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In the lead up to fault tolerance, the util-
ity of quantum computing will be determined
by how adequately the effects of noise can be
circumvented in quantum algorithms. Hybrid
quantum-classical algorithms such as the vari-
ational quantum eigensolver (VQE) have been
designed for the short-term regime. However,
as problems scale, VQE results are generally
scrambled by noise on present-day hardware.
While error mitigation techniques alleviate
these issues to some extent, there is a pressing
need to develop algorithmic approaches with
higher robustness to noise. Here, we explore
the robustness properties of the recently in-
troduced quantum computed moments (QCM)
approach to ground state energy problems,
and show through an analytic example how the
underlying energy estimate explicitly filters
out incoherent noise. Motivated by this ob-
servation, we implement QCM for a model of
quantum magnetism on IBM Quantum hard-
ware to examine the noise-filtering effect with
increasing circuit depth. We find that QCM
maintains a remarkably high degree of error
robustness where VQE completely fails. On
instances of the quantum magnetism model up
to 20 qubits for ultra-deep trial state circuits
of up to ∼500 CNOTs, QCM is still able to ex-
tract reasonable energy estimates. The obser-
vation is bolstered by an extensive set of exper-
imental results. To match these results, VQE
would need hardware improvement by some 2
orders of magnitude on error rates.

1 Introduction
As increasingly complex quantum devices emerge
from current fabrication capabilities [1–4], a major
question we face is the extent to which this technol-
ogy can transition from fascinating physics experi-
ments into useful information processing [5–8]. An
open problem in the noisy intermediate-scale quan-
tum (NISQ) regime [9] is: on which side of the fence
can noisy computations fall, classically simulable or
quantumly useful? Thus far, the rapid development

of the field in the past few years has resulted in the
availability of fully programmable NISQ devices on
the scale of hundreds of qubits [10, 11], and certain
purpose-built algorithms run on these devices have
demonstrated the “quantum supremacy” milestone by
outperforming their classical counterparts [12, 13]. A
major challenge for the field now is to obtain some
form of practical quantum advantage for real-world
problems on NISQ hardware [14]. A popular school
of thought to this effect is to create complicated
quantum states and then extract meaningful observ-
ables [15–17]. One axis for exploration with respect
to the noise problem is the choice of measured prop-
erties, and how these might either be hindered by or
circumvent the accumulation of quantum errors. In
particular, here we study higher weight corrections
to ground state energy estimates and the interplay of
these observables with real-world noise.

A common hybrid approach for solving prob-
lems on NISQ is the variational quantum eigen-
solver (VQE) [18], which determines estimates for the
ground state of a given quantum system, with prac-
tical application for chemistry and materials prob-
lems [16, 18]. The subfield of variational quan-
tum computing has been burgeoning over the re-
cent years [19] – with developments in the efficiency
and scope of state preparation via adaptive algo-
rithms [20, 21] and symmetry preservation [22–24],
and measurement of observables [25–27]. However,
despite favourable NISQ-era prospects and indica-
tions that stochasticity can assist in optimisation [28],
the general viability of hybrid variational approaches
on present-day hardware is still heavily impacted by
the overwhelming effect of errors and noise-induced
barren plateaus [29–31]. VQE has been experi-
mentally demonstrated for a variety of problem in-
stances [16, 18, 25, 32–34], but has so far been inade-
quate in producing results for any problem that could
be considered classically intractable [31, 35]. Solving
larger problems on noisy devices using VQE is difficult
because variational quantum algorithms have a ten-
sion to overcome: the necessary precision in practical
application requires encoded trial states with large
ground state overlap for the problem Hamiltonian,
but better ansätze have high circuit depth and are
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thus typically incompatible with NISQ devices due to
the high amount of noise introduced in the energy
expectation value estimate ⟨H⟩.

Here we focus on the recently introduced quantum
computed moments (QCM) approach, which seeks
to mitigate this trade-off by improving the ground
state energy estimate via the quantum computation
of higher order moments of the Hamiltonian [36] and
application of powerful results from Lanczos expan-
sion theory [37–39]. By leveraging information pro-
vided by the moments of the Hamiltonian rather than
relying on a fully converged trial state, the QCM
method has already been shown to improve on the
variational estimate and compensate for a low-depth
ansatz choice in several applications [36, 40].

This paper explores and develops the QCM method
as a noise-robust heuristic. The relatively low level of
sensitivity to noise was observed as an unexpected fea-
ture of the QCM technique when applied to low depth
circuits [36]. Further work [40] achieved high preci-
sion for small-scale molecular problems using QCM
on a noisy device, in conjunction with error mitiga-
tion strategies, in a study on the ability of the mo-
ments approach to correct for the missing descrip-
tion of electronic correlations in the VQE trial state
ansatz. However, the primary focus of this paper is on
investigating the robustness of the QCM method to
deep trial state circuits and the subsequent outcome
of a novel noise-robust heuristic. Here, in the context
of quantum magnetism, we investigate how QCM in-
herently compensates for noise introduced in deep,
expressive circuits. We show that, remarkably, the
QCM energy estimate consistently achieves good ac-
curacy even when conventional approaches (based on
⟨H⟩ alone) break down. Our primary result demon-
strates this robustness for a 20 qubit example of the
Heisenberg spin model encoded on an IBM Quantum
device with trial state circuits of increasing depth up
to hundreds of CNOTs. The QCM ground state en-
ergy estimate maintains ≲ 10% approximation error
well into the deep trial state circuit regime where er-
rors overwhelm both the typical VQE estimate and
other comparable moments-based formulae. Based
on the moments-derived ‘high-temperature’ limit of
the model corresponding to the maximally mixed trial
state, these observations point towards a novel robust
heuristic for such problems.

This work is organised as follows. First, in Sec-
tion 2, we give a brief overview of the QCM method
for estimating the ground state energy of a Hamilto-
nian system. Next, we apply the method to the 20-
qubit Heisenberg model on IBM Quantum computer
hardware, demonstrating the remarkable resilience of
the technique to quantum error. This is our main
result, summarised in Figure 1. We then provide a
theoretical analysis of this apparent noise robustness
via an analytic model, showing the error cancellation
explicitly in a simplified model with Heisenberg-like

structure under global white noise. In Section 3, we
verify the versatility of the QCM approach, study-
ing its robustness to noise for an ensemble of ran-
dom instances of quantum magnetism Hamiltonians
on real devices and under more realistic noisy sim-
ulations. We build on the idea of using QCM as a
quantum heuristic for ground state energy problems
by benchmarking it against a ‘high-temperature’ limit
from classically computed moments of the maximally
mixed state. Finally, in Section 4, we conclude with
a discussion and summary of our results.

2 Noise robustness in the QCM ap-
proach
The variational approach to Hamiltonian problems
is a familiar starting point in quantum comput-
ing. Given a trial state |ψ(θ⃗)⟩, parameterised by

θ⃗, the expectation value of the Hamiltonian ⟨H⟩ ≡
⟨ψ(θ⃗)|H |ψ(θ⃗)⟩ is an upper bound to the true ground
state energy E0 and can be minimised with respect
to θ⃗. On a quantum computer, the trial state is en-
coded by a quantum circuit parameterised by θ⃗ and
the output sampled to produce estimates of ⟨H⟩ (the
first Hamiltonian moment), which are then fed into a

classical optimisation loop to minimise over θ⃗ [18, 41].
In this optimisation loop, it is the cost function evalu-
ation step – the preparation and measurement of ⟨H⟩
– that is the primary action of the quantum computer,
where variational quantum algorithms are thought to
have an edge over their classical counterparts. It was
realised some time ago that quantum computers may
also be useful in the determination of Hamiltonian
moments ⟨Hn⟩ [42, 43], and recently there have been
a number of developments on this theme, both theo-
retically and experimentally [36, 40, 44–47].

Our approach provides a moments-based correction
to the ground state energy estimate, and is based on
the QCM framework [36] in the context of Lanczos
expansion theory for Hamiltonian systems [37]. In
particular, we focus on the analytical expression for
the order ⟨H4⟩ estimate of the ground state energy,

E
L(4)
0 , which was derived from Lanczos expansion the-

ory in [38]:

E0 ∼ E
L(4)
0 = c1 − c2

2
c2

3 − c2c4

[√
3c2

3 − 2c2c4 − c3

]
,

(1)
where cn are the cumulants associated with the
Hamiltonian moments ⟨Hn⟩:

cn = ⟨Hn⟩ −
n−2∑
p=0

(
n− 1
p

)
cp+1⟨Hn−1−p⟩. (2)

Eq (1) is an exact diagonalisation via an infimum the-
orem [39] to working order in the moments, and is ap-
plicable to extensive and non-extensive systems [48].
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(a) Quantum Computed Moments approach
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Figure 1: Application of the QCM approach to solving a 20-qubit quantum Heisenberg model. (a) Overview of the QCM
approach. A trial state |ψ(θ⃗)⟩ with optimised parameters θ⃗ is measured in the relevant tensor product bases to produce
Hamiltonian moments ⟨Hn⟩ which are then combined to form the Hamiltonian ground state energy estimate EL(4)

0 at an
n = 4 cumulant truncation.(b) 20-qubit 1D Heisenberg model Hamiltonian with uniform couplings and the corresponding
mapping onto the 27-qubit ibmq toronto superconducting device. (c) We use the 1D RVB trial state circuit from [23]
constructed from a singlet state and D mixing layers of parameterised eSWAP gates. (d) Results from zero noise simulations
of RVB circuits with up to D = 7 mixing layers and near-optimal parameters θ⃗, comparing ground state energy estimates of
Hamiltonian expectation value ⟨H⟩ and E

L(4)
0 . (e) Ground state energy estimate comparison of results from ibmq toronto

after running the same near-optimal circuits (8 trial states × 1792 TPB measurements × 8192 shots). Dotted lines correspond
to “high-temperature” limits, i.e. the values of ⟨H⟩ (blue) and EL(4)

0 (orange) evaluated with respect to the maximally mixed
state.

For a given |ψ(θ⃗)⟩ with some ground state overlap,

E
L(4)
0 takes the form of a first order variational esti-

mate ground state energy, c1 = ⟨H⟩, plus a correction
which employs higher order correlations of the system
encapsulated in the cn. In the context of quantum
computation, this is a critical feature of the QCM
technique, given that the preparation of a trial state
and computation of the first order ground state en-
ergy estimate ⟨H⟩ is the key quantum step in hybrid
variational quantum algorithms such as VQE.

An outline of the QCM approach is summarised in
Figure 1(a). First, a trial state is prepared on the
quantum computer from a well-chosen ansatz circuit.
When the Hamiltonian is expressed in spin operator

form, the expectation value of H can be determined
term-by-term, where each term is a weighted “Pauli
string” whose expectation value can be determined
by applying corresponding change of basis unitaries
to each qubit followed by measurement. Pauli strings
that qubit-wise commute with one another can be
grouped into the same tensor product basis (TPB),
as to measure their expectation values simultaneously.
Thus to measure the higher order moments, one can
multiply out the terms in the Hamiltonian to obtain
expressions for H2, H3 and H4, and apply the same
procedure to obtain the expectation values of the re-
sulting Pauli strings. It turns out that, though the
amount of terms in these higher order expressions
scales polynomially with the number of terms in H,
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the actual number of runs required on the quantum
computer (one for each TPB), scales only logarithmi-
cally with the terms in H [36]. Once the moments
up to ⟨H4⟩ are computed, they are combined to form

E
L(4)
0 , the improved ground state energy estimate.

The improvement of QCM over the variational re-
sult was explicitly demonstrated in [36] for quantum
magnetism systems of up to 25 qubits with respect
to the simple Néel state, and for chemistry prob-
lems in [40] producing results beyond the Hartree-
Fock variational limit. These previous results show
that QCM is a robust method for determining better
estimates to the ground state energy of a system when
using relatively simple trial states, e.g. when ground
state overlap is sacrificed in favour of having shallower
circuits, or in problems where the ansatz circuit does
not fully take into account the dynamics of the system
at hand.

QCM produces the quantity E
L(4)
0 from additional

measurements on the quantum computer (polynomial
in the problem size), and this quantity has a less strin-
gent requirement of trial state complexity than the
variational estimate, ⟨H⟩. In this work, however, we

instead focus on another property of E
L(4)
0 observed in

the applications to date [36, 40] – that the expression
possesses robustness to noise. We will demonstrate

that E
L(4)
0 , as a particular combination of moments,

is effective in producing energy estimates even when
errors accumulated in deep trial state circuits over-
whelm the variational calculation. We start with a
demonstration of the QCM procedure applied to very
deep quantum circuits on a real device, from which

E
L(4)
0 surprisingly salvages a meaningful result. We

will then investigate this noise robustness property
with a simple theoretical model.

2.1 Demonstration of QCM for a 20-qubit
Heisenberg model
A summary and demonstration of the QCM method
is shown in Figure 1. For our context, we take the
Heisenberg spin model with Hamiltonian given by:

H = 1
4q

∑
⟨i j⟩

(
J

(x)
ij XiXj + J

(y)
ij YiYj + J

(z)
ij ZiZj

)
,

(3)
where the sum is over a problem graph defined by
the vertices (qubits) i = 1...q, edges connecting qubits

{⟨i j⟩}, and couplings J
(s)
ij along each edge (s =

x, y, z). Here we consider nearest-neighbour linear-
lattices with periodic boundary conditions. The uni-

form coupling case J
(x)
ij = J

(y)
ij = J

(z)
ij is the well

known Heisenberg model, for which the exact ground
state has been studied numerically for decades and is
often used for testing new approaches. In contrast to
the Néel trial state of [36], here we explicitly focus on
the deep quantum circuit regime. As our class of trial

states we use the resonating-valence-bond (RVB) cir-
cuit from Seki et al. [23] shown in Figure 1(c), where
the trial state over q qubit couplings is built from
D mixing layers of q exponential SWAP (eSWAP)
gates, each parameterised by an angle θi with a total
set of D × q parameters θ⃗ = (θ1, θ2, ..., θDq−1, θDq).
The procedure is defined as follows: for a trial state
defined over D mixing layers, |ψ(θ⃗)⟩, we compute

⟨H⟩θ⃗ ≡ ⟨ψ(θ⃗)|H|ψ(θ⃗)⟩ under zero noise simulation

and minimise over the parameter set θ⃗. At the mini-
mum point we obtain the variational estimate ⟨H⟩θ⃗∗

where θ⃗∗ is a corresponding near-optimal parameter
set. For that trial state configuration we then com-
pute the moments ⟨Hn⟩θ⃗∗ up to n = 4 which are
fed into the formula for the fourth order Lanczos
ground state energy estimate, E

L(4)
0 . The zero noise

simulation for the uniform coupling case, shown in
Figure 1(d), shows that the moments-based estimate

E
L(4)
0 provides a systematic correction to the mini-

mum ⟨H⟩θ⃗∗ , compensating for the degree of overlap
with the ground state. The circuits corresponding to
the parameter sets θ⃗∗ were then compiled and run
on the IBM Quantum device ibmq toronto, with re-
sults shown in Figure 1(e). Hamiltonian moments up
to n = 4 were computed from TPB measurements as
per the heuristic method outlined in [36]. The 282796
terms in H4 were reduced to 1792 TPB terms that
are simultaneously measurable on the quantum com-
puter. Moments and associated cumulants were then
constructed from these measurements (1792 × 8192
shots).

Figure 1(e) shows the stark difference between the

results obtained from E
L(4)
0 and ⟨H⟩θ⃗∗ when running

these circuits on real noisy hardware, as opposed to
zero noise simulation in Figure 1(d). Due to the errors
in the device, the variational results ⟨H⟩θ⃗∗ start at a
higher energy and move rapidly away from the ex-
act ground state as the trial state complexity builds,
converging towards the high-temperature limit of ⟨H⟩
corresponding to the maximally mixed state. As we
will see in Section 3.1, this behaviour is exactly as ex-
pected for ⟨H⟩, and indeed the energy estimate error
on ⟨H⟩ follows a simple “NISQ prima facie” scaling
with the number of CNOTs at a ∼ 1% error rate. In
contrast, the results from E

L(4)
0 , although pressured

by a lower high-temperature limit, remain in proxim-
ity to the true ground state even for high depth trial
states with hundreds of CNOTs applied. We note that
all results shown are the raw data obtained from the
device – no attempt at error mitigation has been made

as yet. We note that E
L(4)
0 is an exact diagonalisa-

tion of the Hamiltonian to working moment order, a
fact that may be responsible for the noise-robustness
property. To shine some light on this, we investigate
this error filtering effect for a simple model.
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2.2 Analysis of Heisenberg-like model under
global white noise
Here we seek to understand the apparent robustness of

E
L(4)
0 versus the variational ground state estimate ⟨H⟩

when inputs are derived from noisy quantum compu-
tations. We will also compare our Lanczos expan-
sion theory based method to a similar method derived
from the t-expansion [49], from which the ground
state energy of a quantum many-body system can be
extrapolated in terms of Hamiltonian moments in a
number of ways [50] – the most well-known of these
being the connected moments expansion (CMX) [51]:

ECMX
0 = c1 − c2

2
c3

− 1
c3

(
c2c4 − c2

3
)2

c3c5 − c2
4

− . . . . (4)

The CMX is a suitable benchmark for our Lanczos
derived moment method, as it has seen recent inter-
est in a quantum computing context [44, 45]. When
truncated to K terms, the CMX involves Hamiltonian
moments up to order (2K − 1). For a generous com-

parison with E
L(4)
0 (at 4th order in the moments), we

take the three term truncation of the CMX ground
state energy (to 5th order in the moments), denoted

as E
CMX(5)
0 to remain consistent with our notation.

We will now construct an analytic model to get a

flavour of how E
L(4)
0 , and hence the QCM approach,

deals with noise. In our model, we consider global
white noise, an assumption which a recent result [52]
suggests is not entirely unrealistic when considering
how errors propagate through deep, highly entangling
quantum circuits. Under white noise, Hamiltonian
moments transform as:

⟨Hk⟩ → ⟨Hk⟩noise = (1 − p)⟨Hk⟩ + p

N
tr(Hk), (5)

where p ∈ [0, 1] is the noise parameter and N = 2q

is the system Hilbert space size. In general, plug-

ging these noisy moments into the formulae for E
L(4)
0

and E
CMX(5)
0 results in ungainly expressions with no

obvious structure with respect to the noise parame-
ter. However, we can make some simplifications to
the Hamiltonian in order to study the noise robust-
ness. We consider a three-level toy model that mimics
the low energy structure of the 1D Heisenberg model.
We take a Hamiltonian with ground state energy E0
and write the excited gap structure as:

E1 = E0 + ∆1, E2 = E0 + ∆1 + ∆2, (6)

with ∆1 > 0 and ∆2 > 0. We define the following
energy gap ratio:

R = E2 − E1

E1 − E0
= ∆2

∆1
. (7)

For small values of R, the system resembles the low-
lying states of the 2L-site 1D Heisenberg model as

L increases. The convergence properties of the origi-
nal Lanczos algorithm are governed by the gap of the
systems [53], namely that more rapid convergence oc-
curs when the E1 − E0 gap is larger (relative to the
entire spectral width). Studying the behaviour of this
three-level system for small values of R (∆1 ≫ ∆2)
therefore also leaves us in the regime of rapid Lanczos
convergence, where the potential noise robustness can
be observed in full effect.

To study the effect of noise in the deep trial state
limit, we take moments evaluated with respect to the
exact ground state, i.e.

⟨Hk⟩ = Ek
0 . (8)

Noting that the first excited state of the 2L-site 1D
Heisenberg model is threefold degenerate, the expres-
sions for the moments in the presence of noise from
Eq (5) now become:

⟨Hk⟩noise = (1 − p)Ek
0

+ p

5
(
Ek

0 + 3(E0 + ∆1)k + (E0 + ∆1 + ∆2)k
)
. (9)

Substituting these noisy moments and expanding in R
yields the following transformations of each estimate
(variational, CMX and Lanczos) with respect to the
exact ground state under global white noise:

⟨H⟩ → E0 + p

5(4∆1 + ∆2), (10)

E
CMX(5)
0 → E0 + 16p3(4∆1 + ∆2)

125 − 300p+ 240p2

+R

[
∆2

375p− 3900p2 + 2880p3 + 2304p4

16(25 − 60p+ 48p2)2

]
+ O

(
R2)

, (11)

E
L(4)
0 → E0 +R

[
∆2

15p− 24p2

8(5 − 4p)2

]
+ O

(
R2)

.

(12)

The key observation is that at zeroth order in R, the
dependence on the noise parameter p has cancelled

out in E
L(4)
0 , unlike in ⟨H⟩ and E

CMX(5)
0 which have

a linear effect in p. Additionally, the coefficient of

the R term in E
L(4)
0 remains relatively constant with

p and close to zero up until p ≈ 0.7, after which it
deviates from zero by no more than 9% of ∆2. Hence,

in this limit we see how the expression E
L(4)
0 possesses

an inherent robustness in comparison to the VQE and
CMX estimates.

It has been shown previously in [48] that the Lanc-
zos expansion to fourth order for the harmonic N -
boson model with respect to the Hartree trial state
diagonalises the system exactly, so this result showing

the exact cancellation of E
L(4)
0 down to E0 is perhaps

not surprising in the small p regime. In any case, we

conclude for this analytic model that the E
L(4)
0 expres-

sion is remarkably robust to p, suggesting that with
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a well-chosen trial state ansatz we can recover the re-
sult E

L(4)
0 → E0 under a considerably high degree of

noise on the individual moments. This result vali-
dates our observation for a large problem instance on
a real quantum computer in Figure 1, where we see an
apparent resilience to errors for deep ansatz circuits
with the computed ground state energy estimate ap-
proaching the exact solution despite an abundance of
noise. We are now motivated to study this approach
for an ensemble of random instances of the Heisenberg
Hamiltonian and noise models, and ultimately test on
physical QC devices.

3 Versatility of the QCM approach
In this section, we study the effectiveness of the QCM
approach as a heuristic for solving ground state energy
problems, both in its accuracy and its robustness to
noise on real quantum hardware. By considering a
broader range of Hamiltonians and more realistic er-
ror models, we validate the results in the previous
section and showcase the general applicability of the
method.

3.1 Application of QCM to an ensemble of 1D
Heisenberg models
Here we apply the QCM method to different Hamil-
tonians and discuss the prospect of the approach as
a noise robust quantum heuristic. Figure 2 shows the
experiment from Section 2.1 repeated several times
on the ibmq guadalupe device, each for a random cou-
pling instance of a 12-qubit 1D Heisenberg Hamilto-
nian. The ensemble of cases studied and their map-
pings onto the device are shown in Figure 2(a). Going
up toD = 7 mixing layers, near-optimal trial state cir-
cuits of increasing depth were found for each Hamilto-
nian in the ensemble by minimising ⟨H⟩ with respect
to parameters in the RVB ansatz [23] under zero noise
simulation. The ground state energy approximation
error |1 − E/E0| of the variational estimate ⟨H⟩ and

the QCM estimate E
L(4)
0 for each circuit under this

zero noise simulation is shown in Figure 2(b). Here,
the trial state energies ⟨H⟩ are on average within 5%
of the ground state energy, and those with D ≥ 4
mixing layers rapidly converging to the exact ground
state. Figure 2(c) shows the approximation error of
each energy estimate after running the circuits on the
noisy ibmq guadalupe device (990 TPB measurements
× 8192 shots × 7 mixing layers × 11 Hamiltonians).
Also shown is the NISQ prima facie expected error
rate of each circuit, 1 − (1 − εCX)nCX , calculated from
the total number of CNOTs nCX and the average
CNOT error εCX on the device at the time of the
experiments (typically ∼ 1%).

Across the ensemble, we see broadly the same re-
sult as in Figure 1 – that the QCM approach con-
sistently offers a remarkably noise-robust correction

(up to ∼ 90%) to the variational ground state en-
ergy estimate across all random Heisenberg models
studied, even when using trial state circuits with hun-
dreds of CNOT gates. We once again note that the
results shown are raw data from the device, where no
error mitigation techniques have been applied (but
we expect error mitigation to improve the results).
We see that the approximation error of ⟨H⟩ closely
tracks the expected error rate scaling with the num-
ber of CNOTs in each variational circuit, implying
that with increasing circuit complexity, typical er-
ror rates on NISQ devices will always be a barrier
to meaningful application of VQE. However, we see

in the behaviour of E
L(4)
0 that the NISQ prima fa-

cie barrier may be broken when taking into account
higher order moments in the quantum computed en-
ergy estimate. These results provide strong evidence
that in the calculation of moments on quantum com-
puter, errors entering into the trial state preparation
can be relatively high and yet the moments extracted

produce high quality estimates from E
L(4)
0 . Putting

aside shot noise, errors in the quantum computation
of the moments only ever accumulate in the trial state
itself. One might expect the broad traction that the
Lanczos procedure obtains from a given trial state
smooths the sensitivity to error fluctuations, but the
analytic model analysis also indicates cancellations

occur in the formula for E
L(4)
0 (that cannot occur for

⟨H⟩ alone) that possibly dominate the robustness be-
haviour.

We note that, in Figure 1(e) and Figure 2(c), as
circuit depth increases on the real device, each en-
ergy estimate approaches their corresponding high-
temperature limit, i.e. the energy estimate evaluated
with respect to the maximally mixed state. We shall
denote the high-temperature limit of the QCM esti-

mate E
L(4)
0 as E

L(4)
HT . In all of the noisy cases stud-

ied, E
L(4)
HT seemingly outperformed the noisy varia-

tional estimate ⟨H⟩. This is particularly interest-

ing because E
L(4)
HT can be computed solely from the

identity term coefficients of {H,H2, H3, H4}, i.e. the
high-temperature limit does not require any quantum
computation and can be obtained efficiently classi-
cally. This leaves us with a classical heuristic that is
more accurate than the variational estimate on cur-
rent NISQ devices with no error mitigation. We can

use this maximally mixed E
L(4)
HT result to benchmark

the QCM results, to define a quantum version of this
heuristic.

Figure 2(d) shows where the measured E
L(4)
0 on the

NISQ device outperformed the E
L(4)
HT estimate of the

ground state energy, allowing useful information to
be obtained from the quantum computer. We see
that for all test cases studied, there exists a regime on
present-day NISQ devices in which the QCM heuristic
has an advantage over the classical benchmark. The

efficiently computable high-temperature limit E
L(4)
HT
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Figure 2: Results from an ensemble of 12-qubit 1D Heisenberg Hamiltonians with random couplings Jij ∈ [0, 1] simulated
both with zero noise and on a real quantum processor. The trial states used are 12-qubit 1D RVB circuits up to D = 7 layers
optimised under zero noise with respect to the various Hamiltonians. (a) Diagrams of the uniform coupling case and the 10
random coupling instances of the Hamiltonian, and mapping onto the 16-qubit ibmq guadalupe device. (b) Approximation
error |1− E

E0
| comparison between energy estimates ⟨H⟩ and EL(4)

0 under zero noise simulation and (c) on the ibmq guadalupe
quantum processor. Dotted lines represent the individual Hamiltonians, and solid lines show the average over the ensemble.
The average ibmq guadalupe CNOT fidelity is used to calculate the NISQ prima facie expected total error of each circuit,
shown as a dashed red curve. (d) Heat map of EL(4)

0 approximation error for each Hamiltonian in the ensemble. Each square
corresponds to a single run (990 basis measurements × 8192 shots) on the quantum processor. Each green square represents
an obtained value of EL(4)

0 that falls below its respective high-temperature limit, EL(4)
HT , which can be computed efficiently.

could thus serve to check the validity of the ground
state energy estimate when performing the QCM cal-

culation, as it falls out of the result for E
L(4)
0 with no

extra computation required.

3.2 General behaviour of QCM
The experimental results for the various quantum
magnetism models shown in Figure 2 and the ana-
lytic model analysis from Section 2.2 indicate that
the noise robustness of QCM should persist for an
arbitrary choice of Hamiltonian. We will now investi-
gate this general behaviour by looking at QCM under
more realistic error models with respect to both the
Heisenberg model and more general random Hamilto-
nian instances.
In Figure 3, we investigate the versatility of the

QCM approach by considering a random 26 × 26

Hermitian matrix as a Hamiltonian, in addition to
the uniform Heisenberg model from earlier on 6

qubits. Energy estimates ⟨H⟩, EL(4)
0 and E

CMX(5)
0 are

computed with respect to randomly generated trial
states ρ under noisy simulations of depolarising and

dephasing error models, which transform the states
via a noise parameter p ∈ [0, 1] as:

depolarise:ρ 7→(1 − 3p
4 )ρ+ p

4(XρX + Y ρY + ZρZ),

dephase: ρ 7→(1 − p

2)ρ+ p

2ZρZ.

These models give a reasonable approximation to the
type of error seen in deep circuits on a real quantum
computer, and on a present-day NISQ device with
∼ 1% CNOT error, one might expect p ≈ 0.3 − 0.4
for a typical VQE circuit.

The horizontal axis, F = ⟨ϕ0|ρ|ϕ0⟩, of each plot in
Figure 3 is a measure of the closeness of each trial
state to the true ground state |ϕ0⟩ at zero noise. The
vertical axis, p, represents the extent to which each
trial state has been scrambled by noise. The typical
trajectory of a variational quantum algorithm would
thus be from left to right as trial state parameters
change, and from bottom to top as more circuit lay-
ers are added. Along this entire trajectory, we see that

E
L(4)
0 much more closely approximates the ground

state energy of each system than ⟨H⟩ and E
CMX(5)
0 .
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Figure 3: Noise robustness analysis of the energy estimates ⟨H⟩, ECMX(5)
0 and E

L(4)
0 for (a) a uniform 1D Heisenberg

Hamiltonian and (b) a random Hermitian matrix Hamiltonian under simple depolarising (ρ 7→ (1 − 3p
4 )ρ+ p

4 (XρX + Y ρY +
ZρZ)) and dephasing (ρ 7→ (1 − p

2 )ρ+ p
2ZρZ) noise models. Various trial states are generated, and the approximation error

|1 − E
E0

| of the three energy estimates are plotted against noise parameter p and zero noise state fidelity F = ⟨ϕ0|ρ|ϕ0⟩ with
respect to |ϕ0⟩, the ground state of the Hamiltonian. The trial states ρ = |ϕρ⟩⟨ϕρ| are chosen by applying random rotations
from the ground state as |ϕρ⟩ = e−iεM |ϕ0⟩, where M is a random Hermitian matrix sampled from the Gaussian unitary
ensemble and ε is a parameter varied from zero until the F -axis is filled out. Dashed pale green lines show the boundaries on
each plot where the approximation error is equal to that of EL(4)

HT , the high-temperature limit of EL(4)
0 .

The noise robustness of the QCM approach persists
in general, whereas this behaviour is not observed in
the other two energy estimates. Additionally, in the

low noise regime, E
L(4)
0 still gives a more accurate es-

timate of the true ground state energy than ⟨H⟩ and

E
CMX(5)
0 at lower values of F , supporting the previ-

ous results from [36] that indicate the QCM method’s
effectiveness when less complicated ansatz circuits are
used.

Also shown in Figure 3 are dashed lines correspond-

ing to the points at which each of ⟨H⟩, ECMX(5)
0 and

E
L(4)
0 are equal to E

L(4)
HT , the high-temperature limit of

E
L(4)
0 , which is classically efficient to compute. These

outline the regions inside which there is some ad-
vantage in estimating the ground state energy using
a quantum computer rather than the näıve classical

calculation of E
L(4)
0 with maximally mixed moments.

For the Hamiltonians and error models studied, these

regions take up most of the E
L(4)
0 plots, and are akin

to the green squares displayed in Figure 2(d), where
a similar analysis was performed on real device data.

The same picture as in Figure 3(b) was seen when
averaging over thousands of other randomly gener-

ated Hamiltonian instances in simulations of up to 10
qubits (210 × 210 random Hermitian matrices). The

striking error robustness of E
L(4)
0 under these random

Hermitian matrix Hamiltonians supports the general
applicability of the QCM method to quantum many-
body problems.

We now investigate the behaviour of E
L(4)
0 against

⟨H⟩ and E
CMX(5)
0 under a more realistic noise model

incorporated into the simulation of the RVB varia-
tional circuits. These results are summarised in Fig-
ure 4. For the uniform 12-qubit Heisenberg model, op-
timal RVB circuit parameters were found under zero
noise simulation, with the convergence of all three
ground state energy estimates shown in Figure 4(a).
Using the device backend noise model framework from
Qiskit [54], these circuits were then run again under
a noisy simulation designed to mimic our real exper-
iment from Figure 2 on the ibmq guadalupe device
and the resulting energy estimates from the computed
moments are shown in Figure 4(b). Here, we have
included thermal relaxation, depolarisation and read-
out error using calibration data from ibmq guadalupe
at the time of running the circuits. The gate ther-
mal relaxation is determined by the average T1, T2
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Figure 4: Further robustness analysis of the energy estimates ⟨H⟩, ECMX(5)
0 and EL(4)

0 using a circuit-based error model and
optimised RVB trial state circuits up to D = 7 layers for a 12-qubit 1D Heisenberg Hamiltonian. (a) Zero noise simulation
of the energy estimates, (b) device-level noisy simulation incorporating readout, thermal relaxation and depolarising error to
match calibration data obtained from the ibmq guadalupe backend, and (c) comparison with experimental results from the
device. All readout and gate errors in the noisy simulation are multiplied by a factor α, and (d) shows the approximation
error of ⟨H⟩ and EL(4)

0 under the noisy simulation, varied from device-level (α = 1) down to zero noise (α = 0). For clarity,
(e) shows instances of these same simulations on a log scale for a range of α values, overlaid with results from ibmq guadalupe
at α = 1.

and gate times. The resulting error rate is then cal-
culated, and the discrepancy between it and the ran-
domised benchmarking error rate on the device is ac-
counted for in a depolarising channel. For compar-
ison, the results from running these experiments on
ibmq guadalupe are shown in Figure 4(c). We see that,
although both moments-based estimates have better
convergence to the ground state energy at zero noise

than ⟨H⟩, only E
L(4)
0 displays any noise robustness.

These results confirm the content of Figure 3, and al-

low us to conclude that E
L(4)
0 is in practice an overall

superior NISQ moments-based estimate to E
CMX(5)
0 ,

which requires computation of a higher order Hamil-
tonian moment and shows no robustness to quantum
errors.

Each of the readout and gate error parameters in
the noisy simulation were all multiplied by a factor
α. Figure 4(d) shows the results from running these
simulations for a range of values of α ∈ [0, 1], to get
an idea of how well the QCM approach would perform
on NISQ devices with reduced error rates of α times
that which is presently available. We see that QCM
retains its usefulness as an error mitigation scheme
even at lower error rates. With no error mitigation
techniques applied, the variational estimate ⟨H⟩ only

comes in range of E
L(4)
0 when α is of order 10−2, sug-

gesting that in order to achieve a similar precision as
the QCM method from the raw variational calcula-
tion, the average CNOT fidelities in a NISQ device
would need to increase to ∼ 99.99%.

The main comparison we have made throughout
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our analysis has been between the QCM energy es-

timate E
L(4)
0 and the energy expectation value ⟨H⟩,

but the extra quantum circuits (or shots) required

to compute E
L(4)
0 raise the question of whether this

is a fair comparison to make. However, simply per-
forming additional shots to compute an expectation
value only reduces statistical error, not the noise aris-
ing from quantum decoherence. In our experiments
on real devices (Figure 1 and Figure 2), we have used
sufficient shots that the effect of this statistical noise
is negligible in comparison to the quantum noise. The
simulations shown in Figure 3 and Figure 4 have con-

firmed that E
L(4)
0 is more robust to quantum noise

than ⟨H⟩ by dealing with density matrices directly,
effectively using infinite shots to compare these quan-
tities. For a fairer comparison, one may consider
spending the additional resources required to measure
the higher order moments of the Hamiltonian instead
on error mitigation strategies such as zero noise ex-
trapolation [55, 56] and probabilistic error cancella-
tion [57, 58]. Note that, unlike with QCM, the sam-
pling overheads of these techniques generally scale ex-
ponentially with circuit depth and noise, so for the
deeper circuits studied in this work, they may not be
feasible. Knowing the regimes in which these other
approaches outperform QCM in terms of error sup-
pression is a nontrivial avenue of future research, as
the extra resources we would allocate to such tasks
for fair comparison with QCM depends on the Hamil-
tonian. For example, ⟨H⟩ for the 12 qubit Heisenberg
examples in Figure 2 can be computed with 3 ba-
sis measurements, rather than 990 for moments up to
⟨H4⟩, so the same resources could be used in sampling
⟨H⟩ hundreds of times to correct for errors. How-
ever, for Ising type models, the QCM approach does
not require any further quantum computations since
all of the terms in

{
H,H2, H3, H4}

commute, and
thus any error mitigation strategy would necessarily
require more overhead than QCM. In any case we em-
phasise that QCM is not a replacement for these quan-
tum error mitigation techniques, but rather is fully
compatible with them as they can be used to improve
the estimates of the individual moments.

4 Conclusion
In this work, we have presented and analysed the er-
ror robustness of the QCM approach when applied to
a variety of quantum many-body ground state energy
problems. This showcases the ability of the quan-

tity E
L(4)
0 to effectively filter out noise generated in

an ansatz circuit. The quantum computation of mo-
ments can supplement an otherwise ineffectual VQE
output to obtain additional information about the
ground state from the Hamiltonian itself. We showed
this approach to be effective for a variety of cases of up
to 20 qubits on real hardware (without error mitiga-

tion), representing some of the largest stable quantum
energy computation results in the literature.

An important follow-up question concerns how our
method compares to classical heuristics designed to
solve similar problems. Directly comparing quantum
and classical approaches is a nontrivial task. In par-
ticular, complexity of the task to estimate ground
state energies is heavily dependent on both the form
of the subject Hamiltonian and the desired toler-
ance [35, 59]. To benchmark the QCM method,

we identified one such tolerance value, E
L(4)
HT , above

which the ground state energy can be approximated
efficiently via the classical computation of maximally
mixed moments. We find that, in most cases of a well
chosen ansatz on current NISQ hardware and under
noisy simulation, QCM finds a ground state energy
estimate within this tolerance. This evidence is in
contrast to the NISQ prima facie view that useful in-
formation cannot be extracted from a noisy quantum
computation over a typical circuit depth required by
VQE [31].

Future questions for both the feasibility and utility
of QCM remain. We expect that greater precision can
be attained by considering higher order moments [53]
– the current approach or one similar to the quantum
power method in [45] may be used to achieve this,
and the key questions would be whether the noise ro-
bustness persists and how the resulting computational
overhead scales to larger problems. There is also scope
for improving the measurement efficiency of QCM via
other approaches such as derandomised shadows [27]
and general commutation partitioning [60]. So far we
have only considered ground state energy problems,
however there are approaches one could take to esti-
mate other properties of the ground state using quan-
tum computed moments [61]. It is of interest how well
we can extract this information from imperfect trial
states and, more importantly, whether the noise ro-
bustness observed in this work persists when looking
at other ground state observables under these differ-
ent schemes.

Another future direction of research concerns the
VQE optimisation process. QCM has thus far been
studied as a method for extracting accurate noise-
robust energy estimates with respect to an optimal
trial state obtained by varying ⟨H⟩ under zero noise
simulation, rather than as a method applied during
the optimisation procedure. At the beginning and

throughout the optimisation, E
L(4)
0 does not work as

a variational cost function in the same way as ⟨H⟩ as
it is not an upper bound of E0, and for many problems
the computational overhead could grow quite large if
all moments were to be computed at each iteration of
the optimiser. However, due to the noise robustness
of moments-based energy estimates we have observed
in this work, it is reasonable to envision that QCM
may have some utility in mitigating noise-induced ef-
fects [29] that hinder the optimisation process as well.
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If used in conjunction with the QCM approach,
additional error mitigation strategies [55–58] should
serve to improve the estimate of Hamiltonian mo-
ments from the quantum computer, thus giving a
more accurate value for the QCM ground state energy
estimate. We emphasise that distinct from these typ-
ical error mitigation techniques – which demand an
exponential increase in resources – the QCM method
requires only polynomial overhead in the number of
measurements. This, balanced with the sharp de-
crease in effective error-per-gate shown by our results,
suggests that avenues to quantum advantage in the
NISQ era may be far more attainable than previously
suspected.
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Kieferová, Ian D Kivlichan, Tim Menke, Borja
Peropadre, Nicolas PD Sawaya, et al. “Quan-
tum chemistry in the age of quantum comput-
ing”. Chemical reviews 119, 10856–10915 (2019).
url: https://doi.org/10.1021/acs.chemrev.
8b00803.

[18] Alberto Peruzzo, Jarrod McClean, Peter Shad-
bolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J
Love, Alán Aspuru-Guzik, and Jeremy L O’brien.
“A variational eigenvalue solver on a photonic
quantum processor”. Nature communications
5, 1–7 (2014). url: https://doi.org/10.1038/
ncomms5213.

[19] Dmitry A Fedorov, Bo Peng, Niranjan Govind,
and Yuri Alexeev. “VQE method: A short sur-
vey and recent developments”. Materials Theory
6, 1–21 (2022). url: https://doi.org/10.1186/
s41313-021-00032-6.

[20] Harper R Grimsley, Sophia E Economou, Edwin
Barnes, and Nicholas J Mayhall. “An adaptive
variational algorithm for exact molecular simu-
lations on a quantum computer”. Nature com-
munications 10, 1–9 (2019). url: https://doi.
org/10.1038/s41467-019-10988-2.

[21] Ho Lun Tang, VO Shkolnikov, George S Bar-
ron, Harper R Grimsley, Nicholas J May-
hall, Edwin Barnes, and Sophia E Economou.
“qubit-adapt-vqe: An adaptive algorithm for
constructing hardware-efficient ansätze on a
quantum processor”. PRX Quantum 2,
020310 (2021). url: https://doi.org/10.1103/
PRXQuantum.2.020310.

[22] Bryan T Gard, Linghua Zhu, George S Barron,
Nicholas J Mayhall, Sophia E Economou, and
Edwin Barnes. “Efficient symmetry-preserving
state preparation circuits for the variational
quantum eigensolver algorithm”. npj Quantum
Information 6, 1–9 (2020). url: https://doi.
org/10.1038/s41534-019-0240-1.

[23] Kazuhiro Seki, Tomonori Shirakawa, and Seiji
Yunoki. “Symmetry-adapted variational quan-
tum eigensolver”. Physical Review A 101,
052340 (2020). url: https://doi.org/10.1103/
PhysRevA.101.052340.

[24] Gian-Luca R Anselmetti, David Wierichs, Chris-
tian Gogolin, and Robert M Parrish. “Local,
expressive, quantum-number-preserving VQE
ansätze for fermionic systems”. New Journal of
Physics 23, 113010 (2021). url: https://doi.
org/10.1088/1367-2630/ac2cb3.

[25] Raffaele Santagati, Jianwei Wang, Antonio A
Gentile, Stefano Paesani, Nathan Wiebe, Jar-
rod R McClean, Sam Morley-Short, Peter J
Shadbolt, Damien Bonneau, Joshua W Silver-

stone, et al. “Witnessing eigenstates for quan-
tum simulation of Hamiltonian spectra”. Sci-
ence Advances 4, eaap9646 (2018). url: https:
//doi.org/10.1126/sciadv.aap9646.

[26] Ikko Hamamura and Takashi Imamichi. “Effi-
cient evaluation of quantum observables using
entangled measurements”. npj Quantum Infor-
mation 6, 1–8 (2020). url: https://doi.org/
10.1038/s41534-020-0284-2.

[27] Hsin-Yuan Huang, Richard Kueng, and John
Preskill. “Efficient estimation of Pauli observ-
ables by derandomization”. Physical Review Let-
ters 127, 030503 (2021). url: https://doi.org/
10.1103/PhysRevLett.127.030503.

[28] Junyu Liu, Frederik Wilde, Antonio Anna Mele,
Liang Jiang, and Jens Eisert. “Noise can be help-
ful for variational quantum algorithms” (2022).
url: https://doi.org/10.48550/arXiv.2210.
06723.

[29] Samson Wang, Enrico Fontana, Marco Cerezo,
Kunal Sharma, Akira Sone, Lukasz Cincio, and
Patrick J Coles. “Noise-induced barren plateaus
in variational quantum algorithms”. Nature com-
munications 12, 1–11 (2021). url: https://doi.
org/10.1038/s41467-021-27045-6.

[30] Enrico Fontana, Nathan Fitzpatrick,
David Muñoz Ramo, Ross Duncan, and
Ivan Rungger. “Evaluating the noise resilience
of variational quantum algorithms”. Physical
Review A 104, 022403 (2021). url: https:
//doi.org/10.1103/PhysRevA.104.022403.

[31] Sebastian Brandhofer, Simon Devitt, and
Ilia Polian. “Error Analysis of the Varia-
tional Quantum Eigensolver Algorithm”. In
2021 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH). Pages
1–6. IEEE (2021). url: https://doi.org/10.
1109/NANOARCH53687.2021.9642249.

[32] Peter J J O’Malley, Ryan Babbush, Ian D
Kivlichan, Jonathan Romero, Jarrod RMcClean,
Rami Barends, Julian Kelly, Pedram Roushan,
Andrew Tranter, Nan Ding, et al. “Scal-
able quantum simulation of molecular energies”.
Physical Review X 6, 031007 (2016). url: https:
//doi.org/10.1103/PhysRevX.6.031007.

[33] Yangchao Shen, Xiang Zhang, Shuaining Zhang,
Jing-Ning Zhang, Man-Hong Yung, and Kih-
wan Kim. “Quantum implementation of the
unitary coupled cluster for simulating molecu-
lar electronic structure”. Physical Review A 95,
020501 (2017). url: https://doi.org/10.1103/
PhysRevA.95.020501.

[34] Frank Arute, Kunal Arya, Ryan Babbush, Dave
Bacon, Joseph C Bardin, Rami Barends, Ser-
gio Boixo, Michael Broughton, Bob B Buck-
ley, et al. “Hartree-Fock on a superconducting
qubit quantum computer”. Science 369, 1084–

Accepted in Quantum 2023-09-06, click title to verify. Published under CC-BY 4.0. 12

https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1186/s41313-021-00032-6
https://doi.org/10.1186/s41313-021-00032-6
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1103/PRXQuantum.2.020310
https://doi.org/10.1103/PRXQuantum.2.020310
https://doi.org/10.1038/s41534-019-0240-1
https://doi.org/10.1038/s41534-019-0240-1
https://doi.org/10.1103/PhysRevA.101.052340
https://doi.org/10.1103/PhysRevA.101.052340
https://doi.org/10.1088/1367-2630/ac2cb3
https://doi.org/10.1088/1367-2630/ac2cb3
https://doi.org/10.1126/sciadv.aap9646
https://doi.org/10.1126/sciadv.aap9646
https://doi.org/10.1038/s41534-020-0284-2
https://doi.org/10.1038/s41534-020-0284-2
https://doi.org/10.1103/PhysRevLett.127.030503
https://doi.org/10.1103/PhysRevLett.127.030503
https://doi.org/10.48550/arXiv.2210.06723
https://doi.org/10.48550/arXiv.2210.06723
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1103/PhysRevA.104.022403
https://doi.org/10.1103/PhysRevA.104.022403
https://doi.org/10.1109/NANOARCH53687.2021.9642249
https://doi.org/10.1109/NANOARCH53687.2021.9642249
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevA.95.020501
https://doi.org/10.1103/PhysRevA.95.020501


1089 (2020). url: https://doi.org/10.1126/
science.abb9811.

[35] Seunghoon Lee, Joonho Lee, Huanchen Zhai,
Yu Tong, Alexander M Dalzell, Ashutosh Ku-
mar, Phillip Helms, Johnnie Gray, Zhi-Hao
Cui, Wenyuan Liu, et al. “Is there evidence
for exponential quantum advantage in quantum
chemistry?” (2022). url: https://doi.org/10.
48550/arXiv.2208.02199.

[36] Harish J Vallury, Michael A Jones, Charles D
Hill, and Lloyd C L Hollenberg. “Quantum
computed moments correction to variational es-
timates”. Quantum 4, 373 (2020). url: https:
//doi.org/10.22331/q-2020-12-15-373.

[37] Lloyd C L Hollenberg. “Plaquette expansion in
lattice Hamiltonian models”. Physical Review
D 47, 1640 (1993). url: https://doi.org/10.
1103/PhysRevD.47.1640.

[38] Lloyd C L Hollenberg and NS Witte. “General
nonperturbative estimate of the energy density
of lattice Hamiltonians”. Physical Review D 50,
3382 (1994). url: https://doi.org/10.1103/
PhysRevD.50.3382.

[39] Lloyd C L Hollenberg and NS Witte. “Analytic
solution for the ground-state energy of the ex-
tensive many-body problem”. Physical Review
B 54, 16309 (1996). url: https://doi.org/10.
1103/PhysRevB.54.16309.

[40] Michael A Jones, Harish J Vallury, Charles D
Hill, and Lloyd C L Hollenberg. “Chemistry
beyond the Hartree–Fock energy via quantum
computed moments”. Scientific Reports 12,
1–9 (2022). url: https://doi.org/10.1038/
s41598-022-12324-z.

[41] Edward Farhi, Jeffrey Goldstone, and Sam Gut-
mann. “A quantum approximate optimization
algorithm” (2014). url: https://doi.org/10.
48550/arXiv.1411.4028.

[42] Aochen Duan. “Matrix product states in quan-
tum information processing”. Master’s thesis.
School of Physics, The University of Melbourne.
(2015).

[43] Michael A. Jones. “Moments-based corrections
to variational quantum computation”. Master’s
thesis. School of Physics, The University of Mel-
bourne. (2019).

[44] Karol Kowalski and Bo Peng. “Quantum sim-
ulations employing connected moments expan-
sions”. The Journal of Chemical Physics 153,
201102 (2020). url: https://doi.org/10.1063/
5.0030688.

[45] Kazuhiro Seki and Seiji Yunoki. “Quan-
tum power method by a superposition of
time-evolved states”. PRX Quantum 2,
010333 (2021). url: https://doi.org/10.1103/
PRXQuantum.2.010333.

[46] Philippe Suchsland, Francesco Tacchino, Mark H
Fischer, Titus Neupert, Panagiotis Kl Barkout-

sos, and Ivano Tavernelli. “Algorithmic error
mitigation scheme for current quantum proces-
sors”. Quantum 5, 492 (2021). url: https:
//doi.org/10.22331/q-2021-07-01-492.

[47] Joseph C Aulicino, Trevor Keen, and Bo Peng.
“State preparation and evolution in quantum
computing: A perspective from Hamiltonian
moments”. International Journal of Quantum
Chemistry 122, e26853 (2022). url: https://
doi.org/10.1002/qua.26853.

[48] Lloyd C L Hollenberg, David C Bardos, and
NS Witte. “Lanczos cluster expansion for
non-extensive systems”. Zeitschrift für Physik
D Atoms, Molecules and Clusters 38, 249–
252 (1996). url: https://doi.org/10.1007/
s004600050089.

[49] David Horn and Marvin Weinstein. “The t ex-
pansion: A nonperturbative analytic tool for
Hamiltonian systems”. Physical Review D 30,
1256 (1984). url: https://doi.org/10.1103/
PhysRevD.30.1256.

[50] Calvin Stubbins. “Methods of extrapolating
the t-expansion series”. Physical Review D 38,
1942 (1988). url: https://doi.org/10.1103/
PhysRevD.38.1942.

[51] J Cioslowski. “Connected moments expansion: a
new tool for quantum many-body theory”. Phys-
ical review letters 58, 83 (1987). url: https:
//doi.org/10.1103/PhysRevLett.58.83.

[52] Alexander M Dalzell, Nicholas Hunter-Jones,
and Fernando GSL Brandão. “Random quantum
circuits transform local noise into global white
noise” (2021). url: https://doi.org/10.48550/
arXiv.2111.14907.

[53] NS Witte and Lloyd C L Hollenberg. “Accurate
calculation of ground-state energies in an ana-
lytic Lanczos expansion”. Journal of Physics:
Condensed Matter 9, 2031 (1997). url: https:
//doi.org/10.1088/0953-8984/9/9/016.

[54] Qiskit contributors. “Qiskit: An open-source
framework for quantum computing” (2023).

[55] Suguru Endo, Simon C Benjamin, and Ying
Li. “Practical quantum error mitigation for
near-future applications”. Physical Review X 8,
031027 (2018). url: https://doi.org/10.1103/
PhysRevX.8.031027.

[56] Tudor Giurgica-Tiron, Yousef Hindy, Ryan
LaRose, Andrea Mari, and William J Zeng. “Dig-
ital zero noise extrapolation for quantum error
mitigation”. In 2020 IEEE International Confer-
ence on Quantum Computing and Engineering
(QCE). Pages 306–316. IEEE (2020). url: https:
//doi.org/10.1109/QCE49297.2020.00045.

[57] Kristan Temme, Sergey Bravyi, and Jay M Gam-
betta. “Error mitigation for short-depth quan-
tum circuits”. Physical review letters 119,
180509 (2017). url: https://doi.org/10.1103/
PhysRevLett.119.180509.

Accepted in Quantum 2023-09-06, click title to verify. Published under CC-BY 4.0. 13

https://doi.org/10.1126/science.abb9811
https://doi.org/10.1126/science.abb9811
https://doi.org/10.48550/arXiv.2208.02199
https://doi.org/10.48550/arXiv.2208.02199
https://doi.org/10.22331/q-2020-12-15-373
https://doi.org/10.22331/q-2020-12-15-373
https://doi.org/10.1103/PhysRevD.47.1640
https://doi.org/10.1103/PhysRevD.47.1640
https://doi.org/10.1103/PhysRevD.50.3382
https://doi.org/10.1103/PhysRevD.50.3382
https://doi.org/10.1103/PhysRevB.54.16309
https://doi.org/10.1103/PhysRevB.54.16309
https://doi.org/10.1038/s41598-022-12324-z
https://doi.org/10.1038/s41598-022-12324-z
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.1063/5.0030688
https://doi.org/10.1063/5.0030688
https://doi.org/10.1103/PRXQuantum.2.010333
https://doi.org/10.1103/PRXQuantum.2.010333
https://doi.org/10.22331/q-2021-07-01-492
https://doi.org/10.22331/q-2021-07-01-492
https://doi.org/10.1002/qua.26853
https://doi.org/10.1002/qua.26853
https://doi.org/10.1007/s004600050089
https://doi.org/10.1007/s004600050089
https://doi.org/10.1103/PhysRevD.30.1256
https://doi.org/10.1103/PhysRevD.30.1256
https://doi.org/10.1103/PhysRevD.38.1942
https://doi.org/10.1103/PhysRevD.38.1942
https://doi.org/10.1103/PhysRevLett.58.83
https://doi.org/10.1103/PhysRevLett.58.83
https://doi.org/10.48550/arXiv.2111.14907
https://doi.org/10.48550/arXiv.2111.14907
https://doi.org/10.1088/0953-8984/9/9/016
https://doi.org/10.1088/0953-8984/9/9/016
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1109/QCE49297.2020.00045
https://doi.org/10.1109/QCE49297.2020.00045
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509


[58] Sergey Bravyi, Sarah Sheldon, Abhinav Kan-
dala, David C Mckay, and Jay M Gam-
betta. “Mitigating measurement errors in mul-
tiqubit experiments”. Physical Review A 103,
042605 (2021). url: https://doi.org/10.1103/
PhysRevA.103.042605.

[59] Hendrik Weimer, Augustine Kshetrimayum, and
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