Kirkwood-Dirac quasiprobability approach to the statistics of incompatible observables

Matteo Lostaglio1, Alessio Belenchia2,3, Amikam Levy4, Santiago Hernández-Gómez5,6,7, Nicole Fabbri5,7, and Stefano Gherardini8,5

1Korteweg-de Vries Institute for Mathematics and QuSoft, University of Amsterdam, The Netherlands
2Institut für Theoretische Physik, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
3Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
4Department of Chemistry and Center for Quantum Entanglement Science and Technology, Bar-Ilan University, Ramat-Gan 52900, Israel
5European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy
6Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019, Sesto Fiorentino, Italy
7Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), I-50019 Sesto Fiorentino, Italy
8Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Area Science Park, Basovizza, I-34149 Trieste, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Recent work has revealed the central role played by the Kirkwood-Dirac quasiprobability (KDQ) as a tool to properly account for non-classical features in the context of condensed matter physics (scrambling, dynamical phase transitions) metrology (standard and post-selected), thermodynamics (power output and fluctuation theorems), foundations (contextuality, anomalous weak values) and more. Given the growing relevance of the KDQ across the quantum sciences, our aim is two-fold: First, we highlight the role played by quasiprobabilities in characterizing the statistics of quantum observables and processes in the presence of measurement incompatibility. In this way, we show how the KDQ naturally underpins and unifies quantum correlators, quantum currents, Loschmidt echoes, and weak values. Second, we provide novel theoretical and experimental perspectives by discussing a wide variety of schemes to access the KDQ and its non-classicality features.

The study explores the manifold ways in which a quasiprobability introduced by Kirkwood and Dirac enters disparate physical concepts and fields. The main focus of the work is twofold: First, to show how this quasiprobability can be used to characterize the statistics of incompatible quantum observables during quantum dynamical processes and, second, to provide schemes to access the non-classicality encoded in this quasiprobability.

► BibTeX data

► References

[1] Werner Heisenberg. Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik. Z. Physik, 43: 172–198, 1927. 10.1007/​BF01397280.
https:/​/​doi.org/​10.1007/​BF01397280

[2] E. Schrödinger. About Heisenberg uncertainty relation. arXiv preprint quant-ph/​9903100, 1999. 10.48550/​arXiv.quant-ph/​9903100. URL https:/​/​doi.org/​10.48550/​arXiv.quant-ph/​9903100.
https:/​/​doi.org/​10.48550/​arXiv.quant-ph/​9903100
arXiv:quant-ph/9903100

[3] C. Branciard. Error-tradeoff and error-disturbance relations for incompatible quantum measurements. PNAS, 110 (17): 6742–6747, 2013. 10.1073/​pnas.1219331110.
https:/​/​doi.org/​10.1073/​pnas.1219331110

[4] E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40: 749–759, Jun 1932. 10.1103/​PhysRev.40.749. URL https:/​/​doi.org/​10.1103/​PhysRev.40.749.
https:/​/​doi.org/​10.1103/​PhysRev.40.749

[5] Kôdi Husimi. Some formal properties of the density matrix. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 22 (4): 264–314, 1940. 10.11429/​ppmsj1919.22.4_264.
https:/​/​doi.org/​10.11429/​ppmsj1919.22.4_264

[6] Eugene P Wigner. The problem of measurement. Am. J. Phys., 31 (1): 6–15, 1963. 10.1119/​1.1969254.
https:/​/​doi.org/​10.1119/​1.1969254

[7] Roy J. Glauber. Coherent and incoherent states of the radiation field. Phys. Rev., 131: 2766–2788, Sep 1963. 10.1103/​PhysRev.131.2766. URL https:/​/​doi.org/​10.1103/​PhysRev.131.2766.
https:/​/​doi.org/​10.1103/​PhysRev.131.2766

[8] E. C. G. Sudarshan. Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett., 10: 277–279, Apr 1963. 10.1103/​PhysRevLett.10.277. URL https:/​/​doi.org/​10.1103/​PhysRevLett.10.277.
https:/​/​doi.org/​10.1103/​PhysRevLett.10.277

[9] J. Surace. A Theory of Inaccessible Information. arXiv preprint arXiv:2305.05734, 2023. https:/​/​doi.org/​10.48550/​arXiv.2305.05734. URL https:/​/​doi.org/​10.48550/​arXiv.2305.05734.
https:/​/​doi.org/​10.48550/​arXiv.2305.05734
arXiv:2305.05734

[10] C. Zachos, D. Fairlie, and T. Curtright. Quantum mechanics in phase space: an overview with selected papers. World Scientific, 2005. https:/​/​doi.org/​10.1142/​5287. URL https:/​/​doi.org/​10.1142/​5287.
https:/​/​doi.org/​10.1142/​5287

[11] W. K. Wootters. A Wigner-function formulation of finite-state quantum mechanics. Annals of Physics, 176 (1): 1–21, 1987. 10.1016/​0003-4916(87)90176-X. URL https:/​/​www.sciencedirect.com/​science/​article/​abs/​pii/​000349168790176X.
https:/​/​doi.org/​10.1016/​0003-4916(87)90176-X
https:/​/​www.sciencedirect.com/​science/​article/​abs/​pii/​000349168790176X

[12] A. Luis and J. Perina. Discrete Wigner function for finite-dimensional systems. J. Phys. A: Math. Gen., 31 (5): 1423, 1998. 10.1088/​0305-4470/​31/​5/​012. URL https:/​/​iopscience.iop.org/​article/​10.1088/​0305-4470/​31/​5/​012.
https:/​/​doi.org/​10.1088/​0305-4470/​31/​5/​012

[13] K. S. Gibbons, M. J. Hoffman, and W. K. Wootters. Discrete phase space based on finite fields. Phys. Rev. A, 70: 062101, Dec 2004. 10.1103/​PhysRevA.70.062101. URL https:/​/​doi.org/​10.1103/​PhysRevA.70.062101.
https:/​/​doi.org/​10.1103/​PhysRevA.70.062101

[14] D. Gross. Hudson's theorem for finite-dimensional quantum systems. J. Math. Phys., 47 (12): 122107, 2006. 10.1063/​1.2393152. URL https:/​/​aip.scitation.org/​doi/​10.1063/​1.2393152.
https:/​/​doi.org/​10.1063/​1.2393152

[15] J. G. Kirkwood. Quantum statistics of almost classical assemblies. Phys. Rev., 44: 31–37, Jul 1933. 10.1103/​PhysRev.44.31. URL https:/​/​doi.org/​10.1103/​PhysRev.44.31.
https:/​/​doi.org/​10.1103/​PhysRev.44.31

[16] P. A. M. Dirac. On the analogy between classical and quantum mechanics. Rev. Mod. Phys., 17: 195–199, Apr 1945. 10.1103/​RevModPhys.17.195. URL https:/​/​doi.org/​10.1103/​RevModPhys.17.195.
https:/​/​doi.org/​10.1103/​RevModPhys.17.195

[17] A. O. Barut. Distribution Functions for Noncommuting Operators. Phys. Rev., 108: 565–569, Nov 1957. 10.1103/​PhysRev.108.565. URL https:/​/​doi.org/​10.1103/​PhysRev.108.565.
https:/​/​doi.org/​10.1103/​PhysRev.108.565

[18] L. M. Johansen. Quantum theory of successive projective measurements. Phys. Rev. A, 76: 012119, Jul 2007. 10.1103/​PhysRevA.76.012119. URL https:/​/​doi.org/​10.1103/​PhysRevA.76.012119.
https:/​/​doi.org/​10.1103/​PhysRevA.76.012119

[19] A. E. Allahverdyan. Nonequilibrium quantum fluctuations of work. Phys. Rev. E, 90: 032137, Sep 2014. 10.1103/​PhysRevE.90.032137. URL https:/​/​doi.org/​10.1103/​PhysRevE.90.032137.
https:/​/​doi.org/​10.1103/​PhysRevE.90.032137

[20] M. Lostaglio. Quantum Fluctuation Theorems, Contextuality, and Work Quasiprobabilities. Phys. Rev. Lett., 120: 040602, Jan 2018. 10.1103/​PhysRevLett.120.040602. URL https:/​/​doi.org/​10.1103/​PhysRevLett.120.040602.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.040602

[21] N. Yunger Halpern, B. Swingle, and J. Dressel. Quasiprobability behind the out-of-time-ordered correlator. Phys. Rev. A, 97: 042105, Apr 2018. 10.1103/​PhysRevA.97.042105. URL https:/​/​doi.org/​10.1103/​PhysRevA.97.042105.
https:/​/​doi.org/​10.1103/​PhysRevA.97.042105

[22] J. R. González Alonso, N. Yunger Halpern, and J. Dressel. Out-of-Time-Ordered-Correlator Quasiprobabilities Robustly Witness Scrambling. Phys. Rev. Lett., 122: 040404, Feb 2019. 10.1103/​PhysRevLett.122.040404. URL https:/​/​doi.org/​10.1103/​PhysRevLett.122.040404.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.040404

[23] R. Kunjwal, M. Lostaglio, and M. F. Pusey. Anomalous weak values and contextuality: Robustness, tightness, and imaginary parts. Phys. Rev. A, 100: 042116, Oct 2019. 10.1103/​PhysRevA.100.042116. URL https:/​/​doi.org/​10.1103/​PhysRevA.100.042116.
https:/​/​doi.org/​10.1103/​PhysRevA.100.042116

[24] A. Levy and M. Lostaglio. Quasiprobability Distribution for Heat Fluctuations in the Quantum Regime. PRX Quantum, 1: 010309, Sep 2020. 10.1103/​PRXQuantum.1.010309. URL https:/​/​doi.org/​10.1103/​PRXQuantum.1.010309.
https:/​/​doi.org/​10.1103/​PRXQuantum.1.010309

[25] D. R. M. Arvidsson-Shukur, J. Chevalier Drori, and N. Yunger Halpern. Conditions tighter than noncommutation needed for nonclassicality. J. Phys. A: Math. Theor., 54: 284001, 2021. 10.1088/​1751-8121/​ac0289. URL https:/​/​iopscience.iop.org/​article/​10.1088/​1751-8121/​ac0289.
https:/​/​doi.org/​10.1088/​1751-8121/​ac0289

[26] V. A. Stepanyan and A. E. Allahverdyan. Energy densities in quantum mechanics. arXiv preprint arXiv:2305.05657, 2023. https:/​/​doi.org/​10.48550/​arXiv.2305.05657. URL https:/​/​doi.org/​10.48550/​arXiv.2305.05657.
https:/​/​doi.org/​10.48550/​arXiv.2305.05657
arXiv:2305.05657

[27] S. De Bièvre. Complete Incompatibility, Support Uncertainty, and Kirkwood-Dirac Nonclassicality. Phys. Rev. Lett., 127: 190404, Nov 2021. 10.1103/​PhysRevLett.127.190404. URL https:/​/​doi.org/​10.1103/​PhysRevLett.127.190404.
https:/​/​doi.org/​10.1103/​PhysRevLett.127.190404

[28] M. F. Pusey. Anomalous Weak Values Are Proofs of Contextuality. Phys. Rev. Lett., 113: 200401, Nov 2014. 10.1103/​PhysRevLett.113.200401. URL https:/​/​doi.org/​10.1103/​PhysRevLett.113.200401.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.200401

[29] Richard Jozsa. Complex weak values in quantum measurement. Phys. Rev. A, 76: 044103, Oct 2007. 10.1103/​PhysRevA.76.044103. URL https:/​/​doi.org/​10.1103/​PhysRevA.76.044103.
https:/​/​doi.org/​10.1103/​PhysRevA.76.044103

[30] Holger F Hofmann. On the role of complex phases in the quantum statistics of weak measurements. New J. Phys., 13 (10): 103009, 2011. 10.1088/​1367-2630/​13/​10/​103009.
https:/​/​doi.org/​10.1088/​1367-2630/​13/​10/​103009

[31] J. Dressel and A. N. Jordan. Significance of the imaginary part of the weak value. Phys. Rev. A, 85: 012107, Jan 2012. 10.1103/​PhysRevA.85.012107. URL https:/​/​doi.org/​10.1103/​PhysRevA.85.012107.
https:/​/​doi.org/​10.1103/​PhysRevA.85.012107

[32] J.T. Monroe, N. Yunger Halpern, T. Lee, and K.W. Murch. Weak Measurement of a Superconducting Qubit Reconciles Incompatible Operators. Phys. Rev. Lett., 126: 100403, Mar 2021. 10.1103/​PhysRevLett.126.100403. URL https:/​/​doi.org/​10.1103/​PhysRevLett.126.100403.
https:/​/​doi.org/​10.1103/​PhysRevLett.126.100403

[33] M. Lostaglio. Certifying Quantum Signatures in Thermodynamics and Metrology via Contextuality of Quantum Linear Response. Phys. Rev. Lett., 125: 230603, Dec 2020. 10.1103/​PhysRevLett.125.230603. URL https:/​/​doi.org/​10.1103/​PhysRevLett.125.230603.
https:/​/​doi.org/​10.1103/​PhysRevLett.125.230603

[34] D.R.M. Arvidsson-Shukur, N. Yunger Halpern, H.V. Lepage, A.A. Lasek, C.H.W. Barnes, and S. Lloyd. Quantum advantage in postselected metrology. Nat. Comm., 11 (1): 3775, 2020. 10.1209/​0295-5075/​89/​10007.
https:/​/​doi.org/​10.1209/​0295-5075/​89/​10007

[35] Joe H Jenne and David RM Arvidsson-Shukur. Quantum learnability is arbitrarily distillable. arXiv preprint arXiv:2104.09520, 2021. https:/​/​doi.org/​10.48550/​arXiv.2104.09520. URL https:/​/​doi.org/​10.48550/​arXiv.2104.09520.
https:/​/​doi.org/​10.48550/​arXiv.2104.09520
arXiv:2104.09520

[36] S. Hernández-Gómez, S. Gherardini, A. Belenchia, M. Lostaglio, A. Levy, and N. Fabbri. Projective measurements can probe non-classical work extraction and time-correlations. arXiv preprint arXiv:2207.12960v2, 2023a. https:/​/​doi.org/​10.48550/​arXiv.2207.12960. URL https:/​/​doi.org/​10.48550/​arXiv.2207.12960.
https:/​/​doi.org/​10.48550/​arXiv.2207.12960
arXiv:2207.12960v2

[37] Alessandro Santini, Andrea Solfanelli, Stefano Gherardini, and Mario Collura. Work statistics, quantum signatures, and enhanced work extraction in quadratic fermionic models. Phys. Rev. B, 108: 104308, Sep 2023. 10.1103/​PhysRevB.108.104308. URL https:/​/​doi.org/​10.1103/​PhysRevB.108.104308.
https:/​/​doi.org/​10.1103/​PhysRevB.108.104308

[38] Gianluca Francica and Luca Dell'Anna. Quasiprobability distribution of work in the quantum ising model. Phys. Rev. E, 108: 014106, Jul 2023. 10.1103/​PhysRevE.108.014106. URL https:/​/​doi.org/​10.1103/​PhysRevE.108.014106.
https:/​/​doi.org/​10.1103/​PhysRevE.108.014106

[39] L. E. Ballentine. The Statistical Interpretation of Quantum Mechanics. Rev. Mod. Phys., 42: 358–381, Oct 1970. 10.1103/​RevModPhys.42.358. URL https:/​/​doi.org/​10.1103/​RevModPhys.42.358.
https:/​/​doi.org/​10.1103/​RevModPhys.42.358

[40] H.-P. Breuer and F. Petruccione. The theory of open quantum systems. Oxford University Press on Demand, 2002.

[41] P. Busch, P. Lahti, and R. F. Werner. Colloquium: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys., 86: 1261–1281, Dec 2014a. 10.1103/​RevModPhys.86.1261. URL https:/​/​doi.org/​10.1103/​RevModPhys.86.1261.
https:/​/​doi.org/​10.1103/​RevModPhys.86.1261

[42] G. Ludwig. Foundations of Quantum Mechanics vol. I. Springer, Berlin, 1983. https:/​/​doi.org/​10.1007/​978-3-642-86751-4. URL https:/​/​doi.org/​10.1007/​978-3-642-86751-4.
https:/​/​doi.org/​10.1007/​978-3-642-86751-4

[43] J. Kiukas, P. Lahti, and J. Schultz. Position and momentum tomography. Phys. Rev. A, 79: 052119, May 2009. 10.1103/​PhysRevA.79.052119. URL https:/​/​doi.org/​10.1103/​PhysRevA.79.052119.
https:/​/​doi.org/​10.1103/​PhysRevA.79.052119

[44] P. Busch, T. Heinonen, and P. Lahti. Noise and disturbance in quantum measurement. Phys. Lett. A, 320 (4): 261–270, 2004. 10.1016/​j.physleta.2003.11.036.
https:/​/​doi.org/​10.1016/​j.physleta.2003.11.036

[45] P. Busch, P. Lahti, and R. F. Werner. Heisenberg uncertainty for qubit measurements. Phys. Rev. A, 89: 012129, Jan 2014b. 10.1103/​PhysRevA.89.012129. URL https:/​/​doi.org/​10.1103/​PhysRevA.89.012129.
https:/​/​doi.org/​10.1103/​PhysRevA.89.012129

[46] K. Beyer, R. Uola, K. Luoma, and W. T. Strunz. Joint measurability in nonequilibrium quantum thermodynamics. Phys. Rev. E, 106: L022101, Aug 2022. 10.1103/​PhysRevE.106.L022101. URL https:/​/​doi.org/​10.1103/​PhysRevE.106.L022101.
https:/​/​doi.org/​10.1103/​PhysRevE.106.L022101

[47] R. T. Cox. Probability, frequency and reasonable expectation. Am. J. Phys., 14 (1): 1–13, 1946. 10.1119/​1.1990764.
https:/​/​doi.org/​10.1119/​1.1990764

[48] T. Sagawa. Second law-like inequalities with quantum relative entropy: An introduction. In Lectures on quantum computing, thermodynamics and statistical physics, pages 125–190. World Scientific, 2013. 10.1142/​9789814425193_0003.
https:/​/​doi.org/​10.1142/​9789814425193_0003

[49] Kaonan Micadei, Gabriel T. Landi, and Eric Lutz. Quantum Fluctuation Theorems beyond Two-Point Measurements. Phys. Rev. Lett., 124: 090602, Mar 2020. 10.1103/​PhysRevLett.124.090602. URL https:/​/​doi.org/​10.1103/​PhysRevLett.124.090602.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.090602

[50] R. Sampaio, S. Suomela, T. Ala-Nissila, J. Anders, and T. G. Philbin. Quantum work in the Bohmian framework. Phys. Rev. A, 97: 012131, Jan 2018. 10.1103/​PhysRevA.97.012131. URL https:/​/​doi.org/​10.1103/​PhysRevA.97.012131.
https:/​/​doi.org/​10.1103/​PhysRevA.97.012131

[51] S. Gherardini, A. Belenchia, M. Paternostro, and A. Trombettoni. End-point measurement approach to assess quantum coherence in energy fluctuations. Phys. Rev. A, 104: L050203, Nov 2021. 10.1103/​PhysRevA.104.L050203. URL https:/​/​doi.org/​10.1103/​PhysRevA.104.L050203.
https:/​/​doi.org/​10.1103/​PhysRevA.104.L050203

[52] Santiago Hernández-Gómez, Stefano Gherardini, Alessio Belenchia, Andrea Trombettoni, Mauro Paternostro, and Nicole Fabbri. Experimental signature of initial quantum coherence on entropy production. npj Quantum Information, 9 (1): 86, 2023b. https:/​/​doi.org/​10.1038/​s41534-023-00738-0. URL https:/​/​doi.org/​10.1038/​s41534-023-00738-0.
https:/​/​doi.org/​10.1038/​s41534-023-00738-0

[53] Leon Cohen and YI Zaparovanny. Positive quantum joint distributions. J. Math. Phys., 21 (4): 794–796, 1980. 10.1063/​1.524501.
https:/​/​doi.org/​10.1063/​1.524501

[54] Leon Cohen. Time-frequency distributions-a review. Proceedings of the IEEE, 77 (7): 941–981, 1989. 10.1109/​5.30749.
https:/​/​doi.org/​10.1109/​5.30749

[55] Leon Cohen. Time-frequency analysis, volume 778. Prentice Hall, 1995.

[56] Eugene P Wigner. On the quantum correction for thermodynamic equilibrium. In Part I: Physical Chemistry. Part II: Solid State Physics, pages 110–120. Springer, 1997. 10.1007/​978-3-642-59033-7_9.
https:/​/​doi.org/​10.1007/​978-3-642-59033-7_9

[57] Alessio Serafini. Quantum continuous variables: a primer of theoretical methods. CRC press, 2017. https:/​/​doi.org/​10.1201/​9781315118727. URL https:/​/​doi.org/​10.1201/​9781315118727.
https:/​/​doi.org/​10.1201/​9781315118727

[58] Christopher Ferrie. Quasi-probability representations of quantum theory with applications to quantum information science. Rep. Prog. Phys., 74 (11): 116001, 2011. 10.1088/​0034-4885/​74/​11/​116001.
https:/​/​doi.org/​10.1088/​0034-4885/​74/​11/​116001

[59] Nicolas Delfosse, Philippe Allard Guerin, Jacob Bian, and Robert Raussendorf. Wigner Function Negativity and Contextuality in Quantum Computation on Rebits. Phys. Rev. X, 5: 021003, Apr 2015. 10.1103/​PhysRevX.5.021003. URL https:/​/​doi.org/​10.1103/​PhysRevX.5.021003.
https:/​/​doi.org/​10.1103/​PhysRevX.5.021003

[60] P. Talkner, E. Lutz, and P. Hänggi. Fluctuation theorems: Work is not an observable. Phys. Rev. E, 75: 050102(R), May 2007. 10.1103/​PhysRevE.75.050102. URL https:/​/​doi.org/​10.1103/​PhysRevE.75.050102.
https:/​/​doi.org/​10.1103/​PhysRevE.75.050102

[61] T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, and R. M. Serra. Experimental Reconstruction of Work Distribution and Study of Fluctuation Relations in a Closed Quantum System. Phys. Rev. Lett., 113 (14): 140601–5, October 2014. 10.1103/​PhysRevLett.113.140601. URL https:/​/​doi.org/​10.1103/​PhysRevLett.113.140601.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.140601

[62] S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H. T. Quan, and K. Kim. Experimental test of the quantum Jarzynski equality with a trapped-ion system. Nat. Phys., 11 (2): 193–199, 2015. 10.1038/​nphys3197.
https:/​/​doi.org/​10.1038/​nphys3197

[63] A. Smith, Y. Lu, S. An, X. Zhang, J.-N. Zhang, Z. Gong, H. T. Quan, C. Jarzynski, and K. Kim. Verification of the quantum nonequilibrium work relation in the presence of decoherence. New J. Phys., 20 (1): 013008, jan 2018. 10.1088/​1367-2630/​aa9cd6.
https:/​/​doi.org/​10.1088/​1367-2630/​aa9cd6

[64] Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, and Y. Nakamura. Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system. Nat. Commun., 9: 1291, Mar 2018. 10.1038/​s41467-018-03686-y. URL https:/​/​doi.org/​10.1038/​s41467-018-03686-y.
https:/​/​doi.org/​10.1038/​s41467-018-03686-y

[65] T. P. Xiong, L. L. Yan, F. Zhou, K. Rehan, D. F. Liang, L. Chen, W. L. Yang, Z. H. Ma, M. Feng, and V. Vedral. Experimental Verification of a Jarzynski-Related Information-Theoretic Equality by a Single Trapped Ion. Phys. Rev. Lett., 120: 010601, Jan 2018. 10.1103/​PhysRevLett.120.010601. URL https:/​/​doi.org/​10.1103/​PhysRevLett.120.010601.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.010601

[66] Z. Zhang, T. Wang, L. Xiang, Z. Jia, P. Duan, W. Cai, Z. Zhan, Z. Zong, J. Wu, L. Sun, Y. Yin, and G. Guo. Experimental demonstration of work fluctuations along a shortcut to adiabaticity with a superconducting Xmon qubit. New J. Phys., 20 (8): 085001–13, August 2018. 10.1088/​1367-2630/​aad4e7. URL http:/​/​stacks.iop.org/​1367-2630/​20/​i=8/​a=085001?key=crossref.54fd7f79e4e0f18c3e37b9a974445ae1.
https:/​/​doi.org/​10.1088/​1367-2630/​aad4e7
http:/​/​stacks.iop.org/​1367-2630/​20/​i=8/​a=085001?key=crossref.54fd7f79e4e0f18c3e37b9a974445ae1

[67] S. Pal, T. S. Mahesh, and B. K. Agarwalla. Experimental demonstration of the validity of the quantum heat-exchange fluctuation relation in an NMR setup. Phys. Rev. A, 100: 042119, Oct 2019. 10.1103/​PhysRevA.100.042119. URL https:/​/​doi.org/​10.1103/​PhysRevA.100.042119.
https:/​/​doi.org/​10.1103/​PhysRevA.100.042119

[68] S. Hernández-Gómez, S. Gherardini, F. Poggiali, F. S. Cataliotti, A. Trombettoni, P. Cappellaro, and N. Fabbri. Experimental test of exchange fluctuation relations in an open quantum system. Phys. Rev. Research, 2: 023327, Jun 2020. 10.1103/​PhysRevResearch.2.023327. URL https:/​/​doi.org/​10.1103/​PhysRevResearch.2.023327.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.023327

[69] V. Cimini, S. Gherardini, M. Barbieri, I. Gianani, M. Sbroscia, L. Buffoni, M. Paternostro, and F. Caruso. Experimental characterization of the energetics of quantum logic gates. Npj Quantum Inf., 6: 96, Dec 2020. 10.1038/​s41534-020-00325-7. URL https:/​/​doi.org/​10.1038/​s41534-020-00325-7.
https:/​/​doi.org/​10.1038/​s41534-020-00325-7

[70] P. H. Souto Ribeiro, T. Häffner, G. L. Zanin, N. Rubiano da Silva, R. Medeiros de Araújo, W. C. Soares, R. J. de Assis, L. C. Céleri, and A. Forbes. Experimental study of the generalized Jarzynski fluctuation relation using entangled photons. Phys. Rev. A, 101: 052113, May 2020. 10.1103/​PhysRevA.101.052113. URL https:/​/​doi.org/​10.1103/​PhysRevA.101.052113.
https:/​/​doi.org/​10.1103/​PhysRevA.101.052113

[71] S. Hernández-Gómez, N. Staudenmaier, M. Campisi, and N. Fabbri. Experimental test of fluctuation relations for driven open quantum systems with an NV center. New J. Phys., 23 (6): 065004, jun 2021. 10.1088/​1367-2630/​abfc6a. URL https:/​/​doi.org/​10.1088/​1367-2630/​abfc6a.
https:/​/​doi.org/​10.1088/​1367-2630/​abfc6a

[72] G. H. Aguilar, T. L. Silva, T. E. Guimarães, R. S. Piera, L. C. Céleri, and G. T. Landi. Two-point measurement of entropy production from the outcomes of a single experiment with correlated photon pairs. Phys. Rev. A, 106: L020201, Aug 2022. 10.1103/​PhysRevA.106.L020201. URL https:/​/​doi.org/​10.1103/​PhysRevA.106.L020201.
https:/​/​doi.org/​10.1103/​PhysRevA.106.L020201

[73] K. Micadei, J. P. S. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, R. M. Serra, and E. Lutz. Experimental Validation of Fully Quantum Fluctuation Theorems Using Dynamic Bayesian Networks. Phys. Rev. Lett., 127: 180603, Oct 2021. 10.1103/​PhysRevLett.127.180603. URL https:/​/​doi.org/​10.1103/​PhysRevLett.127.180603.
https:/​/​doi.org/​10.1103/​PhysRevLett.127.180603

[74] K. V. Hovhannisyan and A. Imparato. Energy conservation and Jarzynski equality are incompatible for quantum work. arXiv preprint arXiv:2104.09364, 2021. https:/​/​doi.org/​10.48550/​arXiv.2104.09364. URL https:/​/​doi.org/​10.48550/​arXiv.2104.09364.
https:/​/​doi.org/​10.48550/​arXiv.2104.09364
arXiv:2104.09364

[75] Ilaria Gianani, Alessio Belenchia, Stefano Gherardini, Vincenzo Berardi, Marco Barbieri, and Mauro Paternostro. Diagnostics of quantum-gate coherences deteriorated by unitary errors via end-point-measurement statistics. Quantum Science and Technology, 8 (4): 045018, 2023. https:/​/​doi.org/​10.1088/​2058-9565/​acedca. URL https:/​/​doi.org/​10.1088/​2058-9565/​acedca.
https:/​/​doi.org/​10.1088/​2058-9565/​acedca

[76] M. Perarnau-Llobet, E. Bäumer, K. V. Hovhannisyan, M. Huber, and A. Acin. No-Go Theorem for the Characterization of Work Fluctuations in Coherent Quantum Systems. Phys. Rev. Lett., 118: 070601, Feb 2017. 10.1103/​PhysRevLett.118.070601. URL https:/​/​doi.org/​10.1103/​PhysRevLett.118.070601.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.070601

[77] P. Solinas and S. Gasparinetti. Probing quantum interference effects in the work distribution. Phys. Rev. A, 94: 052103, Nov 2016. 10.1103/​PhysRevA.94.052103. URL https:/​/​doi.org/​10.1103/​PhysRevA.94.052103.
https:/​/​doi.org/​10.1103/​PhysRevA.94.052103

[78] P.P. Hofer. Quasi-probability distributions for observables in dynamic systems. Quantum, 1: 32, 2017. 10.22331/​q-2017-10-12-32.
https:/​/​doi.org/​10.22331/​q-2017-10-12-32

[79] C. Gardiner and P. Zoller. Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics. Springer Science & Business Media, 2004.

[80] R. Balian and N.L. Balazs. Equiprobability, interference and entropy in quantum theory. Annals of Physics, 179: 97–144, 1987. 10.1016/​S0003-4916(87)80006-4.
https:/​/​doi.org/​10.1016/​S0003-4916(87)80006-4

[81] James B. Hartle. Linear positivity and virtual probability. Phys. Rev. A, 70: 022104, Aug 2004. 10.1103/​PhysRevA.70.022104. URL https:/​/​doi.org/​10.1103/​PhysRevA.70.022104.
https:/​/​doi.org/​10.1103/​PhysRevA.70.022104

[82] Udo Seifert and Thomas Speck. Fluctuation-dissipation theorem in nonequilibrium steady states. EPL (Europhysics Letters), 89 (1): 10007, 2010. 10.1209/​0295-5075/​89/​10007.
https:/​/​doi.org/​10.1209/​0295-5075/​89/​10007

[83] M. Konopik and E. Lutz. Quantum response theory for nonequilibrium steady states. Phys. Rev. Research, 1: 033156, Dec 2019. 10.1103/​PhysRevResearch.1.033156. URL https:/​/​doi.org/​10.1103/​PhysRevResearch.1.033156.
https:/​/​doi.org/​10.1103/​PhysRevResearch.1.033156

[84] Ryogo Kubo. Statistical-mechanical theory of irreversible processes. i. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn., 12 (6): 570–586, 1957. 10.1143/​JPSJ.12.570.
https:/​/​doi.org/​10.1143/​JPSJ.12.570

[85] Ryogo Kubo, Mario Yokota, and Sadao Nakajima. Statistical-mechanical theory of irreversible processes. ii. Response to thermal disturbance. J. Phys. Soc. Jpn., 12 (11): 1203–1211, 1957. 10.1143/​JPSJ.12.1203.
https:/​/​doi.org/​10.1143/​JPSJ.12.1203

[86] Robert Zwanzig. Nonequilibrium statistical mechanics. Oxford university press, 2001.

[87] M. Mehboudi, A. Sanpera, and J. M. R. Parrondo. Fluctuation-dissipation theorem for non-equilibrium quantum systems. Quantum, 2: 66, 2018. 10.22331/​q-2018-05-24-66.
https:/​/​doi.org/​10.22331/​q-2018-05-24-66

[88] Y. Aharonov, D. Z. Albert, and L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/​2 particle can turn out to be 100. Phys. Rev. Lett., 60: 1351–1354, Apr 1988. 10.1103/​PhysRevLett.60.1351. URL https:/​/​doi.org/​10.1103/​PhysRevLett.60.1351.
https:/​/​doi.org/​10.1103/​PhysRevLett.60.1351

[89] Carl W Helstrom. Quantum detection and estimation theory. J. Stat. Phys., 1 (2): 231–252, 1969. 10.1007/​BF01007479.
https:/​/​doi.org/​10.1007/​BF01007479

[90] S. L. Braunstein and C. M. Caves. Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 72: 3439–3443, May 1994. 10.1103/​PhysRevLett.72.3439. URL https:/​/​doi.org/​10.1103/​PhysRevLett.72.3439.
https:/​/​doi.org/​10.1103/​PhysRevLett.72.3439

[91] Udo Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys., 75 (12): 126001, 2012. 10.1088/​0034-4885/​75/​12/​126001.
https:/​/​doi.org/​10.1088/​0034-4885/​75/​12/​126001

[92] K. V. Hovhannisyan and A. Imparato. Quantum current in dissipative systems. New J. Phys., 21: 052001, 2019. 10.1088/​1367-2630/​ab1731. URL https:/​/​iopscience.iop.org/​article/​10.1088/​1367-2630/​ab1731.
https:/​/​doi.org/​10.1088/​1367-2630/​ab1731

[93] Asher Peres. Stability of quantum motion in chaotic and regular systems. Phys. Rev. A, 30: 1610–1615, Oct 1984. 10.1103/​PhysRevA.30.1610. URL https:/​/​doi.org/​10.1103/​PhysRevA.30.1610.
https:/​/​doi.org/​10.1103/​PhysRevA.30.1610

[94] Arseni Goussev, Rodolfo A Jalabert, Horacio M Pastawski, and Diego Wisniacki. Loschmidt echo. arXiv preprint arXiv:1206.6348, 2012. https:/​/​doi.org/​10.48550/​arXiv.1206.6348. URL https:/​/​doi.org/​10.48550/​arXiv.1206.6348.
https:/​/​doi.org/​10.48550/​arXiv.1206.6348
arXiv:1206.6348

[95] F. M. Cucchietti, D. A. R. Dalvit, J. P. Paz, and W. H. Zurek. Decoherence and the Loschmidt echo. Phys. Rev. Lett., 91: 210403, Nov 2003. 10.1103/​PhysRevLett.91.210403. URL https:/​/​doi.org/​10.1103/​PhysRevLett.91.210403.
https:/​/​doi.org/​10.1103/​PhysRevLett.91.210403

[96] B. Casabone, I. García-Mata, and D. A. Wisniacki. Discrepancies between decoherence and the Loschmidt echo. EPL, 89 (5): 50009, 2010. 10.1209/​0295-5075/​89/​50009.
https:/​/​doi.org/​10.1209/​0295-5075/​89/​50009

[97] Fernando M. Cucchietti, Horacio M. Pastawski, and Rodolfo A. Jalabert. Universality of the Lyapunov regime for the Loschmidt echo. Phys. Rev. B, 70: 035311, Jul 2004. 10.1103/​PhysRevB.70.035311. URL https:/​/​doi.org/​10.1103/​PhysRevB.70.035311.
https:/​/​doi.org/​10.1103/​PhysRevB.70.035311

[98] Thomas Gorin, Tomaž Prosen, Thomas H Seligman, and Marko Žnidarič. Dynamics of Loschmidt echoes and fidelity decay. Phys. Rep., 435 (2-5): 33–156, 2006. 10.1016/​j.physrep.2006.09.003.
https:/​/​doi.org/​10.1016/​j.physrep.2006.09.003

[99] Aurélia Chenu, Javier Molina-Vilaplana, and Adolfo Del Campo. Work Statistics, Loschmidt Echo and Information Scrambling in Chaotic Quantum Systems. Quantum, 3: 127, 2019. 10.22331/​q-2019-03-04-127.
https:/​/​doi.org/​10.22331/​q-2019-03-04-127

[100] Aurélia Chenu, Iñigo L Egusquiza, Javier Molina-Vilaplana, and Adolfo del Campo. Quantum work statistics, Loschmidt echo and information scrambling. Sci. Rep., 8 (1): 1–8, 2018. 10.1038/​s41598-018-30982-w.
https:/​/​doi.org/​10.1038/​s41598-018-30982-w

[101] Rodolfo A. Jalabert and Horacio M. Pastawski. Environment-Independent Decoherence Rate in Classically Chaotic Systems. Phys. Rev. Lett., 86: 2490–2493, Mar 2001. 10.1103/​PhysRevLett.86.2490. URL https:/​/​doi.org/​10.1103/​PhysRevLett.86.2490.
https:/​/​doi.org/​10.1103/​PhysRevLett.86.2490

[102] Patricia R Levstein, Gonzalo Usaj, and Horacio M Pastawski. Attenuation of polarization echoes in nuclear magnetic resonance: A study of the emergence of dynamical irreversibility in many-body quantum systems. J. Chem. Phys., 108 (7): 2718–2724, 1998. 10.1063/​1.475664.
https:/​/​doi.org/​10.1063/​1.475664

[103] B. Yan, L. Cincio, and W. H. Zurek. Information Scrambling and Loschmidt Echo. Phys. Rev. Lett., 124: 160603, Apr 2020. 10.1103/​PhysRevLett.124.160603. URL https:/​/​doi.org/​10.1103/​PhysRevLett.124.160603.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.160603

[104] Markus Heyl. Dynamical quantum phase transitions: a review. Rep. Prog. Phys., 81 (5): 054001, 2018. 10.1088/​1361-6633/​aaaf9a.
https:/​/​doi.org/​10.1088/​1361-6633/​aaaf9a

[105] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C. Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos. Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System. Phys. Rev. Lett., 119: 080501, Aug 2017. 10.1103/​PhysRevLett.119.080501. URL https:/​/​doi.org/​10.1103/​PhysRevLett.119.080501.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.080501

[106] S. Sharma, U. Divakaran, A. Polkovnikov, and A. Dutta. Slow quenches in a quantum Ising chain: Dynamical phase transitions and topology. Phys. Rev. B, 93: 144306, Apr 2016. 10.1103/​PhysRevB.93.144306. URL https:/​/​doi.org/​10.1103/​PhysRevB.93.144306.
https:/​/​doi.org/​10.1103/​PhysRevB.93.144306

[107] N Fläschner, D Vogel, M Tarnowski, BS Rem, D-S Lühmann, M Heyl, JC Budich, L Mathey, K Sengstock, and C Weitenberg. Observation of dynamical vortices after quenches in a system with topology. Nat. Phys., 14 (3): 265–268, 2018. 10.1038/​s41567-017-0013-8.
https:/​/​doi.org/​10.1038/​s41567-017-0013-8

[108] Markus Heyl. Scaling and Universality at Dynamical Quantum Phase Transitions. Phys. Rev. Lett., 115: 140602, Oct 2015. 10.1103/​PhysRevLett.115.140602. URL https:/​/​doi.org/​10.1103/​PhysRevLett.115.140602.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.140602

[109] U. Bhattacharya and A. Dutta. Emergent topology and dynamical quantum phase transitions in two-dimensional closed quantum systems. Phys. Rev. B, 96: 014302, Jul 2017. 10.1103/​PhysRevB.96.014302. URL https:/​/​doi.org/​10.1103/​PhysRevB.96.014302.
https:/​/​doi.org/​10.1103/​PhysRevB.96.014302

[110] M. Heyl, A. Polkovnikov, and S. Kehrein. Dynamical Quantum Phase Transitions in the Transverse-Field Ising Model. Phys. Rev. Lett., 110: 135704, Mar 2013. 10.1103/​PhysRevLett.110.135704. URL https:/​/​doi.org/​10.1103/​PhysRevLett.110.135704.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.135704

[111] R. Jafari and H. Johannesson. Loschmidt Echo Revivals: Critical and Noncritical. Phys. Rev. Lett., 118: 015701, Jan 2017. 10.1103/​PhysRevLett.118.015701. URL https:/​/​doi.org/​10.1103/​PhysRevLett.118.015701.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.015701

[112] U. Bhattacharya, S. Bandyopadhyay, and A. Dutta. Mixed state dynamical quantum phase transitions. Phys. Rev. B, 96: 180303, Nov 2017. 10.1103/​PhysRevB.96.180303. URL https:/​/​doi.org/​doi/​10.1103/​PhysRevB.96.180303.
https:/​/​doi.org/​10.1103/​PhysRevB.96.180303

[113] M. Heyl and J. C. Budich. Dynamical topological quantum phase transitions for mixed states. Phys. Rev. B, 96: 180304, Nov 2017. 10.1103/​PhysRevB.96.180304. URL https:/​/​doi.org/​10.1103/​PhysRevB.96.180304.
https:/​/​doi.org/​10.1103/​PhysRevB.96.180304

[114] A. Silva. Statistics of the Work Done on a Quantum Critical System by Quenching a Control Parameter. Phys. Rev. Lett., 101: 120603, Sep 2008. 10.1103/​PhysRevLett.101.120603. URL https:/​/​doi.org/​10.1103/​PhysRevLett.101.120603.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.120603

[115] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd. Colloquium: Understanding quantum weak values: Basics and applications. Rev. Mod. Phys., 86: 307–316, Mar 2014. 10.1103/​RevModPhys.86.307. URL https:/​/​doi.org/​10.1103/​RevModPhys.86.307.
https:/​/​doi.org/​10.1103/​RevModPhys.86.307

[116] H. F. Hofmann. How Weak Values Emerge in Joint Measurements on Cloned Quantum Systems. Phys. Rev. Lett., 109: 020408, Jul 2012. 10.1103/​PhysRevLett.109.020408. URL https:/​/​doi.org/​10.1103/​PhysRevLett.109.020408.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.020408

[117] P. Solinas and S. Gasparinetti. Full distribution of work done on a quantum system for arbitrary initial states. Phys. Rev. E, 92: 042150, Oct 2015. 10.1103/​PhysRevE.92.042150. URL https:/​/​doi.org/​10.1103/​PhysRevE.92.042150.
https:/​/​doi.org/​10.1103/​PhysRevE.92.042150

[118] P. Solinas, M. Amico, and N. Zanghì. Measurement of work and heat in the classical and quantum regimes. Phys. Rev. A, 103: L060202, Jun 2021. 10.1103/​PhysRevA.103.L060202. URL https:/​/​doi.org/​10.1103/​PhysRevA.103.L060202.
https:/​/​doi.org/​10.1103/​PhysRevA.103.L060202

[119] Sebastian Deffner, Juan Pablo Paz, and Wojciech H. Zurek. Quantum work and the thermodynamic cost of quantum measurements. Phys. Rev. E, 94: 010103, Jul 2016. 10.1103/​PhysRevE.94.010103. URL https:/​/​doi.org/​10.1103/​PhysRevE.94.010103.
https:/​/​doi.org/​10.1103/​PhysRevE.94.010103

[120] P. Solinas, H. J. D. Miller, and J. Anders. Measurement-dependent corrections to work distributions arising from quantum coherences. Phys. Rev. A, 96: 052115, Nov 2017. 10.1103/​PhysRevA.96.052115. URL https:/​/​doi.org/​10.1103/​PhysRevA.96.052115.
https:/​/​doi.org/​10.1103/​PhysRevA.96.052115

[121] A. Sone, Y.-X. Liu, and P. Cappellaro. Quantum Jarzynski Equality in Open Quantum Systems from the One-Time Measurement Scheme. Phys. Rev. Lett., 125: 060602, Aug 2020. 10.1103/​PhysRevLett.125.060602. URL https:/​/​doi.org/​10.1103/​PhysRevLett.125.060602.
https:/​/​doi.org/​10.1103/​PhysRevLett.125.060602

[122] P. Solinas, M. Amico, and N. Zanghì. Quasiprobabilities of work and heat in an open quantum system. Phys. Rev. A, 105: 032606, Mar 2022. 10.1103/​PhysRevA.105.032606. URL https:/​/​doi.org/​10.1103/​PhysRevA.105.032606.
https:/​/​doi.org/​10.1103/​PhysRevA.105.032606

[123] E. Bäumer, M. Lostaglio, M. Perarnau-Llobet, and R. Sampaio. Fluctuating work in coherent quantum systems: proposals and limitations. In Thermodynamics in the quantum regime – Recent Progress and Outlook, pages 275–300. Springer, 2019. 10.1007/​978-3-319-99046-0_11.
https:/​/​doi.org/​10.1007/​978-3-319-99046-0_11

[124] Paul Busch, Pekka Lahti, and Reinhard F. Werner. Proof of Heisenberg's Error-Disturbance Relation. Phys. Rev. Lett., 111: 160405, Oct 2013. 10.1103/​PhysRevLett.111.160405. URL https:/​/​doi.org/​10.1103/​PhysRevLett.111.160405.
https:/​/​doi.org/​10.1103/​PhysRevLett.111.160405

[125] Anatole Kenfack and Karol Życzkowski. Negativity of the Wigner function as an indicator of non-classicality. J. opt., B Quantum semiclass. opt., 6 (10): 396, 2004. 10.1088/​1464-4266/​6/​10/​003.
https:/​/​doi.org/​10.1088/​1464-4266/​6/​10/​003

[126] Ulysse Chabaud, Pierre-Emmanuel Emeriau, and Frédéric Grosshans. Witnessing Wigner negativity. Quantum, 5: 471, 2021. 10.22331/​q-2021-06-08-471.
https:/​/​doi.org/​10.22331/​q-2021-06-08-471

[127] R. Alicki. The quantum open system as a model of the heat engine. J. Phys. A Math. Theor., 12 (5): L103, 1979. 10.1143/​PTP.26.722. URL https:/​/​iopscience.iop.org/​article/​10.1088/​0305-4470/​12/​5/​007.
https:/​/​doi.org/​10.1143/​PTP.26.722
https:/​/​iopscience.iop.org/​article/​10.1088/​0305-4470/​12/​5/​007

[128] M. Maffei, C. Elouard, B. O. Goes, B. Huard, A. N. Jordan, and A. Auffèves. Anomalous energy exchanges and Wigner-function negativities in a single-qubit gate. Phys. Rev. A, 107: 023710, Feb 2023. 10.1103/​PhysRevA.107.023710. URL https:/​/​doi.org/​10.1103/​PhysRevA.107.023710.
https:/​/​doi.org/​10.1103/​PhysRevA.107.023710

[129] F. Cerisola, F. Mayo, and A. J. Roncaglia. A Wigner quasiprobability distribution of work. arXiv preprint arXiv:2303.08755, 2023. https:/​/​doi.org/​10.48550/​arXiv.2303.08755. URL https:/​/​doi.org/​10.48550/​arXiv.2303.08755.
https:/​/​doi.org/​10.48550/​arXiv.2303.08755
arXiv:2303.08755

[130] F. Buscemi, M. Dall'Arno, M. Ozawa, and V. Vedral. Direct observation of any two-point quantum correlation function. arXiv preprint arXiv:1312.4240, 2013. https:/​/​doi.org/​10.48550/​arXiv.1312.4240.
https:/​/​doi.org/​10.48550/​arXiv.1312.4240
arXiv:1312.4240

[131] F. Buscemi, M. Dall'Arno, M. Ozawa, and V. Vedral. Universal optimal quantum correlator. Int. J. Quantum Inf., 12 (07n08): 1560002, nov 2014. 10.1142/​s0219749915600023.
https:/​/​doi.org/​10.1142/​s0219749915600023

[132] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber. Direct measurement of the quantum wavefunction. Nature, 474 (7350): 188–191, 2011. 10.1038/​nature10120. URL https:/​/​www.nature.com/​articles/​nature10120.
https:/​/​doi.org/​10.1038/​nature10120
https:/​/​www.nature.com/​articles/​nature10120

[133] J. S. Lundeen and C. Bamber. Procedure for Direct Measurement of General Quantum States Using Weak Measurement. Phys. Rev. Lett., 108: 070402, Feb 2012. 10.1103/​PhysRevLett.108.070402. URL https:/​/​doi.org/​10.1103/​PhysRevLett.108.070402.
https:/​/​doi.org/​10.1103/​PhysRevLett.108.070402

[134] P. Rall. Quantum algorithms for estimating physical quantities using block encodings. Phys. Rev. A, 102: 022408, Aug 2020. 10.1103/​PhysRevA.102.022408. URL https:/​/​doi.org/​10.1103/​PhysRevA.102.022408.
https:/​/​doi.org/​10.1103/​PhysRevA.102.022408

[135] M. Campisi, P. Hänggi, and P. Talkner. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys., 83: 771–791, Jul 2011. 10.1103/​RevModPhys.83.771. URL https:/​/​doi.org/​10.1103/​RevModPhys.83.771.
https:/​/​doi.org/​10.1103/​RevModPhys.83.771

[136] L. Mazzola, G. De Chiara, and M. Paternostro. Measuring the Characteristic Function of the Work Distribution. Phys. Rev. Lett., 110: 230602, Jun 2013. 10.1103/​PhysRevLett.110.230602. URL https:/​/​doi.org/​10.1103/​PhysRevLett.110.230602.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.230602

[137] R. Dorner, S. R. Clark, L. Heaney, R. Fazio, J. Goold, and V. Vedral. Extracting Quantum Work Statistics and Fluctuation Theorems by Single-Qubit Interferometry. Phys. Rev. Lett., 110: 230601, Jun 2013. 10.1103/​PhysRevLett.110.230601. URL https:/​/​doi.org/​10.1103/​PhysRevLett.110.230601.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.230601

[138] Laura Mazzola, Gabriele De Chiara, and Mauro Paternostro. Detecting the work statistics through Ramsey-like interferometry. Int. J. Quantum Inf., 12 (02): 1461007, 2014. 10.1142/​S0219749914610073.
https:/​/​doi.org/​10.1142/​S0219749914610073

[139] Stefano Gherardini, Matthias M Müller, Andrea Trombettoni, Stefano Ruffo, and Filippo Caruso. Reconstructing quantum entropy production to probe irreversibility and correlations. Quantum Sci. Technol., 3 (3): 035013, 2018. 10.1088/​2058-9565/​aac7e1.
https:/​/​doi.org/​10.1088/​2058-9565/​aac7e1

[140] G. S. Thekkadath, R. Y. Saaltink, L. Giner, and J. S. Lundeen. Determining Complementary Properties with Quantum Clones. Phys. Rev. Lett., 119: 050405, Aug 2017. 10.1103/​PhysRevLett.119.050405. URL https:/​/​doi.org10.1103/​PhysRevLett.119.050405.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.050405

[141] R. F. Werner. Optimal cloning of pure states. Phys. Rev. A, 58: 1827–1832, Sep 1998. 10.1103/​PhysRevA.58.1827. URL https:/​/​doi.org/​10.1103/​PhysRevA.58.1827.
https:/​/​doi.org/​10.1103/​PhysRevA.58.1827

[142] T. Heinosaari and M. Ziman. The Mathematical Language of Quantum Theory. Cambridge University Press, 2012. https:/​/​doi.org/​10.1017/​CBO9781139031103. URL https:/​/​doi.org/​10.1017/​CBO9781139031103.
https:/​/​doi.org/​10.1017/​CBO9781139031103

[143] C. Bamber and J. S. Lundeen. Observing Dirac's Classical Phase Space Analog to the Quantum State. Phys. Rev. Lett., 112: 070405, Feb 2014. 10.1103/​PhysRevLett.112.070405. URL https:/​/​doi.org/​10.1103/​PhysRevLett.112.070405.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.070405

[144] G. S. Thekkadath, L. Giner, Y. Chalich, M. J. Horton, J. Banker, and J. S. Lundeen. Direct Measurement of the Density Matrix of a Quantum System. Phys. Rev. Lett., 117: 120401, Sep 2016. 10.1103/​PhysRevLett.117.120401. URL https:/​/​doi.org/​10.1103/​PhysRevLett.117.120401.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.120401

[145] F. Piacentini, A. Avella, M. P. Levi, M. Gramegna, G. Brida, I. P. Degiovanni, E. Cohen, R. Lussana, F. Villa, A. Tosi, F. Zappa, and M. Genovese. Measuring Incompatible Observables by Exploiting Sequential Weak Values. Phys. Rev. Lett., 117: 170402, Oct 2016. 10.1103/​PhysRevLett.117.170402. URL https:/​/​doi.org/​10.1103/​PhysRevLett.117.170402.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.170402

[146] Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim, and Y.-W. Cho. Direct quantum process tomography via measuring sequential weak values of incompatible observables. Nat. Commun., 9 (1): 1–6, 2018. 10.1038/​s41467-017-02511-2.
https:/​/​doi.org/​10.1038/​s41467-017-02511-2

[147] L. Calderaro, G. Foletto, D. Dequal, P. Villoresi, and G. Vallone. Direct Reconstruction of the Quantum Density Matrix by Strong Measurements. Phys. Rev. Lett., 121: 230501, Dec 2018. 10.1103/​PhysRevLett.121.230501. URL https:/​/​doi.org/​10.1103/​PhysRevLett.121.230501.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.230501

[148] Holger F. Hofmann. Complete characterization of post-selected quantum statistics using weak measurement tomography. Phys. Rev. A, 81: 012103, Jan 2010. 10.1103/​PhysRevA.81.012103. URL https:/​/​doi.org/​10.1103/​PhysRevA.81.012103.
https:/​/​doi.org/​10.1103/​PhysRevA.81.012103

[149] K. J. Resch and A. M. Steinberg. Extracting Joint Weak Values with Local, Single-Particle Measurements. Phys. Rev. Lett., 92: 130402, Mar 2004. 10.1103/​PhysRevLett.92.130402. URL https:/​/​doi.org/​10.1103/​PhysRevLett.92.130402.
https:/​/​doi.org/​10.1103/​PhysRevLett.92.130402

[150] Graeme Mitchison. Weak measurement takes a simple form for cumulants. Phys. Rev. A, 77: 052102, May 2008. 10.1103/​PhysRevA.77.052102. URL https:/​/​doi.org/​10.1103/​PhysRevA.77.052102.
https:/​/​doi.org/​10.1103/​PhysRevA.77.052102

[151] J. S. Lundeen and K. J. Resch. Practical measurement of joint weak values and their connection to the annihilation operator. Phys. Lett. A, 334 (5-6): 337–344, 2005. 10.1016/​j.physleta.2004.11.037.
https:/​/​doi.org/​10.1016/​j.physleta.2004.11.037

[152] J. S. Lundeen and A. M. Steinberg. Experimental Joint Weak Measurement on a Photon Pair as a Probe of Hardy's Paradox. Phys. Rev. Lett., 102: 020404, Jan 2009. 10.1103/​PhysRevLett.102.020404. URL https:/​/​doi.org/​10.1103/​PhysRevLett.102.020404.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.020404

[153] Lin Lin. Lecture Notes on Quantum Algorithms for Scientific Computation. arXiv preprint arXiv:2201.08309, 2022. https:/​/​doi.org/​10.48550/​arXiv.2201.08309. URL https:/​/​doi.org/​10.48550/​arXiv.2201.08309.
https:/​/​doi.org/​10.48550/​arXiv.2201.08309
arXiv:2201.08309

[154] A. M. Steinberg. Conditional probabilities in quantum theory and the tunneling-time controversy. Phys. Rev. A, 52: 32–42, Jul 1995. 10.1103/​PhysRevA.52.32. URL https:/​/​doi.org/​10.1103/​PhysRevA.52.32.
https:/​/​doi.org/​10.1103/​PhysRevA.52.32

[155] R. Mohseninia, J. R. González Alonso, and J. Dressel. Optimizing measurement strengths for qubit quasiprobabilities behind out-of-time-ordered correlators. Phys. Rev. A, 100: 062336, Dec 2019. 10.1103/​PhysRevA.100.062336. URL https:/​/​doi.org/​10.1103/​PhysRevA.100.062336.
https:/​/​doi.org/​10.1103/​PhysRevA.100.062336

[156] Nicholas Vakhania, Vazha Tarieladze, and S Chobanyan. Probability distributions on Banach spaces, volume 14. Springer Science & Business Media, 2012. 10.1007/​978-94-009-3873-1. URL https:/​/​doi.org/​10.1007/​978-94-009-3873-1.
https:/​/​doi.org/​10.1007/​978-94-009-3873-1

[157] Walter Rudin. Fourier analysis on groups. Courier Dover Publications, 2017.

[158] E. Porcu and V. Zastavnyi. Characterization theorems for some classes of covariance functions associated to vector valued random fields. J. Multivar. Anal., 102 (9): 1293–1301, 2011. 10.1016/​j.jmva.2011.04.013. URL https:/​/​www.sciencedirect.com/​science/​article/​pii/​S0047259X11000698.
https:/​/​doi.org/​10.1016/​j.jmva.2011.04.013
https:/​/​www.sciencedirect.com/​science/​article/​pii/​S0047259X11000698

[159] J.A. Shohat and J. D. Tamarkin. The Problem of Moments, volume 1 of Mathematical Surveys and Monographs. American Mathematical Society, 1943.

[160] N. Lupu-Gladstein, Y. B. Yilmaz, D. R. M. Arvidsson-Shukur, A. Brodutch, A. O. T. Pang, A. M. Steinberg, and N. Y. Halpern. Negative Quasiprobabilities Enhance Phase Estimation in Quantum-Optics Experiment. Phys. Rev. Lett., 128: 220504, Jun 2022. 10.1103/​PhysRevLett.128.220504. URL https:/​/​doi.org/​10.1103/​PhysRevLett.128.220504.
https:/​/​doi.org/​10.1103/​PhysRevLett.128.220504

[161] T. Rosskopf, J. Zopes, J. M. Boss, and C. L. Degen. A quantum spectrum analyzer enhanced by a nuclear spin memory. Npj Quantum Inf., 3: 33, Aug 2017. 10.1038/​s41534-017-0030-6. URL https:/​/​doi.org/​10.1038/​s41534-017-0030-6.
https:/​/​doi.org/​10.1038/​s41534-017-0030-6

[162] Mo Chen, Masashi Hirose, and Paola Cappellaro. Measurement of transverse hyperfine interaction by forbidden transitions. Phys. Rev. B, 92: 020101, Jul 2015. 10.1103/​PhysRevB.92.020101. URL https:/​/​doi.org/​10.1103/​PhysRevB.92.020101.
https:/​/​doi.org/​10.1103/​PhysRevB.92.020101

[163] S Sangtawesin, C A McLellan, B A Myers, A C Bleszynski Jayich, D D Awschalom, and J R Petta. Hyperfine-enhanced gyromagnetic ratio of a nuclear spin in diamond. New J. Phys., 18 (8): 083016, aug 2016. 10.1088/​1367-2630/​18/​8/​083016. URL https:/​/​doi.org/​10.1088/​1367-2630/​18/​8/​083016.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​8/​083016

[164] R. W. Spekkens. Negativity and contextuality are equivalent notions of nonclassicality. arXiv preprint arXiv:0710.5549v2, 2008a. https:/​/​doi.org/​10.48550/​arXiv.0710.5549. URL https:/​/​doi.org/​10.48550/​arXiv.0710.5549.
https:/​/​doi.org/​10.48550/​arXiv.0710.5549
arXiv:0710.5549v2

[165] R. W. Spekkens. Negativity and Contextuality are Equivalent Notions of Nonclassicality. Phys. Rev. Lett., 101: 020401, Jul 2008b. 10.1103/​PhysRevLett.101.020401. URL https:/​/​doi.org/​10.1103/​PhysRevLett.101.020401.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.020401

[166] C. Jarzynski. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett., 78: 2690–2693, Apr 1997. 10.1103/​PhysRevLett.78.2690. URL https:/​/​doi.org/​10.1103/​PhysRevLett.78.2690.
https:/​/​doi.org/​10.1103/​PhysRevLett.78.2690

Cited by

[1] Jianwei Xu, "Kirkwood-Dirac classical pure states", Physics Letters A 510, 129529 (2024).

[2] Jiayu He and Shuangshuang Fu, "Nonclassicality of the Kirkwood-Dirac quasiprobability distribution via quantum modification terms", Physical Review A 109 1, 012215 (2024).

[3] Ji-Hui Pei, Jin-Fu Chen, and H. T. Quan, "Exploring quasiprobability approaches to quantum work in the presence of initial coherence: Advantages of the Margenau-Hill distribution", Physical Review E 108 5, 054109 (2023).

[4] Rafael Wagner, Zohar Schwartzman-Nowik, Ismael L Paiva, Amit Te’eni, Antonio Ruiz-Molero, Rui Soares Barbosa, Eliahu Cohen, and Ernesto F Galvão, "Quantum circuits for measuring weak values, Kirkwood–Dirac quasiprobability distributions, and state spectra", Quantum Science and Technology 9 1, 015030 (2024).

[5] Haiping Li, Jian Zou, and Bin Shao, "Nondemolition quasiprobabilities of work and heat in the presence of a non-Markovian environment", Physical Review A 109 3, 032228 (2024).

[6] Loris Maria Cangemi, Chitrak Bhadra, and Amikam Levy, "Quantum Engines and Refrigerators", arXiv:2302.00726, (2023).

[7] Santiago Hernández-Gómez, Stefano Gherardini, Alessio Belenchia, Matteo Lostaglio, Amikam Levy, and Nicole Fabbri, "Projective measurements can probe non-classical work extraction and time-correlations", arXiv:2207.12960, (2022).

[8] Philipp Strasberg, "Classicality with(out) decoherence: Concepts, relation to Markovianity, and a random matrix theory approach", SciPost Physics 15 1, 024 (2023).

[9] Twesh Upadhyaya, William F. Braasch, Gabriel T. Landi, and Nicole Yunger Halpern, "What happens to entropy production when conserved quantities fail to commute with each other", arXiv:2305.15480, (2023).

[10] Alessandro Santini, Andrea Solfanelli, Stefano Gherardini, and Mario Collura, "Work statistics, quantum signatures, and enhanced work extraction in quadratic fermionic models", Physical Review B 108 10, 104308 (2023).

[11] David R. M. Arvidsson-Shukur, William F. Braasch, Stephan De Bievre, Justin Dressel, Andrew N. Jordan, Christopher Langrenez, Matteo Lostaglio, Jeff S. Lundeen, and Nicole Yunger Halpern, "Properties and Applications of the Kirkwood-Dirac Distribution", arXiv:2403.18899, (2024).

[12] Agung Budiyono, Joel F. Sumbowo, Mohammad K. Agusta, and Bagus E. B. Nurhandoko, "Characterizing quantum coherence based on the nonclassicality of the Kirkwood-Dirac quasiprobability", arXiv:2309.09162, (2023).

[13] Ilaria Gianani, Alessio Belenchia, Stefano Gherardini, Vincenzo Berardi, Marco Barbieri, and Mauro Paternostro, "Diagnostics of quantum-gate coherences deteriorated by unitary errors via end-point-measurement statistics", Quantum Science and Technology 8 4, 045018 (2023).

[14] Santiago Hernández-Gómez, Stefano Gherardini, Alessio Belenchia, Andrea Trombettoni, Mauro Paternostro, and Nicole Fabbri, "Experimental signature of initial quantum coherence on entropy production", npj Quantum Information 9, 86 (2023).

[15] Gianluca Francica, "Most general class of quasiprobability distributions of work", Physical Review E 106 5, 054129 (2022).

[16] Agung Budiyono and Hermawan K. Dipojono, "Quantifying quantum coherence via Kirkwood-Dirac quasiprobability", Physical Review A 107 2, 022408 (2023).

[17] Agung Budiyono, "Operational interpretation and estimation of quantum trace-norm asymmetry based on weak-value measurement and some bounds", Physical Review A 108 1, 012431 (2023).

[18] Agung Budiyono, Mohammad K. Agusta, Bagus E. B. Nurhandoko, and Hermawan K. Dipojono, "Quantum coherence as asymmetry from complex weak values", Journal of Physics A Mathematical General 56 23, 235304 (2023).

[19] M. S. Leifer, "Uncertainty from the Aharonov-Vaidman Identity", arXiv:2301.08679, (2023).

[20] Agung Budiyono, Bobby E. Gunara, Bagus E. B. Nurhandoko, and Hermawan K. Dipojono, "General quantum correlation from nonreal values of Kirkwood-Dirac quasiprobability over orthonormal product bases", Journal of Physics A Mathematical General 56 43, 435301 (2023).

[21] Pengfei Wang, Hyukjoon Kwon, Chun-Yang Luan, Wentao Chen, Mu Qiao, Zinan Zhou, Kaizhao Wang, M. S. Kim, and Kihwan Kim, "Demonstration of multi-time quantum statistics without measurement back-action", arXiv:2207.06106, (2022).

[22] Rafael Wagner and Ernesto F. Galvão, "Simple proof that anomalous weak values require coherence", Physical Review A 108 4, L040202 (2023).

[23] Gianluca Francica, "What is the most general class of quasiprobabilities of work?", arXiv:2209.02527, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-25 01:58:54) and SAO/NASA ADS (last updated successfully 2024-05-25 01:58:55). The list may be incomplete as not all publishers provide suitable and complete citation data.