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We generalize the Quantum Approxi-
mate Optimization Algorithm (QAOA)
of Farhi et al. (2014) to allow for arbi-
trary separable initial states with cor-
responding mixers such that the start-
ing state is the most excited state of
the mixing Hamiltonian. We demon-
strate this version of QAOA, which we
call QAOA-warmest, by simulating Max-
Cut on weighted graphs. We initial-
ize the starting state as a warm-start us-
ing 2 and 3-dimensional approximations
obtained using randomized projections
of solutions to Max-Cut’s semi-definite
program, and define a warm-start de-
pendent custom mixer. We show that
these warm-starts initialize the QAOA
circuit with constant-factor approxima-
tions of 0.658 for 2-dimensional and
0.585 for 3-dimensional warm-starts for
graphs with non-negative edge weights,
improving upon previously known triv-
ial (i.e., 0.5 for standard initialization)
worst-case bounds at p = 0. These
factors in fact lower bound the ap-
proximation achieved for Max-Cut at
higher circuit depths, since we also show
that QAOA-warmest with any separa-
ble initial state converges to Max-Cut
under the adiabatic limit as p → ∞.
However, the choice of warm-starts sig-
nificantly impacts the rate of conver-
Swati Gupta: email of the corresponding author is
swatig@mit.edu

gence to Max-Cut, and we show em-
pirically that our warm-starts achieve
a faster convergence compared to exist-
ing approaches. Additionally, our nu-
merical simulations show higher qual-
ity cuts compared to standard QAOA,
the classical Goemans-Williamson algo-
rithm, and a warm-started QAOA with-
out custom mixers for an instance li-
brary of 1148 graphs (upto 11 nodes)
and depth p = 8. We further show that
QAOA-warmest outperforms the stan-
dard QAOA of Farhi et al. in experi-
ments on current IBM-Q and Quantin-
uum hardware.

1 Introduction

In order to realize a quantum advantage,
many researchers have been considering the
usage of NISQ devices [1, 2] for the pur-
poses of solving difficult problems in com-
binatorial optimization. Of particular inter-
est is the Quantum Approximate Optimiza-
tion Algorithm (QAOA), a hybrid quantum-
classical algorithm developed by Farhi et al.
that can be applied to a large variety of combi-
natorial optimization problems [3]. We study
the use of QAOA to solve one of the most
famous NP-hard combinatorial optimization
problems, called Max-Cut.1 Given a weighted

1Although this work focuses on Max-Cut, our ap-
proach can be applied to any suitable combinatorial
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graph G = (V,E), with vertex set V = [n],
edge set E ⊆

(V
2
)

and weights w : E → R, the
Max-Cut problem is to find a partition of V
into two disjoint sets S, V \ S ⊆ V , such that
the total weight of the edges across the parti-
tion, i.e. cut(S) :=

∑
e∈E we·1[e ∈ S×(V \S)],

is maximized. The Max-Cut of G is denoted
by Max-Cut(G) = maxS⊆V cut(S).

In the standard QAOA algorithm, qubits
are initialized in the |+⟩ state along the x-
axis of the Bloch sphere, tensorized n times,
and QAOA’s mixing Hamiltonian rotates each
qubit about this same axis. The promise
of this approach lies in Farhi et al.’s [3] re-
sult that establishes a connection between
standard QAOA and quantum adiabatic com-
puting, showing that with increased circuit
depth, standard QAOA converges to the Max-
Cut. This connection relies on the initial state
of standard QAOA being the highest energy
eigenstate of the mixing Hamiltonian.

We propose to initialize the circuit with sep-
arable initial states (other than |+⟩⊗n) gener-
ated using classical relaxations of the Max-
Cut problem; following classical optimization
literature, we refer to these states as warm-
starts. We modify the mixing Hamiltonians in
the QAOA ansatz in a way dependent on the
initial state, so that the adiabatic assumptions
hold; we call these mixing Hamiltonians cus-
tom mixers, and call the new QAOA variant
QAOA-warmest. We show that like QAOA,
QAOA-warmest converges to the Max-Cut
with increased circuit depth (Proposition 1).

We further note that the convergence rate
of QAOA-warmest is heavily dependent on
the separable initial state used. In this
work, we focus on two approaches for warm-
starting that generate classically-inspired sep-
arable initial states which (empirically) con-
verge faster compared to existing initializa-
tions: (1) low-dimensional projections of op-
timal solutions to the Goemans-Williamson
(GW) semidefinite program (SDP) [5], and (2)

optimization problem by converting a generic QUBO
instance into a Max-Cut instance [4], and then apply-
ing the same techniques. This conversion requires only
one additional qubit; however, such a conversion is not
necessarily approximation-preserving.

locally optimal solutions to low-dimensional
Burer-Monteiro [6] relaxations of the Max-
Cut problem. Using a diverse library of 1148
graphs (up to 11 nodes), we show through nu-
merical simulations that QAOA-warmest that
uses our two types of warm-starts outper-
forms the classical Goemans-Williamson algo-
rithm and standard QAOA even at low-circuit
depths around p = 4. Such a low-depth for
this performance does not hold for any ran-
dom initialization on the Bloch sphere. We
further tested QAOA-warmest in the presence
of noise using Qiskit’s built-in modules and
hardware calibration data [7], and on IBM’s
16-qubit Guadalupe device and Quantinuum’s
20-qubit devices. Our simulations demon-
strate that QAOA-warmest is robust and still
yields high (instance-specific) approximation
ratios in such noisy regimes.

Additionally, we provide theoretical perfor-
mance guarantees at depth p = 0 in the case
that projected GW solutions are used. Specif-
ically, for positive-weighted graphs, we show
(Theorem 2) that, in expectation, the value
of the cut obtained from hyperplane round-
ing of the projected GW solutions is at least
0.878 of the optimal cut value (just like GW).
We further show that quantum measure-
ment of the projected solutions (i.e. depth-0
QAOA-warmest) yields at least a 3

4(0.878) ≈
0.658-approximation and 2

3(0.878) ≈ 0.585-
approximation for dimensions k = 2 and k =
3 respectively. These guarantees also serve
as a lower bound for what can be achieved
with higher depth since, like standard QAOA,
our approach also has monotonically increas-
ing expected cut-quality with increased circuit
depth for any instance.

This paper presents the first warm-start ap-
proach for QAOA (for Max-Cut) which simul-
taneously (1) provides a nontrivial constant-
factor approximation ratio at depth p = 0, (2)
satisfies provable convergence to Max-Cut as
circuit depth increases, and (3) enjoys a fast
convergence rate, as shown through numeri-
cal simulations and experiments on quantum
hardware. Some of the previous approaches
[8, 9] consider warm-start initializations using
perturbations of a single-cut (obtained for ex-

2



ample, using GW algorithm). While such ini-
tializations theoretically yield higher approx-
imation ratio of 0.878 using quantum sam-
pling at depth p = 0, this warm-start has a
much slower convergence rate in simulations
(see Table 1). Therefore, we believe that our
approach is promising for near-term NISQ de-
vices.

1.1 Related Work

Since Farhi et al.’s [3] seminal paper in
2014, many have researched and analyzed
the QAOA algorithm. Many empirical stud-
ies have been performed including the effects
of different parameter initialization strategies
[10–14], the performance of QAOA in the con-
text of devices with superconducting qubits
with limited connectivity [15–17],the use of
machine learning to determine (for specific
instances) whether Max-Cut QAOA would
yield better cuts compared to the classical
GW algorithm [18], the effectiveness of differ-
ent encoding schemes for objectives involving
higher-order terms with more than 2 qubits
[19], the effect of various graph properties on
the performance of QAOA [20], and the use
of QAOA to generate highly squeezed states
which are useful in the context of quantum
metrology [21].

Many researchers have also analyzed QAOA
from a more theoretical perspective. Shay-
dulin et al. [22] gives a series of results re-
garding the classical symmetries in the objec-
tive function and how those symmetries are
reflected in the QAOA dynamics. In their
seminal paper, Farhi et al. show that depth-
1 QAOA achieves an approximation ratio of
0.694 for Max-Cut on 3-regular graphs [3].
Wurst and Love show that at depth-2, this
approximation ratio improves to 0.7559 for
Max-Cut QAOA on 3-regular graphs [23]. For
quantum devices with limited connectivity,
Farhi et al. [24] show that a variation of Max-
Cut QAOA on 3-regular graphs on a device
whose native graph is a square grid achieves an
approximation ratio of 0.5293 without the use
of swap operations. Others have also proven
limitations of the standard QAOA algorithm

as well: Bravyi et al. [25] show that, for all
d ≥ 3, there exists a sequence of d-regular bi-
partite graphs such that depth-p QAOA with
p < (1/3 log2 n− 4)d−1 on such instances pro-
duces a cut (in expectation) whose value is at
most 5

6 +
√

d−1
3d , meaning that, in the worst

case, constant-depth QAOA for Max-Cut is
inferior to the classical Goemans-Williamson
algorithm as limd→∞

Ä
5
6 +

√
d−1
3d

ä
= 5

6 ≈
0.833 < 0.878. Farhi et al. [26] show a simi-
lar result when QAOA is applied to the Max
Independent Set problem2 and Bravyi et al.
[27] give similar results for a recursive variant
of QAOA applied to the Max-k-Cut problem.3

Hastings [28] defines a notion of a “local" clas-
sical algorithm and shows that, for triangle-
free d-regular graphs with 2 ≤ d ≤ 1000, there
exists4 a d-dependent local classical algorithm
for Max-Cut with a provably better approx-
imation ratio compared to depth-1 QAOA.
Marwaha [29] extended this result, showing
that for each 2 ≤ d ≤ 500, there exists local
classical algorithms that yields a better ex-
pected cut compared to depth-2 QAOA for
all d-regular graphs with girth greater than 5.
Barak and Marwaha [30] have continued this
line of research, showing that for every one-
local algorithm (classical or quantum), that
the maximum cut achieved is at most 1

2 + 1/
√

2
d

of the maximum cut for d-regular graphs with
girth greater than 5 and that there exists
a k-local algorithm with approximation ratio
1
2 + 2/π

d −O( 1√
k
) for d-regular graphs with girth

greater than 2k+1. However, general approx-
imation guarantees obtained by the QAOA al-
gorithm still remain elusive.

The above results also suggest that in order

2Given a graph G = (V, E), the goal of the Max
Independent Set problem is to find S ⊆ V , with |S|
as large as possible, such that for all vertices u, v ∈ S,
the edge (u, v) ∈ E.

3In the Max-k-Cut problem, one is given a weighted
graph G = (V, E) with weights w : E → R and the
goal is to partition the vertices into k disjoint groups
so that the sum of weights of edges across partitions
is maximized

4Numerical evidence suggests that the results of
Hastings [28] and Marwaha [29] hold for all d; however,
no formal proof is given.
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to realize some kind of quantum advantage,
more information beyond the standard QAOA
algorithm might be needed. Recent work has
considered modifications and variations of the
QAOA algorithm itself, as in this work, which
we discuss next.

The closest works related to this paper are
those by Tate et al. [31] and Egger et al.
[9], where the authors have explored multiple
approaches for warm-starting QAOA. Tate et
al. [31] considered warm-starting QAOA us-
ing 2 and 3-dimensional Burer-Monteiro lo-
cally optimal solutions for Max-Cut; how-
ever, their method plateaus even at low cir-
cuit depths of p = 1 for some initializations,
and it is unable to improve the cut quality
for some instances. For the Max-Cut prob-
lem, Egger et al. [9] constructed the initial
quantum state by (non-trivially) mapping a
single specific cut (S, V \ S) (obtained via
the Goemans-Williamson algorithm or possi-
bly other means) to an initial quantum state.
Egger et al. also modified the mixing Hamil-
tonian so that at depth p = 1 (with the right
choice of QAOA variational parameters), the
cut (S, V \S) is recovered; however, there is no
evidence to suggest that such an approach will
converge to the optimal solution for depth p →
∞. They further proposed a different con-
tinuous warm-started QAOA for Quadratic
Unconstrained Binary Optimization (QUBO)
problems, which enjoys convergence guaran-
tees. For certain classes of QUBO’s, the bi-
nary variables can be relaxed to be in the
interval [0, 1] to obtain a convex quadratic
program whose optimal solution can then be
mapped to the Bloch sphere. Our mixer is a
generalization of the mixer used in this par-
ticular approach by Egger et al.; however, the
initialization scheme is quite different. In par-
ticular, their continuous warm-started QAOA
approach cannot be directly applied to Max-
Cut as the corresponding relaxed quadratic
program is not convex.

Recent work by Cain et al. [8] further ex-
plored convergence properties of warm-starts,
when augmented with standard mixers. They
showed using a perturbative approach that
standard QAOA with single-cut warm-starts

(i.e., each qubit is initialized at |0⟩ or |1⟩) does
not show any improvement in the approxima-
tion ratio, even when the circuit depth is in-
creased. This result is interesting in the con-
text of our work, since we find that (1) using
custom mixers, one can guarantee convergence
as long as the initialization is not at a single-
cut, and (2) warm-starts that are perturba-
tions of single-cut initializations (e.g., each
qubit is initialized at RY (θ∗) |0⟩ or RY (π−θ∗)
for some small θ∗ where RY (θ) is a single-
qubit rotation about the y-axis by angle θ)
converge very slowly, in computations, even
with custom mixers. Our work therefore com-
plements the existing work and clarifies what
kind of warm-starts are useful.

Additionally, other works have explored dif-
ferent kind of modifications of the QAOA
ansatz. Farhi et al. [24] considered having
separate variational parameters for each ver-
tex and edge. Hadfield et al. [32] and Wang et
al. [33] considered versions of QAOA that are
suitable for combinatorial optimization prob-
lems with both hard constraints (that must
be satisfied) and soft constraints (for which
we want to minimize violations). Zhu et al.
[34] modify QAOA such that the ansatz is ex-
panded in an iterative fashion with the mix-
ing Hamiltonian being allowed to change be-
tween iterations. Bravyi et al. [25] proposed
a recursive QAOA approach that decreases
the instance size at each iteration; Egger et
al. [9] also consider a similar recursive ver-
sion of their approaches. Bärtschi et al. [35]
and Jiang et al. [36] consider modifications of
QAOA inspired by Grover’s (quantum) algo-
rithm [37] for fast database search. For the
scope of this work, we do not consider these
alternate approaches; however, it may serve
as an interesting direction for future work as
QAOA-warmest can likely be used in conjunc-
tion with these other approaches.

1.2 Background

1.2.1 The Quantum Approximate Optimiza-
tion Algorithm

First, we review QAOA in the context of the
Max-Cut problem. QAOA is performed on n
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qubits (with n being the number of vertices in
the input graph) with the final measurement
being a bitstring of length n corresponding to
a cut (S, V \ S) with S = {i : ith bit is 0}.

For depth-p QAOA, the quantum circuit
alternates between applying a cost Hamilto-
nian HC = 1

2
∑

(i,j)∈E wij(1 − σz
i σ

z
j ) and a

mixing Hamiltonian HB =
∑

i∈[n] σ
x
i . Here,

σx, σy, σz are the standard Pauli operators
and σk

i is the Pauli operator applied to qubit i
for k ∈ {x, y, z}. The cost and mixing Hamil-
tonians are applied a total of p times to gen-
erate a variational state,

|ψp(γ, β)⟩ (1)
= e−iβpHBe−iγpHC · · · e−iβ1HBe−iγ1HC |s0⟩ ,

where |s0⟩ is the initial state and γ =
(γ1, . . . , γp), β = (β1, . . . , βp) are variational
parameters to be optimized. For standard
QAOA, the initial state is given by |s0⟩ =
|+⟩⊗n which corresponds to an equal super-
position of all 2n possible cuts in the graph.

Finally, sampling from |ψp(γ, β)⟩ yields a
bit-string corresponding to a cut in the graph.
We let Fp(γ, β) denote the expected cut value
from sampling |ψp(γ, β)⟩, i.e.,

Fp(γ, β) = ⟨ψp(γ, β)|HC |ψp(γ, β)⟩ .

If, for each p, we choose γ, β optimally, then
the expected value of the cut tends to the
Max-Cut as p → ∞ [3].

In practice, the optimal choice of γ, β is un-
known in advance and thus a hybrid classical-
quantum hybrid loop is often used to find val-
ues of γ and β that yield high expectation val-
ues. The initialization of γ and β in these op-
timization routines has been investigated [10–
14]; however, for simplicity, we initialize γ and
β near the origin for our experiments as dis-
cussed in Section 4.

1.2.2 Classical Optimization Algorithms

We next review some classical optimization al-
gorithms for Max-Cut. It is useful to reformu-
late the Max-Cut problem as follows:

Max-Cut(G) = 1
4 max

x∈{±1}n

∑
(i,j)∈E

wij(xi − xj)2.

(2)

Given a solution x to the maximization above,
this yields the cut (S, V \ S) with S = {i :
xi = 1}. For positive integer k, the above
formulation can then be relaxed as follows:

max
1
4

∑
(i,j)∈E

wij∥xi − xj∥2 (3)

subject to ∥xi∥ = 1, ∀i ∈ V,

xi ∈ Rk, ∀i ∈ V.

When k = n, the problem can be reformu-
lated as a convex semidefinite program (SDP)
which is the formulation used by the sem-
inal Goemans-Williamson (GW) algorithm
[5], which yields a 0.878-approximation to
Max-Cut for graphs with non-negative edge
weights.

Burer and Monteiro proposed solving the
relaxation for 1 < k < n (which we de-
note by BM-MCk), using parametric forms
for points on the k − 1-dimensional sphere
[6]. This leads to a program that is no longer
convex and thus one can not expect to eas-
ily find the global optima. However, high-
quality local optima can be found by utiliz-
ing first and second order optimization meth-
ods. In general, the Burer-Monteiro tech-
nique has been found to work well in prac-
tice, even when k = 2 [38]; however, in the-
ory, Mei et al. [39] show that hyperplane
rounding of a locally optimal BM-MCk solu-
tion achieves a 0.878(1 − 1

k−1) fraction of the
optimal cut, yielding a 0-approximation and
a 0.439-approximation for dimensions k = 2
and k = 3 respectively.

For ease of notation, given a (feasible) BM-
MCk solution x, we let

HP(x) =
∑

(i,j)∈E

1
π

arccos(xi · xj),

denote the expected cut value obtained from
performing hyperplane rounding on x [5] and
we let

BM-MCk(x) =
∑

(i,j)∈E

1
4∥xi − xj∥2,

denote the BM-MCk objective at x. Lastly,
we say that the solution x is κ-approximate
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if HP(x) ≥ κMax-Cut(G) and similarly,
x is considered κ-close if BM-MCk(x) ≥
κMax-Cut(G).

1.2.3 Approximation Ratio

For this work, we adopt the same definition
and notation for the (instance-specific) ap-
proximation ratio (AR) as discussed in Tate
et al. [31]. Specifically, for a graph G and al-
gorithm A, the (instance-specific) AR is given
by,

αA,G = EA,G − Min-Cut(G)
Max-Cut(G) − Min-Cut(G) ; (4)

where EA,G is the expected cut value (either
from hyperplane rounding of a classical so-
lution or quantum measurement of a quan-
tum state) and Min-Cut(G) is the (possi-
bly trivial) minimum cut in the graph G.
This definition is chosen as a means of “nor-
malizing" the approximation ratio to lie in
the interval [0, 1], even in the case of graphs
with both positive and negative edge weights.
For positive-weighted graphs, we have that
Min-Cut(G) = 0, in which case, the defi-
nition of αA,G reduces to the “typical" defini-
tion of approximation ratio often seen in the
classical optimization literature. The worst-
case AR αA for an algorithm A is defined as
the worst instance-specific AR across all in-
stances, i.e., αA = minG αA,G; alternatively,
we say such an algorithm A provides an αA-
approximation.

It should be noted that in our numerical
simulations, we can calculate EA,G exactly.
Please refer to [31] for more details.

2 Custom Mixers
In this section, we provide a general frame-
work that shows, for any separable initial
state, how to construct a custom mixing
Hamiltonian for QAOA so that the warm-
start is the most excited state of the mixer.
This property will be useful in showing con-
vergence results for QAOA with custom mix-
ers. We refer to such variants of QAOA as
QAOA-warmest (compared to QAOA-warm,

proposed by Tate et al. [31], which uses the
standard mixer, HB =

∑
i∈[n] σ

x
i , together

with a separable quantum initial state).
Consider a separable state |s0⟩ on n qubits;

if the jth qubit’s Cartesian coordinates on the
Bloch sphere are given by (xj , yj , zj), then
the corresponding custom mixing Hamiltonian
HB is given by,

HB =
n⊕

j=1
HB,j , (5)

where HB,j = xjσ
x + yjσ

y + zjσ
z.

Geometrically, the custom mixer rotates
qubits about their original position on the
Bloch sphere (details included in Appendix
B). Note that the standard mixers in QAOA
[3] are, therefore, a special case of our cus-
tom mixers since each qubit is initialized at
|+⟩, i.e., the the x-axis (with Cartesian coor-
dinates (xj , yj , zj) = (1, 0, 0)) and the unitary
operator e−iβkHB for the mixer corresponds to
rotations (by 2βk) about the x-axis. When the
initial state is composed by qubits restricted
to the xz-plane with x > 0, then this custom
mixer recovers the one considered by Egger et
al [9].

2.1 Convergence to Max-Cut

In this section, we show that the expected
cut obtained by QAOA-warmest converges to
Max-Cut as the circuit depth goes to infinity.

Theorem 1. Let |s0⟩ be any separable initial
state whose qubits do not lie at the poles of the
Bloch sphere. Running QAOA with a warm-
start |s0⟩, its corresponding custom mixer (5),
with the choice of optimal variational param-
eters, yields a distribution of cuts whose ex-
pected value reaches Max-Cut as the circuit
depth p tends to infinity, i.e.,

lim
p→∞

max
γ,β

Fp(γ, β) = Max-Cut(G).

We will first show that Theorem 1 holds
when the warm-start is initialized in the xz-
plane of the Bloch sphere, with x > 0. We will
then show the main result by showing equiv-
alence of the distribution of cuts obtained by
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QAOA-warmest when a phase is added to each
qubit (i.e., the initial state is not restricted to
0 phase).

Proposition 1. Let |s0⟩ be any separable ini-
tial state such that all qubits lie at the inter-
section of the Bloch sphere and the xz-plane
with positive x-coordinate. Running QAOA
with initial state |s0⟩ and its corresponding
custom mixer yields that

lim
p→∞

max
γ,β

Fp(γ, β) = Max-Cut(G),

i.e., the expected cut value of QAOA-warmest
with optimal variational parameters will yield
the optimal cut value as the circuit depth p
tends to infinity.

Egger et al. [9] use the same custom mixers5

for warm-starts restricted to the xz-plane with
x > 0, for convex quadratic programs, and
state that convergence holds, without proof.
While straightforward calculations show that
the initial state is the highest-energy eigen-
state of the mixer (a condition needed in order
to apply the adiabatic theorem and guarantee
convergence), a complete proof requires care-
ful inspection of the eigenvalues of the time-
dependent HamiltonianH(t) = (1−t/T )HB +
(t/T )HC . We show that there is a non-zero
gap between the largest and the second largest
eigenvalues of the time-varying Hamiltonian,
using the Perron-Frobenius theorem for irre-
ducible stoquastic Hermitian matrices. These
details can be found in Appendix C.

This analysis can not be directly applied
for arbitrary separable states since the corre-
sponding mixers do not necessarily have real
entries, and therefore, the Perron-Frobenius
theorem cannot be applied. However, instead
of calculating the eigenvalue gaps directly, we
show that the phase in the warm-start is not
reflected in the distribution of cuts obtained
using QAOA-warmest, which would then com-
plete the proof of Theorem 1.

5Although [9] use the same construction of the
mixer, they use significantly different warm-starts,
which ultimately play a role in the rate of convergence
of the overall approach.

Proposition 2. Let |s0⟩ be any separable ini-
tial state and let HB be its corresponding cus-
tom mixer. Let |s′

0⟩ be the state |s0⟩ where
each qubit’s phase is set to 0, and let H ′

B

be the corresponding custom mixer. Then,
for any fixed choice of variational parame-
ters (γ, β), the distribution of cuts obtained
from QAOA-warmest with initial state |s0⟩
and mixer HB is the same as the distribution
of cuts from obtained QAOA-warmest with
initial state |s′

0⟩ and mixer H ′
B.

Proposition 2 can be proved by first decom-
posing the general custom mixer (correspond-
ing to |s0⟩) in terms of the custom mixer cor-
responding to the initial state with the phase
removed (i.e. |s′

0⟩). Using this decomposition,
we show that any effect caused by the change
in rotation direction (due to switching from
the custom mixer for |s′

0⟩ to the custom mixer
for |s0⟩) exactly cancels out with the effect of
introducing a phase to |s′

0⟩ to obtain |s0⟩. The
details of the proof can be found in Appendix
A.

The convergence given by Theorem 1 for
QAOA-warmest is especially interesting con-
sidering that many previous warm-started
QAOA approaches lack such guarantees. The
QAOA-warm approach by Tate et al. [31] con-
sidered arbitrary separable states but with the
standard mixer; they showed examples where
QAOA-warm plateaued and did not converge
to the Max-Cut. Cain et al. [8] considered
the case where the initialization is a single
bitstring/cut with the standard mixer, and
showed that such an initialization also does
not converge to Max-Cut. One of the ap-
proaches by Egger et al. consider a mixer that
is neither the standard mixer nor the custom
mixer approach presented above. Their mixer
is used in conjunction with what we call a per-
turbed single-cut initialization (see Section 3)
which recovers a particular cut (obtained via
GW or other means) at depth 1. However,
this initialization comes with no guarantees on
convergence, and our results also do not apply
to these different mixers.

Although Theorem 1 applies to any warm-
start with aligned custom mixers, we will show
that there is a significant difference in the rate
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of convergence to Max-Cut which depends on
the type of warm-start chosen. Theoretically
characterizing this rate of convergence still re-
mains an open question, but we show that
there is a stark observable difference in rate
of convergence through numerical simulations
(See Table 3 for a summary, and Section 4.2
for more details). We discuss the choice of
warm-starts next.

3 Warm-Starts
We now discuss the notion of warm-starting
the quantum circuit for QAOA by biasing the
initial quantum state |s0⟩ in Equation (1) to
certain cuts, as opposed to taking an equal su-
perposition of all cuts as in standard QAOA.
Many initialization schemes have been used
for warm-starting QAOA (see Table 1 for a
summary); we focus on two that produce clas-
sical solutions which can easily be mapped to a
separable quantum state in a way that roughly
approximates the corresponding classical dis-
tribution of cuts.

Both approaches consider the k-dimensional
relaxation (3) for Max-Cut. When k = n, this
is the GW semidefinite program. Recall that
the Goemans-Williamson algorithm [5] rounds
an optimal solution u1, . . . , un ∈ Rn to this
SDP to a cut v1, . . . , vn ∈ {−1, 1} using a ran-
dom hyperplane. Since we wish to produce
a separable quantum state, we instead round
u1, . . . , un ∈ Rn to vectors v1, . . . , vn ∈ Rk,
k ∈ {2, 3} and map these to the Bloch sphere
for each of the n qubits.

Alternately, we can solve the relaxation it-
self for k ∈ {2, 3} [6], and map the locally-
optimal solution vectors (called BM-MC so-
lutions) directly to the corresponding Bloch
spheres. While BM-MC solutions do not en-
joy even the trivial 0.5-approximation guaran-
tees [39], they are much faster to compute in
practice and therefore scale better for larger
graphs: e.g., Burer et al. [38] show that GW
took over 1.5 days to complete on a 20,000
node instance, whereas a k = 2 BM-MC so-
lution was found in a little over a second; re-
peated runs of BM-MC2 over the course of a
couple minutes on the same graph yielded cuts

that were at least as good as those obtained
by GW [38].

Lastly, we compare the two warm-start
techniques above to perturbed single-cut ini-
tializations, another warm-start technique
that has been considered in previous litera-
ture [8, 9]. We show that, theoretically, such
initializations give better depth-0 guarantees
for QAOA (compared to the two warm-start
techniques previously discussed); however, we
later show (Section 4) that such initializations
yield a comparatively much slower rate of con-
vergence with increased circuit depth.

3.1 SDP-based Relaxations

Recall that a solution to the Goemans-
Williamson (GW) SDP relaxation consists of
n unit vectors {ui ∈ Rn : i ∈ V }, and their
rounding algorithm uses a random hyperplane
to obtain an approximation for the Max-Cut
on the given graph G. We propose to create
a warm-start to QAOA by instead rounding
each of these vectors to Rk (with k ∈ {2, 3})
and then mapping the rounded vectors to the
Bloch sphere.6

Specifically, given u ∈ Rn for some positive
integer n, and a linear subspace A of Rn, let
ΠA(u) denote the (Euclidean) projection of u
on A. Given ΠA(u) ̸= 0, define

ΛA(u) = ΠA(u)
∥ΠA(u)∥2

,

as the unit-scale projection of u on A. This
corresponds to normalizing ΠA(u) so it is a
unit vector.

To motivate warm-starts using solutions for
the Goemans-Williamson SDP, consider the
following two-step process for rounding an op-
timal SDP solution {ui : i ∈ [n]} to a cut:

• Choose a uniformly random linear sub-
space A of Rn of dimension k ∈ {2, 3},
and consider the unit-scale projections
ΛA(ui) ∈ Rk, i ∈ [n].

6An iterative rounding of the SDP solution was in-
dependently shown by Parekh and Thompson, a cou-
ple of months before our update on arXiv, for a more
general setting of the Quantum Max-Cut [40].
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Initializations Mixers Citation Worst case AR
at p = 0

Converges to
Max-Cut? Comment

Equal Standard mixer [3] 0.5 Yes Standard and
custom mixers are
equivalent for this
initialization

Custom mixer

BM-MCk

Standard mixer
(QAOA-warm) [31] 0 (k = 2)

0.333 (k = 3) No

Custom mixers
(QAOA-warmest) This work 0 (k = 2)

0.333 (k = 3) Yes Converges quickly
(see Section 4.2)

Projected GW

Standard mixer
(QAOA-warm) This work

0.658 (k = 2),
0.585 (k = 3),
(Corollary 3)

No

Custom mixers
(QAOA-warmest) This work

0.658 (k = 2),
0.585 (k = 3),
(Corollary 3)

Yes Converges quickly
(see Section 4.2)

Perturbed
Single Cut (with
regularization
angle θ∗)

Standard mixer
(QAOA-warm) [8] (θ∗ = 0) case 0.878 cos2n(θ∗/2),

(Observation 4) No

Custom mixers
(QAOA-warmest) Appendix I of [9] 0.878 cos2n(θ∗/2),

(Observation 4) Yes
Converges slowly for
small θ∗

(see Section 4.2)

Other custom mixers Section 2.3 of [9] 0.878 No AR result occurs at
(γ1, β1) = (0, π/2)

Table 1: A summary of results for different variants of QAOA (for Max-Cut) based on various combinations of initializa-
tions (equal superposition, BM-MCk, projected GW, and perturbed single-cut initializations) and mixing Hamiltonian
(standard, custom mixers (Section 2), and the mixer proposed by Egger et al. [9] for perturbed single-cut initializa-
tions). For various combinations, we state what is known regarding the convergence and worst-case approximation
ratio (for depths p ≥ 0) of the corresponding QAOA variant for graphs with non-negative edge weights.

• Use Goemans-Williams hyperplane
rounding on vectors ΛA(ui), i ∈ [n] to
get a (random) cut M ′

That is, round the vectors ui ∈ Rn, i ∈
[n] to a random k-dimensional subspace first,
and then subsequently use the Goemans-
Williamson hyperplane rounding on these k-
dimensional vectors.

The following theorem shows that this two-
step rounding is equivalent to the Goemans-
Williamson hyperplane rounding on vectors
ui, i ∈ [n]; we include the proof in Appendix
A.

Theorem 2. Suppose we are given unit vec-
tors u1, . . . , un ∈ Rn that form an optimal
solution to the SDP relaxation for Max-Cut
on some graph G = (V,E) with n vertices
and non-negative weights on the edges. Sup-
pose the GW random hyperplane rounding
on u1, . . . , un obtains a (random) cut M of
value X, and the two-step rounding described
above produces a (random) cut M ′ of value Y .
Then,

1. The random variables X = Y . In
particular, E(X) = E(Y ) and there-
fore, in expectation, M ′ provides a 0.878-
approximation to Max-Cut on G.

2. Furthermore, the two-step rounding pro-
cedures produces a cut of value (0.878−ϵ)
times the Max-Cut value with high prob-
ability if performed independently log n

ϵ
times for any constant ϵ ∈ (0, 1/2). Fur-
ther, if A1, . . . , A log n

ϵ
are the interme-

diate k-dimensional subspaces in these
log n

ϵ runs, there is at least some Ai (with
high probability) such that performing the
hyperplane rounding on Ai produces a
(random) cut of average value at least
(0.878 − ϵ) times the Max-Cut.

The last part of Theorem 2 illustrates that
we can obtain a high-quality k-dimensional
projected GW solution in regards to hyper-
plane rounding; however, it is natural to ask
if any kind of guarantee can be preserved when
mapping the solution to a quantum state. By
adapting a theorem by Tate et al. [31], we can
answer the question in the affirmative as seen
in Corollary 3 below.

Corollary 3. Let G be a graph with non-
negative edge weights and let x be a corre-
sponding κ-approximate projected GW solu-
tion in R3 with respect to hyperplane round-
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ing.7 Let RU (x) denote random uniform rota-
tion applied to x, i.e., a global rotation where
a uniformly selected point on the sphere gets
mapped to (0, 0, 1). Then initialization of
QAOA with RU (x) has an (worst-case) ap-
proximation ratio of 2

3κ at p = 0, i.e., only
using quantum sampling with initial state cre-
ation and no algorithmic depth for QAOA.
Similarly, if x is a κ-approximate projected
GW solution in R2, initialization of QAOA
with RU (x) is a 3

4κ-approximate solution at
p = 0.

If x is chosen such that it is κ-approximate
with κ = 0.878 − ε (such an x is easily found
via Theorem 2), then, for small ε, this yields
(worst-case) approximation ratios (for depth-
0 QAOA-warmest) of 3

4(0.878 − ε) ≈ 0.658
and 2

3(0.878 − ε) ≈ 0.585 for 2-dimensional
and 3-dimensional projections respectively.

A proof of Corollary8 3 can be found in Ap-
pendix A. This motivates us to use the pro-
jected vectors ΛA(ui), i ∈ [n] to warm-start
QAOA. We then use the same scheme as pro-
posed by Tate et al. [31] to rotate and map
the solution x∗ = {ΛA(ui)}i∈[n] to the Bloch
sphere. More specifically, we first perform ei-
ther (1) a random vertex-at-top rotation of
x∗ (a global rotation to x∗ so that a random
vertex v coincides with (0,0,1)) or (2) a uni-
formly random rotation RU , and apply the
natural mapping from the rotated solution to
the Bloch sphere to obtain a separable, unen-
tangled state |s0⟩ [31]. Figure 1 illustrates the
two-step rounding procedure and this warm-
start.

3.2 Burer-Monteiro’s Relaxation

For faster computational performance, we find
a warm-start by using a locally optimal k-
dimensional solution x∗ (with k ∈ {2, 3}) ob-
tained by the Burer-Monteiro relaxation for
Max-Cut on a (k − 1)-sphere. Similar to pro-

7The theorem also holds more generally for any fea-
sible BM-MC2 or BM-MC3 solution.

8Note that Theorem 2 in [31] works with the as-
sumption that x is κ-close whereas Corollary 3 as-
sumes that x is κ-approximate (see Section 1.2.2).

jected GW solutions, we use the same rota-
tion and quantum-mapping scheme to obtain
an unentangled initial quantum state.

Theorem 2 of Tate et al. [31] shows that
the same approximation ratios of 3

4κ and 2
3κ

(for k = 2 and k = 3 solutions respec-
tively) can be achieved for depth-0 QAOA-
warmest if the solution is instead κ-close, i.e.,
BM-MCk(x∗) ≥ κMax-Cut(G). Using the
same analysis as Goemans and Williamson [5],
it is straightforward to show that a κ-close so-
lution must also be 0.878κ-approximate (i.e.
HP(x) ≥ 0.878κMax-Cut(G)). For locally
optimal9 BM-MCk solutions, Mei et al. [39]
shows that such solutions are κ-close (and
hence 0.878κ-approximate) with κ = 1 − 1

k−1 ;
thus, hyperplane rounding of such solutions
yields (worst-case) approximation ratios of
0.878(0) = 0 and 0.878

(1
2
)

= 0.439 while
depth-0 QAOA-warmest can obtain (worst-
case) approximation ratios of 3

4 (0) = 0 and
2
3
(1

2
)

= 1
3 for k = 2 and k = 3 solutions re-

spectively.
Experiments in Appendix F.3 compare

the (instance-specific) approximation ratios
achieved by hyperplane rounding of both
types of warm-start initializations discussed;
in particular, projected GW SDP solutions do
well (compared to n-dimensional GW SDP so-
lutions) but approximate BM-MCk solutions
degrade in performance as the number of
nodes increases.

3.3 Perturbed Single Cut Initializations

For the purposes of comparison in our numer-
ical simulations (Section 4), we briefly review
one more type of warm-start which we refer
to as perturbed single-cut initializations that
other researchers [8, 9] have used for QAOA;
more details regarding this approach can be

9When x∗ is a globally optimal BM-MCk solution,
it immediately follows that x∗ is 1-close and 0.878-
approximate and hence (worst-case) approximation
ratios of 3

4 and 2
3 (for k = 2 and k = 3 solutions re-

spectively) are achieved for depth-0 QAOA-warmest;
however, since the Burer-Monteiro relaxation is non-
convex, finding such globally optimal solutions be-
comes intractable, especially as the number of nodes
increases.
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Rn Rk R1

Cut

. . .

Rotation III

QAOA
IIIInitial

state

Goemans-Williamson hyperplane rounding

I

k-dimensional rounding
II, III Random hyperplane

rounding

II

SDP
solution

Random
Cut

Figure 1: A schematic for GW warm-starts. There are three procedures to obtain a cut from an SDP solution. The
first is to use Goemans-Williamson hyperplane rounding (on the top labelled I). The second (labelled II) is to do a
two-step rounding through an intermediate state in Rk, k ∈ {2, 3}. We prove that this two-step rounding procedure is
equivalent to Goemans-Willimson hyperplane rounding in Theorem 2. The third procedure is our proposed warm-start
of QAOA using the SDP solution (highlighted in blue, labelled III). This procedure involves rounding the SDP solution
to Rk first, then rotating this solution using uniform or vertex-at-top rotations and mapping to the Bloch sphere to
get an initial state for QAOA, and finally running QAOA on this initial state.

found in (Appendix D). Given a regulariza-
tion angle θ∗ ∈ [0, π/2] and a cut (S, V \ S),
one can initialize the initial quantum state so
that qubits lie along the xz-plane of the Bloch
sphere with vertices in S and V \ S being ini-
tialized at an angle θ∗ away from the north
and south poles of the Bloch sphere respec-
tively; such a regularization angle aims to cir-
cumvent issues regarding reachability[9].10

Though not stated in the related works, if
the warm-starts are initialized close to single-
cuts, then they retain the classical approxima-
tion factors of the respective single-cut:

Observation 4. Let G = (V,E) be a
graph, and suppose a cut (S, V \ S) is an
α-approximation to Max-Cut(G), and is used
to initialize a warm-start using regularization
angle of θ∗ ∈ [0, π/2]. Then, a quantum
measurement (i.e. depth-0 QAOA) of this
state yields an approximation ratio of at least
α · cos(θ∗/2)2|V |.

10It can be shown that if the initial qubit position
lies on the poles of the Bloch sphere, e.g. if the initial
qubit position is |0⟩ (north pole), then it is guaranteed
that that qubit will be measured to be |0⟩ as the end
of the QAOA algorithm if custom mixers (as described
in Section 2) are used.

It is easy to see that such warm-starts ap-
proach an approximation ratio (at p = 0) of
0.878, when initialized randomly with the dis-
tribution of cuts obtained using the Goemans-
Williamson algorithm, as the regularization
angle θ∗ approaches zero. We discuss a proof
in the Appendix A to show this. Although
Proposition 4 suggests it may be the superior
warm-start technique for small regularization
angle θ∗; convergence is either lacking or slow
empirically depending on the mixer used (see
Table 1).

4 Numerical Simulations and Ex-
periments

In this section, we demonstrate the impor-
tance of using a suitable warm-start and show
that with such warm-starts, QAOA-warmest
outperforms the Goemans-Williamson Max-
Cut algorithm as well as standard QAOA [3]
and QAOA-warm [31]. In particular, we show
that QAOA-warmest does at least as well as
these other algorithms at depths p ≥ 4 for
nearly every instance in our instance library.
We consider comparisons with respect to a re-
cent warm-starts approach of Egger et al. [9]
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in Appendix F.
As discussed earlier (Section 3), for positive-

weighted graphs, perturbed single-cut initial-
izations have better depth-0 guarantees com-
pared to the projected GW warm-starts that
we propose. While possibly more advanta-
geous at extremely low depths (p = 0, 1), we
show that QAOA with perturbed single-cut
initializations empirically converge to an op-
timal cut very slowly with increased circuit
depth; for small enough regularization angle
θ∗, the convergence towards an optimal cut
is not even perceivable at the circuit depths
tested. Meanwhile, with suitable warm-starts,
the convergence is much quicker: for over 98%
of instances tested, we found that depth-8
QAOA-warmest with BM-MC2 initializations
yields nearly optimal cuts.

Lastly, we consider the effects of noise on
QAOA and its variants in the context of actual
quantum devices (i.e. the IBM-Q Guadalupe
and Quantinuum H1-1 devices). We show that
for QAOA and its variants, the noise from
these devices flattens the landscape without
significantly altering the location of local ex-
trema. Additionally, we show that even with
noise, QAOA-warmest (with suitable warm-
start) maintains a significant fraction of its ex-
pected solution quality, which suggests it may
be useful for near-term NISQ devices (poten-
tially with some noise mitigation) [1].

4.1 Simulation Details
For our simulations, we use the CI-QuBe
library11 [41] which contains graphs up to
11 nodes using a variety of random graph
models (Erdős-Rényi, Barabasi Albert, Dual
of Barabasi-Albert, Watts-Strogatz, Newman-
Watts-Strogatz, and random regular graphs)
and edge weight distributions. These in-
stances, which we refer to as G, have a varied
distribution of various graph properties, which
is important when testing heuristics and algo-
rithms for solving this problem.

In our simulations, for each instance, we
first find five locally approximate solutions
to BM-MC2 and keep the best (in terms of

11https://github.com/swati1729/CI-QuBe

the BM-MC2 objective value). We do the
same for BM-MC3. Similarly, for each in-
stance, we solve the GW SDP, perform 5 pro-
jections to random 2-dimensional subspaces,
and keep the best (in terms of the BM-MC2
objective); this process is repeated (using the
same GW SDP solution) with projections to
3-dimensional subspaces. Next, for both the
best BM-MC2 and best BM-MC3 solution,
and for both of the best projected GW so-
lutions (in 2 and 3 dimensions), we perform
5 different vertex-at-top rotations and 5 dif-
ferent uniform rotations, yielding 40 differ-
ent initial warm-started quantum states per
instance. We run QAOA-warm and QAOA-
warmest using all 40 of these warm-started
states and, for each combination of dimension
and rotation scheme, record which one per-
formed the best in terms of (instance-specific)
approximation ratio (as defined in Section
1.2.3). Finally, we run standard QAOA on
the instance.

For each run for each variant of QAOA, we
initialize the variational parameters γ and β
close to zero12 and each run terminates when
the difference in successive values of Fp(γ, β)
in the optimization loop is less than W̄ ×10−6

where W̄ is the sum of the absolute values of
the edge weights.

To simplify the results, the figures and ta-
bles in this section will only consider runs of
QAOA-warmest that use BM-MC2 initializa-
tions with vertex-at-top rotations. This choice
is due to runtime considerations and to allow
for easier comparisons with previous related
literature [9, 31]; more details on the results
and the choice of this decision can be found in
Appendix F.

Additionally, for conciseness, in this section
we will use “approximation ratio" to mean the
instance-specific approximation ratio as de-
scribed in Section 1.2.3.

12For standard QAOA, many optimizers will im-
mediately terminate if initialized exactly at the ori-
gin due to the presence of a saddle point. Instead,
each variational parameter (γ1, . . . , γp, β1, . . . , βp) is
initialized by sampling uniformly from the interval
[−0.0001, 0.0001].

12

https://github.com/swati1729/CI-QuBe


1st Best QAOA-warmest Standard QAOA GW Tie2nd Best * Standard Warm GW Warmest Warm GW Warm Warmest Standard

Positive
Weighted
Graphs

p=1 90.3 % 0.69% 18.85% 15.22% 0.0% 0.0% 0.0% 0.17% 9.51% 0.0% 55.53%
p=2 98.1% 0.69% 20.24% 25.08% 0.0% 0.0% 0.0% 0.0% 1.9% 0.0% 52.07%
p=4 100% 8.65% 17.64% 20.58% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 53.11%
p=8 100% 25.77% 5.01% 2.94% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 66.26%

All Graphs

p=1 90.6% 0.35% 17.96% 17.43% 0.0% 0.0% 0.0% 0.53% 8.84% 0.0% 54.86%
p=2 98.1% 0.44% 20.17% 24.86% 0.0% 0.0% 0.0% 0.26% 1.68% 0.0% 52.56%
p=4 99.6% 9.11% 19.2% 18.93% 0.0% 0.0% 0.0% 0.08% 0.26% 0.0% 52.38%
p=8 99.6% 27.16% 7.96% 3.18% 0.17% 0.0% 0.0% 0.26% 0.0% 0.0% 61.23%

Table 2: For each Max-Cut algorithm (Goemans-Williamson, standard QAOA, QAOA-warmest, and QAOA-warm),
we report the percentage of instances for which it did the best and second-best (in terms of approximation ratio). Both
QAOA-warm and QAOA-warmest use BM-MC2 warm-starts. There is a tie (last column) if the top two algorithms
have approximation ratios that differ by no more than 0.01. QAOA-warmest is a part of every tie. Each instance is
either accounted for in “Tie" or the other columns. For the column labeled *, we report, for each circuit depth, the
percentage of instances for which QAOA-warmest was within 0.01 approximation ratio of the best algorithm.

Figure 2: For both plots, we compare the log-error of QAOA-warmest to both QAOA-warm (right) and standard QAOA
(left). BM-MC2 warm-starts are used for both approaches. Each marker in the plot corresponds to a combination
of instance (from our graph ensemble G) and circuit depth (either p = 1 or p = 8) with the shape of the marker
being used to denote if the instance has only positive edge weights or not. Points below the black line correspond to
instances where QAOA-warmest performs better than the other algorithm being compared.

4.2 Comparing QAOA-warmest to Other
Methods

In Table 2, we show the proportion of graphs
where each Max-Cut algorithm (GW and vari-
ants of QAOA) performs the best for vary-
ing values of depth p = 1, 2, 4, 8. We ob-
serve that for nearly all instances, QAOA-
warmest beats or performs as well as every
other QAOA variant considered and eventu-
ally performs at least as well as GW as the
circuit depth increases. We note that at p = 8,
QAOA-warmest beats GW on all but three in-
stances but this is easily rectified with a suit-
able vertex-at-top rotation. Also at p = 8,
QAOA-warmest outperforms standard QAOA
on all but two instances but the gap in ap-

proximation ratio is less than 0.02. More in-
formation regarding these five instances can
be found in Appendix F.

We next report the improvement in ap-
proximation ratios when considering standard
QAOA, QAOA-warm, and QAOA-warmest
with circuit depths p = 1, 8. For convenience,
for any Max-Cut algorithm, we define the ap-
proximation error (AE) by AE = 1 − AR
where AR is the approximation ratio. Ad-
ditionally, we will refer to log10(AE) as the
log-error. Figure 2 gives a comparison of
log-errors achieved for various instances. All
points below the x = y solid line indicate
instances where QAOA-warmest beats either
standard QAOA or QAOA-warm. Note that
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due to the plots being log-scaled, being below
-2 on each axis corresponds to having an ap-
proximation ratio of at least 0.99. For both
plots, we see that higher approximation ratios
can be achieved for positive-weighted graphs
(cross-marks) and that QAOA-warmest per-
forms significantly better for most instances.
When comparing QAOA-warmest and stan-
dard QAOA at various circuit depths (red
v/s blue), we see that the performance for
both standard QAOA and QAOA-warmest
improves at p = 8; however, this phenomenon
is not that apparent for QAOA-warm (which
is known to plateau in performance with in-
creased circuit depth for small instances).

Figure 3: Trends in median log-error of standard QAOA
(dotted), QAOA-warm (dashed), and QAOA-warmest
(solid) as one varies the number of nodes and circuit
depths; the median is taken across graphs in instance li-
brary G. BM-MC2 warm-starts are used for both QAOA-
warm and QAOA-warmest.

Next, we show the trend in approximation
quality with increase in the number of nodes
n and the depth of the circuit p, in Figure
3. We see that, across all node sizes, that
circuit depth plays an important role in how
good an approximation ratio one can expect to
achieve using QAOA-warmest. It is clear that
QAOA-warmest has superior (median) per-
formance compared to the other algorithms
for every combination of circuit depth and
node-size. We remark that in contrast, an
increased circuit depth resulted in only a
marginal improvement in the approximation

ratio for QAOA-warm, bolstering our claim
that custom mixers are crucial to the improve-
ment in performance of QAOA.

In Figure 4, we compare the convergence
rates of standard QAOA and QAOA-warmest
with various initilializations: BM-MCk, per-
turbed single-cut initializations (as described
in Section 3.3), and uniform random initial-
izations13 with custom mixers for a random
10-node instance in our graph library. Con-
sistent with what is seen in the other fig-
ures, we see that standard QAOA, QAOA-
warmest, and uniform random initializations
quickly achieve high approximation ratios at
relatively low circuit depths, with the BM-
MC2 initialization doing the best amongst the
three across all circuit depths tested. On
the other hand, perturbed single-cut initial-
izations do not converge as quickly; in par-
ticular, when θ∗ is small (θ∗ ∈ {0.1, 0.01})
hardly any improvement in the approximation
ratio is observed at all. For larger regulariza-
tion angles (θ∗ = 0.5), we do see worse per-
formance at low depths (p = 0, 1) as well as
a noticeable increase in performance with in-
creased circuit depth; however, the amount of
this increase is small compared to achieved by
QAOA-warmest which begins to outperform
the perturbed single-cut initialization (with
θ∗ = 0.5) for p ≥ 2. We find similar quali-
tative results for most other instances in our
graph ensemble G.

Table 3 provides a more aggregated view of
the convergence of QAOA-warmest with dif-

13Here, a uniform random initialization refers to a
separable state that is randomly created by (inde-
pendently) picking a position on the surface of the
Bloch sphere uniformly at random for each qubit, and
then tensorizing the qubits. Although the phase of
each qubit does not effect the expected cut value ob-
tained from QAOA-warmest (as discussed in Section
2), it should be noted that the distribution of initial-
izations obtained from sampling from the surface of
the Bloch sphere and then removing the phases is dif-
ferent than the distribution of initializations obtained
from sampling uniformly from the portion of the great-
circle formed by the intersection of the Bloch sphere
surface with the xz-plane with positive x-coordinate.
Nonetheless, we have verified (via numerical simula-
tion) that QAOA-warmest performs similarly between
the two randomization schemes.
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ferent choices of initializations across the en-
tire instance library G. For each combination
of initialization method and circuit depth, the
table states the percentage of instances in the
library which achieved an instance-specific ap-
proximation ratio of 99.0% of higher. The
data for the perturbed single-cut initializa-
tions were obtained as follows: for each in-
stance, we obtained an optimal solution to
the GW SDP relaxation, we performed 100
hyperplane roundings on the optimal SDP so-
lution to obtain 100 cuts, we discarded all cuts
whose value is more than 0.98 ·Max-Cut(G),
and we used the best remaining cut to cre-
ate a perturbed single-cut initialization with
regularization angle θ∗ = 0.1 (as described in
Section 3.3); the discarding of cuts with very
high values were done in order to ensure that,
in the case of a high instance-specific approx-
imation ratio, such a ratio can be partly at-
tributed to the quantum circuit and not just
the initial cut itself. When using the BM-MC2
initializations (with vertex-at-top rotations),
there are steady improvements with increased
circuit depths with 42.3% of the instances
achieving an instance-specific AR of 99.0% at
depth-0; this percentage increases to 98.1% at
depth-8. With the standard QAOA initializa-
tion, |+⟩⊗, none of the instances achieve an
instance-specific AR of 99.0% or more; it is
not until depth p = 8 that we see a consid-
erable fraction of the graphs (39.4% respec-
tively) achieving such an AR. As for the per-
turbed single-cut initialization with small reg-
ularization angle, we find that nearly none of
the instances achieve an instance-specific AR
of 99.0% with the exception of a few instances
at depth p = 8.

4.3 QAOA-warm With Noise

In addition to the theoretical (noise-less) be-
havior of QAOA-warmest, we also demon-
strate its performance with several example
cases using noise models and experiments on
IBM-Q hardware. For both the ideal and
noisy simulation, we use IBM’s Qiskit soft-
ware package [7]. In the case of the noisy sim-
ulation, we exercise the capability of Qiskit

p = 0 p = 1 p = 2 p = 4 p = 8
BM-MC2 42.3% 57.8% 75.0% 91.9% 98.1%
Standard

Initialization
|+⟩⊗n

0% 0.6% 2.4% 8.7% 39.4%

Single Cut
Initialization
with θ∗ = 0.1

0% 0% 0% 0% 0.7%

Table 3: The percentage of instances for which QAOA-
warmest achieves an instance-specific AR of 99.0% for
each combination of circuit depth and initialization
method (standard initialization, BM-MC2 initialization,
perturbed single-cut initialization with θ∗ = 0.1).

Figure 4: Instance specific approximation ratios
achieved by QAOA-warmest with various types of initial-
izations: standard initialization (equivalent to standard
QAOA), BM-MC2 initialization, perturbed single-cut ini-
tialization, and uniform random initializations) for a ran-
domly selected 10-node instance. For QAOA-warmest,
we used a BM-MC2 initialization with a vertex-at-top ro-
tation; here we intentionally chose the worst vertex (i.e.
the one with worst AR at depth-0) to better illustrate the
convergence rate. For the perturbed single-cut initializa-
tion, we chose a cut that obtains an instance-specific
approximation ratio of 0.848 and created initial quantum
states using regularization angles of θ∗ = 0.01, 0.1, and
0.5 radians. For the uniform random initializations, five
such initializations were created and only the best one
was kept (i.e. the one with best AR at depth-0).

to pull calibration data directly from the
Guadalupe device and use it to construct a
noise model for use in the simulator. In prin-
ciple, this combination of actual hardware
calibration and noise simulation should pre-
dict the behavior of the device. However,
the noise models themselves have inherent as-
sumptions that the noise itself is uncorrelated
and only directly models effects such as sin-
gle and two-qubit gate errors, finite qubit life-
time and dephasing time, and readout noise.
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Figure 5: Performance of QAOA-warmest (with BM-
MC2 warm-starts) and standard QAOA as a function of
QAOA depth for an ideal (dashed) and noisy simulation
(dotted). For the chosen 20-node graph, GW acheives
an approximation ratio of 0.912, while in the ideal case,
QAOA-warmest outperforms GW for p ≥ 2 while stan-
dard QAOA requires p > 4. The noise simulation is based
on calibration data from IBM-Q’s Guadalupe device.

Figure 6: IBMQ Guadalupe device which shows the
physical connectivity of qubits. We choose a native graph
which matches this connectivity and random weights as
indicated by color.

While these serve as a good starting point to
model the noise in a quantum device, as shown
in the Figure 8, there is significant disagree-
ment between the noise simulation and the
actual hardware results. This disagreement
is mainly attributed to the assumptions men-
tioned earlier, specifically the assumption of
uncorrelated noise, where physical hardware
experience significant crosstalk. For an exam-
ple demonstration of how typical noise models
are utilized, see Appendix E.

We show in Figure 5 the performance
of QAOA-warmest and standard QAOA on
an instance generated via a construction by
Karloff [42]; this unweighted graph is cho-

sen due to the fact that it is a small graph
that achieves a GW approximation ratio of
0.912 (see Appendix G) which is close to the
lower bound of 0.878 provided by the GW al-
gorithm. In contrast, both QAOA-warmest
and standard QAOA are able to outperform
this approximation ratio, under ideal, noise-
less conditions. However, note that QAOA-
warmest outperforms standard QAOA for all
QAOA depths and outperforms GW after
p > 1. We also consider a noise model uti-
lizing Qiskit’s built in modules [7] and use
calibration data in order to simulate IBM’s
Guadalupe device. We note that QAOA-
warmest outperforms standard QAOA for all
noisy simulations, using the same fixed noise
model.

In addition to this device-focused noise
simulation, we also run QAOA-warmest on
a native hardware graph matching IBM’s
Guadalupe device. In general, the connectiv-
ity of the graph and its matching to physical
qubit hardware connectivity plays a key role
in performance due to the overhead of insert-
ing swap operations in order to compensate for
limited connectivity [43]. Therefore, the sim-
plest graph is a so-called native graph, which
is a graph with exactly the same connectiv-
ity as the underlying physical qubit device.
This graph is shown in Figure 6. We assign
randomly chosen weights to each edge chosen
from a uniform distribution [−10, 10]. Finding
the Max-Cut solution to this graph can still be
done by brute force and for a fixed choice of
randomly weighted edges, we find the Max-
Cut value to be approximately 33.96209.

We show the results of QAOA-warmest and
standard QAOA in an ideal simulation and on
hardware in Figure 7. The color scale is shared
across all plots, showing that QAOA-warmest
is able to find larger cut values as compared
to standard QAOA, both in simulation and on
actual hardware. For hardware results, we ap-
ply the efficient SPAM noise mitigation strat-
egy based on a CTMP strategy [44, 45].

In order to demonstrate the scaling of
QAOA-warmest, we also show results for
depths p = 0, 1, 2 in ideal simulation, noisy
simulation, and on hardware, as shown in Fig-
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Figure 8: Performance of QAOA-warmest (with BM-MC2 warm-starts) compared to standard QAOA in an ideal
simulation (dashed), noisy simulation (dotted) and on IBM Guadalupe hardware (solid). Each subplot considers a
different native hardware graph with randomly selected weights as well as a different choice of initialization procedures.
(Left) For a random initialization of the classically informed QAOA-warmest start rotation. (Right) For an efficiently
selected, optimal choice for the classically informed QAOA-warmest start rotation.

ure 8. We define p = 0 to simply mean
the preparation and measurement of the ini-

tial state.14 In the case of QAOA-warmest,

14The warm-starts come from k = 2 or k = 3 solu-
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this directly demonstrates the ability of the
QPU to create and measure the classically
suggested cut.

In addition, Figure 8 shows results for two
different choices of the state initialization for
QAOA-warmest. The left plot shows the re-
sult of applying a uniform rotation in the
classical preprocessing stage whereas the right
shows the result of using the best vertex-at-
top rotation amongst the 16 possible vertices,
i.e., the rotation that gives the largest approx-
imation ratio at p = 0. These two plots clearly
show the importance of initializing the ini-
tial quantum state in an optimal way. An-
other important point shown in these plots
is that small scale QAOA problems on 16
nodes, are nearly exactly solved when a suit-
able vertex-at-top rotation is chosen. When
the best vertex-at-top rotation is used, the use
of QAOA actually shows a decrease in solution
quality on hardware. This is due to the inher-
ent noise on the device and the fact that the
solution quality is nearly optimal in the initial
state. The presence of noisy two-qubit gates
in further layers of the algorithm (32 CNOT
gates per layer), overwhelm the small benefit
of the algorithm itself for these small prob-
lems. A remaining goal then is to find native
graphs on hardware for large systems, while
also offering sufficiently low error rates, in or-
der to demonstrate improved solutions with
an optimally chosen initial quantum state and
increased algorithmic depth (p > 0).

Finally, we show results for QAOA-warmest
run on Quantinuum hardware in Figure 9.
This 20-ion linear trap allows for arbitrary
qubit connectivity and thus has no overhead
associated with mapping a specific graph to
the hardware. In this case, we again consider
the 20-node Karloff instance graphs used in
Figure 5, but here we use the GW warmest
start initialization. Notably we utilize a uni-
form rotation which gives a large initial ap-
proximation ratio (at p = 0) and while hard-

tions whereas as the GW algorithm uses n-dimensional
solutions. Moreover, the way cuts are determined are
different (hyperplane rounding vs quantum measure-
ment) so we should expect there to be a difference in
approximation ratios.
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Figure 9: QAOA-warmest performance on Quantinuum
simulators and hardware. The 20-node Karloff instance
considered here is directly mapped to the fully-connected
Quantinuum 20-ion hardware. In contrast to Figure 5,
here we use a GW warmest start and find that this partic-
ular initialization outperforms GW on average for p ≤ 2.

ware cannot improve on this initial state, the
degradation is small considering that each p
layer requires 90 two-qubit ZZ interactions
(among many other single qubit operations).
We also note the close agreement of the noisy
simulator to the actual hardware results. In
order to reduce the cost of these hardware
runs, we only consider a single objective func-
tion evaluation (with 1000 shots), using noise-
less simulations to find the optimal γi, βi at
each p depth. Even with these considerations,
we see that the GW Warmest initialization
outperforms the average GW performance on
hardware up to p ≤ 2. These results indi-
cate that current quantum hardware is very
close to demonstrating improvement over the
Goemans-Williamson algorithm for Max-Cut
on known hard instance graphs when using
the QAOA-warmest initialization procedure,
and it already outperforms the average per-
formance of GW on this particular graph.

5 Discussion

Our experimental results suggest that our
QAOA-warmest method combined with ini-
tializations obtained by classical means can
outperform both the standard QAOA and the
Goemans-Williamson algorithm at relatively
shallow circuit depths. Conversely, not all
initializations on the Bloch sphere are use-
ful; in particular random initializations under-
perform compared to classically obtained ini-
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Instances Where Depth-8 Standard QAOA Performs Best
Instance ID QAOA-warmest QAOA-warm Standard QAOA GW

778 0.9550 0.8980 0.9635 0.9504
1820 0.9483 0.9078 0.9508 0.9429

Instances Where GW Performs Best
Instance ID QAOA-warmest QAOA-warm Standard QAOA GW QAOA-warmest (modified)

1698 0.9899 0.9950 0.9677 0.9968 0.9998
1889 0.9867 0.9886 0.9461 0.9899 0.9995
2010 0.9762 0.9797 0.9330 0.9948 0.9992

Table 4: These tables reports the approximation ratios achieved for the five instances (amongst those in our instance
library G) for which depth-8 QAOA-warmest did not obtain the best approximation ratio when compared to depth-8
QAOA-warm, depth-8 standard QAOA, and GW. The top and bottom tables are for instances in which standard QAOA
and GW performed the best respectively. The instances in the bottom table have the property that there exists exactly
one negative edge weight whose magnitude is much larger than the other edge weights. For the bottom table, in the
last column, we also include the approximation ratio for QAOA-warmest in the case where a more suitable vertex-at-top
rotation is used; i.e., we take one of the vertices incident to the large-magnitude negative edge and rotate it to the
top.

Figure 10: In red, the function
1
2 (1− cos θ

k )
θ/π

that is mini-
mized in the proof of Corollary 3 with k = 3. In green, a
similar function

1
2 (1− cos θ

k )
1
2 (1−cos(θ) that is minimized in the proof

Theorem 2 of [31] (where the BM-MCk objective is com-
pared to the maximum cut instead of the expected cut
value from hyperplane rounding) with k = 3. Over the
interval [0, π], both achieve a minimum value of 2/3 at
θ = π. The corresponding plots for k = 2 are similar but
instead both functions reach a minimum value of 3/4 at
θ = π.

tializations. Moreover, adversarial initializa-
tions could be chosen if one wanted QAOA to
perform poorly (i.e. by putting qubits near
the poles of the Bloch sphere that correspond
to the minimum cut). Overall, finding a suit-
able initialization is needed in order to see

success in QAOA-warmest. In the case of
classically-inspired initializations (e.g. Burer-
Monteiro Max-Cut relaxations or projected
GW SDP solutions) which are (classically) in-
variant under global rotations, this also in-
cludes picking a suitable rotation scheme be-
fore embedding the solution into a quantum
state.

According to a paper by Farhi, Gamarnik,
and Gutmann [26], QAOA needs to “see the
whole graph" (i.e. have a high enough cir-
cuit depth) in order to achieve desireable re-
sults. Their results rely on the fact that lo-
cal changes in the graph (e.g. modifying an
edge weight) give uncorrelated results in re-
gards to measured qubits that are sufficiently
far away from such a local change. In other
words, standard QAOA cannot distinguish be-
tween graphs whose local subgraph-structure
is identical. It should be noted that the circuit
used in QAOA-warmest also suffers from such
a locality property; however, if we consider
the entirety of the QAOA-warmest procedure,
including the preprocessing stage of comput-
ing warm-starts, then this procedure can pos-
sibly distinguish between graphs with identi-
cal local subgraph structure since the initial
state is sensitive to the global structure of
the graph (when using BM-MCk relaxations
or projected GW SDP solutions). This sug-
gests that certain negative theoretical results
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Figure 11: Comparison between standard QAOA mixer to using BM-MC2 warm-starts with custom mixers . We show
the noiseless (left) and noisy (right) case. In both cases, the custom mixer significantly outperforms the standard
mixer. Shaded regions indicate the distribution of results for 20 randomly chosen 8 node graphs with positive and
negative weights.

Figure 12: Difference in approximation ratio between
n-dimensional GW hyperplane rounding and hyper-
plane rounding of various warm-start initializations (k-
dimensional projected GW SDP solutions (Projk-GW)
and approximate BM-MCk solutions for k = 2, 3) as the
number of nodes varies. For each instance and each
dimension k, we obtained 5 random projections and 5
approximate BM-MCk solutions, and then kept the best
one (of 5) in regards to the BM-MCk objective. Each
circle in the figure corresponds to an instance from (a
subset of) the MQLib library [4]; see Appendix F.3 for
details.

seen for standard QAOA may not necessar-
ily hold for QAOA-warmest since the distin-
guishability arguments used would no longer

apply.

The approximation guarantees for our
warm-starts at p = 0 and convergence to
Max-Cut (under adiabatic limit) combined
with superior empirical performance provide
strong evidence for quantum advantage of
this approach at low circuit depths compared
to existing classical methods, especially the
Goemans-Williamson approximation. An in-
teresting open question would be to quan-
tify the approximation bounds obtained by
QAOA-warmest for finite circuit depth greater
than zero.

Number Cores
of Per CPU RAM Speed

Servers Server
1 12 E5-2630 128 GB 2.30 GHz
1 32 Opteron 6274 128 GB 2.20 GHz
4 12 E5-2630 128 GB 2.30 GHz
2 12 X5660 72 GB 2.80 GHz
2 12 X5660 148 GB 2.80 GHz
4 12 E5645 96 GB 2.40 GHz

Table 5: This table details the specifications of the
server groups in the high performance computing clus-
ter at Georgia Institute of Technology that were used in
our numerical experiments.
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Figure 13: For both plots, we compare the log-error of QAOA-warmest (with BM-MC2 warm-starts) to the variant of
QAOA proposed by Egger et al. [9] for Max-Cut. For Egger et al.’s approach, we consider two different initializations:
initializing the variational parameters to the origin (left) and initializing the parameters in a way that recovers the
cut used to initialize the quantum state (right). Each marker in the plot corresponds to a combination of instance
(from our graph ensemble G) and circuit depth (either p = 1 or p = 8) with the shape of the marker being used to
denote if the instance has only positive edge weights or not. Points below the black line correspond to instances where
QAOA-warmest performs better than the other algorithm being compared.

6 Methods

Numerical simulations were performed using
both custom and pre-packaged codes in the
Tensorflow [46] and Qiskit [7] software pack-
ages. Numerical experiments in Section 4.2
were performed on the high performance com-
puting cluster at the School of Industrial and
Systems Engineering at Georgia Institute of
Technology. Jobs were sent to various servers
in the cluster as they became available; a list-
ing of the servers and their specifications can
be found in Table 5.

Classical optimization was performed us-
ing standard optimizers available in python,
including ADAM [47], L-BFGS-B [48], and
COBYLA [49]. For hardware results, we
first describe the usage of IBM’s Guadalupe
device along with Qiskit software and the
COBYLA optimizer. The Guadalupe device
is a 16 qubit superconducting hardware with
a heavy hexagonal connectivity. This de-
vice typically has average single qubit gate
errors of 3.7204 × 10−4, two-qubit gate er-
rors of 1.075 × 10−2 and measurement error
of 1.776 × 10−2, representing a quantum de-
vice of comparable quality to the state of the
art. For the QAOA-Warmest runs shown in
Fig 8, the run time on hardware can be esti-
mated by the schedule method of Qiskit for

each corresponding circuit. The run times for
p = 0, 1, 2 are 7182 ns, 14968 ns, 17379 ns, re-
spectively. Standard QAOA runs have com-
parable run times as they differ only by single
qubit gates as compared to QAOA-Warmest.
For these hardware runs, we seed the classi-
cal optimization process with ideal parame-
ters (γ∗, β∗) found in simulation and perform
20 optimization steps each with 8192 shots on
hardware. Noisy simulations using hardware-
informed noise models were performed with
200 optimization steps and 3000 shots. These
simulations were performed on GTRI’s Ice-
hammer cluster using a node with a Xeon-
Gold6242R processor with 80 cores and 376
GB of memory. Secondly, for our results on
Quantinuum hardware, we only evaluate a sin-
gle point in parameter space (at γ∗, β∗) at
each p depth with 1000 shots. This choice
was motivated in order to reduce the cost of
hardware runs and do not represent any de-
vice or fundamental limitation. The Quantin-
uum H1-1 20 qubit device reports average sin-
gle qubit gate errors of 5 × 10−5, two qubit
gate errors of 3 × 10−3 and SPAM errors of
3 × 10−3. Noisy simulation of the Quantin-
uum device were also performed through the
cloud, provided by the Quantinuum service.
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7 Data Availability

The graph instances used in the numeri-
cal simulation are accessible at the follow-
ing github repository: https://github.com/
swati1729/CI-QuBe. Additional experimen-
tal data is available via request from the cor-
responding author.
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A Proofs

Proof of Proposition 2

Proof. Let |s0⟩ =
⊗n

j=1 |s0,j⟩ with |s0,j⟩ =
cos(θj/2) |0⟩+eiϕj sin(θj/2) |1⟩ be an arbitrary
separable initial state. As a consequence of
Proposition 1, it suffices to show that QAOA-
warmest with this initial state |s0⟩ yields the
same expected cut value (at the same varia-
tional parameters) as another separable initial
state |s0⟩′ where each qubit of |s0⟩′ lies in the
xz-plane of the Bloch sphere with positive x-
coordinate.
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We consider the state |s0⟩′ =
⊗n

j=1 |s0,j⟩′

where |s0,j⟩′ = cos(θj/2) |0⟩ + sin(θj/2) |1⟩.
Geometrically, going from |s0⟩ to |s0⟩′ has the
effect of dropping the phase for all qubits so
that they lie in the xz-plane of the Bloch
sphere with positive x-coordinate (assuming
that none of the qubits are at the poles).

It suffices to show that we can drop the
phase for single qubit of |s0⟩ (say qubit k)
without changing the expected cut value;
the argument can then be easily repeated
for the remaining qubits to show that |s0⟩
and |s0⟩′ yield identical expected cut val-
ues. In this case, we consider the initial
state |“s0⟩ =

⊗n
j=1 |ŝ0,j⟩ where |ŝ0,k⟩ = |s0,k⟩′

and |ŝ0,j⟩ = |s0,j⟩ for j ̸= k (i.e. only
the position of qubit k is modified). Letting
Rx,k(θ), Ry,k(θ), Rz,k(θ) represent the stan-
dard rotation operator of the kth qubit (about
axes x, y, z respectively) about the Bloch
sphere by angle θ, we can also write

|“s0⟩ = Rz,k(−ϕk) |s0⟩ , (6)

i.e., |“s0⟩ can be obtained from |s0⟩ by rotating
around the z-axis (of the Bloch sphere) by the
appropriate amount.

Let HB and ĤB be the corresponding cus-
tom mixers for |s0⟩ and |“s0⟩ respectively.
Let UB(βℓ) = exp(−iβℓHB) and ”UB(βℓ) =
exp(−iβℓĤB). For convenience, let UC(γℓ) =
exp(−iγℓHC). We can write UB(βℓ) =
UB, ̸=k(βℓ)UB,k(βℓ) where UB,k(βℓ) is the por-
tion of UB(βℓ) that acts on qubit k and
UB, ̸=k(βℓ) is the portion that acts on the
remaining qubits; we can similarly write”UB(βℓ) = UB, ̸=k(βℓ)‘UB,k(βℓ) (the part of the
mixer that does not affect the kth qubit re-
mains the same). Geometrically, the opera-
tion UB,k(βℓ) corresponds to rotating qubit
k around its original position on the Bloch
sphere by angle 2βℓ so,

UB,k =
[
Rz,k(ϕk)Ry,k(θj)Rz,k(2βℓ)

Ry,k(−θj)Rz,k(−ϕj)
]
.

The equation above yields the following key

relation between UB,k and ‘UB,k:

Rz,k(−ϕk)UB,kRz,k(ϕk)

=Ry,k(θj)Rz,k(2βℓ)Ry,k(−θj) = ‘UB,k. (7)

For convenience, we will let

U(γ, β) =
p∏

ℓ=1

[
UB(βℓ)UC(γℓ)

]
,

and “U(γ, β) =
p∏

ℓ=1

[”UB(βℓ)UC(γℓ)
]
,

i.e., UB and ”UB correspond to the QAOA-
warmest circuit (excluding the initial state)
for |s0⟩ and |“s0⟩ respectively.

The claim amounts to showing (up to some
global phase) the following:

⟨s0|U(γ, β)†HCU(γ, β) |s0⟩

= ⟨“s0|“U(γ, β)†HC
“U(γ, β) |“s0⟩ ,

for any circuit depth p and any vari-
ational parameters γ = (γ1, . . . , γp) and
β = (β1, . . . , βp); and in particular, QAOA-
warmest gives the same expected cut value
for both |s0⟩ and |“s0⟩.

First we observe that,

U(γ, β) |s0⟩

=
p∏

ℓ=1

[
UB(βℓ)UC(γℓ)

]
|s0⟩

=
p∏

ℓ=1

[
UB, ̸=k(βℓ)UB,k(βℓ)UC(γℓ)

]
|s0⟩

=
p∏

ℓ=1

[
UB, ̸=k(βℓ)Rz,k(ϕk)

Rz,k(−ϕk)UB,k(βℓ)Rz,k(ϕk)

Rz,k(−ϕk)UC(γℓ)
]

|s0⟩

=
p∏

ℓ=1

[
UB, ̸=k(βℓ)Rz,k(ϕk)‘UB,k(βℓ)

Rz,k(−ϕk)UC(γℓ)
]

|s0⟩ (by Equation 7)
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=
p∏

ℓ=1

[
Rz,k(ϕk)UB, ̸=k(βℓ)‘UB,k(βℓ)

UC(γℓ)Rz,k(−ϕk)
]

|s0⟩ (commutativity)

=
p∏

ℓ=1

[
Rz,k(ϕk)”UB(βℓ)UC(γℓ)Rz,k(−ϕk)

]
|s0⟩

(combine ‘UB,k and UB, ̸=k)

=Rz,k(ϕk)
p∏

ℓ=1

[”UB(βℓ)UC(γℓ)
]
Rz,k(−ϕk) |s0⟩

(telescoping)

=Rz,k(ϕk)
p∏

ℓ=1

[”UB(βℓ)UC(γℓ)
]

|“s0⟩

(by Equation 6)

=Rz,k(ϕk)“U(γ, β) |“s0⟩ .

We now finally show that QAOA-warmest
initialized with |s0⟩ and |“s0⟩ yield the same
value; in particular the extraneous Rz(ϕk)
term from the previous calculations will not
effect the measurement due to commutativity
with the cost Hamiltonian:

⟨s0|U(γ, β)†HCU(γ, β) |s0⟩

= ⟨“s0|“U(γ, β)†Rz(ϕk)†HCRz(ϕk)“U(γ, β) |“s0⟩

= ⟨“s0|“U(γ, β)†HC
“U(γ, β) |“s0⟩ ,

where the last equality follows since HC

commutes with Rz(ϕk). This completes the
proof.

Proof of Theorem 2. Given a subspace A
of Rn, if A = span(v) for some unit vector v ∈
R, we abuse the notation and denote Πv(u) =
Πspan(v)(u) and Λv(u) = Λspan(v)(u). We need
two lemmas before we prove the theorem.

Lemma 5. Let u, v be unit vectors in Rn and
let A denote a linear subspace of Rn of di-
mension k such that v ∈ A. If ΠA(u) ̸= 0 and
Πv(u) ̸= 0, then

Λv(u) = Λv

(
ΛA(u)

)
.

That is, unit-scale projection of u on v is
equivalent to first unit-scale projecting u to A
and projecting this projection ΛA(u) on v.

Proof. Let {v1, . . . , vk} be an orthonormal ba-
sis for A. Let αi = u⊤vi. Then

ΠA(u) =
∑
i∈[k]

αivi, ΛA(u) =
∑

i∈[k] αivi»∑
i∈[k] α

2
i

Since v ∈ A, write v =
∑

i∈[k] βivi. Then we
have

Πv

(
ΛA(u)

)
=

∑
i∈[k] αiβi»∑

i∈[k] α
2
i

v,

so that

Λv

(
ΛA(u)

)
=

Πv

(
ΛA(u)

)
∥Πv

(
ΛA(u)

)
∥2

=
∑

i∈[k] αiβi∣∣∣∑i∈[k] αiβi

∣∣∣ v
= Πv(u)

∥Πv(u)∥2
v

= Λv(u).

Note that the above lemma is deterministic
statement; we have not used any randomness
so far.

Let us consider what happens if we select a
linear subspace A of Rn of dimension k uni-
formly randomly from Rn (one way to ensure
it is chosen uniformly randomly is to select
unit vectors vi ∈ Rn, i ∈ [k] recursively so that
vi is chosen uniformly randomly in the space
orthogonal to v1, . . . , vi−1). Once we have A,
let us select a vector v ∈ A uniformly ran-
domly again. Is this equivalent to choosing a
vector v ∈ Rn uniformly randomly? By sym-
metry, it is, since the former experiment is not
biased in favor of any direction. We omit the
formal proof and state it as a lemma here:

Lemma 6. Let E denote the experiment of
choosing a unit vector v chosen uniformly ran-
domly from Rn. Let E′ denote the experiment
of choosing a linear subspace A of dimension k
uniformly randomly from Rn, and then choos-
ing a unit vector v′ uniformly randomly from
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A. Then E′ = E, i.e., they correspond to the
same probability space.

We are ready for the proof of Theorem 2.

Proof. Let Un = {v ∈ Rn : ∥v∥2 = 1} be the
set of unit vectors in Rn. Recall that for a
given probability space, a random variable is
a real-valued function on the sample space,
or that X,Y : Un → R. From Lemma 6,
the two experiments correspond to the same
probability space. Therefore, it is enough to
show that X(v) = Y (v) for all v ∈ Un.

One key observation is that rounding on a
random hyperplane is equivalent to unit-scale
projecting to a uniformly random vector v:
indeed, let v be the vector normal to the uni-
form hyperplane, then any unit vector u is
rounded to 1 if u ·v > 0 and to −1 if u ·v < 0.
That is, u is rounded to u·v

|u·v| = Λv(u)⊤v.
Therefore,

X(v) =
∑

ij∈E(G)
wij 1

[
Λv(ui)⊤v · Λv(uj)⊤v < 0

]
.

Similarly, for a given A such that v ∈ A, we
have Y (v) is equal to:∑

ij∈E(G)
wij1

[
Λv

(
ΛA(ui)

)⊤
v

· Λv

(
ΛA(uj)

)⊤
v < 0

]
.

Since dim(A) = k is a constant and A is
chosen uniformly randomly, ΠA(ui) ̸= 0 for
each i with probability 1. From Lemma 5, we
have Λv

(
ΛA(u)

)
= Λv(u) for all unit vectors

u and for all A.
Therefore, we have,

Y (v)

=
∑

ij∈E(G)
wij 1

[
Λv(ui)⊤v · Λv(uj)⊤v < 0

]
= X(v).

Since X and Y have the same distribution,
the same approximation guarantee holds for
X,Y . This proves part 1 of the theorem.

We prove part 2 next. Let C denote the
maximum cut value on graph G, and denote
α = 0.878 for convenience. Then, part 1

shows that EY ≥ αC. We first show that
Pr (Y > (1 − ϵ)EY ) ≥ αϵ using Markov in-
equality:

Pr (Y > (1 − ϵ)EY )
= 1 − Pr (Y ≤ (1 − ϵ)EY )
= 1 − Pr (C − Y ≥ C − (1 − ϵ)EY )

≥ 1 − E (C − Y )
C − (1 − ϵ)EY

= ϵEY
C − (1 − ϵ)EY

≥ ϵEY
EY
α − (1 − ϵ)EY

= αϵ

1 − α(1 − ϵ)
≥ αϵ.

Suppose that log n
ϵ independent cuts are

produced by applying the two-step rounding
procedure logn times. Then the probabil-
ity that all of these cuts have value less than
(1 − ϵ)EY is at most

(1 − αϵ)
log n

ϵ ≤
(
e−αϵ

) log n
ϵ = 1

nα
,

where we have used the standard inequality
exp(−x) ≥ 1 − x. Since α ∈ (0, 1), this prob-
ability goes to 0 as n goes to ∞.

We prove the second claim of part 2. Given
a k-dimensional subspace A of Rn, let wA

denote the average cut value after Goemans-
Williamson hyperplane rounding is performed
on A, i.e.

wA =
∫

v∈UA
(cut value along v) dv∫

v∈UA
dv

,

where UA is the set of all unit vectors in A.
Notice that

EY =
∫

AwA dA∫
A dA

.

For the first step of the two-step rounding
procedure (i.e., the step selecting a random
subspace of dimension k), let Z denote the
random variable that takes value wA when
subspace A is selected. We need to show that
for log n

ϵ i.i.d. random variables Z1, . . . , Z log n
ϵ

,

28



there is at least some Zi such that Zi ≥
(1 − ϵ)EY . Since the random subspace is se-
lected uniformly randomly, we have that

EZ =
∫

AwA dA∫
A dA

= EY.

A similar Markov inequality analysis on Z
then gives the result.

Proof of Corollary 3

Proof. Let F ′
0 = F ′

0(γ, β) be the expected
value of Max-Cut obtained by quantum sam-
pling (i.e., QAOA for p = 0). Then,

F ′
0

Max-Cut(G)

≥ κ · F ′
0

HP(x)
(since HP(x) ≥ κMax-Cut(G))

≥ κ min
(i,j)∈E

wijE[1[i & j have different spins]]
wij

π arccos(xi · xj)
(a+c

b+d ≥ min(a
b ,

c
d) for a, b, c, d ≥ 0)

= κ min
(i,j)∈E

E[1[i & j have different spins]]
1
π arccos(xi · xj)

.

For i, j ∈ [n], let θij denote the an-
gle between xi and xj . We can write
E[1[i and j have different spins]] = fk(θij),
that is, this expectation is solely a function of
the angle between the adjacent vertices and
the dimension k considered. In particular, in
Theorem 2 of Tate et al. [31], they show for
k ∈ {2, 3} that

fk(θij) = 1
2

Å
1 − cos θij

k

ã
.

Additionally, arccos(xi · xj) = θij . Using

these substitutions, we have

F ′
0

Max-Cut(G)

≥ κ min
(i,j)∈E

E[1[i and j have different spins]]
1
π arccos(xi · xj)

= κ min
(i,j)∈E

fk(θij)
θij/π

≥ κ min
θ∈[0,π]

fk(θ)
θ/π

= κ min
θ∈[0,π]

1
2
(
1 − cos θ

k

)
θ/π

.

For k ∈ {2, 3}, it is straightforward to verify
that the minimum in the last line above is
achieved at θ = π (see Figure 10) which leads
to the ratio F ′

0
Max-Cut(G) being at least 3

4κ and
2
3κ respectively for k = 2, 3.

Proof of Observation 4

Proof. We prove something more general
than what is stated in Proposition 4. In-
stead of considering a particular cut where
hyperplane-rounding yields an approximation
ratio of α, we will instead consider a ran-
dom cut (obtained via hyperplane rounding
where the hyperplane is selected uniformly
at random). We will show that in expecta-
tion (considering both the randomness of the
hyperplane rounding and the randomness of
the quantum sampling), that the expected cut
value is at least 0.878 cos2|V |(θ∗/2).

Let X denote the random variable corre-
sponding to the cut value obtained from the
cut obtained by quantum measurement of a
perturbed single-cut initialization obtained by
GW hyperplane rounding as described in Sec-
tion 3.3. For any S ⊆ V , let GW(S) denote
the event that the cut (S, V \S) was obtained
from the GW hyperplane rounding step. Sim-
ilarly, let QM(S) denote the event that quan-
tum measurement of the initial state resulted
in the cut (S, V \ S).

First, observe that if the cut (S, V \ S) is
used to initialize the quantum state with reg-
ularization angle θ∗, then the probability of
quantum measurement getting the same cut
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is cos2|V |(θ∗/2); this is because each vertex in-
dependently has probability cos2(θ∗/2) of re-
maining on the same side of the cut used to
initialize the quantum state. Using this fact,
we find that,

E[X]
=

∑
S⊆V

E[X | GW(S)] Pr(GW(S))

=
∑

S⊆V

( ∑
T ⊆V

E[X | GW(S),QM(T )]

· Pr(QM(T ) | GW(S)) · Pr(GW(S))
)

≥
∑

S⊆V

(
E[X | GW(S),QM(S)]

· Pr(QM(S) | GW(S)) · Pr(GW(S))
)

=
∑

S⊆V

(
cut(S) · cos2|V |(θ∗/2) · Pr(GW(S))

)

= cos2|V |(θ∗/2)
∑

S⊆V

(
cut(S) Pr(GW(S))

)
≥ cos2|V |(θ∗/2) · 0.878Max-Cut(G),

and thus E[X]
Max-Cut(G) ≥ 0.878 cos2|V |(θ∗/2) as

desired. In the above formulas, we used the
fact that E[X | GW(S),QM(S)] = cut(S)
and that the sum

∑
S⊆V (cut(S) Pr(GW(S)))

is simply the expected cut value of the GW
algorithm, which we know is at least 0.878 of
the optimal cut value for graphs with non-
negative weights [5].

B Detailed Description of Custom
Mixer

Consider any separable state |s0⟩ on n qubits
on the Bloch sphere, i.e., |s0⟩ can be written
in the form:

|s0⟩ =
n⊗

j=1
|s0,j⟩ ,

where for j = 1, . . . , n,

|s0,j⟩ = cos(θj/2) |0⟩ + eiϕj sin(θj/2) |1⟩ .

Here, θj and ϕj can be interpreted as the po-
lar and azimuthal angle respectively of the
jth qubit on the Bloch sphere. The posi-
tion of the jth qubit on the Bloch sphere
can also be described in Cartesian coordinates
n̂j = (xj , yj , zj) via the following transforma-
tion from spherical to Cartesian coordinates:

xj = sin θj cosϕj ,

yj = sin θj sinϕj ,

zj = cos θj .

Recall (from Section 2) the custom mixing
Hamiltonian HB is then constructed as fol-
lows:

HB =
n⊕

j=1
HB,j ,

where HB,j = xjσ
x + yjσ

y + zjσ
z. To de-

velop a geometrical understanding of the cus-
tom mixer, consider the operator Rn̂,j(α) that
rotates the jth qubit by angle α about the n̂-
axis for some unit vector n̂ = (x, y, z); such as
operation can be written as:

Rn̂,j(α) = exp(−iα2 (xσx
j + yσy

j + zσz
j )).

Recall that for the kth of the p stages of the
QAOA circuit (where p is the circuit depth),
one applies the unitary operator e−iβkHB with
βk being a variational parameter (to be opti-
mized); this operator, e−iβkHB , can be written
as

∏n
j=1Rn̂j ,j(2βk), i.e., in the kth stage of

the QAOA circuit, one independently rotates
the jth qubit about the axis determined by its
original position by angle 2βk.

C Convergence of Custom Mixers in
xz-plane
In order to prove Proposition 1 using the adi-
abatic theorem, we need to show that (1) ∥s0⟩
is indeed the highest-energy eigenstate of the
corresponding custom mixer HB, and (2) the
difference between the largest and the second-
largest eigenvalues of H(t) = (1 − t/T )HB +
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(t/T )HC is strictly positive. We divide this
section into two parts to prove these two state-
ments.

C.1 Eigenstates of Custom Mixers
We show first that |s0⟩ is the highest energy
eigenstate of the corresponding custom mixer
for a single qubit, and then generalize to the
Kronecker sums of matrices (Proposition 3).

Lemma 7. Let |s⟩ = cos(θ/2) |0⟩ +
eiϕ sin(θ/2) |1⟩ be a single-qubit quantum state
and let n̂ = (x, y, z) be the Cartesian coordi-
nates of that qubit on the Bloch sphere. Let
U = xσx + yσy + zσz. Then |s⟩ is the most-
excited eigenstate of U .

Proof. We have the following relationship be-
tween the Cartesian and spherical coordi-
nates: x = cosϕ sin θ, y = sinϕ sin θ, z =
cos θ. Thus, the matrix U = xσx + yσy + zσz

is given by

U =
ï

cos θ sin θe−iϕ

sin θeiϕ − cos θ

ò
.

One can show that the matrix can be
diagonalized as U = PDP−1 where
P = [v1 v2], D = diag(1,−1), v1 =
cos(θ/2) |0⟩ + sin(θ/2)eiϕ |1⟩ , v2 =
− sin(θ/2) |0⟩ + cos(θ/2)eiϕ |1⟩. Thus,
v1 = cos(θ/2) |0⟩ + sin(θ/2)eiϕ |1⟩ is the
highest-energy eigenstate of U .

We can then formulate the most-excited
eigenstate of U using the following relation
between eigenvalues of matrices involved in a
Kronecker sum and the resultant matrix.

Theorem 8. (Theorem 13.16 in [50]) Let
A ∈ Cn×n have eigenvalues λ1, . . . , λn and
let B ∈ Cm×m have eigenvalues µ1, . . . , µm.
Then the Kronecker sum A⊕B has mn eigen-
values given by {λi + µj : i ∈ [n], j ∈ [m]}.
Moreover, if x1, . . . , xp (p ≤ n) are linearly
independent eigenvectors of A corresponding
to λ1, . . . , λn and z1, . . . , zq (q ≤ m) are lin-
early independent eigenvectors of B corre-
sponding to µ1, . . . , µq, then, for all i ∈ [p]
and j ∈ [q], we have that xi ⊗ zj are linearly
independent eigenvectors of A⊕B correspond-
ing to λi + µj.

By applying Theorem 8 with the summands
HB,j of the mixing Hamiltonian HB, we get
the desired result as shown in Proposition 3.

Proposition 3. Let |s0⟩ be any separable ini-
tial state and let HB be its corresponding cus-
tom mixer. Then |s0⟩ is the highest-energy
eigenstate of HB.
Proof. Suppose for each j = 1, . . . , n we have
a matrix Aj with real eigenvalues and suppose
the largest eigenvalue of Aj is λj with corre-
sponding eigenvector vj . As a consequence of
Theorem 8, we have that the largest eigen-
value of

⊕n
j=1Aj is

∑n
j=1 λj with one cor-

responding eigenvector being
⊗n

j=1 vj . Let-
ting Aj = HB,j and vj = |s0,j⟩ and apply-
ing Lemma 7, we see that |s0⟩ =

⊗n
j=1 |s0,j⟩

is a highest-energy eigenstate for HB =⊕n
j=1HB,j .

C.2 Eigenvalue Gap For Custom Mixers
It is known that if the Quantum Adiabatic
Algorithm is run for large enough time T
with time-varying Hamiltonian H(t) = (1 −
t/T )HB + (t/T )HC starting with the highest-
energy eigenstate of H(0) = HB, then one
can arrive at the highest-energy eigenstate of
H(T ) = HC , i.e. the optimal solution, pro-
vided that the gap between the largest and
second-largest eigenvalue of H(t) is strictly
positive for all t < T . This translates to find-
ing an optimal solution when running QAOA
as we let the circuit depth p tend to infin-
ity. Farhi et al. showed that this eigenvalue
gap was strictly positive for standard QAOA
[3], thus guaranteeing convergence to the op-
timal solution. In particular, they applied the
following Perron-Frobenius theorem to irre-
ducible stoquastic15 matrices.

Theorem 9. [51] Let A be an irreducible
matrix whose entries are all real and non-
negative. Let r be the spectral radius of A, i.e.,

15Stoquastic matrices are square matrices with real
entries so that all of the off-diagonal entries are non-
negative. Let A be an n × n square matrix. Construct
a directed graph GA with vertex set [n] where the
edge (i, j) is included if and only if Aij > 0. If GA is
strongly connected, then we say that A is irreducible.
Otherwise, we say that A is reducible.
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r = max{|λ| : λ is eigenvalue of A}. Then r
is an eigenvalue of A and furthermore, it has
algebraic multiplicity of 1.

If the eigenvalues of an n× n matrix A are
real (e.g. if A is Hermitian), then its eigen-
values (with multiplicity) can be ordered as
λ1 ≥ · · · ≥ λn; if A is also irreducible and
has real, non-negative entries then Theorem 9
ensures a gap between the two largest eigen-
values (otherwise, if λ1 = λ2, then the alge-
braic multiplicity of λ1 would be at least 2,
contradicting the statement of the theorem.)
This observation still holds if we relax the non-
negativity condition to allow negative entries
along the diagonal as seen in the following
lemma.

Lemma 10. Let A be an irreducible stoquas-
tic Hermitian matrix. Then the difference
between the largest and second-largest eigen-
value of A is strictly positive.

Proof. Since A is stoquastic, then all of
the off-diagonal elements are already non-
negative; however, the diagonal elements may
be negative. Observe that for large enough k,
we have that A+ kI is a matrix with all non-
negative entries. Note that A + kI is Hermi-
tian (since A and I are) and thus the eigen-
values of A + kI are real. If we apply the
Perron-Frobenius theorem to A+ kI, one ob-
serves that the gap between the largest and
second-largest eigenvalue is strictly positive.

One can show that the eigenvalues of A+kI
can be obtained by shifting all of the eigenval-
ues of A by k (i.e. of λ is an eigenvalue of A,
then λ+ k is an eigenvalue of A+ kI). More-
over, the multiplicities of these shifted eigen-
values are preserved. Thus, the gap between
the largest and second-largest eigenvalue of
A + kI (which is strictly positive) is equal
to the gap between the largest and second-
largest eigenvalue of A.

If the custom mixer HB has the form∑n
j=1(xjσ

x
j + zjσ

z
j ) with xj ∈ R+ and zj ∈ R

for j = 1, . . . , n, then one can show that H(t)
is an irreducible, stoquastic matrix. Thus
by Lemma 10, the eigenvalue gap of H(t) is
strictly positive meaning that one can achieve

the optimal solution as the circuit depth p →
∞ in QAOA-warmest. Geometrically, this
special case corresponds to an initial separa-
ble state whose qubits lie in the xz-plane on
the Bloch sphere with x > 0. The stoquas-
ticity and irreducibility of this special case is
formalized in the following two propositions
respectively. We include their proofs at the
end of this section, and go on to prove our
main result first.

Proposition 4. Let n be a positive integer.
For each j = 1, . . . , n let xj be any non-
negative real number and let zj be any real
number. Let HB =

∑n
j=1(xjσ

x
j +zjσ

z
j ) and let

HC be the problem Hamiltonian for QAOA.
Then H(t) = (1 − t/T )HB + (t/T )HC is sto-
quastic for all 0 ≤ t ≤ T .

Proposition 5. Let n be a positive integer.
For each j = 1, . . . , n let xj be a positive real
number and let zj be any real real number.
Let HB =

∑n
j=1(xjσ

x
j + zjσ

z
j ) and let HC

be the problem Hamiltonian for QAOA. Then
H(t) = (1 − t/T )HB + (t/T )HC is irreducible
for all 0 ≤ t < T .

We can now prove the convergence for cus-
tom mixers of the special form (

∑n
j=1(xjσ

x
j +

zjσ
z
j ) with xj ∈ R+ and zj ∈ R for j =

1, . . . , n) and their corresponding initializa-
tions as described in Proposition 1 in Section
2.

Proof. By construction, the correspond-
ing custom mixers will have the form∑n

j=1(xjσ
x
j + zjσ

z
j ) with xj ∈ R+ and zj ∈ R

for j = 1, . . . , n. The result then follows from
Proposition 3, Lemma 10 (which is applicable
due to Proposition 4 and Proposition 5), and
the adiabatic theorem.

Recall that for standard QAOA, we have
that HB =

∑n
j=1(1 · σx

j + 0 · σz
j ). Thus, the

fact that standard QAOA converges to the
optimal cut as p → ∞ is a special case of
Propositions 4 and 5.

Proof of Proposition 4 We first prove a
technical lemma that is needed in order to
prove the proposition.
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Lemma 11. If A and B are n × n and m ×
m stoquastic matrices respectively, then so is
A⊕B.

Proof. By definition, A⊕B = A⊗Im+In⊗B.
Since we know the sum of stoquastic matrices
is stoquastic, it suffices to show that A ⊗ Im

and In ⊗B is stoquastic.
Observe that,

A⊗ Im =

A11Im · · · A1nIm

...
. . .

...
An1Im · · · AnnIm

 .
Note that for i ̸= j, the ijth block in the
block matrix above is AijIm, which contains
only non-negative entries since Aij is an off-
diagonal element of A and A is stoquastic.
Now consider the entries in the ijth block
where i = j. Note that if there is an off-
diagonal entry of A ⊗ Im that is part of the
iith block, then it is also an off-diagonal entry
of that block but all the off-diagonal entries of
the iith block (AiiI) are zero. Thus, we have
shown that every off-diagonal element is non-
negative, thus A⊗ Im is stoquastic.

Next, observe that

In ⊗B =


1B 0B · · · 0B

0B
.. .

. . .
...

...
. . .

. . . 0B
0B . . . 0B 1B

 ,

which makes it clear that the off-diagonal ele-
ments of In⊗B are either 0 or the off-diagonal
elements of B which are non-negative (by sto-
quasticity of B) and thus In ⊗B is stoquastic.

We are now ready to prove Proposition 4.

Proof. By construction HC (and thus
(t/T )HC) is a diagonal matrix (as |b⟩ is an
eigenvector of HC for each n-length bitstring
b). If HB were stoquastic, then (1 − t/T )HB

is stoquastic (as 1 − t/T ≥ 0 for 0 ≤ t ≤ T )
and thus H(t) = (1 − t/T )HB + (t/T )HC

is stoquastic (as adding a diagonal matrix
to a stoquastic matrix yields a stoquastic

matrix). Thus, it remains to show that HB is
stoquastic.

Let HB,j = xjσ
x +zjσ

z. Expanding σx and
σz, we have that

HB,j =
ï
zj xj

xj −zj

ò
,

which is clearly stoquastic as we assumed that
xj ≥ 0. As HB =

⊕n
j=1HB,j , the result now

follows from Lemma 11.

Proof of Proposition 5

Proof. First, we recall the definition of irre-
ducible matrix. Let A be an n × n square
matrix. Construct a directed graph GA with
vertex set [n] where the edge (i, j) is included
if and only if Aij > 0. If GA is strongly
connected, then we say that A is irreducible.
Otherwise, we say that A is reducible.

For any square matrix M , let GM be
the corresponding directed graph as de-
scribed above. Observe that HC (and hence
(t/T )HC) is a diagonal matrix, thus, by the
definition of irreducibility, the irreducibility
of (1 − t/T )HB + (t/T )HC is the same as
(1 − t/T )HB. Similarly, scaling a matrix
by a positive constant does not affect its ir-
reducibility, so it suffices to prove the irre-
ducibility of HB.

Observe that σx, σz are symmetric and thus
it is not very difficult to show that HB is
also symmetric. This means, for the pur-
poses of showing irreducibility, GHB

is effec-
tively an undirected graph and we just need
to show that it is connected. One can write
HB as HB =

⊕n
j=1(xjσ

x + zjσ
z) where

⊕
denotes the Kronecker sum. According to
[52], this means that GHB

can be written as
the Cartesian graph product of the graphs
H1, H2, . . . ,Hn where Hj = GAj with Aj =
xjσ

x + zjσ
z. Observe, that each of the Hj ’s

are connected if and only if xj ̸= 0 which is
true by assumption. Since each of the Hj ’s are
connected, then it is also the case that GHB

is connected as well (see Theorem 1 of [53])
which finishes the proof.
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D Details on Perturbed Single-Cut
Initialization
In a perturbed single-cut initialization scheme
with cut (S, V \S) and regularization angle θ∗,
the quantum state is given by,

|s0⟩ =
n⊗

j=1
|s0,j⟩ ,

where,

|s0,j⟩ =
®
RY (θ∗) |0⟩ , j ∈ S

RY (π − θ∗) |0⟩ , j /∈ S

where RY (θ) is a single-qubit rotation about
the y-axis by angle θ. Geometrically, qubits lie
on the xz-plane of the Bloch sphere (with x >
0) so that they lie at an angle θ∗ away from
either the north or south pole of the Bloch
sphere, depending on which side of the cut
(S, V \ S) the vertex is on.

In one of their approaches for Max-Cut, Eg-
ger et al. [9] use a mixer for QAOA that is
different than both the standard mixer and
the custom mixers described in Section 2.
They show that their mixer has the property
that, when a {perturbed single-cut initializa-
tion (based on a cut (S, V \ S)) with regu-
larization parameter θ∗ = π/3 is used, that
measurement of the depth-1 QAOA with vari-
ational parameters (γ1, β1) = (0, π

2 ) produces
exactly the cut (S, V \S) that was used to ini-
tialize the initial quantum state. The draw-
back is that, with such a mixer proposed by
Egger et al., no convergence guarantees are
known and experiments suggest that, unlike
standard QAOA, the optimal cut value is not
achieved in expectation with increased circuit
depth.

Cain et al. [8] consider the case where θ∗ =
0 and the standard mixer is used. They find
that such an approach performs very poorly;
in particular, no convergence towards the op-
timal cut is found with increased circuit depth
either.

One can also consider using a perturbed
single-cut initialization together with the cus-
tom mixers proposed in Section 2; this idea
was very briefly explored in the appendices of

Egger et al.’s work [9]. From Proposition 4
and Theorem 1, it is clear that this approach
(with non-negative weighted graphs) yields
an approximation ratio approaching 0.878 for
θ∗ → 0 for depth-0 QAOA and that such an
approach convergences to the optimal cut with
infinite circuit depth.

Recall (Section 3.1) that QAOA with a (2-
dimensional) projected GW initialization has
a depth-0 approximation ratio of 0.658. One
may be led to believe that, when custom mix-
ers are used, that a perturbed single-cut ini-
tialization (with small regularization angle θ∗)
is the better choice due to its (theoretically)
better approximation ratio at depth-0. How-
ever, as seen empirically in Section 4, this is
not the case: when θ∗ is small, the conver-
gence rate of QAOA with single-cut initial-
izations is (empirically) incredibly slow across
all instances. For small θ∗, QAOA with cus-
tom mixers geometrically performs rotations
around axes that are near the poles of the
Bloch sphere about the qubits’ initial posi-
tions; it is possible that this geometric inter-
pretation is responsible for the slow conver-
gence for small θ∗.

D.1 Relation to QUBO Approach

Egger et al. [9] consider a warm-start ap-
proach (which they call continuous warm-
started QAOA) for QUBO’s of the form

min
y∈{0,1}n

yTMy,

where M ∈ Rn×n is a real-symmetric matrix.
They then consider the relaxation

min
y∈[0,1]n

yTMy,

i.e. the binary variables are relaxed to lie in
the interval [0, 1]. For certain matrices16 M ,
this yields a convex quadratic program which
can be easily solved to (global) optimality [54];
in this case, Egger et al. [9] find and use the

16In particular, Egger et al. [9] consider matrices of
the form M = N + D where N ∈ Rn×n is a (symmet-
ric) positive-semidefinite matrix and D ∈ Rn×n is a
diagonal matrix.
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globally optimal solution y∗ of the relaxation
to produce a separable quantum initial state.
We consider this approach in the context of
Max-Cut, specifically in the case of graphs
with non-negative edge weights.

One can formulate Max-Cut on a graph
G = (V,E) with edge weights w : E → R
as follows [4]. Simply construct the QUBO
matrix M by setting Mij = wij for i ̸= j and
Mii = −

∑n
j=1wij for i ∈ {1, . . . , n}. If x∗ is

an optimal solution to Max-Cut (using the for-
mulation in Equation 2), then there is a corre-
sponding y∗ that is an optimal solution of the
QUBO such that x∗

i = 2y∗
i −1 for i = 1, . . . , n.

Observe that M = −L where L Lapla-
cian matrix of the graph G which is known
to be positive-semidefinite (for graphs with
non-negative edge weights) [55]. Since L
is positive-semidefinite, then the function
f(x) = xTLx is convex in x (as the Hessian
of f , ∇2f(x) = 2L, is positive-semidefinite).
Thus, xTMx = −f(x) is generally not convex,
and hence solving minx∈[0,1]n x

TMx to global
optimality (as is done by Egger et al. [9]) is
non-trivial in the case of Max-Cut. However,
we can still consider locally optimal solutions
to the relaxation. Observe,

min
y∈[0,1]n

yTMy = max
y∈[0,1]n

yTLy,

i.e., the QUBO relaxation amounts to maxi-
mizing a convex function over a polytope, in
which case, all strictly local maxima lie on
the vertices of the polytope.17 The vertices
of the polytope [0, 1]n correspond to cuts in
the graph, thus, using the strictly locally op-
timal solution to the relaxation of the QUBO
corresponding to Max-Cut degenerates to so-
lutions corresponding to a single-cut; this
means that, for Max-Cut (with non-negative
edge-weights), this QUBO approach is (effec-
tively) a single-cut initialization approach as
described in Section 3.3.

17To see this, suppose by means of contradiction
that y∗ was a strict local maximum that did not lie
at a vertex of the polytope. Then there exists z ∈ Rn

such that y∗−z and y∗+z lie in the polytope such that
f(y∗) > f(y∗−z) and f(y∗) > f(y∗+z). By convexity,
f(y∗) = f( 1

2 (y∗−z)+ 1
2 (y∗+z)) ≤ 1

2 f(y∗−z)+ 1
2 f(y∗+

z) < 1
2 f(y∗) + 1

2 f(y∗) = f(y∗), a contradiction.

E Noise Simulations
In Figure 11, we consider 20 instances of
Erdős-Rényi graphs, with edge probabilities of
50% and 8 nodes. In this case, we also choose
random negative and positive edges weights
from a uniform distribution defined on [−1, 1].
We show results for the ideal, noiseless case
as well as the noisy case when 3% phase noise
is present. For this noisy case, we consider
only one simple source of noise, phase damp-
ing, which is present for every single qubit gate
operation. This choice is made for simplicity
and the following discussion is used as a ex-
ample of generic noise channel modelling.

As an example, we consider the modelling
of phase noise using Kraus operators which
equivalently can be descried using noise chan-
nels. Generically, this noise is due to interac-
tions with the environment which is composed
of many subsystems. Each interaction itself is
weak, but the result of many such interactions,
while not likely to cause energy transitions,
does introduce a loss of phase coherence. We
can describe this process with a set of (non-
unique) Kraus operators[56], given by,

M0 =
√

1 − qI,

M1 = √
q |0⟩ ⟨0| ,M2 = √

q |1⟩ ⟨1| ,

where q is the probability of a dephasing event
occurring. These Kraus operators then have
the effect on the state evolution as,

S(ρ) =
2∑

k=0
MkρM

†
k

=(1 − q)ρ+ q |0⟩ ⟨0| ρ |0⟩ ⟨0|
+ q |1⟩ ⟨1| ρ |1⟩ ⟨1| .

If we associate the probability of a dephas-
ing event occuring during a time interval ∆t,
then q = Γ∆t with Γ being the characteristic
dephasing rate and we can write n applica-
tions of the noisy channel, S(ρ, t) in matrix
form as,

S(ρ, t) =
Å

ρ00 e−Γtρ01
e−Γtρ10 ρ11

ã
.

We can then see that this dephasing process
preserves population as ρ00, ρ11 are preserved
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but exponentially suppresses coherences at a
rate defined by Γ, which also defines the de-
phasing time, T2 = 1/Γ.

In addition to modelling phase noise, we
also include several other noise models in the
results shown in Figures 5, 8, and 9 of the
main text. The specifications for these noise
models are generated from Qiskit’s Noise-
Model.from_backend method while using
the “ibm_guadalupe” device as the targetted
backend. In total, these noisy simulations uti-
lize noise models that incorporate gate error
probability of each gate, the gate length of all
gates, the T1 and T2 times of all qubits, as well
as the readout error probability. Each gate er-
ror consists of a deploarizing_error() fol-
lowed by a thermal_relaxation_error()
error channel. One can define similar Kraus
operators for these noise channels as well [56].
However, while these are a comprehensive
treatment of quantum noise they do not accu-
rately capture crosstalk and other correlated
noise sources.

As mentioned in the main text, we apply
a SPAM mitigation strategy to our hardware
results from IBM. Typically these SPAM er-
rors can vary significantly across qubits on
a single device. Specifically, typical readout
errors on the ibmq_guadalupe device range
from [1.07%, 12.95%]. Since the overall re-
sult is limited by the largest, worst case er-
ror, for simplicity, we only mitigate SPAM
errors due to the fact that these errors are
roughly an order of magnitude larger than
gate errors on the same device as well as re-
quiring only two additional circuit runs (in-
dependent of circuit width or depth) and
do not implement any gate error mitigation
strategies, which typically require significantly
larger overhead [57, 58].

F Additional Numerical Results

F.1 GW vs BM-MC Warm-Starts

As described in Section 3, we consider two
approaches for generating warm-starts: pro-
jected GW solutions and locally optimal BM-
MCk solutions, with the former approach

having better theoretical guarantees in re-
gard to solution quality. However, numeri-
cal simulations displayed in Figure 14 show
both approaches on the instance library G
(graphs with at most 11 nodes) achieve sim-
ilar expected cut values at depth p = 1
QAOA-warmest; in particular, the difference
in (instance-specific) approximation ratio is
less than 0.04 for nearly all instances. This
similarity in solution quality is even more pro-
nounced at depth p = 8.

Since both warm-start approaches yield
similar results (in numerical simulations) and
since the Burer-Monteiro approach scales bet-
ter in regards to runtime (Section 3), the re-
sults in Section 4 assumes that locally opti-
mal BM-MCk solutions are used to produce
the warm-starts for QAOA-warm and QAOA-
warmest.

F.2 Choice of Dimension and Rotation

Table 6 demonstrates the average (instance-
specific) approximation ratio achieved by
QAOA-warmest for various combinations of
the dimension used for BM-MCk and the rota-
tion scheme applied to the BM-MCk solution.
We find that vertex-at-top rotations perform
better than uniform rotations, especially in
the context of k = 3 solutions. The data is in-
conclusive in regards to if k = 2 or k = 3 solu-
tions are better for QAOA-warmest, both are
promising. Finally, we remark that for depth-
8 QAOA-warmest, any choice of dimension or
rotation scheme gave at least a 0.996 average
approximation ratio across the instances.

To give fair comparison against QAOA-
warm [31] (and also for comparisons with Eg-
ger et al.’s approach [9]), the results in Section
4 assumes that we are using k = 2 initializa-
tions and vertex-at-top rotations unless other-
wise stated, since these were the recommended
setting in [31].

F.3 GW and BM-MC Scaling

In Section 3, two methods of creating a warm-
start initialization are discussed: projecting
GW SDP solutions and finding approximate
BM-MCk solutions. Figure 12 uses instances
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depth p = 1 depth p = 8

all graphs
vert. uniform

k = 2 0.9858 0.9758
k = 3 0.9854 0.9535

vert. uniform
k = 2 0.9988 0.9977
k = 3 0.9988 0.9960

positive-weight
graphs

vert. uniform
k = 2 0.9867 0.9789
k = 3 0.9864 0.9581

vert. uniform
k = 2 0.9991 0.9990
k = 3 0.9993 0.9981

Table 6: Multiple tables comparing the average (instance-specific) approximation ratio achieved during QAOA-warmest
when utilizing different combinations of dimension and rotations during the preprocessing stage. For the top row of
tables, these averages were computed using all the graphs in our graph library G whereas for the bottom row, we
restrict our attention to only those graphs in G with positive edge weights.

Figure 14: Histogram showing the difference in
(instance-specific) approximation ratio (AR) when us-
ing QAOA-warmest (on instance library G) with various
warm-start strategies: projected GW and locally optimal
BM-MC warm-starts. The blue and red bars correspond
to depth p = 1 and p = 8 QAOA-warmest respectively
with the purple regions indicating an overlap in the his-
tograms. For both approaches, k = 3 solutions and
vertex-at-top rotations are used to produce the figure;
the results are similar if one instead uses a different com-
bination of dimension and/or rotation scheme.

from the MQLib [4] library18 to compare these
two methods at different dimensions (k = 2, 3)
with respect to the (instance-specific) approx-
imation ratio they achieve with hyperplane
rounding; these approximation ratios are com-
pared against hyperplane rounding of the n-
dimensional GW solution. It is clear from the
figure that the projecting of GW solutions pre-
serves the approximation ratio (from hyper-
plane rounding); this is consistent with the
results of Theorem 2. On the other hand,
while BM-MCk solutions preserve the approx-
imation ratio (from hyperplane rounding) for
small graphs, the gap in approximation ratios
(compared to n-dimensional GW hyperplane
rounding) grows as the number of nodes in-
creases.

F.4 Interesting Instances

In Section 4.2, Table 2 shows that at circuit
depth p = 8, there are five instances for which
QAOA-warmest did not achieve the highest
(instance-specific) approximation ratio com-
pared to the other algorithms considered.

Of these five instances, standard QAOA was

18MQLib [4] is a diverse library of Max-Cut in-
stances; the results of Figure 12 may differ if differ-
ent types/families of graphs are used (e.g. random
Erdős–Rényi graphs). For each MQLib instance, we
used the exact Max-Cut solver BiqCrunch [59] to try
to find the optimal cut. Figure 12 uses all positive-
weighted MQLib instances up to 663 nodes for which
BiqCrunch was able to find the optimal cut within 24
hours.
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the best algorithm for precisely two of these
(instances #778 and #1820). For the remain-
ing three instances (#1698, #1889, #2010),
GW was the best algorithm; however, all three
of these instances have the property that there
is a single negative edge-weight whose mag-
nitude is much larger than the other edge
weights in the graph and additional numerical
simulations show that a suitable vertex-at-top
rotation (selecting the vertex that is incident
to the large-magnitude negative edge weight)
allows QAOA-warmest to outperform GW.

Table 4 gives detailed statistics for the ap-
proximation ratios achieved by each of the
Max-Cut algorithms considered for these five
instances.

F.5 Comparison with Egger et al.

Figure 13 compares the (instance-specific)
approximation ratios achieved by QAOA-
warmest and a variant of QAOA considered by
Egger et al. [9]. In the context of the Max-Cut
problem, Egger et al. considered an approach
which takes a good starting cut (S, V \S) (ob-
tained via GW or possibly other means) and
uses this cut to construct an initial quantum
state |s0⟩. With this modified initial quantum
state and an appropriate modification of the
mixing Hamiltonian, Egger et al. show that
their variation of QAOA is able to recover the
cut at circuit depth p = 1, i.e., there is a choice
of variational parameters γ1 and β1 such that
the only cut obtained at those parameters is
precisely (S, V \ S).

To give a fair comparison for Egger et al.’s
approach, we consider 10 cuts generated by
the GW algorithm and take the best 5. Due
to the size of the instances we consider, usu-
ally at least one of the best 5 cuts would
be optimal and hence Egger et al.’s approach
would essentially already start with an opti-
mal solution which is not interesting. For this
reason, in Figure 13, we only consider those
instances (22.7% of the instance library) for
which neither QAOA-warmest or Egger et al.’s
approach starts with the optimal solution.

For Egger et al.’s approach, we consider two
different choices for initialization of the vari-

ational parameters: (1) near the origin and
(2) the choice of parameters that recovers the
value of cut used to initialize the QAOA vari-
ant (i.e. β1 = π/2 with the remaining pa-
rameters being set to zero). In both cases,
Figure 13 demonstrates that QAOA-warmest
typically has the superior performance.

There are a total of 163 instances for which
the approximation ratio achieved by depth-8
QAOA-warmest beats GW (by at least 0.001)
and the approximation ratio achieved by GW
beats Egger et al.’s approach (with initializa-
tion β1 = π/2 with the remaining parame-
ters being set to zero) at depth-8 (by at least
0.001). For these instances, the median gap in
approximation ratio between QAOA-warmest
and GW was 0.0466 and the median gap in
approximation ratio between GW and Egger
et al.’s approach is 0.0458.

G Twenty-Node Graph

In this section, we discuss why the graph con-
sidered in Figure 6 is interesting. The graph
used is a 20-node instance, where Goemans-
Williamson achieves an (instance-specific) ap-
proximation ratio of 0.912. We briefly sum-
marize the construction and properties of this
graph.

Recall that the worst-case approximation
ratio for the Goemans-Williamson (GW) al-
gorithm is 0.878. Karloff [42] showed that the
0.878 bound for GW is tight by constructing a
family of graphs whose (instance-specific) ap-
proximation ratios approaches 0.878 as graph
size increases. The construction for this fam-
ily of instances is as follows: consider non-
negative integers b ≤ t ≤ m and let J(m, t, b)
denote the graph with vertex set

(m
t

)
, i.e., the

vertices are all t-element subsets of [m]; two
distinct vertices/subsets S and T of J(m, t, b)
are adjacent if and only if they have exactly b
elements in common, i.e. |S ∩ T | = b. Karloff
proved the approximation ratio for GW on
some of these instances:

Theorem 12. [42] Let m be an even positive
integer and G = J(m,m/2, b). If 0 ≤ b ≤
m/12, then the (instance-specific) approxima-
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Instance # Nodes # Edges Approx. Ratio
J(6, 3, 1) 20 90 0.9123
J(8, 4, 1) 70 560 0.8889
J(10, 5, 1) 252 3150 0.8810
J(10, 5, 2) 252 12600 0.9402
J(12, 6, 1) 924 16632 0.8787
J(12, 6, 2) 924 103950 0.9123

Table 7: Small (< 1000 nodes) instances using Karloff’s [42] construction. For each instance, we include the number of
nodes, edges, and the theoretical expected approximation ratio one would obtain using Goemans-Williamson algorithm
on that instance.

tion ratio for Goemans-Williamson on G is
given by

1
π arccos(4b

m − 1)
1 − 2b

m

.

Non-trivial instances using Karloff’s con-
struction arises once b ≥ 1; however, in order
for the hypotheses of Theorem 12 to be satis-
fied, this requires m ≥ 12 which implies that
one needs to consider instances with at least(12

6
)

= 924 nodes. Performing reliable exper-
iments on such large instances is not feasible
for current quantum hardware.

We noticed that smaller instances with a
weak (instance-specific) GW approximation
ratio could be constructed if the following con-
jecture by Karloff was true.

Conjecture 13. (Conjecture 2.12 in [42])
If m is an even positive integer with 0 ≤
b < m/4, then the smallest eigenvalue
of the adjacency matrix of J(m,m/2, b) is(m/2

b

)2 (4b
m − 1

)
.

Karloff [42] proved a special case of this
conjecture in the case where 0 ≤ b ≤ m/12
which was instrumental in showing Theorem
12 (with the same inequality in the hypothe-
ses).

In 2018, Brouwer et al. [60] proved the fol-
lowing theorem below; substituting t = m/2
into Theorem 14 and performing a few simple
calculations, they also found that Conjecture
13 follows as a corollary.19

19The statement of Theorem 14 has been modified
in order to be consistent with the notation used in
Karloff’s construction [42].

Theorem 14. (Theorem 3.10 in [60]) Let 0 ≤
b < t and let20

βs =
s∑

r=0
(−1)s−r

Ç
s

r

åÇ
t− r

t− b

åÇ
m− t− s+ r

m− 2t+ b

å
.

Then β1 is the smallest eigenvalue of the ad-
jacency matrix of J(m, t, b) if and only if
(t − b)(m − 1) ≥ t(m − t). In this case, β1
is also the second largest in absolute value
among the eigenvalues of the adjacency ma-
trix of J(m, t, b).

Conjecture 13 allows us to relax the inequal-
ity in Theorem 12 to 0 ≤ b < m/4; thus,
it can be applied with m = 6 and b = 1 to
obtain the graph J(6, 3, 1) (used in Figure 5)
with

( 6
6/2
)

= 20 nodes where GW achieves an
(instance-specific) approximation ratio of

1
π arccos(4

6 − 1)
1 − 2

6
= 0.912.

Table 7 shows all non-trivial instances un-
der 1000 nodes that use Karloff’s [42] con-
struction for which we can calculate the ap-
proximation ratio using Theorem 12 and Con-
jecture 13. These instances may be of interest
to those working with near-term quantum de-
vices.

20The eigenvalues of the adjacency matrix of
J(m, t, b) are β0, β1, . . . , βt (each with positive mul-
tiplicity) [61].
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