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Information capacity enhancement
through the coherent control of channels
has attracted much attention of late, with
work exploring the effect of coherent
control of channel causal orders, channel
superpositions, and information encoding.
Coherently controlling channels necessi-
tates a non-trivial expansion of the channel
description, which for superposing qubit
channels, is equivalent to expanding the
channel to act on qutrits. Here we explore
the nature of this capacity enhancement
for the superposition of channels by com-
paring the maximum coherent information
through depolarizing qubit channels and
relevant superposed and qutrit channels.
We show that the expanded qutrit channel
description in itself is sufficient to explain
the capacity enhancement without any
use of superposition.

1 Introduction
In a surprising paper, Ebler et al. [1] showed

that when two fully depolarizing channels are
put in a superposition of causal orders [2], in-
formation can be transmitted. In their scheme,
the order of two depolarizing channels which
act sequentially on a system state is condi-
tioned on a control qubit’s state in the compu-
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tational basis (states |a⟩ and |b⟩ in this paper),
and by preparing and post-selecting the control
qubit in |+⟩ ≡ (|a⟩ + |b⟩) /

√
2, information en-

coded on the system state can be transmitted.
This has been experimentally demonstrated in
[3, 4, 5, 6, 7, 8] and further theoretically explored
in [9, 10, 10, 11, 12, 13, 14].

This capacity enhancement phenomenon is,
however, not unique to channels being placed in
an indefinite causal order, and a similar capacity
enhancement phenomenon has also been demon-
strated by [15, 16, 17, 18, 11, 19, 20]. Notably,
all of these schemes involve coherent control of
the noise channel through the use of an ancil-
lary qubit, where depending on the control state,
the system state experiences indefinite ordering
of noise channel, superposition of information en-
coding, or superposition of channels [8].

Here, we experimentally explore the nature of
the capacity enhancement achieved by superpos-
ing two independent noisy qubit channels. As in
the cases of the previously demonstrated schemes
involving coherent control of noise channels, the
superposition of two channels necessitates an ex-
panded description of those channels to account
for this extra control state. For the case of super-
posing qubit channels, this expanded description
takes the form of a qutrit channel, as has been
discussed briefly in the past [8, 17, 18, 11].

Expanding the channel description in this
fashion is generally non-trivial, and the ex-
pansion is also not unique without additional
information[21]. Experimentally, for the case
of superposition of channels, this expansion de-
pends on the physical implementation of the
channel. We shall demonstrate that different
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physical implementations of the same qubit chan-
nel can lead to a different expanded description.
Notably, the choice of this expanded description
of channels completely characterizes the chan-
nel behaviour under superposition. This demon-
strates that the physical implementation, rather
than the act of superposing channels, is the origin
of the capacity enhancement.

This paper is organized in the following man-
ner. We begin by describing our experimen-
tal setup in section 2 followed by experimental
results concerning the dependence of the post-
selected channel and qutrit channel on the phys-
ical implementation of the qubit channel in sec-
tions 3 and 4. Finally, we construct a hierarchy
of channel models based on their complexity and
completeness in describing the superposed chan-
nel in section 5, and discuss the implications of
our results in section 6.

2 Experimental setup

The construction of our superposition of chan-
nels is based on heralded single photons, with
the polarization degree of freedom playing the
role of the system qubit and the path degree of
freedom playing the role of the control qubit. In
our setup, illustrated in figure 1, we prepare the
photon polarization and path by using a set of
waveplates and a Sagnac interferometer respec-
tively. After the preparation, the photon goes
into either path a or path b of a Mach-Zehnder
interferometer, with the paths corresponding to
random unitary channels Na and Nb respectively.
These random unitary channels each consist of
three liquid crystal waveplates (LCWP), where
the random unitary is implemented by changing
the LCWP voltage. Path a also passes through
a glass plate that controls the phase between the
two paths, after which the two paths interfere at
a beam splitter (BS).

The unitary performed by the Mach-Zehnder
is given by

Û
(MZ)
i,j =

(
|a⟩ ⟨a| ⊗ Û

(a)
i + |b⟩ ⟨b| ⊗ Û

(b)
j

)
(1)

where Û
(a)
i and Û

(b)
j are the unitary operators

corresponding to the polarization rotation given
by LCWPs in Na and Nb, |a⟩ ⟨a| and |b⟩ ⟨b| cor-
responds to the projectors on the path qubit,
and the indices i, j denote elements in the set

Phase control

LCWP
QWP
HWP

PBS

BS

To tomography

State Prepara�on

Na

Nb

Figure 1: The experimental setup is divided into
two parts. The photon first goes through the state
preparation setup. This setup prepares the photon
polarization using a set of half and quarter
waveplates (HWP/QWP), which is followed by a
Sagnac interferometer that prepares the photon path
through a pair of HWPs. The pair of HWPs in the
Sagnac is rotated in a correlated manner, and for the
preparation of the |+⟩ path state, the two HWPs are
set to be at π/2 off the horizontal axis. After the
Sagnac, the photon goes through a set of HWPs and
QWPs to correct for the path-dependent
polarization imposed by the Sagnac and restore the
photon polarization to the initial preparation. The
settings for the sets of HWPs and QWPs
immediately after the Sagnac, unlike the initial set
of HWPs and QWPs or the HWPs in the Sagnac, is
independent of the polarization and path state
prepared. The photon then experiences either the
channel Na or Nb depending on the state of the
control. Finally, a balanced beam splitter
re-interferes the two paths, with state tomography
being performed on one of the output ports of the
beam splitter. In the order of interaction with an
incoming photon, the three LCWPs in channel Na

apply a controlled rotation in the Z axis followed by
two rotations in the X axis, whereas the three
LCWPs in channel Nb apply a controlled rotation in
the X axis followed by two rotations in the Z axis.

Accepted in Quantum 2023-09-07, click title to verify. Published under CC-BY 4.0. 2



(a)

h<yi

-1
1

h<xi

0

1

h<
z
i

0

1

0

-1 -1

(b)

-0.5

h<yi

0.5

h<xi

0

0.5

h<
z
i

0

0.5

0

-0.5 -0.5

(c)

h<yi

-0.5
0.5

h<xi

0

0.5

h<
z
i

0

0.5

0

-0.5 -0.5

Figure 2: Bloch sphere representation of the normalized post-selected qubit channel; note the re-scaled axes
for the centre and right plots, which run from -0.5 to 0.5. The left plot (a) shows the Bloch sphere
representation of an identity channel and can be used as a reference to interpret other Bloch sphere plots. The
centre plot (b) shows the post-selected channel for the phase-coherent implementation with α = 1, resulting in
a Bloch representation that takes the shape of a slanted ellipsoid centred at (0.10,−0.01, 0.14) parameterized
by three semi-axes (0.16,−0.018, 0.15), (0.055, 0.082,−0.017), and (0.011,−0.0088,−0.014). Red lines which
align with the axis and go through the origin have also been drawn for visual clarity. In theory, this ellipsoid
should be an elliptical disc parameterized by the two semi-axes (

√
2/9, 0,

√
2/9) and (0, 1/9, 0) centred at

(1/9, 0, 1/9). This deviation from theory is caused by systematics described in appendix C. The existence of a
disc with a definite non-vanishing area is distinct to that of a completely depolarizing channel, such as the one
on the right (c), where the plot shows the post-selected channel for the phase-incoherent implementation,
resulting in a point-like shape in its Bloch representation. Theoretically, this plot should represent a
completely depolarizing channel and the channel should be shown as a point on the Bloch sphere plot.
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Figure 3: Plot of the density matrix for normalized post-selected qubit channel dual state with Na and Nb

for the phase-coherent (incoherent) implementation with α = 1 on the left (right) with experimental results on
the top and theory at the bottom. The dual state Hilbert space is labelled by two labels H or V first denoting
the input polarization followed by the output polarization. The height of the bars and their colours represent
the amplitudes and phase respectively of each element. Without phase mixing (left plots), post-selection
partially restores coherence to the channel map. It also preferentially transmits H polarization, as indicated by
the larger amplitude in |HH⟩ ⟨HH| than the rest of the diagonal elements. With phase mixing (right plots),
post-selection does not restore any coherence, with the resulting channel being a completely depolarizing
channel.
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of all possible unitary operators. To simulate
the effects of a random unitary channel, we per-
form our experiment using all possible combina-

tions of unitaries {U (a)
i }i and {U (b)

j }j and taking
a weighted average of the results with weight-

ings p
(a)
i and p

(b)
j that correspond to the proba-

bilities of those unitaries in the respective ran-
dom unitary channel. This effectively emulates
random unitary channels for Na and Nb, with

Kraus operators given by K̂
(a)
i =

√
p

(a)
i Û

(a)
i and

K̂
(b)
j =

√
p

(b)
j Û

(b)
j . The overall channel given by

our Mach-Zehnder interferometer acting on some
input path and polarization state ρ(MZ) is then
also a random unitary channel, given by

Φ(MZ)
(
ρ(MZ)

)
=

∑
i,j

p
(a)
i p

(b)
j Û

(MZ)
i,j ρ(MZ)Û

(MZ)†
i,j , (2)

with the summation operation summing over the

entire set of possible unitary operators Û
(a)
i and

Û
(b)
j weighted over the probability of those uni-

taries p
(a)
i p

(b)
j .

To understand the nature of the
implementation-dependence of superposing
qubit channels, we will compare the superposed
channels created by superposing two different
implementations of the depolarizing channel.
First, we remind readers of some mathematical
properties of the depolarizing channels. We
note that a set of Kraus operators in the qubit
Hilbert space K̂i can be expressed in terms of
the qubit operator basis formed by the identity
and the three Pauli operators, such that∑

k,l

dk,l σ̂kρσ̂
†
l , (3)

dk,l =
∑

i

Tr
[
K̂iσ̂

†
k

]
· Tr

[
K̂iσ̂

†
l

]∗
/4, (4)

where σ̂1, σ̂2, and σ̂3 are Pauli matrices (and will
be used interchangeably with σ̂x, σ̂y, and σ̂z), and
σ̂0 is the identity. The channel formed by the set
of Kraus operators {K̂i}i describes a depolariz-
ing channel if it can be described by a random
unitary channel, where σ̂1, σ̂2, and σ̂3 are per-
formed with probability α/4 and the identity op-
erator with probability 1−3α/4. Mathematically,
the decomposition of a depolarizing channel from

equation 4 gives

dk,l =


1 − 3α/4 k = l = 0
α/4 k = l ̸= 0
0 k ̸= l

(5)

where α is the degree of depolarization, with
α = 1 corresponding to a completely depolarizing
channel.
We will denote the two implementations of

the depolarizing channel as the phase-coherent
and phase-incoherent implementations, with all
implementation-specific symbols being denoted
with the unbracketed superscript coh and inc re-
spectively. More precisely, in the phase-coherent
implementation, four different operators are ran-
domly implemented for each channel. These op-
erators are, for Na and Nb respectively,

{K̂(a),coh
i }i = {√

p0s
(a)
0 σ̂0,

√
p1s

(a)
1 σ̂1,

√
p2s

(a)
2 σ̂2,

√
p3s

(a)
3 σ̂3};

{K̂(b),coh
j }j = {√

p0s
(b)
0 σ̂0,

√
p1s

(b)
1 σ̂1,

√
p2s

(b)
2 σ̂2,

√
p3s

(b)
3 σ̂3}.

(6)

where Û
(a)
i = s

(a)
i σ̂i and Û

(b)
j = s

(b)
j σ̂j , and s

(a)
i

and s
(b)
j are the phase factors associated with

each Pauli operators in the phase-coherent im-
plementation. The probabilities pm and phase

factors s
(a)
i and s

(b)
j are given by

pm =
{

1 − 3α/4 m = 0;
α/4 m ̸= 0,

(7)

s(a)
m = s(b)

m = 1 for m ̸= 2;

s
(a)
2 = i;

s
(b)
2 = −i.

(8)

The s
(a)
2 and s

(b)
2 phase factors correspond to the

configuration of the LCWPs in Na and Nb in our
physical setup, where a Z aligned LCWP comes
before the X aligned LCWP in Na and the re-
verse is true for Nb.

In the phase-incoherent implementation, we
completely randomize the path phase by add four
additional operators to the two operator sets in
the phase-coherent implementation. These four
additional operators correspond to the operators
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in the phase-coherent implementation with an
additional π phase. The phase-incoherent imple-
mentation, therefore, has operators

{K̂(a),inc
i }i = {K̂(b),inc

j }j =

{
√

(p0/2) s(a)
0 σ̂0,

√
(p1/2) s(a)

1 σ̂1,√
(p2/2) s(a)

2 σ̂2,
√

(p3/2) s(a)
3 σ̂3,

−
√

(p0/2) s(a)
0 σ̂0,−

√
(p1/2) s(a)

1 σ̂1,

−
√

(p2/2) s(a)
2 σ̂2,−

√
(p3/2) s(a)

3 σ̂3}.
(9)

Note in the phase-incoherent implementation,
the random unitary operators implemented in Na

and Nb are not necessarily equal, but rather are
drawn independently from the same set of uni-
taries. Experimentally, this π phase is imple-
mented by the third LCWP with an optical axis
aligned perpendicularly to the second LCWP. By
tuning the voltages of both LCWP simultane-
ously, a polarization-independent phase shift can
be applied to the photons. This phase acts as a
global phase when channels Na and Nb are not
in superposition.

3 Implementation Dependence
A distinct feature of superposing channels is

the dependence of the superposed channel map
on the operators used to implement the non-
superposed channels used in the superposition.
As a consequence, the choice of using implemen-
tations 6 or 9 for the simple qubit channels Na

and Nb will result in two different versions of the
two-qubit channel Φ(MZ)

(
ρ(MZ)

)
.

When the path qubit is prepared and post-
selected on |+⟩ = 1√

2 (|a⟩ + |b⟩), the resulting

post-selected qubit channel

Φ(p)
(
ρ(p)

)
=

∑
i,j

K̂
(p)
i,j ρ

(p)K̂
(p)†
i,j , (10)

will have Kraus operators K̂
(p)
i,j given by

K̂
(p)
i,j =

√
p

(a)
i p

(b)
j

Û
(a)
i + Û

(b)
j

2 . (11)

The implementation-dependence of the post-
selected qubit channel can be seen as a con-

sequence of K̂
(p)
ij being sensitive to the global

phases, which are reflected in s
(a)
i and s

(b)
j , of the

two channels Na and Nb. These global phases of
the two channels become phases between states
|a⟩ and |b⟩ in the control qubit when the channels
are put in a superposition. The Pauli decompo-
sition of the post-selected channel helps us illu-
minate the nature of the post-selected channel’s
dependence on channel implementation. For
the phase-coherent implementation, the Pauli de-

composition of the set of Kraus operators K̂
(p)
i,j

given by fk,l =
∑

i,j Tr
[
K̂

(p)
i,j σ̂

†
k

]
·Tr

[
K̂

(p)
i,j σ̂

†
l

]∗
/4

results in

f coh
k,l =


pk
2 + p2

k
2 Re

[
s

(a)
k s

(b)∗
k

]
k = l;

pkpl
4

(
s

(a)
k s

(b)∗
l + s

(b)
k s

(a)∗
l

)
k ̸= l.

(12)
The phase-dependence of the post-selected chan-
nel can thus be seen by noting equation 12’s de-

pendence on the s
(a)
k s

(b)∗
l terms.

Examining figure 2, which shows the Bloch
sphere representation of the post-selected chan-
nel, we can see that the eigenstate with the pos-
itive eigenvalue for the Hadamard unitary Ĥ =
1/

√
2 (σ̂x + σ̂z) experiences the least amount of

depolarization from the post-selected channel in
the phase-coherent implementation. An explana-
tion for this is given in appendix D.

In contrast, the phase-incoherent implementa-
tion has a Pauli decomposition that yields

f inc
k,l =

{
pk
2 k = l;

0 k ̸= l.
(13)

The inclusion of a duplicate set of operators with
a π phase shift causes the contribution of the op-

erator phase components s
(a)
k and s

(b)∗
l to can-

cel out in the Pauli decomposition. Substitut-
ing the probabilities of equation 7 into 13, we
have f inc

k,l = 1
2dk,l. This indicates that the post-

selected channel given by the phase-incoherent
implementation results in a depolarizing channel
with a post-selection probability of 1/2, exactly
the same as the channels Na and Nb.

Figures 2 and 3 highlight this implementation-
dependence quantitatively through the tomo-
graphic reconstruction of the phase-coherent and
phase-incoherent channels, and qualitatively in
the channels’ shape on the Bloch sphere. As
seen from the figures, for the phase-coherent im-

plementation with Kraus operators {K̂(a),coh
i }i

and {K̂(b),coh
i }j with α = 1, the post-selection
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results in a channel that is not completely de-
polarizing, even though the individual channels
themselves are. This is in contrast to the phase-
incoherent implementation with Kraus operators

{K̂(a),inc
i }i and {K̂(b),inc

j }j , where due to the ran-
domization of channel phases, the effect of post-
selection reduces to a classical mixture of depo-
larizing channels, resulting in a completely de-
polarizing channel. The result of superposing
two phase-incoherent implementations also ex-
tends to the superposition of one phase-coherent
and one phase-incoherent implementation.

4 Qutrit Model

The inability of the simple qubit channel map
to translate directly to a unique description of
the superposed channel demonstrates that it is
insufficient for describing the physical operations
of the channel under superposition. This is be-
cause of the introduction of the control qubit,
which requires that we can effectively ‘turn off’
a quantum channel by sending in zero photons.
Thus, apart from the description of the channel’s
action on the polarization qubit, an additional
description of the channel action on the vacuum
state needs to be included, as noted by [8, 17, 18],
which in turn results in the simple qubit chan-
nels becoming qutrit channels: two states from
the original polarization qubit channel, and one
new state corresponding to the vacuum (‘off’)
state. Here, we perform qutrit channel tomog-
raphy for the aforementioned qutrit channels ex-
plicitly through the procedures described in ap-
pendix E. Our qutrit Hilbert space consists of
the vacuum (zero photon) state |0⟩, the polariza-
tion state H |H⟩, and the polarization state V
|V ⟩. When performing tomography for channel
Na(Nb), the preparation for the |0⟩ state is equiv-
alent to not sending the photon into the channel
Na(Nb). Conceptually, the qutrit tomography
procedures described in appendix E are equiv-
alent as follows. The preparation of the qutrit
state is done by first preparing the photon in the
H polarization and path state in either |a⟩ or |b⟩.
Then, for the channel tomography for Na(Nb),
we vary the photon polarization only if the pho-
ton is in the |a⟩(|b⟩) path state. This has the
effect of preparing a state in the Hilbert space
spanned by |0⟩, |V ⟩, and |H⟩. For the tomog-
raphy of channel Na(Nb), channel Nb(Na) is al-

ways set to the identity channel. Similar to the
input qutrit preparation, the qutrit is measured
by performing polarization measurement only on
the |a⟩(|b⟩) path and a measurement of the path
qubit. A setup equivalent to the qutrit tomo-
graphic procedure is outlined in figure 6.

Figures 4 and 5 show the tomographic results
for qutrit channels of Na and Nb for both im-
plementations with α = 1. In these figures, the
effects of the operator phase si of the two im-
plementations can be observed in the coherences
between the polarizations and the vacuum state.
Both channels in the phase-coherent implemen-
tation partially preserve coherence between |00⟩
and |HH⟩ but differ by the coherence between
|00⟩ and |V H⟩ (which is partially preserved for
Na and not for Nb), and the coherence between
|00⟩ and |HV ⟩ (which is partially preserved for
Nb and not for Na). On the other hand, neither
channel preserves any coherences in the phase-
incoherent implementation, resulting in a purely
diagonal channel dual state.

5 Channel Hierarchy

Fundamentally, the simple qubit (Φ(a)
(
ρ(a)

)
and Φ(b)

(
ρ(b)

)
), post-selected (Φ(p)

(
ρ(p)

)
),

Mach-Zehnder (Φ(MZ)
(
ρ(MZ)

)
), and qutrit

(Φ(T 0)
(
ρ(T 0)

)
and Φ(T 1)

(
ρ(T 1)

)
) channel

model(s) are descriptions of the same setup with
differing levels of detail. It is therefore helpful
to order those different descriptions based on
these levels. The simple qubit and post-selected
channels can be derived from the Mach-Zehnder
channel by preparing and measuring the control
in the appropriate state, and the Mach-Zehnder
channel can in turn be derived by preparing
and measuring the input and output in the
one-photon subspace of the two-qutrit channel
Φ(2T ) given by

Φ(2T ) = Φ(T 0) ⊗ Φ(T 1). (14)

We do not have direct experimental access to the
two-qutrit channel as the design of our setup does
not allow us to access Φ(T 0) and Φ(T 1) simulta-
neously. Nonetheless, it is important to discuss it
conceptually in this section. Based on the chan-
nel description’s level of detail, the channel mod-
els can be partially ordered in the following way
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Figure 4: Plot of channel dual state for Na (Nb) for the phase-coherent implementation with the degree of
depolarization α = 1 on the left (right) with the qutrit model in the top row, the qutrit model from theory in
the middle row and qubit model in the bottom row. The vacuum state is labelled as zero for compactness.
The difference between the channels Na and Nb is highlighted in the qutrit models by the coherence between
|00⟩ and |V H⟩ (|HV ⟩), despite them both having an identical qubit model description. It is important to note
that any terms associated with an input polarization state and an output zero state or vise-versa (e.g. |0V ⟩ or
|H0⟩) is set to zero in our fitting model. Given our method of tomography, an input polarization state
becoming an output zero (or vise-versa) corresponds to a photon disappearing in one path of the Mach
Zehnder and reappearing in the other path, which does not correspond to any physical mechanism present in
our experiment. Appendix C elaborates on the systematic errors that contribute to the deviations between
experiment and theory.
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Figure 5: Plot of qutrit channel dual state with Na (Nb) for the phase-incoherent implementation with the
degree of depolarization α = 1 on the left (right) with the qutrit model in the top row, the qutrit model from
theory in the middle row and qubit model in the bottom row. The phase randomization of the qubit channels
manifests as a loss of coherence between |00⟩ and |V H⟩ (|HV ⟩) in the qutrit map, resulting in a purely
diagonal channel dual state. Appendix C elaborates on the systematic errors that contribute to the deviations
between experiment and theory.
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Qutrit Prepara�on

Qutrit Measurement

Qutrit Channel

Figure 6: The conceptually equivalent setup for
qutrit channel tomography. This setup allows the
preparation and measurement of a quantum state
spanned by the basis state |0⟩ (which is equivalent to
having the photon in the interferometer path
without the qutrit channel), |V ⟩, and |H⟩. In the
qutrit preparation stage, |H⟩ polarized light is sent
to a beamsplitter, with one arm of the beamsplitter
sent to an HWP and a QWP which turns the |H⟩
polarized light into arbitrary polarizations. A similar
but reversed setup is used for qutrit measurement.
Phase between |0⟩ and the polarization states for
both the preparation and measurement is tuned by a
common phase plate, which is possible due to the
assumption that the qutrit channel does not induce
amplitude exchange between the |0⟩ state and the
polarization states. Finally, a tomographically
complete preparation and measurement can be
accomplished by blocking one or none of the paths in
the interferometer.

Φ(2T ) ≻ Φ(MZ) ≻ Φ(a),Φ(b), (15a)
Φ(2T ) ≻ Φ(T 0) ≻ Φ(a), (15b)
Φ(2T ) ≻ Φ(T 1) ≻ Φ(b), (15c)

where any channel description ordered lower on
the partial ordering can be extracted from a
channel description ordered higher on the partial
ordering, either by taking a subspace or post-
selecting on the channel higher on the ordering.
More broadly speaking, our partial ordering here
is a specific kind of channel divisibility [22, 23]
that involves dimensional reduction.

With this partial ordering in mind, we compare
the maximum coherent information of our depo-
larizing channels under different channel models
and implementations. The maximum coherent
information is related to the ability of a quan-
tum channel to generate entanglement across two
parties and can be understood as the amount
of quantum information that can be transmitted
through a single use of the channel [24]. We have
chosen to use this quantity over classical chan-
nel capacity and quantum channel capacity due
to the former not capturing the quantum charac-
teristics of channels and the latter being hard to

compute. The maximum coherent information is
given by

Ic (Φ) =
max
{ρ}

[H (Φ (ρ))

−H
(
(Φ⊗ I)

(
vec (√ρ) · vec (√ρ)†

))
], (16)

where vec
(√
ρ

)
is the purification of the state ρ

and H is the von Neumann entropy, given by

H (ρ) = Tr [ρ log (ρ)] . (17)

Figure 7 shows the maximum coherent informa-
tion at various levels of depolarization. The ca-
pacity enhancement when simple qubit channels
are post-selected in a superposition can be seen at
α going from 0 to approximately 0.4, where the
maximum coherent information from the post-
selected channel is strictly greater than that of
the qubit channel.

It is important to stress that the maximum
coherent information for the two-qutrit channel,
unsurprisingly, is strictly greater than all other
channel models under investigation. Therefore,
no capacity enhancement would be found if one
used the appropriate two-qutrit channel model
or superposition channel model to describe the
post-selected channel.

6 Discussion
The capacity enhancement in coherently con-

trolled channels may seem surprising at first, yet
this surprise is perhaps due to the implicit as-
sumption that a coherently controllable chan-
nel can be trivially implemented using its non-
controlled counterpart. This is not true, as the
inclusion of the control qubit necessitates an ex-
panded description of the channels to accommo-
date the transmission of the extra control qubit.
For the case of superposing qubit channels, the
channel action on vacuum needs to be accounted
for. To illustrate this, we have experimentally re-
constructed relevant qutrit channels for three dif-
ferent implementations of the depolarizing chan-
nel. Indeed, for depolarizing channels, the quan-
tum information that one can send through the
superposition is strictly less than that of the rel-
evant qutrit channels. It is therefore more ap-
propriate to attribute the increase in channel ca-
pacity of superposing channels to the required ex-
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Figure 7: The maximum coherent information for different channel models in the phase-coherent
implementation. The plot for the two-qutrit channel in both theory and experiment is calculated by adding the
maximum coherent information for qutrit path 0 and path 1 instead of optimizing over possible input state as
we did for the other channels. The two qutrit channel coherent information should therefore be interpreted as
the lower bound for the maximum coherent information. Nonetheless, the plot still indicates that the channels
follow the established hierarchy in that no channel model higher in the partial ordering has less maximum
coherent information than a channel model lower in the ordering. This is true for both experiment and theory.

pansion of the channel’s input and output Hilbert
space, rather than the act of superposition itself.

While the implementation-dependence of
coherently controlled channels on its non-
coherently controlled counterpart is a feature of
the superposed channel that is not shared for
all coherently controlled channels, all coherent
control schemes require the transmission of an
extra control qubit. Our work provides insight
into how channel expansion contributes to the
capacity enhancement in coherently controlled
channels.
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A LCWP Characterization

We used a total of six LCWPs in our exper-
iment, two from Thorlabs and four from Mead-
owlark Optics. They are distributed in Mach-
Zehnder interferometer such that there are two
Meadowlark LCWPs and one Thorlabs LCWP
in each arm, and ordered such that incoming
light always goes through the two Meadowlark
LCWPs first. The voltage to phase retardance
for each LCWPs is calibrated by sending hori-
zontally polarized light through the LCWP with
its optical axis at 45 degrees, with measurement
of the subsequent light in the horizontal/vertical
basis. Input voltage-dependent absorption was
also characterized, and was determined to be at
most a 3% change.

B Photon Souce

We generated 808nm SPDC photons using PP-
KTP type-II co-linear down-conversion, where
one of the photons is used as a herald, resulting
in ∼ 63, 000 heralded single photons per second.
After the single-mode fibre-coupling into a detec-
tor, we detect ∼ 8, 000 heralded single photons
per second, with losses due to unwanted absorp-
tion, reflection, and single-mode coupling ineffi-
ciencies.
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C Systematic errors
Deviations between the theoretical and experi-

mental results in figures 2, 4 and 5 are dominated
by three sources of systematic error. The first is
due to phase fluctuation in our Mach-Zehnder in-
terferometer of about 0.3 rad (comparable to, in
figure 4 the phase error between |V H⟩ and ⟨00| of
0.43 rad for the phase-coherent implementation).
The second is the calibration error in the polar-
ization rotation axis of the LCWPs of about 0.06
rad. Finally, there is a polarization dependence
absorbance of at most ∼ 7% present in our setup.

D Post-selected channel map of
phase-coherent implementation
There are three main reasons for the post-

selected channel to take its form given in fig-

ure 2b. Firstly, due to phases s
(a)
2 and s

(b)
2 , the

post-selection filters out the cases where both Na

and Nb implement σ̂2, which takes one eigen-
states of the Hadamard to the other, as the ran-
dom unitary. Secondly, when one of the chan-
nels implements σ̂1 and the other implements σ̂3,
the resulting operator that an input state experi-
ences is the Hadamard, which leaves the unitary’s
eigenstate unchanged. Thirdly, when one of the
channels implements identity and the other im-
plements either σ̂1 or σ̂3, the resulting operator
is a projector onto the eigenstate with the posi-
tive eigenvalue for σ̂1 and σ̂3 respectively. These
two states have a higher overlap to the eigenstate
with the positive eigenvalue (than the negative
eigenvalue) for the Hadamard unitary. A sum-
mary of these superpositions and the resulting
operators can be found in table 1. Overall, this
results in the post-selected channel leaving the
positive-eigenvalued eigenstate for the Hadamard
to be the least disturbed, resulting in a chan-
nel that has a Bloch sphere representation of an
elliptical disc with its longest semi-axis in the
direction of the Hadamard eigenstates and its
center displaced towards the positive-eigenvalued
Hadamard eigenstate, as illustrated in figure 2.

E Qutrit Tomography
Here, we perform qutrit channel tomography

for the aforementioned qutrit channels explicitly.
To perform tomography on the vacuum state, we

note that the unitary operators for the qutrit
channels Na and Nb can be described by

Û
(2T )
ij =

Û
(T 0)
i ⊗ Û

(T 1)
j =(

|0⟩ ⟨0|(a) ⊕ Û
(a)
i

)
⊗

(
|0⟩ ⟨0|(b) ⊕ Û

(b)
j

)
, (18)

with |0⟩ ⟨0|(a) and |0⟩ ⟨0|(b) being projectors onto
the zero photon states for channels Na and Nb

respectively, and Û
(T 0)
i and Û

(T 1)
j being the uni-

tary operators for channels Na and Nb described
under the qutrit channel model. These sets of
qutrit unitaries form the random unitary qutrit
channels Φ(T 0) and Φ(T 1) (and that Φ(2T ) =
Φ(T 0) ⊗Φ(T 1)), which have the feature that they
preserve photon number.

For any accurate tomographic reconstruction
of the channel Φ, we require a way to extract |c|2
where

|c|2 = ⟨ψ′|Φ (|ψ ⟩⟨ψ|) |ψ′⟩ (19)

for a completely spanning set of states |ψ⟩ |ψ′⟩.
In our experiment, we have direct access to the
one photon subspace of the two-qutrit channel
Φ(2T ) in the form of our Mach-Zehnder channel
Φ(MZ). In the Mach-Zehnder channel, the vac-
uum state for channel Na (Nb) can be accessed
by preparing the path state to be in |b⟩(|a⟩).
The probability of measuring a certain out-

put state
∣∣∣ψ′

path

〉
⊗

∣∣∣ψ′
pol

〉
given an input state

|ψpath⟩ ⊗ |ψpol⟩ is given by |cMZ |2, where

cMZ =
〈
ψ′

pol

∣∣∣ Û (a)
i |ψpol⟩ ·

〈
ψ′

path|a ⟩⟨ a|ψpath

〉
+

〈
ψ′

pol

∣∣∣ Û (b)
i |ψpol⟩ ·

〈
ψ′

path|b ⟩⟨ b|ψpath

〉
. (20)

To perform qutrit channel tomography on chan-

nel Na, we need to set Û
(b)
j |ψpol⟩ =

∣∣∣ψ′
pol

〉
, where

Û
(b)
j takes the input polarization state to the out-

put polarization state. Thus, the probability am-
plitude cT 0 for the qutrit channel can be found
by substituting this condition into equation 20.
Performing the substitution, we have

cT 0 =
〈
ψ′

pol

∣∣∣ Û (a)
i |ψpol⟩ ·

〈
ψ′

path|a ⟩⟨ a|ψpath

〉
+

〈
ψ′

path|b ⟩⟨ b|ψpath

〉
=

〈
ψ′

trit

∣∣ Û (T 0)
i |ψtrit⟩ , (21)
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Ûi

σ̂0 σ̂1 σ̂3 iσ̂2

Û
j

σ̂0 2σ̂0 Π̂|+⟩ Π̂|0⟩
√

2Ĥ · σ̂1
σ̂1 Π̂|+⟩ 2σ̂1

√
2Ĥ σ̂1 · Π̂|1⟩

σ̂3 Π̂|0⟩
√

2Ĥ 2σ̂3 σ̂3 · Π̂|+⟩
−iσ̂2

√
2σ̂1 · Ĥ σ̂1 · Π̂|0⟩ σ̂3 · Π̂|−⟩ 0

Table 1: Table of the resulting Kraus operators given by the superposition of unitaries Ûi and Ûj

where

|ψtrit⟩ = aH |a⟩ ⊗ |H⟩
+aV |a⟩ ⊗ |V ⟩
+a0 |b⟩ ⊗ |0⟩

(22)

and ∣∣∣ψ′
trit

〉
= a

′
H |a⟩ ⊗ |H⟩

+a′
V |a⟩ ⊗ |V ⟩

+a′
0 |b⟩ ⊗ |0⟩

(23)

where a0 (a′
0), aH (a′

H), and aV (a′
V ) is the prob-

ability amplitude of zero photons, one |H⟩ pho-
ton, and one |V ⟩ photon being sent to (measured

from) channel Na. We also note that Û
(T 0)
i acts

on the qutrit Hilbert space with basis vectors
|a⟩ ⊗ |H⟩, |a⟩ ⊗ |V ⟩, and |b⟩ ⊗ |0⟩(a). a0 and a′

0
can take on the values of 1 and 0 when one of the
paths of the interferometer is physically blocked,
or the value of 1/

√
2 when both paths are un-

blocked. The probability of measuring some out-
put state given any input state will, as a result, be
independent of polarization when the path qubit
is in the |b⟩ state, effectively reducing the dimen-
sions of the channel from a two-qubit channel to
a qutrit channel where three orthogonal states
exist for the entire apparatus – one for the pho-
ton in path 1, one for the photon in path 0 and
horizontally polarized, and one for the photon to
be in path 0 and vertically polarized. This path
|b⟩ state can thus be re-labelled as the vacuum
state, as a reference to the fact that the photon
is not in path 0. A similar procedure is repeated
for channel Nb.
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Mart́ınez, Tania Garćıa, Nayda Guerrero,
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teus Araújo, Fabio Costa, Irati Alonso
Calafell, Emma G. Dowd, Deny R. Hamel,
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