The resource theory of nonclassicality of channel assemblages

Beata Zjawin1, David Schmid1, Matty J. Hoban2,3, and Ana Belén Sainz1

1International Centre for Theory of Quantum Technologies, University of Gdańsk, 80-309 Gdańsk, Poland
2Cambridge Quantum Computing Ltd
3Quantinuum LLC

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


When two parties, Alice and Bob, share correlated quantum systems and Alice performs local measurements, Alice's updated description of Bob's state can provide evidence of nonclassical correlations. This simple scenario, famously introduced by Einstein, Podolsky and Rosen (EPR), can be modified by allowing Bob to also have a classical or quantum system as an input. In this case, Alice updates her knowledge of the channel (rather than of a state) in Bob's lab. In this paper, we provide a unified framework for studying the nonclassicality of various such generalizations of the EPR scenario. We do so using a resource theory wherein the free operations are local operations and shared randomness (LOSR). We derive a semidefinite program for studying the pre-order of EPR resources and discover possible conversions between the latter. Moreover, we study conversions between post-quantum resources both analytically and numerically.

► BibTeX data

► References

[1] John S Bell. ``On the Einstein Podolsky Rosen paradox''. Physics Physique Fizika 1, 195 (1964).

[2] Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and Stephanie Wehner. ``Bell nonlocality''. Reviews of Modern Physics 86, 419 (2014).

[3] Albert Einstein, Boris Podolsky, and Nathan Rosen. ``Can quantum-mechanical description of physical reality be considered complete?''. Physical review 47, 777 (1935).

[4] Erwin Schrödinger. ``Discussion of probability relations between separated systems''. Mathematical Proceedings of the Cambridge Philosophical Society 31, 555–563 (1935).

[5] Eric Gama Cavalcanti, Steve J Jones, Howard M Wiseman, and Margaret D Reid. ``Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox''. Physical Review A 80, 032112 (2009).

[6] Howard M Wiseman, Steve James Jones, and Andrew C Doherty. ``Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox''. Physical review letters 98, 140402 (2007).

[7] Roope Uola, Ana CS Costa, H Chau Nguyen, and Otfried Gühne. ``Quantum steering''. Reviews of Modern Physics 92, 015001 (2020).

[8] Cyril Branciard, Eric G Cavalcanti, Stephen P Walborn, Valerio Scarani, and Howard M Wiseman. ``One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering''. Physical Review A 85, 010301 (2012).

[9] Yu Xiang, Ioannis Kogias, Gerardo Adesso, and Qiongyi He. ``Multipartite gaussian steering: Monogamy constraints and quantum cryptography applications''. Phys. Rev. A 95, 010101 (2017).

[10] Daniel Cavalcanti, Paul Skrzypczyk, GH Aguilar, RV Nery, PH Souto Ribeiro, and SP Walborn. ``Detection of entanglement in asymmetric quantum networks and multipartite quantum steering''. Nature communications 6, 1–6 (2015).

[11] Alejandro Máttar, Paul Skrzypczyk, GH Aguilar, RV Nery, PH Souto Ribeiro, SP Walborn, and Daniel Cavalcanti. ``Experimental multipartite entanglement and randomness certification of the w state in the quantum steering scenario''. Quantum Science and Technology 2, 015011 (2017).

[12] Elsa Passaro, Daniel Cavalcanti, Paul Skrzypczyk, and Antonio Acín. ``Optimal randomness certification in the quantum steering and prepare-and-measure scenarios''. New Journal of Physics 17, 113010 (2015).

[13] Yun Zhi Law, Jean-Daniel Bancal, Valerio Scarani, et al. ``Quantum randomness extraction for various levels of characterization of the devices''. Journal of Physics A: Mathematical and Theoretical 47, 424028 (2014).

[14] Ivan Šupić and Matty J Hoban. ``Self-testing through EPR-steering''. New Journal of Physics 18, 075006 (2016).

[15] Suchetana Goswami, Bihalan Bhattacharya, Debarshi Das, Souradeep Sasmal, C Jebaratnam, and AS Majumdar. ``One-sided device-independent self-testing of any pure two-qubit entangled state''. Physical Review A 98, 022311 (2018).

[16] Shin-Liang Chen, Huan-Yu Ku, Wenbin Zhou, Jordi Tura, and Yueh-Nan Chen. ``Robust self-testing of steerable quantum assemblages and its applications on device-independent quantum certification''. Quantum 5, 552 (2021).

[17] Matthew F Pusey. ``Negativity and steering: A stronger Peres conjecture''. Physical Review A 88, 032313 (2013).

[18] Paul Skrzypczyk, Miguel Navascués, and Daniel Cavalcanti. ``Quantifying Einstein-Podolsky-Rosen steering''. Physical review letters 112, 180404 (2014).

[19] Marco Piani and John Watrous. ``Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering''. Physical review letters 114, 060404 (2015).

[20] Rodrigo Gallego and Leandro Aolita. ``Resource theory of steering''. Physical Review X 5, 041008 (2015).

[21] Beata Zjawin, David Schmid, Matty J Hoban, and Ana Belén Sainz. ``Quantifying EPR: the resource theory of nonclassicality of common-cause assemblages''. Quantum 7, 926 (2023).

[22] Elie Wolfe, David Schmid, Ana Belén Sainz, Ravi Kunjwal, and Robert W Spekkens. ``Quantifying Bell: The resource theory of nonclassicality of common-cause boxes''. Quantum 4, 280 (2020).

[23] David Schmid, Thomas C Fraser, Ravi Kunjwal, Ana Belén Sainz, Elie Wolfe, and Robert W Spekkens. ``Understanding the interplay of entanglement and nonlocality: motivating and developing a new branch of entanglement theory'' (2020). url: https:/​/​​abs/​2004.09194.

[24] David Schmid, Denis Rosset, and Francesco Buscemi. ``The type-independent resource theory of local operations and shared randomness''. Quantum 4, 262 (2020).

[25] Marco Piani. ``Channel steering''. JOSA B 32, A1–A7 (2015).

[26] Ana Belén Sainz, Matty J Hoban, Paul Skrzypczyk, and Leandro Aolita. ``Bipartite postquantum steering in generalized scenarios''. Physical Review Letters 125, 050404 (2020).

[27] Eric G Cavalcanti, Michael JW Hall, and Howard M Wiseman. ``Entanglement verification and steering when alice and bob cannot be trusted''. Physical Review A 87, 032306 (2013).

[28] Denis Rosset, David Schmid, and Francesco Buscemi. ``Type-independent characterization of spacelike separated resources''. Physical Review Letters 125, 210402 (2020).

[29] Iman Marvian and Robert W Spekkens. ``How to quantify coherence: Distinguishing speakable and unspeakable notions''. Physical Review A 94, 052324 (2016).

[30] Iman Marvian, Robert W Spekkens, and Paolo Zanardi. ``Quantum speed limits, coherence, and asymmetry''. Physical Review A 93, 052331 (2016).

[31] Andreas Winter and Dong Yang. ``Operational resource theory of coherence''. Physical review letters 116, 120404 (2016).

[32] Fernando GSL Brandao, Michał Horodecki, Jonathan Oppenheim, Joseph M Renes, and Robert W Spekkens. ``Resource theory of quantum states out of thermal equilibrium''. Physical review letters 111, 250404 (2013).

[33] Paul Skrzypczyk, Anthony J Short, and Sandu Popescu. ``Work extraction and thermodynamics for individual quantum systems''. Nature communications 5, 1–8 (2014).

[34] Dominik Janzing, Pawel Wocjan, Robert Zeier, Rubino Geiss, and Th Beth. ``Thermodynamic cost of reliability and low temperatures: tightening landauer's principle and the second law''. International Journal of Theoretical Physics 39, 2717–2753 (2000).

[35] Michał Horodecki and Jonathan Oppenheim. ``Fundamental limitations for quantum and nanoscale thermodynamics''. Nature communications 4, 1–6 (2013).

[36] Gilad Gour, Markus P Müller, Varun Narasimhachar, Robert W Spekkens, and Nicole Yunger Halpern. ``The resource theory of informational nonequilibrium in thermodynamics''. Physics Reports 583, 1–58 (2015).

[37] Zoë Holmes, Erick Hinds Mingo, Calvin Y-R Chen, and Florian Mintert. ``Quantifying athermality and quantum induced deviations from classical fluctuation relations''. Entropy 22, 111 (2020).

[38] Michael A Nielsen. ``Conditions for a class of entanglement transformations''. Physical Review Letters 83, 436 (1999).

[39] Charles H Bennett, Herbert J Bernstein, Sandu Popescu, and Benjamin Schumacher. ``Concentrating partial entanglement by local operations''. Physical Review A 53, 2046 (1996).

[40] Yuval Rishu Sanders and Gilad Gour. ``Necessary conditions for entanglement catalysts''. Physical Review A 79, 054302 (2009).

[41] Francesco Buscemi. ``All entangled quantum states are nonlocal''. Physical review letters 108, 200401 (2012).

[42] David Schmid, Haoxing Du, Maryam Mudassar, Ghi Coulter-de Wit, Denis Rosset, and Matty J Hoban. ``Postquantum common-cause channels: the resource theory of local operations and shared entanglement''. Quantum 5, 419 (2021).

[43] Jonathan Barrett, Noah Linden, Serge Massar, Stefano Pironio, Sandu Popescu, and David Roberts. ``Nonlocal correlations as an information-theoretic resource''. Physical review A 71, 022101 (2005).

[44] Nicolas Brunner and Paul Skrzypczyk. ``Nonlocality distillation and postquantum theories with trivial communication complexity''. Physical review letters 102, 160403 (2009).

[45] Judea Pearl. ``Causality''. Cambridge University Press. (2009).

[46] Christopher J Wood and Robert W Spekkens. ``The lesson of causal discovery algorithms for quantum correlations: causal explanations of bell-inequality violations require fine-tuning''. New Journal of Physics 17, 033002 (2015).

[47] Paulo J Cavalcanti, John H Selby, Jamie Sikora, Thomas D Galley, and Ana Belén Sainz. ``Post-quantum steering is a stronger-than-quantum resource for information processing''. npj Quantum Information 8, 1–10 (2022).

[48] Ana Belén Sainz, Nicolas Brunner, Daniel Cavalcanti, Paul Skrzypczyk, and Tamás Vértesi. ``Postquantum steering''. Physical review letters 115, 190403 (2015).

[49] Sandu Popescu and Daniel Rohrlich. ``Quantum nonlocality as an axiom''. Foundations of Physics 24, 379–385 (1994).

[50] Nicolas Gisin. ``Stochastic quantum dynamics and relativity''. Helvetica Physica Acta 62, 363–371 (1989).

[51] Lane P Hughston, Richard Jozsa, and William K Wootters. ``A complete classification of quantum ensembles having a given density matrix''. Physics Letters A 183, 14–18 (1993).

[52] Michael A. Nielsen and Isaac L. Chuang. ``Quantum computation and quantum information: 10th anniversary edition''. Cambridge University Press. (2011).

[53] David Schmid, Katja Ried, and Robert W. Spekkens. ``Why initial system-environment correlations do not imply the failure of complete positivity: A causal perspective''. Phys. Rev. A 100, 022112 (2019).

[54] Man-Duen Choi. ``Completely positive linear maps on complex matrices''. Linear algebra and its applications 10, 285–290 (1975).

[55] Andrzej Jamiołkowski. ``Linear transformations which preserve trace and positive semidefiniteness of operators''. Reports on Mathematical Physics 3, 275–278 (1972).

[56] Gus Gutoski and John Watrous. ``Toward a general theory of quantum games''. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. Page 565. (2007).

[57] Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti. ``Theoretical framework for quantum networks''. Physical Review A 80, 022339 (2009).

[58] Arthur Fine. ``Hidden Variables, Joint Probability, and the Bell Inequalities''. Phys. Rev. Lett. 48, 291–295 (1982).

[59] ``Matlab''. url: https:/​/​​.

[60] Michael Grant and Stephen Boyd. ``CVX: MATLAB software for disciplined convex programming''. url: http:/​/​​cvx.

[61] Michael Grant and Stephen Boyd. ``Graph implementations for nonsmooth convex programs''. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control. Pages 95–110. Lecture Notes in Control and Information Sciences. Springer-Verlag Limited (2008).

[62] Jos F Sturm. ``Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones''. Optimization methods and software 11, 625–653 (1999).

[63] Nathaniel Johnston. ``QETLAB: a MATLAB toolbox for quantum entanglement''. url: http:/​/​

[64] Beata Zjawin, David Schmid, Matty J. Hoban, and Ana Belén Sainz. code: beatazjawin/​Quantifying-EPR.

[65] Daniel Cavalcanti and Paul Skrzypczyk. ``Quantum steering: a review with focus on semidefinite programming''. Reports on Progress in Physics 80, 024001 (2016).

[66] Miguel Navascués, Yelena Guryanova, Matty J Hoban, and Antonio Acín. ``Almost quantum correlations''. Nature communications 6, 1 (2015).

[67] Marcin Pawłowski, Tomasz Paterek, Dagomir Kaszlikowski, Valerio Scarani, Andreas Winter, and Marek Żukowski. ``Information causality as a physical principle''. Nature 461, 1101 (2009).

[68] Miguel Navascués and Harald Wunderlich. ``A glance beyond the quantum model''. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, 881 (2010).

[69] Ana Belén Sainz, Tobias Fritz, Remigiusz Augusiak, J Bohr Brask, Rafael Chaves, Anthony Leverrier, and Antonio Acín. ``Exploring the local orthogonality principle''. Physical Review A 89, 032117 (2014).

[70] Antonio Acín, Tobias Fritz, Anthony Leverrier, and Ana Belén Sainz. ``A combinatorial approach to nonlocality and contextuality''. Communications in Mathematical Physics 334, 533–628 (2015).

[71] Joe Henson and Ana Belén Sainz. ``Macroscopic noncontextuality as a principle for almost-quantum correlations''. Physical Review A 91, 042114 (2015).

[72] John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt. ``Proposed experiment to test local hidden-variable theories''. Physical review letters 23, 880 (1969).

[73] Matty J Hoban and Ana Belén Sainz. ``A channel-based framework for steering, non-locality and beyond''. New Journal of Physics 20, 053048 (2018).

[74] Michał Banacki, Ravishankar Ramanathan, and Paweł Horodecki. ``Multipartite channel assemblages'' (2022). url: https:/​/​​pdf/​2205.05033.pdf.

[75] Miguel Navascués, Stefano Pironio, and Antonio Acín. ``Bounding the set of quantum correlations''. Physical Review Letters 98, 010401 (2007).

[76] Miguel Navascués, Stefano Pironio, and Antonio Acín. ``A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations''. New Journal of Physics 10, 073013 (2008).

[77] Tilo Eggeling, Dirk Schlingemann, and Reinhard F Werner. ``Semicausal operations are semilocalizable''. EPL (Europhysics Letters) 57, 782 (2002).

Cited by

[1] David Schmid, Thomas C. Fraser, Ravi Kunjwal, Ana Belen Sainz, Elie Wolfe, and Robert W. Spekkens, "Understanding the interplay of entanglement and nonlocality: motivating and developing a new branch of entanglement theory", Quantum 7, 1194 (2023).

[2] Paulo J. Cavalcanti, John H. Selby, and Ana Belén Sainz, "Every nonsignaling channel is common-cause realizable", Physical Review A 109 4, 042211 (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-21 16:48:29) and SAO/NASA ADS (last updated successfully 2024-05-21 16:48:30). The list may be incomplete as not all publishers provide suitable and complete citation data.