quantum system Bin and the
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system B. If B were a quantum system, ΓBBin→Bout would be called the channel extension2

of ΛBin→Bout . The idea of a channel EPR scenario is to assume that indeed ΓBBin→Bout is
the process happening at Bob’s lab, and see what Alice can infer about the quantum channel
ΛBin→Bout from the outcome statistics she locally observes on her system A. The way Alice
probes her system A is by performing measurements on it. Fig. 2(a) illustrates such a channel
EPR scenario, where the classical and quantum systems are depicted with single and double
wires, respectively, and the thick wires depict systems which may be classical, quantum, or even
post-quantum.

Let x ∈ X be the classical variable that denotes Alice’s choice of measurements, and a ∈ A the
classical variable that denotes her observed outcome3. By p(a|x) we denote the probability with
which Alice obtains outcome a having performed measurement x on her system A. In addition,
we denote by Ia|x(·) the instrument that is effectively applied on Bob’s quantum system Bin

to produce a quantum system Bout, given that Alice has performed measurement x on A and
obtained the outcome a. It follows then that the object of study in such a channel EPR scenario

is the channel assemblage of instruments IA|X = {Ia|x(·)}a∈A , x∈X, with trBout

{
Ia|x(ρ)

}
= p(a|x)

for every normalised state ρ of quantum system Bin, and
∑

a∈A Ia|x(·) = ΛBin→Bout for all x ∈ X.
Let us illustrate an example of channel assemblages in the case of Alice and Bob sharing

a bipartite quantum system prepared on a state ρAB – that is, we take the common cause
AB mentioned before to be quantum. In this case, Alice’s most general measurements are the
generalized measurements, i.e., positive operator-valued measures (POVMs), which we denote
by {Ma|x}a∈A,x∈X. The elements of this channel assemblage will then be:

Ia|x(·) = trA

{
(Ma|x ⊗ IBout)(IA ⊗ ΓBBin→Bout)[ρAB ⊗ (·)]

}
, (1)

where (·) denotes the input system Bin. For each x ∈ X, the instruments {Ia|x}a∈A form a
channel which does not depend on x, i.e.,

∑
a∈A Ia|x is a completely positive and trace preserving

(CPTP) map [52, 53] which does not depend on Alice’s measurement choice.
In general, however, we will not take the common cause AB to necessarily be a quantum

system. This common cause may be classical or even post-quantum.

2.1 LOSR-free channel assemblages
The fundamental objects that define the notion of nonclassicality in a resource theory are the
free resources. The free channel assemblages, i.e., assemblages that admit a classical description,
are those that can be generated by classical common-cause processes. Therefore, the free assem-
blages in our framework can be understood as objects that arise when Bob locally applies an
instrument and Alice performs a measurement, where both actions depend on a shared classical
random variable. In this situation, Alice can refine her description of Bob’s process by learning
the classical value of the shared variable. In other words, the classical channel assemblages are
those that can be generated from LOSR operations. Formally, the elements of a free channel

2Ref. [25] motivates the correlation between ΛBin→Bout and system B by arguing that the former may be a
noisy quantum channel that leaks information to the environment, which can then correlate itself with B or even
get all the way to Alice’s lab. From our causal perspective, such environment can be taken to be a common cause
between Alice and Bob, whereas the leakage of information can be interpreted as the correlation mechanism that
arises between Alice’s system and Bob’s quantum channel through this common cause.

3In principle, different measurements can have different number of outcomes. Here, for ease of the presentation,
we focus on the case where all of Alice’s measurements have the same number of outcomes. Our techniques
generalize straightforwardly.
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Figure 2: Depiction of a channel EPR scenario. Arbitrary systems (which may be post-quantum) are repre-
sented by thick lines, quantum systems are represented by double lines and classical systems are depicted as
single lines. (a) Channel assemblage: Alice and Bob share a (possibly) post-quantum common cause; Alice’s
input and output systems are classical while Bob’s input and output systems are quantum. (b) The most
general LOSR operation on an assemblage in a channel EPR scenario.

assemblage can be written as

Ia|x(·) =
∑

λ

p(a|x, λ)p(λ)Iλ(·), (2)

where p(λ) represents the state of the common cause, Iλ is a CPTP map (from system Bin to
Bout) for each λ, and p(a|x, λ) is a valid conditional probability distributions for all values of λ.

A convenient representation of Eq. (2) is given by the Choi-Jamio lkowski isomorphism [54,
55]. Recall that every CPTP map E : HB → HB′ can be associated with an operator W

on HB ⊗ HB′ such that E(ρB) = dB trB

{
W ( IB′ ⊗ ρT

B)
}

, where dB is the dimension of the

system ρB. Conversely, the operator W can be written as W = (E ⊗ IB′) |Ω⟩ ⟨Ω|, with |Ω⟩ =
1√
dB

∑dB
i=1 |ii⟩. We will use this representation throughout the paper. Let Ja|x and J ′

λ represent

the Choi-Jamio lkowski operators that correspond to Ia|x and Iλ, respectively. Moreover, denote
p(λ)J ′

λ as Jλ. If {Ia|x}a,x form an LOSR-free channel assemblage, each Ja|x can be expressed
as

Ja|x =
∑

λ

p(a|x, λ)Jλ. (3)

Therefore, checking whether an assemblage IA|X is free amounts to checking if the operators Ja|x
admit a decomposition of the form given in Eq. (3). Moreover, each probability distribution
p(a|x, λ) can be decomposed as p(a|x, λ) =

∑
λ′ p(λ′|λ)D(a|x, λ′), where D(a|x, λ′) is a deter-

ministic probability distribution. It follows that testing whether a channel assemblage IA|X is
free requires a single instance of a semidefinite program (SDP):

7



SDP 1. The channel assemblage IA|X is LOSR-free if and only if the following SDP is feasible:

given {Ja|x}a,x , {D(a|x, λ)}λ,a,x ,

find {(Jλ)BinBout}λ

s.t.


Jλ ≥ 0 ∀λ ,
trBout {Jλ} ∝ IBin ∀λ ,∑

λ trBout {Jλ} = 1
dBin

IBin ,

Ja|x =
∑

λD(a|x, λ)Jλ ∀ a ∈ A , x ∈ X .

(4)

Here dBin is the dimension of the Hilbert space HBin associated with system Bin. From here on,
as above, we will use the notation dX to refer to the dimension of the Hilbert space associated
with system X.

2.2 LOSR transformations between channel assemblages
The most general LOSR transformation of a channel EPR assemblage is presented in Fig. 2(b).
Formally, this LOSR operation transforms elements of a channel assemblage IA|X into new ones
that form I′

A′|X′ as follows:

I ′
a′|x′(·) =

∑
λ

∑
a,x

p(λ) p(a′, x|a, x′, λ) Λ
BoutS→B′

out′
λ (Ia|x ⊗ IS) Λ

B′
in′ →BinS

λ (·) , (5)

where
• p(λ) is the probability distribution over the classical random variable λ which coordinates

all the local transformations.
• p(a′, x|a, x′, λ) encodes the classical pre- and post-processing of Alice’s input x and output
a. The output of this process is Alice’s new outcome a′. The probability distribution
p(a′, x|a, x′, λ) satisfies the no-retrocausation condition (the variable a cannot influence
the value of the variable x, i.e., p(x|a, x′, λ̃) = p(x|x′, λ̃)).

• Λ
B′

in′ →BinS

λ is the map corresponding to Bob’s local pre-processing. It acts on his quantum
input on HB′

in′
and outputs a quantum system on a Hilbert space HBin ⊗ HS (the index

S corresponds to the quantum side channel of the local processing4).

• Λ
BoutS→B′

out′
λ is the map corresponding to Bob’s post-processing stage. The output of this

process is Bob’s new quantum system on a Hilbert space HB′
out′

.

It is convenient to express Bob’s pre- and post-processing as a single completely posi-

tive and trace non-increasing (CPTNI) map, which we denote by ξ
B′

in′ Bout→BinB′
out′

λ , where∑
λ ξ

B′
in′ Bout→BinB′

out′
λ forms a CPTP map. The inputs of this new map are the inputs of Bob’s

pre- and post-processing (defined on HB′
in′

⊗HBout) and the outputs of this new map are the out-

puts of Bob’s pre- and post-processing (defined on HB′
out′

⊗ HBin). The map ξ
B′

in′ Bout→BinB′
out′

λ

must be such that there is no signalling from the system defined on HBout to the system de-
fined on HBin , that is, the input of Bob’s post-processing can not influence the output of his
pre-processing. This condition can be expressed as follows:

∀λ ∃ F
B′

in′ →Bin

λ s.t. trB′
out′

{
ξ

B′
in′ Bout→BinB′

out′
λ

}
= F

B′
in′ →Bin

λ ⊗ IBout , (6)

4It is worth noticing that the quantum system on HS is not of arbitrary dimension. By the results of Ref. [56],
its dimension is restricted by the product of the dimensions of HB′

in′
and I′

a′|x′ (·).
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where
∑

λ F
B′

in′ →Bin

λ is a CPTP map. Moreover, it is convenient to use the Choi-Jamio lkowski
isomorphism to express the maps of interest. Let J ′

a′|x′ , Ja|x and Jξ λ correspond to the Choi

representation of maps I ′
a′|x′ , Ia|x and ξ

B′
in′ Bout→BinB′

out′
λ , respectively. Then, Eq. (5) can be

expressed as

J ′
a′|x′ =

∑
λ

∑
a,x

D(a′|a, x′, λ)D(x|x′, λ) Ja|x ∗ Jξ λ , (7)

where the maps are composed using the link product ∗ described in Ref. [57]:

Ja|x ∗ Jξ λ = dBin dBout trBinBout

{
(IB′

in′ B
′
out′

⊗ J
TBout

a|x ) JTBin
ξ λ

}
. (8)

Notice that Alice’s local processing is expressed in terms of deterministic probability distribu-
tions D(·) – this representation was discussed in detail in previous works [21, 22, 58]; we recall
this discussion in Appendix A. In this scenario, the total number of the deterministic strategies
encoded in λ is equal to |A′||A|×|X′| × |X||X′|.

An assemblage IA|X can be converted therefore into a different assemblage I′
A′|X′ under LOSR

if and only if there exist a collection of Choi states {Jξ λ} and operators {Fλ} such that the
elements of I′

A′|X′ can be decomposed as in Eq. (7) with the conditions of Eq. (6). This corre-
spondence enables us to derive the following SDP that checks whether such a decomposition is
possible.

SDP 2. The channel assemblage IA|X can be converted to the channel assemblage I′
A′|X′ under

LOSR operations, denoted by IA|X
LOSR−→ I′

A′|X′, if and only if the following SDP is feasible:

given {Ja|x}a,x , {J ′
a′|x′}a′,x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(x|x′, λ)}λ,x,x′

find {(Jξ λ)BinB′
in′ BoutB′

out′
}λ , {(JF λ)BinB′

in′
}λ

s.t.



Jξ λ ≥ 0 ∀λ ,
trB′

out′ Bin
{Jξ λ} ∝ IBoutB′

in′
∀λ ,∑

λ trB′
out′ Bin

{Jξ λ} = 1
dBout dB′

in′
IBoutB′

in′
,

JF λ ≥ 0 ∀λ ,
trBin {JF λ} ∝ IB′

in′
∀λ ,∑

λ trBin {JF λ} = 1
dB′

in′
IB′

in′
,

trB′
out′

{Jξ λ} = JF λ ⊗ 1
dBout

IBout ∀λ ,
J ′

a′|x′ =
∑

λ

∑
a,xD(a′|a, x′, λ)D(x|x′, λ) Ja|x ∗ Jξ λ .

(9)

When the conversion is not possible, we denote it by IA|X
LOSR
̸−→ I′

A′|X′.

This SDP is a feasibility problem. Let us mention that a feasibility problem can always
be converted into an optimization of some linear objective function. Such formulation of the
program is favourable if one wants to increase the robustness of the results. In Appendix B, we
provide an alternative formulation of SDP 2 in this form.

2.3 Properties of the pre-order
One channel assemblage is claimed to be at least as nonclassical as another if a conversion under
free operations from the former to the latter is possible. Therefore, testing assemblage conversion
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under LOSR operations provides information about relative nonclassicality of assemblages. We
now proceed to study the conversions between quantum-realizable and post-quantum channel
assemblages defined below.

2.3.1 Quantum-realizable channel assemblages

First, we focus on an infinite family of quantum-realizable channel assemblages. Consider a
channel assemblage with A = X = {0, 1}. Assume that Alice and Bob have access to a two

qubit system in a Bell state, denoted by ρAB = |ϕ⟩ ⟨ϕ|, with |ϕ⟩ = |00⟩+|11⟩√
2 . Define a family of

channel assemblages R as follows: for an angle θ ∈ (0, π/2], Bob performs a controlled rotation
around the y axis on systems BBin, where the control qubit is B (it is entangled with Alice’s
qubit A) and θ is the rotation angle. We denote such quantum gate by CRθ

y; it can be written
as:

CRθ
y =


1 0 0 0
0 1 0 0
0 0 cos(θ/2) − sin(θ/2)
0 0 sin(θ/2) cos(θ/2)

 . (10)

The measurements Alice performs on her share of the system are given byMa|0 = 1
2{I+(−1)aσz}

and Ma|1 = 1
2{I + (−1)aσx}, where σz and σx are Pauli matrices. Then, the elements of the

family R are the following:

R =
{
I θ
A|X

∣∣∣ θ ∈ (0, π/2]
}
, (11)

where I θ
A|X =

{
Iθ

a|x(·)
}

a∈A,x∈X
,

with Iθ
a|x(·) = trA

{
(Ma|x ⊗ IBout) trB

{
(IA ⊗ CRθ

y) (ρAB ⊗ (·)Bin)(IA ⊗ CRθ
y)†

}}
,

The family of assemblages R is illustrated in Fig. 3.

x

a

Rθ
y

Bin

Bout

ρAB

Figure 3: Depiction of an assemblage belonging to the family R. Quantum systems are represented by double
lines and classical systems are depicted as single lines. Alice and Bob share an entangled common-cause ρAB .
Depending on the state of the control qubit, Bob either does nothing or implements a rotation by angle θ
around the y axis on his input system.

The family R has an infinite number of elements indexed by the angle {θ}. To study the
pre-order of assemblages in this family, we convert the assemblages into Choi form and run the
SDP 2 (in Matlab [59], using the software CVX [60, 61], the solver SeDuMi [62] and the toolbox
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π
2

π
8

π
16

Figure 4: Possible conversions between elements of R. The black dots represent the assemblages I θ ,i
A|X, where

i ∈ {x, y, z}. The arrows represent possible conversions.

QETLAB [63]; see the code at [64]). By checking what the possible conversions are between

resources characterized by different values of θ, we observe that a conversion I θ1
A|X

LOSR−→ I θ2
A|X is

possible only when θ1 > θ2 for every pair {θ1, θ2} that we checked. Based on this observation,
we formulate the following conjecture:

Conjecture 3. Let the two resources I θ1
A|X and I θ2

A|X belong to the infinite family of assemblages

R. Then, the conversion I θ1
A|X

LOSR−→ I θ2
A|X is possible if and only if θ1 ≥ θ2.

We run SDP 2 to study two more infinite families of assemblages analogous to R with
the exception that rotations around the z-axis (the x-axis for the second family) instead of
around the y-axis are implemented. For both cases, we observe a behaviour analogous to that
stated in Conjecture 3. Finally, by checking the conversions between assemblages belonging to
different families, we find assemblages that are interconvertible (See Fig. 4), which leads us to
the following conjecture:

Conjecture 4. Let I θ ,i
A|X denote an assemblage generated when Bob applies CRθ

i . Then, for a
fixed value of θ, assemblages {I θ ,x

A|X, I
θ ,y
A|X, I

θ ,z
A|X} are in the same LOSR equivalence class.

Our explorations are summarized in Fig. 4.

2.3.2 Post-quantum channel assemblages

Studying possible conversions among channel assemblages may also give us insight into the pre-
order of post-quantum resources. We now focus on a channel EPR scenario where X = {0, 1, 2},
A = {0, 1}, and HBout = HB are qubit Hilbert spaces, and we consider conversions between two
post-quantum channel assemblages defined below5.

5These two post-quantum channel assemblages are generalizations of Bob-with-input assemblages introduced
in Ref. [26]. We elaborate on this point later in the text.
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Our first example of a post-quantum channel assemblage, depicted in Fig. 5(a), can be
conveniently expressed in a mathematical way as:

IP T P
A|X =

{
IP T P

a|x

}
a∈A, x∈X

, (12)

with

IP T P
a|x (·) = trA

{
(Ma|x ⊗ IBout) trB

{
(IA ⊗ CTBBin→Bout) (ρAB ⊗ (·)Bin)

}}
,

Ma|0 = I+(−1)aσx

2 , Ma|1 = I+(−1)aσy

2 , Ma|2 = I+(−1)aσz

2 ,

where ρAB = |ϕ⟩ ⟨ϕ|, with |ϕ⟩ = |00⟩+|11⟩√
2 , and σx, σy, and σz are the Pauli operators. The

operation CTBBin→Bout is a controlled-transpose operation, where the control system is Bin, and
the transpose is applied on the system B. For simplicity, in this section we denote IP T P

A|X = IP T P .
Here, the abbreviation PTP stands for positive trace preserving.

It is important to note that the expression given in Eq. (12) and the assemblage preparation
procedure illustrated in Fig. 5(a) give a convenient representation of IP T P , but is not meant
to be taken as the unique description of this assemblage. The use of the transpose map here,
which is positive but not completely positive, is just one of the possible mathematical ways to
represent this post-quantum assemblage.

One then may argue that the channel assemblage IP T P is a post-quantum assemblage. To
see this, one can simply see that a special case of IP T P – that where Bob’s input states are
classical labels encoded into an orthonormal basis – was shown to be a post-quantum assemblage
[26]. It follows hence that IP T P is post-quantum as well.

x

a

T

Bin

Bout

ρAB

(a)

x

a

X
Bin

Bout

ρAB

(b)

Figure 5: Mathematical depiction of two post-quantum channel assemblages. (a) Channel assemblage IP T P :
Alice and Bob share a Bell state; Alice performs measurements on her system, while Bob performs a controlled-
transpose operation. (b) Channel assemblage IP R: Alice and Bob share a Bell state; Alice performs measure-
ments on her system, while Bob performs a CNOT operation controlled by both Alice’s and Bob’s inputs.

The second example of a post-quantum channel assemblage that we consider may be math-
ematically expressed as:

IP R
A|X =

{
IP R

a|x

}
a∈A, x∈X

, (13)

with IP R
a|x (·) =

trA

{
(Ma ⊗ IBout) trB

{
(IA ⊗ CXBBin→Bout) (ρAB ⊗ (·)Bin)

}}
ifx ∈ {0, 1},

IP R
a|x (·) = I

2a ifx = 2 ,

and M0 = |0⟩ ⟨0| , M1 = |1⟩ ⟨1| ,

where ρAB is the same as in the previous example. This assemblage is illustrated in Fig. 5(b).
If x ∈ {0, 1}, Bob applies a controlled-X operation, where x and Bin are the control systems.

12



More precisely, Bob applies a quantum instrument to his input system Bin – he measures Bin

in the computational basis, registers the classical output, which we here denote by y, and a
quantum system containing the post-measurement state. Then, Bob transforms the system B
depending on the values of x and y. If xy = 0, he applies the identity map. If xy = 1, Bob flips
the system B. Finally, if x = 2, Bob prepares the system I

2a. For simplicity, hereon we denote
IP R
A|X = IP R.

Note that Eq. (13) is merely meant as a mathematical description of the channel assemblage
IP R, and is not meant to be taken as its experimental implementation. In particular, notice
that the channel assemblage IP R is no-signalling between Alice and Bob, contrary to what our
chosen mathematical description may suggest.

One may now argue that IP R is a post-quantum assemblage. To to this, imagine that Bin

contains just a set of classical labels {|0⟩ , |1⟩}, and Alice and Bob generate IP R. Then, notice
that for x ∈ {0, 1}, if Bob performs a measurement on his subsystem on the {|0⟩ , |1⟩} basis and
observes a classical outcome b, Alice and Bob obtain correlations p(ab|xy) that correspond to
Popescu-Rohrlich (PR) box correlations [49], which are known to be post-quantum. This shows
that the assemblage IP R is a post-quantum channel assemblage.

To study the relative order of IP T P and IP R, we convert the assemblages into Choi form
and run the SDP 2 (in Matlab [59], using the software CVX [60, 61], the solver SeDuMi [62]
and the toolbox QETLAB [63]; see the code at [64]). We find that the two assemblages are
incomparable, which is summarized by the following observation:

Observation 5. The two post-quantum channel assemblages IP R and IP T P are unordered re-
sources in the LOSR resource theory of common-cause assemblages.

3 The Bob-with-input EPR scenario
The Bob-with-input EPR scenario, first introduced in Ref. [26], is a special case of the channel
EPR scenario. In this setting, Bob can locally influence the state preparation of his system.
This scenario is illustrated in Fig. 6(a). On the one hand, Alice acts on her share of the system
by performing measurements and registering the obtained outcome – this is identical to the
role she plays in the channel EPR scenario. On the other hand, Bob chooses the value of a
classical variable y, referred to as ‘Bob’s input’, which influences the state preparation of a
quantum system in his laboratory. Operationally, one may think of Bob as holding a device
that accepts the classical input y (together with a physical system), and produces a quantum
system prepared on some specified state. Bob’s device’s inner-workings can be thought of as a
transformation of his subsystem (not necessarily a quantum one) into a new quantum system,
where the transformation depends on the value of y. Notice that the system shared by Alice
and Bob is depicted with a thick line in Fig. 6(a) – indeed, as mentioned regarding the channel
EPR scenario, the GHJW theorem does not apply when Bob has an input; hence, one can find
instances of post-quantum Bob-with-input assemblages that do not admit a quantum realization
[48].

The relevant Bob-with-input assemblage is now given by ΣA|XY = {σa|xy}a,x,y, with tr
{
σa|xy

}
=

p(a|x) and tr
{∑

a σa|xy

}
= 1 for all x ∈ X and y ∈ Y. Notice that if y takes only one value, this

scenario coincides with the traditional EPR scenario for which an LOSR-based resource theory
was developed in Ref. [21].

If the common-cause Alice and Bob share is a quantum state, which we denote ρAB, the
most general local operation Bob’s device can implement is a collection of CPTP maps {ξy}y∈Y.
When Alice implements a POVM from the set {Ma|x}a∈A,x∈X, we say that the elements of the
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x y

a ρa|xy

(a)

x y

a ρa|xy

x′ y′

a′ ρ′
a′|x′y′

(b)

Figure 6: Depiction of a Bob-with-input EPR scenario. Systems that may be classical, quantum, or even
post-quantum, are represented by thick lines. Quantum systems are represented by double lines and classical
systems are depicted as single lines. (a) Bob-with-input assemblage: Alice and Bob share a (possibly post-
quantum) common cause; Alice’s input and output systems are classical while Bob’s input is classical and
output is quantum. (b) The most general LOSR operation on an assemblage in a Bob-with-input EPR
scenario.

assemblage admit a quantum realization of the form

σa|xy = ξy[trA{(Ma|x ⊗ IB)ρAB}] (14)

for all a ∈ A, x ∈ X, and y ∈ Y.
Similarly to the channel EPR scenario, nonclassical Bob-with-input assemblages are those

that require a nonclassical common-cause. The classical Bob-with-input assemblages, i.e., the
LOSR-free ones, can always be viewed as generated by local operations applied by each party
that depend on the value of a shared classical random variable. Formally, a free assemblage in
this scenario can be expressed as σa|xy =

∑
λ p(λ)p(a|xλ)ρλy. Here, λ is the shared classical

variable that is sampled according to p(λ), p(a|xλ) is a well-defined conditional probability dis-
tribution for all values of λ, and the quantum states ρλy are locally generated by Bob depending
on the values of the classical variables y and λ. This set of classical assemblages was first defined
in Ref. [26], where it is referred to as the set of ‘unsteerable’ assemblages. Determining whether
a given Bob-with-input assemblage is LOSR-free is possible with a single instance of an SDP,
which is analogous both to SDP 1 and (when |Y| = 1) to the SDP for checking ‘steerability’ of
a standard EPR assemblage given in Ref. [65].

3.1 LOSR transformations between Bob-with-input assemblages
The most general LOSR transformation of a Bob-with-input assemblage is illustrated in Fig. 6(b),
where a local processing known as comb (which locally pre- and post-processes the relevant sys-
tems in each wing) [57] with appropriate input/output system types is applied to each party.
Notice how these are a special case of the processes of Fig. 2(b) for the specific type of Bob’s
input system. This set of operations transforms one assemblage ΣA|XY into a new assemblage
Σ′

A′|X′Y′ as follows:

σ′
a′|x′y′ =

∑
λ

∑
a,x,y

p(a′, x|a, x′, λ)p(y|y′, λ)p(λ)ξλ,y′(σa|xy). (15)
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Here, p(a′, x|a, x′, λ) encodes Alice’s variables pre- and post-processing (this process is the same
as in the channel EPR scenario), p(y|y′, λ) encodes a classical pre-processing of Bob’s classical
input y as a function of y′ and λ, and ξλ,y′(·) is the map corresponding to Bob’s local post-
processing of his quantum system as a function of λ and y′. Notice that, just like in the case of
channel EPR scenarios, p(a′, x|a, x′, λ) satisfies the no-retrocausation condition.

A simplified characterisation of a generic Bob-with-input LOSR transformation in terms of
deterministic probability distributions D(·) is given by

σ′
a′|x′y′ =

∑
λ

∑
a,x,y

D(x|x′, λ)D(a′|a, x′, λ)D(y|y′, λ)ξ̃λ,y′(σa|xy) , (16)

where ξ̃λ,y′(·) = p(λ)ξλ,y′(·). We will use this representation throughout this section; its detailed
derivation is given in Appendix A.2. In the Bob-with-Input scenario, the total number of the
deterministic strategies encoded in λ is equal to |A′||A|×|X′| × |X||X′| × |Y||Y′|.

Given two assemblages, ΣA|XY and Σ′
A′|X′Y′ , deciding whether ΣA|XY can be converted into

Σ′
A′|X′Y′ under LOSR operations is equivalent to checking whether the elements of Σ′

A′|X′Y′

admit a decomposition as per Eq. (16). The Bob-with-input EPR scenario is simply a special
case of the channel EPR scenario wherein Bob’s input is a classical system. However, as the
Bob-with-input EPR scenario exhibits a simpler characterization of an LOSR transformation
of an assemblage, the SDP for testing resource conversion in this scenario can be simplified
compared to SDP 2, as we show below.

Notice that the CPTNI map ξ̃λ,y′(σa|xy) can be represented in terms of its (possibly subnor-
malized) Choi state Jξ λ y′ as follows:

ξ̃λ,y′(σa|xy) = dB trB

{
Jξ λ y′ (IB′ ⊗ σT

a|xy)
}
, (17)

where Bob’s output system is defined on HB′ . Therefore, for Σ′
A′|X′Y′ to admit a decomposition

as per Eq. (16), each σ′
a′|x′y′ must decompose as

σ′
a′|x′y′ =

∑
λ

∑
a,x,y

D(x|x′, λ)D(a′|a, x′, λ)D(y|y′, λ) dB trB

{
Jξ λ y′ (IB′ ⊗ σT

a|xy)
}
. (18)

We implement this condition in the following SDP:

SDP 6. ΣA|XY
LOSR−→ Σ′

A′|X′Y′.
The assemblage ΣA|XY can be converted into the assemblage Σ′

A′|X′Y′ under LOSR operations if
and only if the following SDP is feasible:

given {σa|xy}a,x,y , {σ′
a′|x′y′}a′,x′,y′ , {D(x|x′, λ)}λ,x,x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(y|y′, λ)}λ,y,y′

find {(Jξ λ y′)BB′}λ,y′

s.t.



Jξ λ y′ ≥ 0 ∀λ, y′ ,

trB′
{
Jξ λ y′

}
∝ IB ∀λ, y′ ,∑

λ trB′
{
Jξ λ y′

}
= 1

d IB ∀ y′ ,

trB′

{
Jξ λ y′

1

}
= trB′

{
Jξ λ y′

2

}
∀λ , y′

1, y
′
2 ,

σ′
a′|x′y′ =

∑
λ

∑
a,x,y D(x|x′, λ)D(a′|a, x′, λ)D(y|y′, λ) dB trB

{
Jξ λ y′ (IB′ ⊗ σT

a|xy)
}
.

(19)

When the conversion is not possible, we denote it by ΣA|XY
LOSR
̸−→ Σ′

A′|X′Y′.

For the robust formulation of this SDP, see Appendix B.
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3.2 Properties of the pre-order
In analogy to the channel EPR scenario, studying post-quantum Bob-with-input assemblages
gives us insight into the pre-order of resources. In this section, we introduce four Bob-with-
input assemblages and study the possible conversions between them, both analytically and using
SDP 6.

In Section 2.3, we focused on accessing the pre-order of channel assemblages using SDP 2.
Due to the simpler nature of the Bob-with-input EPR scenario compared to the channel EPR
scenario, here we first focus on studying the pre-order analytically. We start with a Bob-
with-input EPR scenario where X = {0, 1, 2}, A = {0, 1} and Y = {0, 1}, and we consider
conversions between two post-quantum Bob-with-input assemblages introduced in Ref. [26].
These two assemblages are special cases of channel assemblages IP T P and IP R, where Bob’s
input states are just elements of an orthonormal basis {|0⟩ , |1⟩}.

For our first post-quantum Bob-with-input assemblage, consider the Bob-with-input assem-
blage studied in Ref. [26, Eq. (6)], which is a special case of IP T P . This assemblage can be
mathematically expressed as follows:

ΣP T P
A|XY =

{
σP T P

a|xy

}
a∈A, x∈X, y∈Y

, (20)

with

σP T P
a|xy = ξy {trA

{
(Ma|x ⊗ IB) |ϕ⟩ ⟨ϕ|

}
} ,

Ma|1 = I+(−1)aσx

2 , Ma|2 = I+(−1)aσy

2 , Ma|3 = I+(−1)aσz

2 ,

where |ϕ⟩ = |00⟩+|11⟩√
2 and σx, σy, and σz are the Pauli operators. The map ξy is the following:

the identity quantum channel for y = 0, and the transpose operation for y = 1. For simplicity,
in this section we denote ΣP T P

A|XY = ΣP T P . In Ref. [26, Appendix D], it was shown that ΣP T P

is a post-quantum assemblage. There it was moreover shown that, if Bob decides to measure
his subsystem, the correlations that arise between him and Alice always admit a quantum
explanation. This will prove relevant for the resource-conversion statements in this manuscript.

As a second example of a post-quantum Bob-with-input assemblage, we consider a special
case of IP R. We follow the construction introduced in Ref. [26, Eq. (5)], and define:

ΣP R
A|XY =

{
σP R

a|xy

}
a∈A, x∈X, y∈Y

, (21)

with σP R
a|xy =

{
|a⊕ xy⟩ ⟨a⊕ xy| if x ∈ {0, 1}
I
2a if x = 2.

For simplicity, hereon we denote ΣP R
A|XY = ΣP R. As we already pointed out in the channel EPR

scenario, for x ∈ {0, 1}, if Bob decides to measure his subsystem in the computational basis and
registers a classical outcome b, Alice and Bob obtain PR box correlations, what certifies that
the assemblage ΣP R is post-quantum.

We will now show the the two post-quantum assemblages ΣP R and ΣP T P are unordered in
our LOSR resource theory.

Theorem 7. ΣP T P cannot be converted into ΣP R with LOSR operations.

Proof. Let us prove this by contradiction. Assume that an LOSR-processing of ΣP T P yields
ΣP R. Then, since ΣP R can generate post-quantum correlations in a Bell-type experiment, it
follows that an LOSR-processing of ΣP T P can also generate post-quantum correlations. How-
ever, we know that ΣP T P can only generate quantum correlations [26, Appendix D]. As LOSR
operations cannot create post-quantum Bell non-locality, this contradicts the initial assumption
and hence proves the claim.
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Theorem 8. ΣP R cannot be converted into ΣP T P with LOSR operations.

The proof of this theorem is given in Appendix E.1. In the proof we use the ‘steering’
functional constructed in Ref. [26, Eq. (D3)] which achieves its minimum value when evaluated
on ΣP T P . We show that neither ΣP R or any LOSR-processing of ΣP R can achieve the minimum
value of this ‘steering’ functional, which completes the proof.

Corollary 9. The two post-quantum assemblages ΣP R and ΣP T P are unordered resources in
the LOSR resource theory of common-cause assemblages.

This result can be verified with SDP 6 (we verified it in Matlab [59], using the software
CVX [60, 61], the solver SeDuMi [62] and the toolbox QETLAB [63]; see the code at [64]).

It is usually the case that the pre-order in a given resource theory is studied using resource
monotones. Interestingly, Corollary 9 does not rely on a construction of resource monotones,
but it arises from specific considerations of LOSR transformations.

We now move on to introducing two more examples of Bob-with-input assemblages. We start
by introducing an assemblage that, as far as we are aware, has not been studied in the literature
before. For this purpose, let us briefly recall the meaning of almost-quantum correlations.

The set of almost-quantum correlations Q̃ [66] was originally proposed as a set of correla-
tions that satisfies numerous principles of a reasonable physical theory, including information
causality [67], macroscopic locality [68] and local orthogonality [69]. It was first defined for
Bell-type scenarios and it was showed to be larger than the set of quantum correlations and
to strictly contain them. The concept of almost-quantum correlations was later generalized
to other physical set-ups [70, 71], including EPR scenarios [26, 48]. Within this generaliza-
tion, a particular relaxation of the definition of quantum assemblages allows one to construct
almost-quantum assemblages.

From now on let us focus on a Bob-with-input scenario where X = {0, 1}, A = {0, 1} and
Y = {0, 1}. To construct an example of a post-quantum assemblage, consider the probability
distribution generated in a bipartite Bell scenario introduced in Ref. [66], which we denote p⃗AQ.
We recall the exact form of p⃗AQ in Appendix C; for now, the important property of p⃗AQ to note

is that it is post-quantum and it lives in Q̃. Consider the following Bob-with-input assemblage:

ΣAQ
A|XY =

{
σAQ

a|xy

}
a∈A, x∈X, y∈Y

, (22)

with σAQ
a|xy =

∑
b

pAQ(ab|xy) |b⟩ ⟨b| ,

where the elements pAQ(ab|xy) can be read from the vector p⃗AQ. For simplicity, we denote

ΣAQ
A|XY = ΣAQ. This assemblage is clearly not quantum-realizable. Indeed, if Bob chooses to

measure his system in the computational basis, i.e., Nb = |b⟩ ⟨b|, the correlations that Alice and

Bob obtain are given by p(ab|xy) = tr
{
Nbσa|xy

}
, which gives exactly pAQ(ab|xy). This shows

that ΣAQ is post-quantum6, since for any quantum-realizable assemblage, Alice and Bob can
only generate quantum correlations if Bob decides to measure his system.

As the next example, consider the assemblage Σ′ P R built from ΣP R by considering the
assemblage elements of the latter that correspond to x = 0, 1. To study the relative order of
ΣAQ and Σ′ P R, we run the SDP 6 (see the code at [64]). We find that the two assemblages are
strictly ordered, which is summarized by the following observation:

6It is important to note that the assemblage ΣAQ is not necessarily an almost-quantum assemblage. The
set of almost-quantum assemblages is a strict subset of the set of post-quantum assemblages. If Bob decides to
measure his subsystem with a measurement different than Nb = |b⟩ ⟨b|, it might be possible that post-quantum
correlations that are not almost-quantum are generated.
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Observation 10. The post-quantum Bob-with-input assemblage Σ′ P R is strictly above ΣAQ in
the pre-order of resources in the LOSR resource theory of common-cause assemblages.

In Appendix E.2, we analytically show that Σ′ P R LOSR−→ ΣAQ.
For our final example in a Bob-with-input scenario, we consider the following quantum-

realizable assemblage:

ΣCHSH
A|XY =

{
σCHSH

a|xy

}
a∈A, x∈X, y∈Y

, (23)

with


σCHSH

a|xy = trA
{

(Ma|x ⊗ IB) |ϕ⟩ ⟨ϕ|
}
,

|ϕ⟩ = |00⟩+|11⟩√
2 ,

Ma|0 = I+(−1)aσz

2 , Ma|1 = I+(−1)aσx

2 ,

where σx, σy, and σz are the Pauli operators. For simplicity, we denote ΣCHSH
A|XY = ΣCHSH .

Notice that if Alice and Bob generate ΣCHSH , and then Bob decides to measure his system
with suitable measurements, they will obtain correlations that violate the CHSH Bell inequality
maximally [72].

The relation between ΣCHSH and ΣAQ, obtained using SDP 6, is the following:

Observation 11. The two Bob-with-input assemblages ΣCHSH and ΣAQ are unordered re-
sources in the LOSR resource theory of common-cause assemblages.

Notice that the direction ΣCHSH
LOSR
̸−→ ΣAQ is straight-forward to prove by noting that

LOSR operations cannot create post-quantumness.

4 The measurement-device-independent EPR scenario
We will now consider a special case of a channel EPR scenario in which Bob has a measurement
channel rather than a general quantum channel. This measurement-device-independent (MDI)
EPR scenario is illustrated in Fig. 7(a). Alice and Bob share a system AB. Alice’s role is
still the same as in the channel and Bob-with-input scenarios: she performs measurements
{Ma|x}a∈A,x∈X to obtain a classical output a. Now, Bob holds a collection of measurement

channels7, which we denote by {ΩBin→Bout
b }b∈B, where the output system Bout is just a classical

variable that may take values within B. In a way one can think of these measurement channels
as a measuring device that implements a single generalised measurement (as given by a POVM)
and keeps a record of the obtained outcome.

Similarly to the channel EPR scenario, we are here interested in the case where the measure-
ment channels that Bob has access to may in addition be correlated with some physical system
in Alice’s lab. This situation is formalised by the premise that Bob has instead access to a pro-
cessing ΘBBin→Bout

b that takes as input system his own Bin together with the half of the system

AB he shares with Alice (denoted by B). The marginal measurement channel {ΩBin→Bout
b }b∈B

that was introduced at the beginning is therefore a function of these superseding measurement
apparatus ΘBBin→Bout

b and the state of the system AB shared by Alice and Bob (the specific
dependence is specified further below). The idea is then to see what Alice can infer about the
measurement channel ΘBBin→Bout

b from the local measurements she is performing on her share
of AB.

7Here, by measurement channel is meant a quantum instrument with a trivial output Hilbert space.
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Figure 7: Depiction of a measurement-device-independent EPR scenario. Systems that may be classical,
quantum, or even post-quantum, are represented by thick lines. Quantum systems are represented by double
lines and classical systems are depicted as single lines. (a) MDI assemblage: Alice and Bob share a (pos-
sibly post-quantum) common cause; Alice’s input and output systems are both classical, while Bob’s input
and output systems are quantum and classical, respectively. (b) The most general LOSR operation on an
assemblage in a MDI EPR scenario.

Formally, the relevant MDI assemblages in this scenario are given by NAB|X = {Nab|x(·)}
with a ∈ A , b ∈ B and x ∈ X, where Nab|x(·) is a channel – with trivial output space –
associated to the POVM element corresponding to outcome b of Bob’s measurement device
(when Alice’s measurement event is a|x). The elements of a valid MDI assemblage satisfy the
conditions

∑
b Nab|x(·) = p(a|x) and

∑
a Nab|x(·) = ΩBin→Bout

b . These conditions, equivalent
to no-signalling requirements between Alice and Bob, define hence the enveloping theory of
resources. A natural question then is when a given MDI assemblage has a classical, quantum,
or post-quantum realisation, as we briefly recall next.

Let us begin with quantumly-realisable MDI assemblages, that is, those compatible with
Alice and Bob sharing a quantum common cause. When Alice and Bob share a bipartite
quantum system prepared on state ρAB, the elements of the MDI assemblage are given by

Nab|x(·) = tr
{

(Ma|x ⊗ IBout)(IA ⊗ ΘBBin→Bout
b )[ρAB ⊗ (·)]

}
. (24)

Notably, MDI assemblages are not always compatible with a quantum common cause, i.e., there
exist post-quantum MDI assemblages8 [73].

Now, let us specify the free sub-theory of resources: those that may arise by the parties
implementing local operations and shared randomness. Free MDI assemblages in our resource
theory are those that can be generated with a classical common cause. They can be thought
of as objects generated by Alice’s local measurements and Bob’s local measurement channel,
where both parties are correlated by a classical variable. Formally, the elements of an LOSR-free
MDI assemblage can be written as Nab|x(·) =

∑
λ p(λ)p(a|xλ)Nb,λ(·), where the measurement

channels Nb,λ depend on the value of the classical common cause λ.

8Although Ref. [73] does not discuss measurement-device-independent assemblages directly, this scenario nat-
urally appears if one wants to compare Buscemi non-locality and EPR scenarios.
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4.1 LOSR transformations between measurement-device-independent assemblages
The most general LOSR transformation of an MDI assemblage is presented in Fig. 7(b). On
Alice’s side, the LOSR map is exactly the same as in the channel and Bob-with-input scenarios.
On Bob’s side, however, the processing has appropriate input and output system types adjusted

to the MDI scenario. Let us express Bob’s processing as a single CPTNI map ζ
B′

in′ →Bin

b b′ λ . This
map has two inputs (one classical, b, and one quantum, B′

in′) and two outputs (again, one

is classical, b′, and one is quantum, Bin). Additionally, the map ζ
B′

in′ →Bin

b b′ λ must satisfy the
no-retrocausation condition, i.e., it must be such that b does not influence Bin. This condition

means that
∑

λ,b′ ζ
B′

in′ →Bin

b b′ λ must be a CPTP map.
Similarly to the channel and Bob-with-input scenarios, it is convenient to use the Choi-

Jamio lkowski isomorphism here. Let Ja′b′|x′ , Jab|x and Jζ b b′ λ correspond to the Choi represen-
tation of maps N ′

a′b′|x′ , Nab|x and ζb b′ λ, respectively. Then, the most general LOSR processing
of a MDI assemblage can be written as

Ja′b′|x′ =
∑

λ

∑
a,x

D(a′|a, x′, λ)D(x|x′, λ) Jab|x ∗ Jζ b b′ λ . (25)

Here, D(·) are deterministic probability distributions (see previous sections and Appendix A.1
for details) and the total number of the deterministic strategies encoded in λ is equal to
|A′||A|×|X′| × |X||X′|. As mentioned before, the link product is given by

Jab|x ∗ Jζ b b′ λ = dBin trBin

{
(IB′

in′
⊗ Jab|x) JTBin

ζ b b′ λ

}
. (26)

Deciding if an assemblage NAB|X can be converted into a different assemblage N′
A′B′|X′ with

LOSR operations comes down to checking whether there exist a collection of Choi states
{Jζ b b′ λ}b,b′,λ such that the Choi form of N′

A′B′|X′ can be decomposed as in Eq. (25). This
can be decided with a single instance of the following semidefinite program:

SDP 12. The MDI assemblage NAB|X can be converted to the MDI assemblage N′
A′B′|X′ under

LOSR operations, denoted by NAB|X
LOSR−→ N′

A′B′|X′, if and only if the following SDP is feasible:

given {Jab|x}a,b,x , {J ′
a′b′|x′}a′,b′,x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(x|x′, λ)}λ,x,x′

find {Jζ b b′ λ}b ,b′ ,λ

s.t.



Jζ b b′ λ ≥ 0 ∀ b, b′, λ ,∑
b′ trBin

{
Jζ b b′ λ

}
∝ IB′

in′
∀ b, λ ,∑

λ,b′ trBin

{
Jζ b b′ λ

}
= 1

dB′
in′

IB′
in′

∀ b ,∑
b′ Jζ b b′ λ ≥ 0 ∀ b, λ ,

Ja′b′|x′ =
∑

λ

∑
a,b,xD(a′|a, x′, λ)D(x|x′, λ) Jab|x ∗ Jζ b b′ λ .

(27)

When the conversion is not possible, we denote it by NAB|X
LOSR
̸−→ N′

A′B′|X′.

For the discussion of the robustness of this SDP, see Appendix B.

4.2 Properties of the pre-order
Similarly to the scenarios studied in the previous sections, we can use semidefinite program-
ming to study possible conversions among post-quantum measurement-device-independent as-
semblages. In this section, we focus on an MDI scenario where X = {0, 1, 2}, A = {0, 1} and
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B = {0, 1}. We consider conversions between two post-quantum MDI assemblages that are
special cases of channel assemblages IP T P and IP R.

Let us start with a post-quantum MDI assemblage that can be mathematically expressed
as if arising from a controlled-transpose operation. Such assemblage can be expressed as:

NP T P
AB|X =

{
N P T P

ab|x

}
a∈A, b∈B, x∈X

, (28)

with

N P T P
ab|x = tr

{
(Ma|x ⊗ IBout)(IA ⊗ CTBBin→Bout

b )[ρAB ⊗ (·)]
}
,

Ma|1 = I+(−1)aσx

2 , Ma|2 = I+(−1)aσy

2 , Ma|3 = I+(−1)aσz

2 ,

where ρAB = |ϕ⟩ ⟨ϕ| with |ϕ⟩ = |00⟩+|11⟩√
2 and σx, σy, and σz are the Pauli operators. Here, the

processing CTBBin→Bout
b is the following. First, a controlled transpose operation is applied on

BBin, where Bin is the control qubit and B is the system that is being transposed. Second, the
system Bin is traced-out and the system B is measured by Bob. The measurement elements
are N0 = 1

3I + 1
3σy and N1 = 2

3I − 1
3σy. The outcome of Bob’s measurement is defined on Bout.

This process is illustrated in Fig. 8(a). For simplicity, we hereon denote NP T P
AB|X as NP T P . In

Appendix D, we prove that NP T P is postquantum: we construct an SDP that tests a membership
of a measurement-device-independent assemblage to the relaxation of a quantum set.

x

a

Bout

Bin

Nb

T

ρAB

(a)

x

a Bout

Bin

Nb

X

ρAB

(b)

Figure 8: Mathematical depiction of two post-quantum MDI assemblages. (a) MDI assemblage NP T P : Alice
and Bob share a Bell state; Alice performs measurements on her system, while Bob performs a controlled-
transpose operation. (b) MDI assemblage NP R: Alice and Bob share a Bell state; Alice performs measure-
ments on her system, while Bob performs a CNOT operation controlled by both Alice’s and Bob’s inputs.

For our second example we define a post-quantum assemblage that generates PR box cor-
relations between Alice and Bob. Mathematically it can be expressed as follows:

NP R
AB|X =

{
N P R

ab|x

}
a∈A, x∈X, b∈B

, (29)

with


N P R

ab|x(·) = tr
{

(Ma ⊗ IBout) (IA ⊗ CXBBin→Bout
b ) (ρAB ⊗ (·)Bin)

}
ifx ∈ {0, 1},

N P R
ab|x(·) = 1

4 ifx = 2 ,
M0 = |0⟩ ⟨0| , M1 = |1⟩ ⟨1| .

Here, the mapping CXBBin→Bout
b is the same as in the channel EPR scenario, followed by a

measurement in a computational basis. It is illustrated in Fig. 8(b). Notice that for x ∈ {0, 1},
if Bob’s input states are classical labels {|y⟩}y∈{0,1}, Alice and Bob obtain correlations p(ab|xy)
that correspond to the PR box. For simplicity, hereon we denote NP R

A|XY = NP R.
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To study the pre-order of NP R and NP T P , we convert the assemblages into Choi form and
run the SDP 12 (in Matlab [59], using the software CVX [60, 61], the solver SeDuMi [62] and
the toolbox QETLAB [63]; see the code at [64]). We observe the following:

Observation 13. The post-quantum measurement-device-independent assemblages NP R and
NP T P are incomparable in the LOSR resource theory of common-cause assemblages.

5 Related prior work
5.1 Channel EPR scenarios
Ref. [25], which first introduced channel EPR scenarios, takes ‘channel steering’ to be an instance
of the resource theory of local operations and classical communication (LOCC), rather than the
LOSR resource theory we have developed here. Both of these approaches lead to a meaningful
resource theory: the LOSR approach is suited to the study of nonclassicality in scenarios where
there are no cause-effect influences between parties, whereas the LOCC approach is suited to
the study of scenarios in which there are cause-effect influences between parties. In our view,
EPR scenarios do not involve causal influences from one party to the other, as argued in detail
in Ref. [21]; hence, we consider the LOSR approach to be better suited to it.

The biggest distinction between the LOSR and LOCC approaches is that all resources in
the LOSR approach are no-signalling by construction, while in the LOCC approach even free
resources might be signalling from Bob to Alice. In Ref. [25], the classical channel assemblages
are defined as the ones that admit a decomposition Ĩa|x(·) =

∑
λ p(a|x, λ)Ĩλ(·), where Ĩλ(·) is

a CP map that does not need to be trace preserving. In general, this definition of a free set of
channel assemblages does not coincide with our definition specified in Eq. (2). However, when
one restricts the scenario to non-signalling channel assemblages, these two approaches coincide,
as we show in Appendix F.

When restricting the study of channel assemblages to that of no-signalling channel assem-
blages, the relationship between the LOSR and LOCC resource-theoretic approaches is anal-
ogous to the relationship between the traditional notion of LOCC-entanglement and the no-
tion of LOSR-entanglement introduced in Refs. [23, 41]. Indeed, just as for the LOCC and
LOSR resource theories of entanglement (where the definitions of free resources—i.e., separa-
ble states—coincide), the sets of free assemblages for the LOCC and LOSR approaches also
coincide. However, the different choice of free operations—LOCC or LOSR—does impact the
relative ordering of assemblages.

This leads to significant differences between the LOCC and LOSR approaches. For example,
Ref. [74] shows that when one allows signalling from Bob to Alice, then all bipartite channel
assemblages admit a quantum realization. In the LOSR approach this is not true - throughout
the paper we studied many examples of bipartite post-quantum assemblages in channel, Bob-
with-input and measurement-device-independent scenarios.

Ref. [25] attempts to give a few arguments in favor of the LOCC approach over the LOSR
approach to channel EPR scenarios; e.g., by noting that the LOCC set of free channel assem-
blages is elegantly characterized by properties of their Choi-Jamio lkowski representation, and
by noting that it recovers the separable states in the appropriate special case. However, all of
the arguments given are equally true in the LOSR approach, and so do not discriminate between
the two approaches.

Lastly, let us comment that neither LOCC or LOSR is the largest set of transformations
leaving the free objects invariant in the resource theory of channel assemblages. We leave the
question of what this set is for future work, focusing only on physically motivated free operations
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in this paper 9.

5.2 The resource theory of Local Operations and Shared Entanglement
Another relevant resource theory with which we can compare our approach to is that of Local
Operations and Shared Entanglement (LOSE) [42]. Ref. [42] considers various common-cause
non-signalling resources, including assemblages. The free operations of this resource theory
differ from LOSR only in that the arbitrary shared randomness (classical common cause) is
replaced with arbitrary shared entanglement (quantum common cause). Just as the set of
LOSR operations is a subset of LOCC operations, LOSR is also clearly a subset of LOSE.

Rather than nonclassicality of common causes, the LOSE resource theory studies postquan-
tumness of a common cause as a resource, and it allows some nonclassical common causes (the
quantum ones) for free. Unsurprisingly, this implies that the pre-orders under LOSR and LOSE
operations are different; e.g., in the latter, all quantum-realisable assemblages are freely inter-
convertible. The interesting differences between the pre-orders, then, will arise for post-quantum
channel assemblages. Although we are far from a complete understanding of these differences,
we can here already comment on one. Recall that here we showed that under LOSR operations
the post-quantum assemblages ΣP T P and ΣP R are incomparable resources in a Bob-with-input
EPR scenario. From the viewpoint of LOSE, the situation however changes. In Ref. [42] it
was shown that the Bob-with-input assemblage ΣP T P can be generated from the PR box re-
source using LOSE operations. This highlights the power of quantum entanglement even when
considering resources that are post-quantum.

Outlook
In this work we have fleshed out the details of a resource theory of channel assemblages in
channel EPR scenarios under local operations and shared randomness as free operations. We
have explored the general case of channel EPR scenarios, and also the particular ones that come
from changing the system type of Bob’s input and output systems, denoted by Bob-with-input
EPR scenarios and measurement-device-independent EPR scenarios. In all cases we specified a
semidefinite program that tests resource conversion under LOSR operations, and found curious
properties of the resource pre-order.

Looking forward, there are plenty of questions one may tackle. In this paper, we approached
the problem of characterizing the preorder of assemblages using SDPs. Indeed, the SDPs we
derive can in principle give complete information about the preorder of resources. One relevant
question from a quantum information perspective is how to leverage this framework to define
resource monotones that can quantify how useful an assemblage is as a resource for specific
quantum information processing and communication tasks. From a foundational perspective,
there are also various curiosities one may pursue. One pertains to how the pre-order of post-
quantum resources changes from one scenario to another. For example, one can map a Bob-
with-input assemblage to a correlation in a Bell scenario by performing a measurement on Bob’s
system: could there exist a map (given by a fixed measurement) that takes two incomparable
assemblages into the same post-quantum correlation? How can we phrase and pursue the

9One example of an operation outside the LOSR set that leaves the free resources free is the following.
Consider a Bob-with-input assemblage. First, swap Alice and Bob’s subsystems. Next, take what is now Alice’s
quantum system and convert it to a classical output (by measuring in a preferred basis). On Bob’s side, convert
his classical system to a quantum one by conditioning a quantum state preparation on the value of the classical
variable. This operation will not create nonclassicality, hence it could be considered a free operation. However,
it does not seem to have any meaningful physical motivation.
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question for the cases of channel EPR scenarios and MDI EPR scenarios? What valuable
insights about nature can such EPR scenarios give us?
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A LOSR transformations in terms of deterministic combs
A.1 The channel EPR scenario
The most general LOSR operation on a channel assemblage transforms IA|X into I′

A′|X′ as spec-
ified in Eq. (5), recalled below:

I ′
a′|x′(·) =

∑
λ

∑
a,x

p(a′, x|a, x′, λ) p(λ) Λ
BoutS→B′

out′
λ (Ia|x ⊗ IS) Λ

B′
in′ →BinS

λ (·) .

It was shown in Refs. [22, 58] that any indeterminism in Alice’s local comb can be absorbed into
the shared common cause λ. That is, the indeterministic probability distribution p(a′, x|a, x′, λ)
is as general as a deterministic one is. In this subsection we recall the proof of this statement.

First, decompose Alice’s local comb as a convex combination of deterministic combs:

p(a′, x|a, x′, λ) =
∑

λ̃

p(λ̃|λ)D(a′, x|a, x′, λ̃), (30)

with D(a′, x|a, x′, λ̃) being a deterministic probability distribution. We can always express
D(a′, x|a, x′, λ̃) = D(a′|a, x′, λ̃)D(x|a, x′, λ̃). Moreover, since D(a′, x|a, x′, λ̃) satisfies the con-
dition of no-retrocausation (the variable a is the causal future of the variable x, therefore a
cannot influence the value of x), without loss of generality D(x|a, x′, λ̃) = D(x|x′, λ̃). Hence

D(a′, x|a, x′, λ̃) = D(a′|a, x′, λ̃)D(x|x′, λ̃). (31)

Here, D(a′|a, x′, λ̃) assigns a fixed outcome a′ for each possible choice of a, x′, and λ̃, and
D(x|x′, λ̃) assigns a fixed outcome x for each measurement x′ and value of λ̃.

Putting this together in the Choi form with the definition of the map J
B′

in′ Bout→BinB′
out′

ξ λ

(after Eq. (5)) one obtains:

J ′
a′|x′(·) =

∑
λ,λ̃

∑
a,x

p(λ̃|λ)D(a′|a, x′, λ̃)D(x|x′, λ̃) Ja|x ∗ Jξ λ.

From here, one can then define

J̃
B′

in′ Bout→BinB′
out′

ξ λ̃
(·) =

∑
λ

p(λ̃|λ) J
B′

in′ Bout→BinB′
out′

ξ λ (·) , (32)

where J̃
B′

in′ Bout→BinB′
out′

ξ λ is by definition a map that is non-signalling from the system defined
on HBout to the system defined on HBin . From here follows that:

J ′
a′|x′(·) =

∑
λ̃

∑
a,x

D(a′|a, x′, λ̃)D(x|x′, λ̃) Ja|x ∗ J̃
ξ λ̃
, (33)

which gives Eq. (7) from the main text.
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A.2 The Bob-with-input EPR scenario
The arguments given above also apply to the Bob-with-input EPR scenario. The most general
LOSR transformation on a Bob-with-input assemblage transforms ΣA|XY into Σ′

A′|X′Y′ as follows:

σ′
a′|x′y′ =

∑
λ

∑
a,x,y

p(a′, x|a, x′, λ)p(y|y′, λ)p(λ)ξλ,y′(σa|xy). (34)

We already discussed that Alice’s local comb can be expressed in terms of deterministic prob-
ability distributions as in Eq.(30). The same technique can be applied to Bob’s pre-processing
to express it as

p(y|y′, λ) =
∑

λ̃

p(λ̃|λ)D(y|y′, λ̃). (35)

Define the following CPTP map:

ξ̃
λ̃,y′(σa|xy) =

∑
λ

p(λ̃|λ)p(λ)ξλ,y′(σa|xy). (36)

We can now rewrite the Bob-with-input LOSR transformation as

σ′
a′|x′y′ =

∑
λ̃

∑
a,x,y

D(x|x′, λ̃)D(a′|a, x′, λ̃)D(y|y′, λ̃)ξ̃
λ̃,y′(σa|xy), (37)

which is exactly Eq. (16) from the main text if one labels λ̃ as λ.

B Robust formulation of the SDPs
All SDPs derived in this paper are feasibility problems, i.e., they are written in a form where
the objective function vanishes. One can relax the constraints on the Choi matricies and instead
of requiring their positive semi-definiteness, require them to be close to a positive semi-definite
matrix. Such reformulation makes the SDPs more robust. In SDP 2, this can be implemented
by relaxing the constraints Jξ λ ≥ 0 and JF λ ≥ 0 to Jξ λ +µI ≥ 0 and JF λ +µI ≥ 0, respectively.
Then, the SDP 2 can be written as a minimization of the new parameter µ:

SDP 14. The channel assemblage IA|X can be converted to the channel assemblage I′
A′|X′ under

LOSR operations, denoted by IA|X
LOSR−→ I′

A′|X′, if and only the solution of the following SDP
satisfies µ < 10−10:

given {Ja|x}a,x , {J ′
a′|x′}a′,x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(x|x′, λ)}λ,x,x′

min
(Jξ λ)λ , (JF λ)λ

µ

s.t.



µ ≥ 0 ,
Jξ λ + µI ≥ 0 ∀λ ,
trB′

out′ Bin
{Jξ λ} ∝ IBoutB′

in′
∀λ ,∑

λ trB′
out′ Bin

{Jξ λ} = 1
dBout dB′

in′
IBoutB′

in′
,

JF λ + µI ≥ 0 ∀λ ,
trBin {JF λ} ∝ IB′

in′
∀λ ,∑

λ trBin {JF λ} = 1
dB′

in′
IB′

in′
,

trB′
out′

{Jξ λ} = JF λ ⊗ 1
dBout

IBout ∀λ ,
J ′

a′|x′ =
∑

λ

∑
a,xD(a′|a, x′, λ)D(x|x′, λ) Ja|x ∗ Jξ λ .

(38)
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The threshold for the value of µ can be selected depending on the application of the program.
Above, we decide on µ < 10−10 solely for the purpose of the presentation.

This method can be applied to the SDP 6 and SDP 12 in an analogous way, hence we do
not present the modified SDPs here.

We run the SDP 14 (and analogous robust SDPs for the Bob-with-input and measurement-
device-independent scenarios) to confirm results stated in the paper. For conversions which are
possible, the result of the optimization is µ ≈ 10−10. For impossible conversions, it is µ > 10−4.
The code is available at [64].

C Almost quantum correlations
In this Appendix, we recall an example from Ref. [66] of a probability distribution that is
almost-quantum yet not quantum. Consider a bipartite Bell scenario where a, b, x, and y are
binary classical variables. In this scenario, the probability distribution is fully specified by an
8-dimensional vector p⃗ with the following entries:

p⃗ =
{
pA(1|0), pA(1|1), pB(1|0), pB(1|1), p(1, 1|0, 0), p(1, 1|1, 0), p(1, 1|0, 1), p(1, 1|1, 1)

}
. (39)

Here, pA(a|x) and pB(b|y) are the marginal probabilities corresponding to Alice’s and Bob’s
individual measurements, respectively, and p(ab|xy) is the conditional joint probability distri-
bution. To calculate the probabilities that are not explicitly contained in p⃗, one must simply
use the normalization and no-signalling constraints:∑

a∈A,b∈B

p(ab|xy) = 1 ∀x, y, (40)

∑
b∈B

p(ab|xy) = pA(a|x) ∀x, y, a, (41)

∑
a∈A

p(ab|xy) = pB(b|y) ∀x, y, b. (42)

In Ref. [66], it was shown that the following probability vector belongs to the almost quantum
set and it does not admit a quantum realization:

p⃗AQ =
{ 9

20 ,
2
11 ,

2
11 ,

9
20 ,

22
125 ,

√
2

9 ,
37
700 ,

22
125

}
. (43)

In the main text, we use the probability p⃗AQ to construct the elements of the Bob-with-input
assemblage ΣAQ.

D Membership problem for the measurement-device-independent EPR sce-
nario

Deciding whether a measurement-device-independent assemblage has a quantum realization is
a highly non-trivial problem. In this section, we introduce the first level of a hierarchy of
semidefinite programs for MDI EPR scenarios which tests a membership of the set of quantum
assemblages. The hierarchy of programs will be presented in future work; for the purpose of this
paper, we only specify its first level. This hierarchy is analogous to the Navascués-Pironio-Aćın
(NPA) hierarchy for quantum correlations [75, 76].

The elements of a quantum MDI assemblage NAB|X = {Nab|x(·)} can be expressed as

Nab|x(·) = tr
{

(MA
a|x ⊗ ΘBBin→Bout

b )[ρAB ⊗ (·)Bin ]
}
.
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Without loss of generality, we can take the shared state to be pure, which we denote by |ψ⟩ ⟨ψ|AB,

and the measurement Θb to be projective, which we denote by FBBin
b . Thus, each element Nab|x

of the assemblage can be written as Nab|x(·) = tr
(
Ñab|x(·)

)
, with

Ñab|x(·) = trAB

(
MA

a|x ⊗ FBBin
b |ψ⟩⟨ψ|AB ⊗ (·)

)
= ⟨ψ|MA

a|x ⊗ FBBin
b |ψ⟩(·).

Notice that Ñab|x is a matrix and we can write its elements as

⟨i|Ñab|x|j⟩ = ⟨i|⟨ψ|Ma|x ⊗ Fb|ψ⟩|j⟩
= ⟨ψ|Ma|x ⊗ ⟨i|Fb|j⟩|ψ⟩

= ⟨ψ|Ma|x ⊗ F ij
b |ψ⟩.

Here, the operator F ij
b := ⟨i|Fb|j⟩ must satisfy the following properties:∑

b

F ij
b = δi,jIB ,

∑
i

(F ij
b )†F ij′

b′ = δb,b′F jj′

b .

Therefore, all elements of the matrix Ñab|x can be written as linear combinations of inner

products of the form ⟨ψ|O†
kOm|ψ⟩, where Ok ∈ {I, {Ma|x}, {F ij

b }}. We can now write a moment

matrix with columns and rows indexed by the choice of operator Ok. Denote ⟨ψ|O†
kOm|ψ⟩ as

⟨O†
kOm⟩. The moment matrix for a, b ∈ {0, 1}, x ∈ {0, 1, 2} and Bin being two-dimensional is

the following:

⟨ψ|ψ⟩ ⟨M0|0⟩ ⟨M0|1⟩ ⟨M0|2⟩ ⟨F 00
0 ⟩ ⟨F 01

0 ⟩ ⟨F 10
0 ⟩ ⟨F 11

0 ⟩
⟨M0|0⟩ ⟨M0|0M0|0⟩ ⟨M0|0M0|1⟩ ⟨M0|0M0|2⟩ ⟨M0|0F

00
0 ⟩ ⟨M0|0F

01
0 ⟩ ⟨M0|0F

10
0 ⟩ ⟨M0|0F

11
0 ⟩

⟨M0|1⟩ ⟨M0|1M0|0⟩ ⟨M0|1M0|1⟩ ⟨M0|1M0|2⟩ ⟨M0|1F
00
0 ⟩ ⟨M0|1F

01
0 ⟩ ⟨M0|1F

10
0 ⟩ ⟨M0|1F

11
0 ⟩

⟨M0|2⟩ ⟨M0|2M0|0⟩ ⟨M0|2M0|1⟩ ⟨M0|2M0|2⟩ ⟨M0|2F
00
0 ⟩ ⟨M0|2F

01
0 ⟩ ⟨M0|2F

10
0 ⟩ ⟨M0|2F

11
0 ⟩

⟨F 00
0 ⟩ ⟨F 00

0 M0|0⟩ ⟨F 00
0 M0|1⟩ ⟨F 00

0 M0|2⟩ ⟨F 00
0 F 00

0 ⟩ ⟨F 00
0 F 01

0 ⟩ ⟨F 00
0 F 10

0 ⟩ ⟨F 00
0 F 11

0 ⟩
⟨F 10

0 ⟩ ⟨F 10
0 M0|0⟩ ⟨F 10

0 M0|1⟩ ⟨F 10
0 M0|2⟩ ⟨F 10

0 F 00
0 ⟩ ⟨F 10

0 F 01
0 ⟩ ⟨F 10

0 F 10
0 ⟩ ⟨F 10

0 F 11
0 ⟩

⟨F 01
0 ⟩ ⟨F 01

0 M0|0⟩ ⟨F 01
0 M0|1⟩ ⟨F 01

0 M0|2⟩ ⟨F 01
0 F 00

0 ⟩ ⟨F 01
0 F 01

0 ⟩ ⟨F 01
0 F 10

0 ⟩ ⟨F 01
0 F 11

0 ⟩
⟨F 11

0 ⟩ ⟨F 11
0 M0|0⟩ ⟨F 11

0 M0|1⟩ ⟨F 11
0 M0|2⟩ ⟨F 11

0 F 00
0 ⟩ ⟨F 11

0 F 01
0 ⟩ ⟨F 11

0 F 10
0 ⟩ ⟨F 11

0 F 11
0 ⟩


.

This moment matrix can be seen to specify the first level of a hierarchy of semidefinite programs
that test membership of an MDI assemblage in the quantum set. Higher levels of the hierarchy
can be generated by considering various sequences of products of operators Ma|x and F ij

b , as we
will specify in a follow up manuscript.

We used the first level of the hierarchy to check if the MDI assemblage specified in Eq. (28)
is quantum. We run the SDP (in Matlab [59], using the software CVX [60, 61]; see the code
at [64]) to check if any moment matrix of the form above is positive semidefinite, and it is not.
We conclude that the assemblage is postquantum.

E Proofs
E.1 Proof of Theorem 8
In this section, we give a proof of Theorem 8 stated in the main text. To show that ΣP R cannot
be converted into ΣP T P with LOSR operations, we will make use of the ‘steering’ functional
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constructed in Ref. [26, Eq. (D3)], which we denote SP T P . A generic functional in a Bob-with-
input scenario is defined as:

S[ΣA|XY] = tr

 ∑
a∈A, x∈X, y∈Y

Faxy σa|xy

 , (44)

where {Faxy} is a set of Hermitian operators. SP T P is specified by the following operators

FP T P
axy = 1

2(I − (−1)aσx)T y
, (45)

where T y denotes that the transpose operation is applied when y = 1, and the identity operation
is applied when y = 0. Here, however, the operator σx should not be confused with the Pauli-X
operator, since x ∈ X here denotes the choice of Alice’s measurement. Indeed, the operators
σ0, σ1, and σ2 (since x ∈ {0, 1, 2}) should be thought of as the Pauli X, Y, and Z operators
respectively. This alternative way of denoting the Pauli operators will also be used later on in
this section.

It was shown in Ref. [26, Appendix D] that for any non-signalling assemblage ΣA|XY, the

minimum value Smin
P T P of SP T P [ΣA|XY] is given by Smin

P T P = 0. It was also proved that ΣP T P

achieves the minimum value, that is, SP T P [ΣP T P ] = Smin
P T P .

It can be shown by direct calculation that ΣP R does not achieve the value of 0 for SP T P .
In order to show, hence, that ΣP R cannot be converted to ΣP T P , it then suffices to show that
any LOSR-processing of ΣP R will also not give this minimum value of 0 for SP T P . To show
this we will use the following observation.

Remark 15. An assemblage ΣA|XY satisfies SP T P [ΣA|XY] = Smin
P T P = 0 iff each element satisfies

σa|xy = αa,x,y
1
2 (I + (−1)aσx)T y for all a ∈ A, x ∈ X, y ∈ Y, where αa,x,y is a real number such

that 0 ≤ αa,x,y ≤ 1 for all a ∈ A, x ∈ X, y ∈ Y.

Proof. First note that the operators FP T P
axy = 1

2(I − (−1)aσx)T y are rank-1 projectors. Hence,
tr

{
FP T P

axy σa|xy

}
≥ 0 for all a ∈ A, x ∈ X, y ∈ Y. Since by assumption SP T P [ΣA|XY] = 0,

it follows that tr
{
FP T P

axy σa|xy

}
= 0 for all a ∈ A, x ∈ X, y ∈ Y. Since each FP T P

axy is a
projector onto a one-dimensional subspace, this implies that σa|xy cannot have any support on
this one-dimensional subspace, and thus the assemblage element σa|xy only has support on the
one-dimensional subspace orthogonal to FP T P

axy . In other words, if FP T P
axy = 1

2(I − (−1)aσx)T y ,
then the assemblage element has support on the one-dimensional subspace spanned by the
projector 1

2(I + (−1)aσx)T y , which concludes the proof.

Remark 15 is crucial for proving Theorem 8, which we recall here:

Theorem 8. ΣP R cannot be converted into ΣP T P with LOSR operations.

Proof. Let us prove this by contradiction. Assume that ΣP T P is given by an LOSR-processing of
ΣP R, denoted as ΣP R

Λ = {σP R,Λ
a|xy }. Then, it follows that this LOSR-processing of ΣP R saturates

the non-signalling bound of the functional SP T P . From Remark 15, it can only be the case that
each σP R,Λ

a|xy is proportional to a particular Pauli eigenstate, where x denotes its corresponding
Pauli basis. In other words, each element of ΣP R

Λ is diagonal in a particular Pauli basis, and
has one null eigenvalue.

Now note that every element of ΣP R is diagonal in the computational (Pauli Z) basis. There-
fore, the original assemblage ΣP R is invariant under the dephasing map in the computational
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basis, i.e., for all a ∈ A, x ∈ X, y ∈ Y, D[σP R
a|xy] :=

∑
i∈{0,1} |i⟩⟨i|σP R

a|xy |i⟩⟨i| = σP R
a|xy. There-

fore, without loss of generality, any LOSR-processing of ΣP R can be pre-composed with the
dephasing map D[·] without changing the assemblage that results from the processing. More
formally, for any LOSR transformation Λ, Λ[D[ΣP R]] = Λ[ΣP R] = ΣP R

Λ . Equivalently, any
LOSR-processing of ΣP R can be first described as an application of the dephasing map on
Bob’s qubit, following by another LOSR transformation.

Therefore, for the elements of ΣP R
Λ that are diagonal in Pauli bases other than the Pauli Z

basis, the LOSR-processing needs to transform Bob’s qubit so that the assemblage elements are
diagonal in another basis. Furthermore, the elements of ΣP R

Λ only have support in (at most)
one-dimensional subspace. Such a situation for ΣP R

Λ can only happen if, in the LOSR-processing
on ΣP R, after the dephasing map, Bob applies another CPTP map Fy,λ, which can depend on y
and the shared randomness λ. Because of the dephasing map, to produce assemblage elements
with support on a one-dimensional subspace, the map Fy,λ is such that it can be simulated
by a measure-and-prepare channel, where the preparation step in the channel should prepare
the state corresponding to the one-dimensional subspace. However, the Pauli bases for the
assemblage elements are necessarily determined by x, and, since Fy,λ cannot depend on x, it
is impossible for an LOSR-processing to produce the desired assemblage ΣP R

Λ . That is, if the
state preparation step of the channel Fy,λ could prepare states in the correct basis, then the
measurement in the channel would reveal what the input x of Alice is, which is incompatible
with the no-signalling condition.

E.2 Proof of Observation 10
In Section 3.2, we used SDP 6 to certify that Σ′P R can be converted into ΣAQ with LOSR
operations, but not vice versa. We now prove the first part of this observation analytically.

Theorem 15. The post-quantum Bob-with-input assemblage Σ′P R can be converted into ΣAQ

with LOSR operations.

Proof. We prove the theorem by providing an explicit LOSR protocol that preforms the desired
transformation. This protocol is depicted in Fig. 9.

1. Σ′PR LOSR−→ p⃗PR: Bob measures his share of the system in the computational basis. This
local operation maps the assemblage Σ′P R into a conditional probability distribution
p⃗P R = {pP R(ab|xy)} corresponding to PR-box correlations.

2. p⃗PR
LOSR−→ p⃗AQ: In the resource theory of common-cause boxes under LOSR operations,

the equivalence class of PR-boxes is at the top of the pre-order of bipartite correlations
with |A| = |B| = |X| = |Y| = 2 [22]. Hence there exits an LOSR process that maps
p⃗P R into p⃗AQ. Let Alice and Bob apply this LOSR operation to p⃗P R. They are then left
sharing the correlations p⃗AQ = {pAQ(a′b′|x′y′)}.

3. p⃗AQ
LOSR−→ ΣAQ: in this step, Bob implements a measure-and-prepare channel which reads

out the value of the classical output b′ and prepares a qubit on state |b′⟩. This state will
be prepared with probability pAQ(a′b′|x′y′) since Alice and Bob share p⃗AQ. This hence
effectively prepares ΣAQ.
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Figure 9: The LOSR protocol (in purple) that converts Σ′P R into ΣAQ.

F The sets of free non-signalling channel assemblages under LOCC and LOSR
coincide

In our resource theory, we require the elements of a free channel assemblage to decompose as
per Eq. (2), i.e.

Ia|x(·) =
∑

λ

p(a|x, λ)p(λ)Iλ(·),

where Iλ(·) is a CPTP map. It is straightforward to see that for any state ρ, tr
{

Ia|x(ρ)
}

=
p(a|x), i.e., Alice’s probability distribution p(a|x) is independent of Bob’s input state. This is
the no-signalling condition from Bob to Alice, which is therefore satisfied in our LOSR approach.

In Refs. [25, 74], a free assemblage (see Fig. 10(a)) is defined as one that decomposes as

Ĩa|x(·) =
∑

λ

p(a|x, λ)Ĩλ(·),

with Ĩλ being a CPTNI map. One can think about this construction as a channel that is semi-

causal, i.e., non-signalling from Alice to Bob. In general, however, tr
{

Ĩa|x(ρ)
}

can depend on

the particular choice of ρ, and so it may allow signalling from Bob to Alice.
If one wants the free assemblage to be non-signalling (from Alice to Bob and from Bob to

Alice), an additional condition must be imposed on Ĩa|x(·). For this channel to be causal, it

must also be semi-causal from Bob to Alice. Let us denote such assemblage by ĨNS
a|x (·). Then,

from the main result of Ref. [77], if follows that ĨNS
a|x (·) must be semi-localizable from Bob to

Alice. Therefore, ĨNS
a|x (·) can be graphically represented as in Fig. 10(b). Here, Bob’s local

operation is a CPTP map. The state that Alice and Bob now share is a classical-quantum
separable state. For this reason, we can treat Bob’s subsystem of the shared state, ρλ, as a
quantum state that is being prepared conditioned on the value of the classical variable λ. This
means that we can treat this preparation as a local operation on Bob’s side, and the only
system that he shares with Alice is the classical variable λ as illustrated in Fig. 10(c). It is
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clear to see that the assemblage illustrated in Fig. 10(b) is LOSR-free, i.e., it can be expressed
as Ia|x(·) =

∑
λ p(a|x, λ)p(λ)Iλ(·), with Iλ(·) being a CPTP map. Therefore, we showed that

the set of LOSR-free channel assemblages coincides with the set of free channel assemblages
introduced in Refs. [25, 74] if no-signalling from Bob to Alice is imposed.

(a)

x

a

λ

Ĩa|x(·)

(b)

x

a

λ ρλ

ĨNS
a|x (·)

(c)

x

a

λ

Ia|x(·)

Figure 10: (a) An LOCC-free channel assemblage that allows signalling from Bob to Alice. (b) An LOCC-free
channel assemblage that is moreover non-signalling. (c) An LOSR-free channel assemblage. We prove here
that the class of resources defined by (b) is identical to that defined by (c).
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