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Recently, a class of fractal surface codes (FSCs), has been constructed on
fractal lattices with Hausdorff dimension 2+ϵ, which admits a fault-tolerant
non-Clifford CCZ gate [1]. We investigate the performance of such FSCs
as fault-tolerant quantum memories. We prove that there exist decoding
strategies with non-zero thresholds for bit-flip and phase-flip errors in the
FSCs with Hausdorff dimension 2 + ϵ. For the bit-flip errors, we adapt the
sweep decoder, developed for string-like syndromes in the regular 3D surface
code, to the FSCs by designing suitable modifications on the boundaries of
the holes in the fractal lattice. Our adaptation of the sweep decoder for the
FSCs maintains its self-correcting and single-shot nature. For the phase-flip
errors, we employ the minimum-weight-perfect-matching (MWPM) decoder
for the point-like syndromes. We report a sustainable fault-tolerant thresh-
old (∼ 1.7%) under phenomenological noise for the sweep decoder and the
code capacity threshold (lower bounded by 2.95%) for the MWPM decoder
for a particular FSC with Hausdorff dimension DH ≈ 2.966. The latter
can be mapped to a lower bound of the critical point of a confinement-
Higgs transition on the fractal lattice, which is tunable via the Hausdorff
dimension.

Topological stabilizer codes are a highly promising class of codes for scalable archi-
tectures of fault-tolerant quantum memories and quantum computation [2–6]. This can
be attributed to the geometrically local stabilizer terms and high fault-tolerant thresh-
olds. However, the power of topological stabilizer codes is restricted. For instance, the
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Bravyi-König bound provides an upper bound on the set of transversally implementable
logical gates for topological stabilizer codes on D-dimensional lattices to be the D-th
level of the Clifford hierarchy [7]. Hence, in two-dimensional (2D) topological stabilizer
codes, only the Clifford group can be directly implemented fault-tolerantly [8]; in or-
der to have a universal logical gate set, magic-state distillation is required, leading to
additional space-time overhead [6, 9, 10]. One potential solution is resorting to the 2D
non-Abelian Turaev-Viro codes, which evades the simple stabilizer formalism [11–17].
An alternate proposal is the three-dimensional (3D) topological stabilizer code for which
the fault-tolerant gates can reach the third level of the Clifford hierarchy. In particular,
there exists a fault-tolerant single-shot implementation of the non-Clifford CCZ gate in
the 3D surface code [18, 19], analogous to the implementation of the T gate in the 3D
color code [20, 21]. Another advantage of the 3D surface code is that the bit-flip sector
of syndromes is string-like for which there exists a cellular automaton-based decoding
strategy with a local update rule, called the sweep decoder [22, 23]. This shows that the
system is self-correcting for bit-flip errors [24], implying the single-shot error correction
property [21]. This remedies the overhead associated with non-local classical communi-
cation of the usual decoder [25] in realistic scenarios and also allows hardware-efficient
autonomous error correction with dissipation engineering [26] for bit-flip errors.

In recent work, the authors have proved that topological order can exist on fractal
lattices embedded in D spatial dimensions. In particular, a family of topological stabi-
lizer codes on fractal lattices, embedded in D dimensions, with Hausdorff dimensions
DH = D−1+ϵ, where ϵ could be an arbitrarily small nonzero number, is constructed [1].
We refer to this family of codes on fractal lattices as the fractal surface codes (FSCs) [1].
FSCs in 3D, which we simply refer to as FSCs from here on, are constructed by punch-
ing homotopically trivial holes with smooth boundaries in the 3D surface code such
that the resulting lattice is a fractal. The code distance d = L is preserved under such
code puncturing, where L is the linear system size. Moreover, the non-Clifford CCZ
gate implementation of the 3D surface code is still possible up to some modifications
at the hole boundaries [1]. Surprisingly, due to this possibility, the space-overhead as-
sociated with the fault-tolerant universal gate set is reduced to O(d2+ϵ) compared to
O(d3) for the 3D surface code. The FSCs still require 3D connectivity of qubits, which
can be realized in architectures such as 3D integrated superconducting qubits [27–29]
and photonic qubits [30, 31].

In this work, we study the performance of the FSCs as fault-tolerant quantum
memories. For FSCs with arbitrary Hausdorff dimension DH=2+ϵ, we prove that there
exist decoding strategies with nonzero thresholds for both the string-like and point-
like syndromes under the bit-flip and phase-flip errors respectively. Moreover, for a
particular FSC with Hausdorff dimension DH=ln 26/ ln 3≈2.966, we report the fault-
tolerant (sustainable) threshold using a variant of the sweep decoder for the string-like
syndromes in the presence of pure bit-flip noise and the code capacity threshold using
the minimum weight perfect matching (MWPM) decoder for the point-like syndromes
in presence of pure phase-flip errors. We chose this DH due to numerical limitations;
the decoders are proven to work for FSCs with lower Hausdorff dimension DH=2+ϵ as
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well. The sweep decoder needs to be adapted to the presence of the holes in the fractal
lattice. We modify the local update rule of the sweep rule near the hole boundaries such
that the self-correcting and the single-shot properties of the decoder are maintained for
any fractal dimension DH=2+ϵ. We demonstrate the sweep decoder performance for a
particular FSC with DH≈2.966, as mentioned, by calculating logical failure rates under
N rounds of noisy syndrome measurements. In the limit N→∞, we obtain the so-called
sustainable threshold. The intuition for why the modified sweep decoder maintains a
threshold at fractal dimensions is due to the distribution and spacing of the holes in
the lattice with a scale-invariant pattern. Namely, while the presence of holes may
delay the speed at which a particular error is cleaned up, the holes do not affect the
correctability of the various connected components of errors.

1 Fractal surface code
In order to define the FSC, we start with the 3D surface code. The 3D surface code is
defined on the cubic lattice L, where qubits sit on the edges of the lattice. The code
is defined by the following stabilizer generators, Av = ∏

e∋v Xe and Bf = ∏
e∈f Ze where

v, e and f denote the vertices, edges and faces (0-, 1-, 2-cells) of L, and Ze and Xe are
Pauli operators associated with a given qubit sitting on the edge e. Pictorially, the bulk
stabilizer generators, Av and Bf up to their translates are as follows,

X

X
X

Z

Z

Z

Z

Z Z
Z Z

Z
Z

Z

ZX X
X

. (1)

We also consider the dual lattice L∗ obtained from the original lattice L with the
following conversion of the cells: e ↔ f and v ↔ c, where c denotes a cube (3-cell).
See Fig. 1(a) for these stabilizers on both the original and dual lattice and the latter
will be useful to describe the sweep decoder. Since the qubits now sit on the faces f∗

of the dual lattice L∗, the vertex stabilizers are supported on cubes c∗ of L∗ while the
plaquette stabilizers are associated to the edges e∗ of L∗ such that the support is on
faces f∗ neighboring edge e∗. Mathematically, Av ≡ Ac∗ = ∏

f∗∈c∗ Xf∗ and Bf ≡ Be∗ =∏
f∗∋e∗ Zf∗ . The violations of X-stabilizers Av on L give rise to the e-excitations or point-

like syndromes S0 as boundaries of string-like Z error chain E1 (1-chain), i.e., S0 = ∂E1;
those of Z-stabilizers Be∗ on L∗ lead to m-excitations or string-like syndromes S∗

1 as
boundaries of membrane-like X error chain E∗

2 (2-chain), i.e., S∗
1 = ∂E∗

2 . The associated
pair of anti-commuting logical operators is given by (1) a string-like operator Z =∏

e∈[c1] Ze supported on an equivalent class of 1-cycles on L belonging to the 1st relative
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homology group over Z2 coefficients, i.e., [c1] ∈ H1(L, Be;Z2), which describes the class
of non-contractible 1-cycles including the absolute cycles (loops) and relative cycles
(open strings) terminated on the rough boundaries (with dangling edges), also called
e-boundaries Be since they condense the e-excitations, as illustrated in Fig. 1(b); (2) a
membrane-like operator X = ∏

f∗∈[c∗
2] Xf∗ supported on an equivalent class of 2-cycles

on L∗ belonging to the 2nd relative homology group, i.e., [c∗
2] ∈ H2(L∗, B∗

m;Z2), which
describes the class of non-contractible absolute 2-cycles (closed membranes) and relative
2-cycles (open membranes) terminated on the smooth boundaries (without dangling
edges), also called m-boundaries B∗

m since they condense the m-excitations.

Figure 1: Left: 3D surface code on the original lattice L (black) and the dual lattice L∗ (thin
green). The edges highlighted in red (red faces on L∗) denote the action of Pauli X operators,
while the edges highlighted in blue (blue faces on L∗) denote the action of Pauli Z operators. The
vertex stabilizer Av =

∏
e∋v Xe and plaquette stabilizers Bf =

∏
e∈f Ze, where e and f refer to the

edges and faces of L, are shown in blue and red respectively. Right: The string logical operator
Z and the membrane logical operator X are shown..

The FSC is obtained from the 3D surface code on a cubic lattice by punching holes
with m-boundaries which we refer to as m-holes, in an iterative manner. The first
iteration involves starting with the original cubic lattice of the surface code, which
we call the level-0 cube. In the ℓth iteration, one divides each level-ℓ cube equally into
a×a×a level-(ℓ+1) cubes with linear size 1/a of a level-ℓ cube, and punch an m-hole in
the center occupying b×b×b cubes, and we obtain the Fractal Cube (FC) geometry for
level ℓ as FC(a, b, ℓ). The fractal cube geometry is generated in the asymptotic limit,
i.e., FC(a, b) ≡ limℓ→∞ FC(a, b, ℓ). Requiring b < a, we get an asymptotic fractal cube
geometry with Hausdorff dimension DH → 2 in the limit b/a → 1 [1].
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m m

(b)

Figure 2: (a) Levels 1 and 2 of the fractal surface code are shown as FC(3, 1, l = 1) and
FC(3, 1, l = 2). For level 1, the single m-hole is shown, and for level 2, an extra iteration of
punched holes is shown. The anti-commuting pair of logical operators X and Z are also shown
for level 2. The minimum weight representation of membrane operator X, which is interrupted
by the holes and forms a Sierpinski carpet, is shown separately at the bottom. In (b), we show a
1 × 1 × 1 size m-hole. On the original lattice, the missing edges form the hole, while on the dual
lattice, the m-hole is shown as a cube with gray-blue edges, where the missing qubits are given
by the faces of the cube..

The code space HC is mathematically determined by the 1st relative homology
group H1(L̃, Be;Z2), defined on the fractal lattice L̃. As mentioned, the m-holes in the
FSC are chosen to be homeomorphic to 3-dimensional balls, and they have a trivial
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contribution to the homology group, meaning that they do not encode any additional
logical qubit (see Sec. II in Supplementary for a counting argument). This can be seen
by the fact that logical-Z string can neither terminate on the boundaries of m-holes
(due to the condensation property) nor enclose these holes since they are 3-balls. Thus,
the code space can be expressed as

HC = CH1(L̃,Be;Z2) = CZ2 = C2, (2)

where the non-trivial contribution of Z2 to H1 comes from the logical-Z string con-
necting the top and bottom e-boundaries circumventing any m-holes (see Ref. [1] for a
detailed proof). We hence have one encoded logical qubit. The unique class of the dual
logical-X membranes, determined by the 2nd relative homology group which is isomor-
phic to the above 1st relative homology group 1, is hence H2(L̃∗, B∗

m;Z2)∼=H1(L̃, Be;Z2)=Z2.
The minimum weight logical-X membrane now terminates on the m-holes and is sup-
ported on a Sierpinski carpet with Hausdorff dimension DX

H = ln 8/ ln 3 ≈ 1.893
and corresponding X-distance dX ∼ L1.893 in the case of FC(3, 1), as illustrated in
Fig. 2. The overall distance is determined by the minimum length of the logical-Z
string d=min{dX , dZ}=dZ=L. Since the X error is still membrane-like with string-like
syndromes on its boundary, the self-correction and single-shot nature of error correc-
tion for the loop sector are still expected to survive in the case of imperfect syndrome
measurements.

Decoding the FSC
We study the performance of the 3D FSC under two i.i.d. Pauli noise models, i.e., the
bit-flip and the phase-flip error models. The first one is described by the following Pauli
noise channel,

ρ →
∑

e
[pXXeρXe + (1 − pX)ρ] , (3)

where ρ is the density matrix describing the state of the code and pX is the single-qubit
X error rate. To get the phase-flip noise model, switch X to Z in Eq. (3).

According to the asymptotic definition of the fractal cube geometry, the threshold
of the FSC, pth(FC(a, b)) is defined as

pth(FC(a, b)) = lim
ℓ→∞

pth(FC(a, b, ℓ)) (4)

where pth(FC(a, b, ℓ)) is the threshold for level ℓ of the FSC. In this work, we evaluate
the thresholds for levels ℓ = 1, 2 and estimate the threshold for the limit ℓ → ∞ i.e.,
for FC(a, b).

As mentioned, we use a cellular automaton-based decoder called the sweep decoder
to decode the X errors and the MWPM decoder to decode the Z errors. However, the

1This is due to the Poincaré-Lefschetz duality, which is also consistent with the structure of a CSS
code.
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sweep decoder needs to be adapted to account for the m-holes. In Sec. 2 below, we first
describe how the sweep decoder works for the 3D surface code and then generalize to the
FSC. The sweep decoder can be defined generally for any causal codes [23]. However,
we restrict our description of the decoder to the 3D surface code on a cubic lattice for
clarity.

2 Sweep Decoder
The main ingredient of the sweep decoder is the sweep rule. Intuitively speaking,
the sweep rule takes into input the syndrome and applies a correction operator such
that a part of the syndrome is swept towards a particular direction called the sweep
direction. Eventually, under enough such sweeps, the syndrome is cleaned. For perfect
measurements, the syndrome consists of closed loops; hence partial sections of a given
loop move towards its remaining sections and close on to them. We illustrate the sweep
rule in Fig. 3(a).

1 2

3 4

(b).(a).

Figure 3: Illustration of the sweep rule. The sweep direction is shown using arrows next to extremal
vertices in red. The plaquettes shaded in blue denote the errors that generate the syndrome, and
the plaquettes shaded in orange are the ones that are swept or on which a correction is applied.
(a) Sweep rule applied four times (1-4) on the syndrome (brown) that sits on the edges e∗ of the
dual cubic lattice L∗. (b) A 2D projection of a trapped syndrome configuration (brown) between
m-holes (dark blue). The modified sweep rule allows us to put imaginary syndromes on an edge
(brown) in the future on the surface of the hole..

We now state the sweep rule for the regular 3D surface code on a cubic lattice
L formally. To do so, it is convenient to consider the dual lattice L∗ such that the
syndromes live on the edges e∗ and qubits on the faces f∗. Note that from here on,
we work in this dual picture. Based on the sweep direction ŝ, each edge attached to a
vertex is assigned to be in the future or the past of that vertex. For example, consider
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a vertex v∗ and for each edge e∗ emanating from v∗, associate a unit vector v̂∗
e∗ in the

direction along the edge e∗ starting from v∗. If the dot product of ŝ with the v̂∗
e∗ is

non-negative, the edge is in the future of that vertex.
If all nontrivial syndrome edges emanating from the vertex are in the future of

that vertex, we refer to the vertex as extremal. If a vertex v∗ is extremal, then we
apply a correction operator on on the face (qubit) f∗ enclosed by the future syndrome
edges connected to v∗ such that the syndrome on all the edges of f∗, e∗ ⊂ f∗ is flipped.
This effectively sweeps the future syndrome edges connected to the vertex to the other
two edges of the face. We apply this step for all extremal vertices in parallel. Under a
sufficient number of such consecutive implementations of the sweep rule, most syndrome
configurations clean up in a time or number of steps that scales linearly with the system
size.

We now discuss the sweep rule for the 3D FSC on a lattice with open boundaries. For
the fractal lattice L̃∗, we need a modification to the sweep rule because configurations of
syndromes joining the holes can get trapped if one uses the regular sweep rule. These
configurations are resistant to the regular sweep rule because there are no extremal
vertices even if the sweep direction is changed. This is similar to the configuration of a
pair of parallel lines that span the lattice. We illustrate a trapped configuration between
holes of the 3D FSC via a 2D projection. To relieve these trapped configurations
connecting holes, the sweep rule needs to be modified on the hole boundary 2.

For the fractal lattice L̃∗ considered in this work, even though some of the qubits
are removed in the holes made in a regular lattice L∗, our goal is to imitate the sweep
decoder in the regular lattice as much as possible. The modification to the sweep rule
is only on the vertices v∗

h that are at the boundary of the m-hole. Note that in the
(original) fractal lattice L, these correspond to the cubes ch that form the outermost
layer of cubes inside the m-hole as shown in Fig. 2(b). Even though there are no
qubits on the hole faces f∗

h, we include the vertices v∗
h in sweep indices, which is the

set of vertices considered for application of the sweep rule. Now, we note that in the
case of perfect syndrome measurements, for the bulk vertices, only an even number of
syndrome edges in e∗ can be incident on each vertex. This is not necessarily true for
the vertices v∗

h. If a vertex on the hole boundary v∗
h is connected to zero or more than

one syndrome edge, then we apply the regular sweep rule on that vertex. If v∗
h has

exactly one syndrome edge connected to it, then we first check whether this syndrome
edge is in its future or not. If yes, then this vertex is already extremal; however, since
there is only one syndrome edge, the sweep rule is unable to specify the correction.
We check the future edges of this vertex that lie on the surface of the hole and, hence,
have no associated stabilizer. Among these edges, we choose one randomly and mark
it as an imaginary syndrome edge associated with the vertex. Once we have included
this imaginary syndrome, the regular sweep rule can specify a correction operator for
the extremal vertex v∗

h. To summarize, the modification to the sweep rule is as follows:

2This differs from the technique of alternating sweep directions used to address syndromes trapped
at the global boundary as addressed in Ref. [23].
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the vertices on the hole boundary are allowed in the sweep indices, and if a hole vertex
has a single nontrivial syndrome edge connected to it, then one out of its future edges
which sits on the hole boundary is assigned a syndrome.

For the case of imperfect measurements with an error rate q, we implement the
modified sweep rule without change. The intuition behind this is as follows: faulty
measurement could lead to broken string-like syndromes due to certain missing syn-
drome edges, “ghost” (false) syndromes, or, generally speaking, local deformation of
the syndromes, all with small probability q. This leads to missing or wrong updates in
certain local regions, which is effectively converted again to the phase-flip error with a
small probability in the next round. Therefore, the decoder, applied as if to a memory
with pure X error, is still expected to have a threshold.

In Sec. 2.1 below, we prove that there exist non-zero thresholds for the bit-flip noise
with the sweep decoder. The essence of the proof is that the holes can, in a sense, be
treated like errors since, in the worst case, any error that attaches to a hole may take
extra time that is linear in that hole size to be corrected. However, due to the scale-
invariance of the fractal, the number of holes of a given size drops off exponentially.
Hence, the errors that attach themselves to the holes can be cleaned up sufficiently
quickly with high probability since they will be far away from other holes of similar
size. More specifically, while large holes are close to many smaller holes, their distance
from a hole of a similar size is on the order of the size of the hole itself. As such, any
smaller error will only, at most, feel the effect of one of the larger holes (not multiple)
that it connects to. Therefore, following similar arguments for the 3D surface code,
error patches of large size will be increasingly improbable with growing size, and while
the correction of an error may be delayed if connected to a large hole, it will not result in
connecting multiple large holes. It will eventually be cleaned up by the sweep decoder
in a time that is linear in the size of the region that bounds the error and the holes
connected to it. In the proof, we formalize these concepts in the language of error
chunks and connected components as discussed in Refs. [22, 32].

2.1 Proof of sweep decoder threshold in the FSC
Let E be the set of all possible Pauli X errors in the 3D fractal code. By definition,
the fractal will have hole sizes at each iteration of cubic length Hi = αDi, where
α = b/a ∈ (0, 1) is related to the a and b terms introduced in the definition of the
fractal codes FC(a, b) and D is the smallest sized cube when partitioning. We define
all single-qubit errors to be level-0 chunks. All subsequent level chunks are defined
recursively as follows: a level-n chunk is the disjoint union of two level-(n − 1) chunks,

E[n] = E
[n−1]
1 ⊔ E

[n−1]
2 such that the diameter of the level-n chunk is smaller or equal to

αDn/2, that is diam(E[n]) ≤ αDn/2.
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Figure 4: Example of different level-n chunks of errors in two dimensions. The black dots represent
errors belonging to E0 by definition. In this example, the level-1 chunks, dashed red lines, are
pairs of errors from E0 that are distance at most two from one another (in Manhattan distance).
The level-2 chunks are formed from pairs of disjoint level-1 chunks such that all errors are within
distance four from one another (again, Manhattan distance). Since there are no pair of disjoint
level-2 chunks, there are no level-3 chunks (and higher). All errors that are not surrounded by a
dashed line will therefore be in F0 = E0\E1, all errors that are only surrounded by red dashed
lines will be in F1, and finally, the errors surrounded by the blue dashed lines will belong to F2. .

Given some error pattern E, we define the set of errors En to be the union over
all level-n chunks, and as such: E = E0 ⊇ E1 ⊇ E2 ⊇ · · · ⊇ Em+1 = ∅, where m
is the smallest integer such that Em+1 is empty which will always be satisfied as the
configuration space of errors E is countable. Finally, by defining Fi = Ei\Ei+1, every
individual error from E can be classified into one of the sets F0, · · · , Fm, which we call
the chunk decomposition of E. See Fig. 4 for an illustration of different level-n chunks.

We would like to prove then that given an independent noise model for each of the
physical qubits, the probability of generating a high-level chunk decreases exponentially
with the level of the chunk, even in the presence of holes. We do so following the
techniques developed in percolation theory, mirroring the procedure from Refs. [22, 32].

Consider a random error E ∈ E of independently generated single qubit Pauli X
errors. Let Bn(x) be a fixed box of linear size Hn = αDn centered at x and B+

n (x) to
be a box of linear size 3Hn centered at x. We define the following probabilities:

pn(x) = Pr
[
Bn(x) has a non-zero overlap with level-nchunk of E

]
p̃n(x) = Pr

[
B+

n (x) contains a level-n chunk of E
]

qn(x) = Pr
[
B+

n (x) contains 2 disjoint level-(n − 1)chunks of E
]

rn(x) = Pr
[
B+

n (x) contains a level-(n − 1) chunk of E
]
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For a given x, if Bn(x) has a non-zero overlap with a level-n chunk since the diameter
of a given level-n chunk is at most αDn/2, that chunk will necessarily be contained
within B+

n (x). Moreover, if B+
n (x) contains a level-n chunk then by definition it must

contain 2 disjoint level-(n−1) chunks. As such, pn(x) ≤ p̃n(x) ≤ qn(x). Moreover, since
an event that contributes to rn(x) is the result of two independent events contributing
to qn(x), by the van den Berg and Kesten inequality, we must have qn(x) ≤ rn(x)2.

Since the box B+
n (x) is the disjoint union of (3D)3 boxes of linear size Hn−1, we

have the following:

rn(x) ≤
∑
x′

pn−1(x′) ≤ (3D)3 max
x′

pn−1(x′)

and thus,

pn(x) ≤ rn(x)2 ≤ (3D)6 max
x′

p2
n−1(x′).

Finally, if we iterate the process over all n:

pn(x) ≤ (3D)−6
(
(3D)6p0

)2n

,

and p0 is just the bare single qubit error rate ϵ. Thus, the probability of a given chunk is
exponentially suppressed in its size. The final piece that is needed before arguing for the
ability of the sweep decoder to succeed with high probability is the notion of a connected
component. A set of errors E ∈ E is a R-connected component if it cannot be split into
two disjoint non-empty sets E = M1 ⊔ M2 such that the distance d(M1, M2) > R. The
critical fact is that for a given error E, any set of errors belonging to Fn will necessarily
belong to a (Hn)-connected component that is sufficiently separated away from other
elements of En. The following Lemma summarizes this.

Lemma 1 ([32]). Let Hn = αDn, such that D ≥ 6 and let M ∈ E be a set of errors
belonging to a Hn-connected component of Fn. Then, M has a diameter ≤ Hn and
d(M, En\M) > Hn+1/3.

Proof. The claim is that for any pair of errors m ∈ M ∈ Fn = En\En+1 and p ∈ En we
have the following: d(m, p) ≤ Hn or d(m, p) > Hn+1/3. We prove this by contradiction,
that is suppose Hn < d(m, p) ≤ Hn+1/3. Let Mn, Pn be the level-n chunk to which m
and p belong to, respectively. Therefore, by definition, since their respective diameters
are bounded by Hn/2 and Hn < d(m, p), they must be disjoint. However, we can also
bound the overall distance between Mn and Pn:

d(Mn, Pn) ≤ diam(Mn) + d(m, p) + diam(Pn)
≤ Hn/2 + Hn+1/3 + Hn/2
= αDn + αDn+1/3
≤ αDn+1/6 + αDn+1/3 = Hn/2,

as such the union of Mn and Pn form a level-(n + 1) chunk, which is a contradiction to
Mn ⊆ M ∈ Fn.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Example of an error sweeping. Initial error configuration is given in (a) with sweep
direction in the (+1,+1,+1) direction. At each step, we are guaranteed to sweep away from the
green circles if an error is present there. Green circles represent a plane moving through space
such that the syndrome is guaranteed to no longer be in the past light cone of this plane relative
to the sweep direction. Blue circles represent vertices that are in the past of the plane. Extremal
vertices are given by circles filled in red; notice that whenever the syndrome is present at a green
circle, the corresponding vertex is extremal..

The conclusion of this Lemma is to separate out all errors into their various con-
nected components and to show that the decoder will successfully address each con-
nected component separately as they are sufficiently far away from one another. The
complication arises due to the presence of holes, which can delay the cleaning up of a
component, namely if an Hn-connected component of errors (thus of size O(Dn)) was
connected to a hole of size O(Dp), where p > n, then the resulting correction would
take time O(Dp) (that is linear with the larger hole size). We show below that our
variant of the sweep decoder can successively correct for larger and larger errors, even
in the presence of holes.

In order to simplify the discussion of the sweep correction of errors, we provide a
few useful definitions. Suppose we have an error E ∈ E , we define the error envelope
V (E) of E to be the smallest cuboid that encases E. This definition will be useful for
upper-bounding the sweep time of errors. We begin by presenting the following result
for the sweeping of an individual error membrane without the presence of holes; we also
give an illustration of a sweeping in Fig 5.

Lemma 2. Consider an error membrane E ∈ E with error envelope V (E) whose linear
dimensions are: lx, ly, lz. The sweep decoder will correct for such an error in at most
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(a) (b)

(c) (d)

Figure 6: Example of an error sweeping connected to a hole. Initial error syndrome given in brown
in (a) with sweep direction in the (+1,+1,+1) direction. The hole is shown by the blue edges.
Any sweep correction cannot take one outside the set of edges given since they are all within a
cuboid surrounding the error syndrome and hole. The extremal vertices are shown by red points
at each step, imaginary syndromes are introduced along the surface of the hole in orange to make
the appropriate vertices extremal as described in the modified sweep decoder section..

(lx + ly + lz − 1) sweep steps.
Proof. Without loss of generality, suppose the error envelope V (E) is formed by the
cube whose linear coordinates are given by [0, li], where i ∈ {x, y, z} and the sweep
direction follows the vector (+1, +1, +1). Then, in the first step, the boundary of the
error will be swept away from the corner (0, 0, 0), and thus the error can no longer touch
this point. In the second step, the error will be swept away from the three points dis-
tance 1 away from the origin in Manhattan distance, that is (1, 0, 0), (0, 1, 0), (0, 0, 1).
In an iterative manner, in the n-th time step, the error will be necessarily swept away
from all points that are distance (n − 1) in from the origin. Since the furthest point
from the origin is at the opposite corner of the cuboid (lx, ly, lz) and any error contain-
ing that point must have at least one point that distance 2 closer to the origin, we are
guaranteed to clean up the error after (lx + ly + lz − 1) time steps.

In the presence of holes, errors may take longer to be corrected; however, we can also
bound the number of time steps an individual error membrane will take to be corrected.
This is pictorially shown in Fig. 6, where the error envelope must also surround the
hole.

Corollary 1. Given an error membrane E ∈ E that is connected to holes H1, · · · , Hj.
Consider the error envelope V (E ∪H1 ∪· · · Hj) that encompasses the error and all holes
whose linear dimensions are lx, ly, lz. Then, the sweep decoder will correct for such an
error in at most (lx + ly + lz − 1) sweep steps.
Proof. The proof of the previous Lemma can be generalized to account for the case
where the error membrane is connected to multiple holes. As stated, if we choose an
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error envelope that encompasses all of the holes connected to the membrane (as well as
the membrane itself), then the resulting correction will never leave the envelope. Thus,
when sweeping from one of the corners in the sweep direction, we are guaranteed to
clean the error in the number of sweep steps given.

The upshot of the above Lemma and Corollary is that a connected component of
radius R will be corrected in time O(R) if not connected to any holes, while it will be
corrected in time at most O(R + Rh) if connected to a hole of radius Rh. If connected
to multiple holes, the corresponding correction time will be linear in the radius of the
largest hole or the error itself, whichever is larger.

Let E ∈ E be an error instance. Consider all H0-connected components of F0
that are distance greater than H0 from any hole, denoted by Q0. Given the diameter
of these components is at most H0, we know the decoder will correct them in time
linear to the diameter, assuming there is no interference from other errors or holes.
Given a connected component Q0 is the distance at least H0 away from any hole and
distance H1/3 away from any other error, this connected component will successfully be
corrected. As such, all errors F0 will be successfully corrected unless they were within
distance H0 from any hole; we label the remaining errors as T0 = F0\Q0.

Consider now the elements from F1. Again, we break them into two classes, the
elements Q1 which are in H1-connected components whose distance is greater than H1
from any hole of size Hk>1, and the errors T1 which are F1\Q1. Any error in Q1 will be
corrected in time linear in H1 as these elements are either independently corrected or
they are affected by either the uncorrected errors T0 or holes of linear size H1. However,
since both these holes and errors are of size at most H1, they will only affect the cleanup
time and size of the correction bubble of Q1 by a constant factor in H1. The critical
point here is that any error from Q1 can only see their correction time increase by O(H1)
due to the uncorrected errors from F0 or holes of size H1. Since neither of these objects
is larger than the element from Q1, which is also of size O(H1), such objects will not
affect the decoder’s ability to clean up an element from Q1.

We iterate this process for any n. Consider elements from Fn, breaking them into two
classes: the elements labeled Qn, which are Hn-connected components whose distance
is greater than Hn from any hole of larger size Hk>n and the complement of such
elements Tn = Fn\Qn. Any element of Qn will be cleaned up in time linear in Hn as it
will either attach itself to a hole of similar size (or smaller) or will be affected by smaller
uncorrected errors Tj<n, in either case this will not change the cleanup time for such an
error, and it will be corrected. Thus by induction any level-n error that is smaller than
the system size will be corrected in time at most linear in the size of the largest chunk.
Therefore, to summarize, errors from Qn are corrected in time O(Hn) = O(Dn), these
errors are either connected components of this size or connected to a hole of the given
size.
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2.2 Sweep decoder simulation algorithm
We now list the steps of the numerical algorithm for simulating the sweep decoder as
follows-

1. N − 1 rounds of a) generating data errors E⃗ with probability pX , b) performing
syndrome measurements with error probability q, and c) applying sweep rule
(modified version in case of FSC) x times. We set x = 1 in our simulations. We
change the sweep direction after every y rounds on the lattice with boundaries. We
set y = log L where L is the linear size, measured in terms of the number of cubes
in the original cubic lattice (vertices in the dual lattice) along one dimension.

Each implementation of the sweep rule updates the data error E⃗ to the data error
times correction operator.

2. After the above N − 1 rounds, generate data errors again with probability pX

and perform syndrome measurements. Assume perfect syndrome measurements
for this last round.

3. Timeout session: sweep rule is implemented for T steps, and sweep direction is
changed after every t steps. We set T = 32L and t = L.

4. If the syndrome is not cleaned or if the product of total error and correction acts
nontrivially on the logical subspace, the decoder fails.

2.3 Sweep Decoder performance for FSC
We implemented the sweep decoder for the FSC on the fractal lattices L̃∗ with bound-
aries. We study the performance of the sweep decoder for an error model with both
phase-flip and measurement errors. We consider the measurement error rate q to be the
same as the physical error rate pX , i.e., q = pX . The detailed algorithm is presented in
Methods.

We show the performance of the sweep decoder for N = 1025 rounds in Fig. 7
(a)-(b) and for N = 1, 33 rounds in Sec. III in Supplementary. We also summarize the
results for the thresholds of the sweep decoder for different levels and number of rounds
of stabilizer measurements, N in Fig. 7 (c). The last round is assumed to have perfect
measurements 3 while N − 1 rounds before the last round involve noisy measurements.
N = 1 means only one round of stabilizer measurements, and those are perfect. We
tabulate the numerical values of the obtained sweep decoder thresholds below,

ℓ 0 1 2

N = 1 15.625(8)% 15.59(2)% 15.57(2)%
N = 33 2.400(1)% 2.471(3)% 2.455(2)%

N = 1025 1.727(3)% 1.7331(7)% 1.7262(7)%

3This is a standard assumption in quantum error correction studies, which is valid at the readout
stage where measurement errors become equivalent to data qubit errors.
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Figure 7: (a)-(b) Sweep decoder performance for N = 1025 rounds of stabilizer measurements
for levels ℓ = 1, 2 of the FSC. Logical failure rate pL for different system sizes (legends) is plotted
as a function of the physical X error rate pX = q where q is the measurement error rate. Each
data point in the simulations was obtained with 10,000 Monte Carlo runs. (c) Sweep decoder
threshold pth vs number of rounds of stabilizer measurements N . The threshold values were
obtained using the critical exponents method [33]. Thresholds for ℓ = 0 (3D surface code) are
taken from Ref. [23]. Our results for points ℓ = 0, N = 1, 33, 1025 were consistent with the
curve..

The threshold obtained in the limit N → ∞ is the sustainable threshold. Since the
N = 1025 thresholds for ℓ = 0, 1, 2 are all around 1.73%, we expect the sustainable
threshold for both levels ℓ = 1, 2 to be 1.7%, which is the result obtained in Ref. [23]
for level ℓ = 0. Moreover, due to this result, we expect this sustainable threshold value
to be independent of ℓ; hence, the sustainable threshold for the asymptotic fractal cube

Accepted in Quantum 2023-08-31, click title to verify. Published under CC-BY 4.0. 16



geometry FC(3, 1) is expected to be 1.7%.
Since the X-distance of the code scales with the Hausdorff dimension, DH of the

fractal lattice, as LDH , we expect the subthreshold failure rates to increase for pure (or
biased) Pauli Z noise as DH is lowered. In our simulations, we only looked at DH close
to 3 due to the limitations on scaling up the system sizes. Hence, such differences in
the subthreshold failure rates are not noticeable.

On the other hand, the Z-distance of the code is unaffected under the punching of
the holes; however, the effective Z-distance is increased, as there are fewer paths for the
point-like syndrome after the smooth boundary holes are punched in. This is expected
to have a positive effect on the threshold and the subthreshold failure rate for pure (or
biased) Pauli X-noise. Below, we discuss the performance of the MWPM decoder under
Pauli X-noise and show an improvement in the threshold error rates with increasing
DH . For a substantial improvement in the subthreshold failure rates, we would need to
go to higher DH .

3 MWPM decoder performance
We now discuss the thresholds of the MWPM decoder used to decode the Z errors.
We focus here on the case without measurement errors, which corresponds to the code-
capacity error threshold. We prove the existence of the fault-tolerant threshold for the
FSC using the MWPM decoder in Sec. I of Supplementary.

As mentioned, the FSC is obtained by punching m-holes in the 3D surface code.
For the MWPM decoder, the input decoding graph L̃, whose each node corresponds to
a vertex stabilizer, is a subgraph of the decoding graph L of the 3D surface code, i.e.,
L̃ ⊂ L since a subset of stabilizers is removed due to the m-holes. The main difference
from the matching of the 3D surface code is that the logical string Z and error chain
E1 need to circumvent all the m-holes.

We show the performance of the MWPM decoder, measured in terms of logical fail-
ure rate, for levels ℓ = 0, 1, 2 of the FSC in Fig. 8. We apply the critical exponents
method [33] to the logical failure rate data to obtain the code-capacity thresholds of
the MWPM decoder for each level ℓ of the FSC defined on FC(3, 1) with Hausdorff
dimension DH = 2.966 as follows,

ℓ 0 1 2

MWPM threshold 2.886(4)% 2.931(4)% 2.947(5)%

Interestingly, the threshold pth increases in the case of the FSC compared to the 3D
surface code case (ℓ=0). Based on the trend at ℓ=0, 1, 2, we expect the threshold to be
lower bounded by 2.95%. This increase, relative to ℓ = 0 is due to the fact that one can
upper bound the logical error rate to be proportional to the number of self-avoiding
non-contractible cycles NSAP (see Sec. I in Supplementary). The input decoding graph
for the FSC, L̃ has strictly lower NSAP than that for the 3D surface code, L since L̃ ⊂ L.
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The threshold of FSC can hence be proven to be strictly higher than the 3D surface
code. Moreover, the fractal decoding graph is asymptotically approaching a 2D graph
in the limit of DH = 2 + ϵ. The code-capacity threshold of FSC is approaching that of
the 2D surface code, i.e., limϵ→0 p

(2+ϵ)
th ≈10.31% and the phenomenological fault-tolerant

threshold approaches 2.9% [4] (see Sec. I in Supplementary).

0.026 0.027 0.028 0.029 0.030 0.031 0.032
pZ

0.00

0.05

0.10

0.15

0.20

0.25

p L

= 0
9
15
23
27
31

0.026 0.027 0.028 0.029 0.030 0.031 0.032
pZ

0.05

0.10

0.15

0.20

0.25

0.30

p L

= 1
19
27
35
39

0.026 0.027 0.028 0.029 0.030 0.031 0.032
pZ

0.05

0.10

0.15

0.20

0.25

0.30

p L

= 2
23
31
35
39

Figure 8: Code capacity performance of the MWPM decoder for pure Z noise for different levels
of FSC. Logical failure rate pL is plotted as a function of the physical Z error rate pZ . The data
points close to the threshold of the MWPM decoder were obtained with 100,000 Monte Carlo
runs. Other points used 20,000 Monte Carlo runs..
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Figure 9: (a) Illustration of the RPGM. The gauge spins (blue) live on the edges of the dual
lattice L∗. Bold red edges represent the error chain E1 (flux tubes) on the original lattice L which
penetrates the “wrong-sign” plaquettes (red) on L∗. The endpoints of E1 are monopoles (orange
cube). The MWPM algorithm finds the recovery chain Emin (pink dashed). A logical error occurs
since E1 + Emin contains a nontrivial relative cycle. (b) Illustration of the MWPM decoder on the
fractal lattice L̃, where all flux tubes circumvent the m-holes..

4 Phase transition on a fractal
Quite interestingly, the code-capacity threshold of the MWPM decoder for the FSC
can be mapped to the zero-temperature phase transition in a random-plaquette gauge
model (RPGM) on a fractal lattice, using the statistical-mechanical mapping [4, 33, 34]
of error correction in stabilizer codes. The disordered stat-mech Hamiltonian of the
fractal RPGM can be written as:

H = −
∑
f∗

τf∗Uf∗ , with Uf∗ =
∏

e∗∈f∗
σe∗ . (5)

Here, Uf∗ is the Z2-valued “gauge flux” penetrating the plaquette (face) f ∗ on the dual
fractal lattice L̃∗, whose value is determined by all the gauge Ising spins σe∗ = ±1
living on the links (edges) belonging to the plaquette f ∗, as illustrated in Fig. 9(a).
Each Ising spin σe∗ in the fractal RPGM is associated with a stabilizer on the edge ẽ∗

in the code. Hence, the plaquette terms in Eq. (5) are 4-body when in the bulk, while
they can be 3-body or 2-body when they share an edge(s) with an m-boundary or two
m-boundaries respectively. The random coupling strength τf∗ = ±1 on the plaquette f ∗

represents the quenched disorder in this model. Its sign is determined by the Z error on
the qubit of the fractal code: with probability pZ an error occurs corresponding to the
“wrong-sign” choice τf∗ = −1 (favoring nontrivial flux −1) as shown in the highlighted
plaquette (red) in Fig. 9(a); with probability 1 − pZ no error occurs corresponding to
the “right-sign” choice τf∗ = +1 (favoring trivial flux +1). The collection of “wrong-
sign” plaquettes constitute flux tubes. Note that the flux tube can terminate on the
e-boundary since the dual lattice L̃∗ contains plaquettes parallel to the e-boundary to
allow the flux to penetrate through. At the same time, it is impossible for the flux tube
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to terminate on the m-boundary and hence m-holes, since no plaquette parallel to the
m-boundary exists on L̃∗ [see in Fig. 9(a)].

The flux tubes on L̃∗ correspond to the error chain E1 (1-chain) living on the edges
of the original lattice L̃, whose endpoints S0 = ∂E1 are Z2 monopoles living on the cube
c∗ in L̃∗ (vertex v in L̃), corresponding to the syndromes (e-excitations) in the FSC.
The MWPM decoder [35] finds a recovery 1-chain Emin on L̃ ending at the same set of
monopoles (syndromes), i.e., ∂Emin = S0, such that Emin has the minimal length. This
is equivalent to finding Emin such that the sum of disjoint closed flux tubes E1 + Emin

has minimal energy at zero temperature. On the other hand, the optimal (maximal-
likelihood) decoder effectively finds the recovery chain Emin with minimal free energy
at finite temperature along the “Nishimori line” [33] and corresponds to an optimal
threshold p∗

th. In either case, the recovery succeeds if Emin and E1 belongs to the same
homology class, i.e., E1 + Emin = ∂F , where F is a collection of faces on L̃, and fails
if the closed flux tubes E1 + Emin contains a homologically nontrivial relative cycle
connecting the upper and lower e-boundaries. In the Higgs (ordered) phase where
the quenched disorder strength is low (pZ<p∗

th), the failure probability is zero in the
thermodynamic limit (L→∞) since the free energy cost of such a non-contractible
relative cycle diverges linearly with cycle length and become unfavorable. In contrast,
in the confined (disordered) phase (pZ>p∗

th), the failure probability approaches one in
the thermodynamic limit. The error threshold pth of the MWPM decoder corresponds
to the zero-temperature phase transition point between the Higgs phase and a gauge
glass phase, which provides a lower bound of the confinement-Higgs transition occurring
exactly at the optimal threshold p∗

th along the “Nishmori line” [33]. Note that the main
difference from the case of the RPGM on a cubic lattice is that the flux tubes need
to circumvent the m-holes [shown in Fig. 8(b)]. Interestingly, the phase transition is
tunable via the fractal (Hausdorff) dimension DH .

5 Discussion
In this work, we proved that there exist decoders with nonzero thresholds for fractal
surface codes (FSCs) on lattices with Hausdorff dimensions DH = 2+ ϵ. We noted that
even in fractal dimensions, there exists a local decoder for the string-like syndromes.
We also proved that the fault-tolerant MWPM threshold for the FSC is strictly greater
than the same in the 3D surface code. Moreover, for a particular FSC with Hausdorff
dimension DH ≈ 2.966, we demonstrated sweep decoder thresholds for bit-flip noise
that are roughly the same as those for the regular 3D surface code. For the same FSC,
we demonstrated code capacity MWPM threshold in the presence of phase-flip noise
that is enhanced in comparison to the regular 3D surface code due to the suppression
of the number of non-contractible cycles.

The MWPM threshold provides a lower bound on the confinement-Higgs transition
of the RPGM on a fractal lattice. In future work, one can continue studying the optimal
threshold of a maximum-likelihood decoder and the exact value of the confinement-
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Higgs transition along the “Nishimori line” [4, 33].
In this work, we only studied the performance of the FSC as a quantum memory.

Our work demonstrating thresholds on par with the 3D surface code motivates studies
of the FSC for quantum computation. In upcoming work, we address implementation
of the non-Clifford CCZ gate in a single-shot manner in the FSC, which implies that
the space-time overhead scales like O(d2+ϵ) 4, which would be a fundamental space-time
improvement on techniques such as those from Refs. [36, 37] which use 2D lattices to
simulate the action of 3D topological codes for computation.

Lastly, our work inspires further studies of quantum codes on fractal lattices embed-
ded in three dimensions. For instance, the subsystem surface code [38] and the gauge
color code [39], which gauge-fix to the 3D surface code and 3D color code, respectively,
have properties of confinement and single-shot error correction, could be studied on
fractal lattices. We leave this to a forthcoming work.
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A Proof of the fault-tolerant threshold of a matching decoder for
correcting point-like syndromes

In this section, we prove the existence of the fault-tolerant and code-capacity thresh-
olds of the Z errors in fractal surface codes, for the minimum-weight perfect matching
(MWPM) decoder, following the methods from Ref. [4]. In particular, we consider the
presence of measurement errors under a phenomenological noise model: the Pauli-Z
error rate and measurement error rate are denoted by p and q respectively 5. We also
put bounds on the fault-tolerant and code-capacity thresholds of FSCs and show that
they are strictly higher than the counterparts of the 3D surface code. Moreover, we
show that in the asymptotic limit of DH = 2 + ϵ, both types of thresholds approach
those of the 2D surface code.

A.1 Fault-tolerant MWPM thresholds
The FSC is defined on a 3D fractal lattice L̃(DH) embedded in (being a subset of) a
3D cubic lattice L(3), i.e., L̃(DH) ⊂ L(3), with m-holes being removed from L(3). Here,
DH represents the Hausdorff dimension of the fractal (space) lattice, and the tilde
symbols will always indicate the fractal case from here on. In order to correct the
measurement noise, we need to perform d rounds [4] of error correction, where d is the
code distance. The corresponding space-time code is defined on the space-time lattice
L̃(DH) × lt embedded in a 4D hypercubic lattice L(4) ≡ L(3) × lt. Here, lt represents a
1D lattice along the time direction with d edges and d + 1 vertices.

On the 4D space-time lattice L̃(DH) × lt, a qubit error event occurs on a space edge
ls.p. at a certain time step t. These space edges are just edges belonging to the space
lattice L̃(DH). On the other hand, a syndrome (X-stabilizer measurement) is located
at a vertex (v, t) on the space-time lattice, where v corresponds to the vertex label on
the space lattice LF SC and t labels the time step. This syndrome is hence denoted by
s(v, t) ∈ {0, 1}. Now we define the modified syndrome at time t to be the difference
between syndromes at time t+1 and time t on the same vertex v on the space lattice, i.e.,
s′(v, t) = s(v, t + 1) − s(v, t). For the special case of t = d, we assign s′(v, d) = s(v, d).
Therefore, a measurement error at time t and vertex v of the space lattice corresponds
to a time edge lT connecting the space-time vertex (v, t + 1) and (v, t). For example, if
a single measurement error occur on this time edge lT, both its neighboring syndromes
s′(v, t) and s′(v, t + 1) will be highlighted, i.e., s′(v, t) = s′(v, t + 1) = 1.

As we see, both the qubit and measurement errors occur on the edges (1-cells) of the
4D space-time lattice. In the absence of measurement errors (q = 0), qubit errors just
reside on the edges of the 3D space lattice. Therefore, we can describe generic errors by
an error chain E, which mathematically corresponds to a 1-chain of the cell complex,

5We suppress the subscript Z of the notation pZ used for the Z-error rate in the main text
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i.e., the 4D or 3D lattice 6. The error chain E is characterized by a function nE(e)
that takes an edge e to the Z2-coefficient nE(e) ∈ {0, 1}, where nE(e) = 1 corresponds
to the edge being occupied by the error chain E. For simplicity, we just consider the
isotropic case that qubit and measurement error rates are the same, i.e., p = q. The
probability that error chain E occurs is

Pr(E) =
∏
e

(1 − p)1−nE

=
[∏

e

(1 − p)
]∏

e

(
p

1 − p

)nE(e)

. (6)

The boundary of the error chain E is the collection of highlighted modified syndromes
on the vertices (0-cells) denoted by S ′, i.e., S ′ = ∂E, which is a 0-chain of the cell
complex.

Given the measured syndrome information S ′, the MWPM decoder needs to guess
a recovery chain Emin which is in the same homology class as the actual error chain
E. First, the recovery chain Emin should also have the highlighted syndromes S ′ as its
boundary, i.e.,

∂Emin = S ′ = ∂E. (7)

Moreover, the recovery succeeds if Emin is in the same homology class as E, which
means the following condition needs to be satisfied:

E + Emin = ∂F, (8)

where the 1-chain E + Emin is a cycle, i.e., with no boundary: ∂(E + Emin) = 0. In
addition, this 1-cycle E + Emin also needs to be the boundary of a collection of faces
F (2-cells), i.e., ∂F , and is hence contractible, i.e., homologically trivial. The recovery
fails if E+Emin contains homologically non-trivial cycles which wrap around a 3-torus or
connect two different e-boundaries on L̃(DH). From now on, we focus on the case of a 3-
torus, i.e., with periodic boundary condition. The threshold with external e-boundaries
is expected to be similar.

Apart from an overall normalization, the error chain E occurs with probability
( p

1−p
)|E| according to Eq. (6), where |E| denotes the total number of edges on the error

chain E, i.e., the chain length. The MWPM decoder aims to find Emin that maximizes
this probability, which is equivalent to minimizing |E| log

(
1−p

p

)
and effectively the chain

length |E| for fixed p.
Now we consider bounding the likelihood of homologically non-trivial cycles being

contained in E+Emin, which corresponds to the logical failure rate of the MWPM
decoder.

We consider a particular cycle C on the space-time lattice L̃(DH) × lt with |C| ≡ l
edges. The actual error chain E contains |E| edges, and the estimated recovery chain

6From now on, we suppress the subscript of the error chain E1 used in the main text for clarity.
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Emin from the MWPM algorithm contains |Emin| edges. We then ask the probability
that the cycle C is contained in E + Emin.

First, we can get the following inequality for the chain length:

|E| + |Emin| ≥ |E + Emin| ≥ |C| ≡ l. (9)

The first “ ≥ ” is due to the fact that some of the edges of E and Emin can overlap and
cancel at their binary (Z2) sum E + Emin, while the equality holds when there is no
overlap between E and Emin, i.e., supp(E) ∩ supp(Emin) = 0, where supp(E) denotes
the support of the error chain E, i.e., the set of edges {l} with nE(l) = 1. The second
“ ≥ ” simply attributes to the fact that C is a subset of E +Emin. Therefore, we can get
the following inequality between the chain probability (up to a normalization constant)
of E, Emin and C: (

p

1 − p

)|Emin| (
p

1 − p

)|E|

≤
(

p

1 − p

)l

. (10)

Moreover, since we have taken Emin to be the minimal-length chain with the boundary
being the highlighted syndrome set S ′, we have |Emin| ≤ |E| and hence

(
p

1 − p

)|E|

≤
(

p

1 − p

)|Emin|

. (11)

The combination of Eq. (10) and Eq. (11) leads to the following inequality:

(
p

1 − p

)|E|

≤

( p

1 − p

)l
 1

2

. (12)

Now we consider the probability P (l) that a particular cycle with l edges is contained
in E + Emin. There are in total 2l ways to distribute errors (edges contained in E) at
locations on the specified chain since each edge either has the error or not. For specified
error locations, the probability for these errors to occur is

p|E|(1 − p)l−|EC | = (1 − p)l

(
p

1 − p

)|EC |

. (13)

where EC is the part of E that overlaps with C. Therefore, we get the following
probability

Pr(l) = 2l(1 − p)l

(
p

1 − p

)|EC |

≤ 2l(1 − p)l

(
p

1 − p

)|E|

≤ 2lp
l
2 (1 − p) l

2 , (14)

Accepted in Quantum 2023-08-31, click title to verify. Published under CC-BY 4.0. 27



where the inequality follows from Eq. (12).
Next, we can bound the probability of any cycle with l edges contained in the chain

E + Emin via path counting. The cycle C can be considered as a walk on a lattice
which begins and ends at a randomly chosen point on the cycle. We need to estimate
the likelihood that the closed walk is homologically nontrivial (non-contractible). The
walks corresponds to connected chain of errors and visit any given edge at most once. It
will be convenient to further restrict the walks to be self-avoiding walks (SAWs) which
visit any given vertex at most once, with the exception of the starting/ending point
which is revisited. Given any homologically non-trivial closed walk, one can obtain
a closed SAW (self-avoiding polygon: SAP) by eliminating some homologically trivial
cycles from the walk, which does not change the homology of the cycle and hence the
presence or absence of the logical error.

In order to estimate the logical error rate, we consider SAPs lying between two
time slices separated by time steps T , and assume T = O(d), where d = L is the
code distance which also equals the linear system size in this code family. We denote
the number of SAPs with H space (horizontal) edges and V time (vertical) edges by
NSAP(H, V ), and one can express the total number of edges as the sum of the number
of the two types of edges: |C| = H + V . A self-avoiding random walk can start at
any of the dn−1T sites on the n-dimensional space-time lattice. In the case of SAP, the
starting point can be chosen to be any of the points on the SAP. The probability that
E + Emin contains any SAP with H space edges and V time edges obeys the following
inequality:

PrSAP(H, V ) ≤ dn−1TNSAP(H, V )2H+V p
H+V

2 (1 − p)
H+V

2 . (15)

The minimal homologically nontrivial cycle needs to contain at least d space (horizontal)
edges, i.e., H ≥ d. Therefore, we can bound the logical failure rate as

Prfail ≤
∑
V

∑
H≥d

PrSAP(H, V )

≤ dn−1T
∑
V

∑
H≥d

NSAP(H, V )[4p(1 − p)]
H+V

2 . (16)

Now we aim to obtain a bound for the fault-tolerant threshold. The number of SAPs
does not distinguish the difference between space (horizontal) and time (vertical) edges,

and we hence have NSAP(H, V ) ≡ N
(n)
SAP(l), where n denotes the dimension of the space-

time lattice and l denotes the total number of edges on the SAP. For a (hyper)cubic
lattice in n dimensions, the first step of the SAP can choose any of the 2n directions,
while the subsequent steps will have at most 2n − 1 directions due to self avoidance.
Therefore, one can get the following naive bound

N
(n)
SAP(l) ≤ 2n(2n − 1)l−1. (17)

However, there exist tighter bounds, found using results in self-avoiding polygons for
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the (hyper)cubic lattice in n = 2, n = 3 and n = 4 [4]:

N
(2)
SAP(l) ≤ P2(l)(µ2)l, µ3 ≈ 2.638, (18)

N
(3)
SAP(l) ≤ P3(l)(µ3)l, µ3 ≈ 4.684, (19)

N
(4)
SAP(l) ≤ P4(l)(µ4)l, µ4 ≈ 6.77, (20)

where P2(l), P3(l) and P4(l) are polynomials.
In the fault-tolerant case, we first consider the 4D hypercubic space-time lattice

L(4) ≡ L(3) × lt, and we can hence substitute Eq. (20) into Eq. (16) and obtain

Pr
(3+1)
fail ≤ d3T

∑
V

∑
H≥d

P4(H + V )[4µ2
4p(1 − p)]

H+V
2 . (21)

Using H + V ≥ d and imposing the following condition

p(1 − p) < (4µ2
4)−1, (22)

we obtain the following inequality

Pr
(3+1)
fail ≤ d3T

∑
V

∑
H≥d

P4(H + V )[4µ2
4p(1 − p)]d/2

< Q4(d, T )[4µ2
4p(1 − p)]d/2, (23)

where Q4(d, T ) is some polynomial of d and T . The second inequality in Eq. (23)
comes from the fact that there are in total 2d3T space edges and d3T time edges in the
4D hypercubic space-time lattice, so there are at most 2d6T terms in the sum in the
first line of Eq. (23) which is absorbed into Q4(d, T ). Therefore, as long as Eq. (22)
is satisfied, the logical failure rate Prfail decays exponentially with the code distance d
and hence approaches 0 in the thermodynamic limit d → ∞. One can then obtain an
analytic lower bound of the fault-tolerant threshold of the usual 3D surface code based
on Eq. (22) [4]:

p
(3+1)
th > 0.00548. (24)

Now we switch to the case of the fractal surface code defined on the space-time lattice
L̃(DH) × lt which is embedded in the 4D hypercubic space-time lattice L(4)≡L(3) × lt.
The only difference from the hypercubic case is that we need to replace N

(4)
SAP(l) in

Eq. (16) with Ñ
(DH+1)
SAP (l), which represents the total number of self-avoiding polygon

on the fractal space-time lattice with Hausdorff dimension DH + 1. Since the fractal
space-time lattice is just a subset of the 4D hypercubic lattice, i.e., L̃(DH) × lt ⊂ L(4)

with edges in the hole regions being removed, some SAPS present in the hypercubic
lattice is hence removed in the fractal lattice case. Therefore, the number of SAPs in the
fractal space-time lattice must be strictly smaller than the SAPs in the 4D hypercubic
lattice, i.e.,

Ñ
(DH+1)
SAP (l) < N

(4)
SAP(l). (25)
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Based on Eq. (25) and the bound in Eq. (16), one gets the following bound:

P̃r
(DH+1)
fail < Pr

(3+1)
fail . (26)

where P̃r
(DH+1)
fail and Pr

(3+1)
fail represent the logical failure rate of the fractal surface code

with Hausdorff dimension DH and the 3D surface code respectively in the fault-tolerance
context. Since one has Pr

(3+1)
fail → 0 in the thermodynamic limit (d → ∞) and below

the fault-tolerant error threshold, i.e., p < p
(3+1)
th , one will also get P̃r

(DH+1)
fail → 0 in the

thermodynamic limit due to the bound in Eq. (26). This proves that the fractal surface
code is also fault-tolerant below a certain threshold. Furthermore, the fault-tolerant
threshold for the fractal surface code must be strictly larger than the 3D surface code,
i.e.,

p̃
(DH+1)
th > p(3+1), (27)

since for any p < p(3+1) one always has P̃r
(DH+1)
fail → 0 in the thermodynamic limit.

When the Hausdorff dimension of the fractal code is asymptotically approaching 3D,
the threshold will also approach to that of the 3D surface code, i.e., limDH→3 p̃

(DH+1)
th →

p(3+1). According to the derived bound in Eq. (24), we can also analytically bound the
error threshold for the fractal surface code, i.e.,

p̃
(DH+1)
th > 0.00548 (analytic). (28)

Meanwhile, existing numerical simulation in the literature gives an estimation of
the fault-tolerant threshold of the 3D surface code p(3+1) ≈ 0.0125 [40] under the phe-
nomenological noise model. Therefore, according to the bound in Eq. (27), we can
improve the lower bound for the fractal code under phenomenological noise to be

p̃
(DH+1)
th > 0.0125 (numerical). (29)

Next, we consider the upper bound and asymptotic limit of the family of fractal
surface codes with Hausdorff dimension DH asymptotically approaching 2 + ϵ. We first
consider the fault-tolerant threshold of a 2D surface code, which effectively corresponds
to a matching problem on a 3D cubic space-time lattice L(3) ≡ L(2) × lt, where L(2)

represents the 2D space lattice. Similar to the derivation of Eq. (23), we can obtain the
following bound:

Pr
(2+1)
fail < Q3(d, T )[4µ2

3p(1 − p)]d/2, (30)
given the following condition:

p(1 − p) < (4µ2
3)−1. (31)

Here, Q3(d, T ) is some polynomial of d and T . This in turn leads to the following
analytic bound on the fault-tolerant threshold of the 2D surface code.

p
(2+1)
th > 0.0114. (32)
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Now when we gradually reduce the fractal dimension DH in the family of fractal surface
codes defined on the fractal cube geometry, the fractal space-time lattice L̃DH × lt is
asymptotically approaching a 3D cubic lattice, i.e.,

L̃(2+ϵ) × lt → L(2) × lt = L(3), (33)

which means all the quantitative properties of the fractal lattice is asymptotically ap-
proaching those of the cubic lattice, including the scaling of the number of SAP:

lim
ϵ→0

Ñ
(2+ϵ+1)
SAP (l) ∼ N

(3)
SAP(ℓ) (34)

This in turn leads to the following asymptotic threshold:

lim
ϵ→0

p̃
(2+ϵ+1)
th = p

(2+1)
th , (35)

and the upper bound for the whole family of fractal surface code

p̃
(DH+1)
th < p

(2+1)
th . (36)

According to Eq. (32) and (34), we can get the following strict bound on the asymptotic
threshold:

lim
ϵ→0

p̃
(2+ϵ+1)
th > 0.0114 (analytic). (37)

Meanwhile, existing numerical MWPM simulation gives an estimation of the fault-
tolerant threshold of the 2D surface code p(2+1) ≈ 0.029 [4, 33] under the phenomeno-
logical noise model. Therefore, we can get an estimation based on the numerical value
as:

lim
ϵ→0

p̃
(2+ϵ+1)
th ≈ 0.029 (numerical). (38)

In sum, we have shown that the fault-tolerant threshold of the fractal surface codes
under pure Pauli-Z and measurement errors is strictly higher than the 3D surface
code, and asymptotically approaching the value of the 2D surface code, which implies
a significant practical advantage due to its additional ability of performing logical CCZ
gate.

A.2 Code capacity MWPM thresholds
Finally, we also discuss the code-capacity error threshold, i.e., in the absence of mea-
surement error (q = 0), which is numerically studied in the main text. In this case, we
only consider the space lattice. For the 3D and 2D surface codes, the thresholds corre-
spond to the matching problems on a 3D lattice L(3) and 2D lattice L(2) respectively.
Similar to the derivation of Eq. (23), we can obtain the following bounds:

Pr
(3)
fail <Q3(d, T )[4µ2

3p(1 − p)]d/2, (39)
Pr

(2)
fail <Q2(d, T )[4µ2

2p(1 − p)]d/2, (40)
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given the following conditions respectively:

p(1 − p) <(4µ2
3)−1, (41)

p(1 − p) <(4µ2
2)−1. (42)

We hence get the following analytic bound on the code-capacity error thresholds for 3D
and 2D surface codes:

p
(3)
th >0.0114, (43)

p
(2)
th >0.0373. (44)

Similar to Eq. (27) and Eq. (36) and the corresponding arguments in the fault-tolerant
scenario, we obtain the upper and lower bound of the code-capacity error threshold
of the family of fractal codes with Hausdorff dimension 2 < DH < 3 in terms of the
thresholds of the 2D and 3D surface codes, i.e.,

p
(3)
th < p̃

(DH)
th < p

(2)
th . (45)

We hence get the following analytic lower bound:

p̃
(DH)
th > 0.0114 (analytic) (46)

and the analytic bound on the asymptotic code-capacity threshold at DH = 2 + ϵ:

lim
ϵ→0

p̃
(2+ϵ)
th > 0.0373 (analytic). (47)

Meanwhile, existing numerical simulation gives the estimate of the code-capacity thresh-
old of the 3D surface code p(3) ≈ 0.029 under the phenomenological noise model [33, 40],
which is exactly the same as the fault-tolerant threshold of the 2D surface code p(2+1)

mentioned above. On the other hand, the numerical estimate of the code-capacity
threshold of the 2D surface code is p(2) ≈ 0.1031 [33]. Therefore, we get the following
numerical lower bound of the class of fractal surface codes:

p̃
(DH)
th > 0.029 (numerical), (48)

and the numerical estimation on the asymptotic code-capacity threshold:

lim
ϵ→0

p̃
(2+ϵ)
th ≈ 0.1031 (numerical). (49)

Indeed, our numerical simulation on the fractal FC(3, 1) in the main text shows that

p̃
(DH=2.966)
th > p

(3)
th ≈ 0.029.
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B Counting argument for topological degeneracy from m-holes
In the main text, we presented a homological argument to show that the m-holes do not
encode any logical information. Here, we confirm that via a simple counting argument.

A single L × L × L m-hole changes the number of Z stabilizers NZ to N ′
Z = NZ −

3L2(L − 1) since there are 3(L − 1) planes from which L2 plaquette operators are
removed. The number of X stabilizers changes from NX to N ′

X = NX − (L − 1)3

because (L−1)3 operators lose all their qubits inside the hole. The number of relations
among the Z and X stabilizers also changes from RZ and RX to R′

Z = RZ − (L3 − 1)
and R′

X = RX respectively. The L3 − 1 comes from the relations on L3 cubes that are
removed but leaving a single relation coming from plaquette operators on the surface of
the m-hole. The number of physical qubits changes from Nq to N ′

q = Nq − 3L(L − 1)2

since there are 3L planes, each with (L − 1)2 physical qubits, inside the L × L × L
m-hole. Thus, we have the number of encoded qubits k′ as

k′ = N ′
q − (N ′

S − R′)
= N ′

q − (N ′
Z + N ′

X − R′
Z − R′

X)
= Nq − 3L(L − 1)2

− (NZ − 3L2(L − 1) + NX − (RZ − L3 + 1) − RX)
= Nq − (NS − R)
= k

where NS = NZ + NX , R = RZ + RX and k is the number of encoded qubits before
making the m-hole. The argument generalizes to Lx ×Ly ×Lz m-holes and an arbitrary
number of them.
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C Sweep decoder threshold plots for rounds N = 0, 32
Below, we show the threshold plots for levels ℓ = 1, 2 of the FSC for the number of
rounds of measurements as N = 1, 33.
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Figure 10: Sweep decoder performance for N = 0, 32 rounds of stabilizer measurements for levels
l = 1, 2 of the FSC. Logical failure rate is plotted as a function of the physical error rate pX . The
measurement error rate q is set to be same as the physical error rate pX ..
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