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We introduce distance measures between
quantum states, measurements, and channels
based on their statistical distinguishability
in generic experiments. Specifically, we an-
alyze the average Total Variation Distance
(TVD) between output statistics of protocols
in which quantum objects are intertwined
with random circuits and measured in a stan-
dard basis. We show that for circuits form-
ing approximate 4-designs, the average TVDs
can be approximated by simple explicit func-
tions of the underlying objects – the average-
case (AC) distances. We apply AC distances
to analyze the effects of noise in quantum ad-
vantage experiments and for efficient discrim-
ination of high-dimensional states and chan-
nels without quantum memory. We argue
that AC distances are better suited for as-
sessing the quality of NISQ devices than com-
mon distance measures such as trace distance
or the diamond norm.

Introduction. In the era of Noisy Intermediate
Scale Quantum (NISQ) devices [48], it is instrumen-
tal to have figures of merit that quantify how close
two quantum protocols are. The distance measures
commonly used for this purpose, for example, in the
context of quantum error correction [27], such as
trace distance or diamond norm, have an operational
interpretation in terms of optimal statistical distin-
guishability between two quantum states, measure-
ments, or channels [6, 18, 43, 49]. While it is natural
to consider the optimal protocols when one wishes to
distinguish between two objects, alas, in reality, such
protocols might be not practical. For example, in
general, they require high-depth, complicated quan-
tum circuits [10]. From a complementary perspec-
tive, quantum distances are often used to compare
an ideal implementation (of a state, measurement,
or channel) with its noisy experimental version. In
this context, using the distances based on optimal
distinguishability gives information about the worst-
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case performance of a device in question. This may
be impractical as well – it is not expected that the
performance of typical experiments on a quantum
device will be comparable to the worst-case scenario.

In this work, we consider the average Total-
Variation (TV) distance between output statistics
of two protocols in which random circuits interlace
quantum objects of interest (see Figure 1). This
can be thought to mimic the typical circumstances
in which quantum states, measurements, or chan-
nels appear as parts of quantum-information pro-
tocols. We show that for a broad class of easy-to-
implement random circuits (forming approximate 4-
designs), the average TV distance is approximated
by simple explicit functions expressible by degree
2 polynomials in objects in question. We use
these functions to define distance measures between
states, measurements, and channels. The so-defined
average-case (AC) distances are thus distance mea-
sures that approximate average-case total variation
distance. Contrary to conventional distances such as
the trace distance or the diamond norm, the AC dis-
tances capture the generic behavior of quantum ob-
jects in experiments involving only moderate-depth
quantum circuits. This feature can be especially rel-
evant in the context of near-term algorithms, such
as the Quantum Approximate Optimization Algo-
rithm (QAOA) [13, 14, 23] and Variational Quan-
tum Eigensolver (VQE) [33, 46, 47], as it is ex-
pected that generic variational circuits will, on av-
erage, have properties of unitary designs [41]. We
present numerical results suggesting that AC dis-
tances are more suitable for quantifying the impact
of imperfections on variational algorithms than the
conventional distance measures.

Multiple recent quantum advantage proposals are
based on random circuits sampling [5, 51]. We apply
AC distances to understand the effects of noise on
such protocols. We approach the problem from two
sides. First, the AC distances allow to easily lower
bound the average-case TV distance between the
noisy distribution and the ideal distribution, thus
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Figure 1: Measures of the distance between quantum objects based on average statistical distinguishability. For quantum
states a), we take the average over random unitaries applied to the state, followed by measurement in the standard basis.
For quantum measurements b), we take the average over random pure states measured on the detector. Finally, for quantum
channels c) we take the average over independent random unitaries applied before and after the application of the channel.

giving insight into how well separated, on aver-
age, are noisy distributions from target distribu-
tions. Second, AC distances allow to upper bound
the average-case TV distance between a noisy dis-
tribution and a (trivial) uniform distribution. This
allows to study how quickly the noise makes the aver-
age distribution useless. For example, we show that
even in the absence of gate and state-preparation
noise, the local, symmetric bitflip error in measure-
ments causes noisy distribution to approach trivial
one exponentially quickly in system size.

Recently there has been a lot of interest in al-
gorithms that use randomized quantum circuits,
such as shadow tomography [1, 11, 19, 20, 28] and
randomized-benchmarking [12, 15, 16, 26, 39, 40].
Our results can be employed to quantify the perfor-
mance of randomized algorithms in the task of statis-
tical distinguishability of quantum objects. Namely,
if the average-case distance between a pair of quan-
tum objects on N qubit systems is large, then they
can be (statistically) distinguished almost perfectly
using a randomized protocol with just a few imple-
mentations of local random circuits of depth O(N).
We observe that such behavior takes place in two
scenarios related to those recently analyzed in the
context of so-called Quantum Algorithmic Measure-
ment [2] and complexity growth of quantum circuits
[10]: (i) distinguishing Haar random N qubit pure
state from maximally mixed state and (ii) distin-
guishing N qubit Haar random unitary from maxi-
mally depolarizing channel. This shows that proto-
cols employing random circuits can be used to effi-
ciently discriminate quantum objects. Since they do
not depend on the objects to be distinguished, ran-
domized measurement schemes can be interpreted as
"universal discriminators", analogous to the SWAP
test but not requiring the usage of entanglement or
coherent access to copies of quantum systems.

The manuscript is accompanied by a complemen-
tary work [37] that contains proofs of theorems, a

thorough analysis of the properties of average-case
quantum distances, and further examples. In con-
trast, the following work focuses on providing intu-
ition behind AC distances and demonstrating how
they can be applied to understand the power of ran-
dom quantum circuits in practically relevant scenar-
ios, which is followed by numerical demonstrations.

Notation and basic concepts. Our result con-
cern quantum systems on finite-dimensional Hilbert
space Hd ≈ Cd. General quantum measurements,
also known as POVMs, are described by tuples M =
(Mi)ni=1 of operators on Hd which satisfy Mi ≥ 0
and

∑n
i=1Mi = Id, where Id is the identity on Hd.

General quantum operations on Hd is described by
a quantum channel, i.e., a completely-positive trace-
preserving map Λ : Herm(Hd) → Herm(Hd). We
will use the notation τd = I/d to denote maximally
mixed state on Hd.

We will consider general protocols consisting of
three stages (i) state preparation, in which quantum
system is initialized in state ρ, (ii) evolution given
by a quantum channel Λ and (iii) measurement of
the resulting state Λ(ρ) by a POVM M. The out-
come statistics of such a protocol are given by the
Born rule: pρ,Λ,Mi = tr(MiΛ(ρ)). Total Variation
(TV) distance between distributions p = (pi)ni=1 and
q = (qi)ni=1 is defined as TV(p,q) = 1

2
∑n
i=1 |pi−qi|.

TV distance defines the statistical distinguishability
of p and q. Specifically, in a task when we are asked
to decide whether the provided samples come from
p or q (where both are promised to be given with
equal probability), the optimal probability of cor-
rectly guessing the answer is psucc = 1

2(1+TV(p,q)).
The related distance between quantum objects is
constructed by considering the optimal success prob-
ability of distinguishing between pairs of relevant
quantum objects, where the optimization is carried
out not only over classical post-processing strategies
but also over quantum strategies that produce classi-
cal outcomes given the objects in question (see Sup-
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plementary Material (SM) for details).
Here we propose alternative distance measures

based on scenarios where the strategy of discrim-
ination of quantum objects is based on intertwin-
ing them with random quantum circuits and then
comparing their outcome statistics [37]. Specifically,
consider output statistics pα,β of a quantum protocol
where α is a fixed quantum object while β is taken to
be a random variable (specifying a quantum circuit)
distributed according to probability distribution ν.
The average statistical distinguishability of two ob-
jects α1, α2 is quantified by

TVav(α1, α2) = E
β∼ν

TV(pα1,β,pα2,β) . (1)

Explicit computation of TVav(α1, α2) is difficult be-
cause TV(p,q) is not a polynomial function of the
involved probabilities. However, if ν forms an ap-
proximate 4-design, it is possible to find simple es-
timates to TVav. Unitary k-designs are measures
on U(Hd) that reproduce averages of Haar mea-
sure µ on balanced polynomials of degree k in U
[3]. For approximate k-designs these averages agree
only approximately. Measure ν on U(Hd) is δ-
approximate k-design if ∥Tk,ν − Tk,µ∥⋄ ≤ δ, where
Tk,ν(ρ) =

´
U(H) dν(U)U⊗kρ(U †)⊗k. Importantly,

random quantum circuits in the 1D architecture
formed from arbitrary universal gates that randomly
couple neighboring qubits, generate approximate k-
designs efficiently with the number of qubits N
[9, 21, 25, 45]. Specifically, δ-approximate 4-designs
are generated by the 1D random brickwork archi-
tecture in depth O(N + log(1/δ)), with moderate
numerical constants [21].

Quantum average-case distances between
states, measurements, and channels. We are
now ready to formulate our main technical results
- dimension independent relative error estimates on
average TV distances between three types of quan-
tum objects depicted in Figure 1. To simplify the
formulation of the Theorems, we will use the symbol
≈ to denote equality up to a dimension-independent
relative error. The specific constants are given in
[37]. In Appendix B we provide simplified proofs of
the following theorems in the setting of exact unitary
designs. The proofs for approximate unitary designs
can be found in Appendix B of [37].

Quantum states. Let pρ,U denote the proba-
bility distribution of a quantum process in which ρ
undergoes a unitary transformation U and is then
subsequently measured in the computational basis
of Hd. In other words pρ,Ui = tr

(
|i⟩⟨i|UρU †

)
, where

{|i⟩}di=1 is a computational basis of Hd.

Theorem 1 (Average-case distinguishability of
quantum sates – Theorem 1 from [37]). Let ρ, σ be
quantum states in Hd and let ν be a distribution in
the unitary group U(Hd) forming δ-approximate 4-
design for δ = δ′

2d4 , for δ′ ∈ (0, 1
3). We then have

E
U∼ν

TV(pρ,U ,pσ,U ) ≈ ds
av(ρ, σ) = 1

2∥ρ−σ∥HS , (2)

where ∥X∥HS =
√

tr(X2) denotes Hilbert-Schmidt
norm.

The proof of Theorem 1 (and also theorems 2 and
3 stated below) is inspired by the proof of Theorem 4
from [3] where Berger inequality (stating that for ev-
ery random variableX with well-defined 2nd and 4th
moments we have (E[X2])

3
2 (E[X4])− 1

2 ≤ E|X| ) was
used to prove that two states far apart in Hilbert-
Schmidt norm can be information-theoretically dis-
tinguished by a POVM constructed from approxi-
mate 4-design.

Remark 1. We can interpret the above average sta-
tistical distinguishability as TV-distance of output
statistics resulting from a measurement of a single
POVM with effects Mi,Vj = νjU

†
j |i⟩⟨i|Uj , where νj

is the probability of occurence of circuit Uj in the
ensemble ν (for simplicity of presentation we as-
sumed that ensemble ν is discrete). This POVM
can be interpreted as a convex combination [44] of
projective measurements MUj with effects MUj

i =
U †
j |i⟩⟨i|Uj. Lower bound on average TV distance im-

plies that such randomized protocol distinguishes be-
tween quantum states with high probability. It imme-
diately follows that there also exists a deterministic
(not randomized) optimal distinguishability protocol
that achieves the same success probability. Such a
measurement can be implemented, for example, via
Naimark’s dilation using an ancillary system [43].
Analogous interpretation holds also for the average
TV-distances from Theorems 2 and 3 below.

Remark 2. We note that while the dependence of δ
on the dimension of the system d is very high in The-
orem 1 (as well as in Theorems 2 and 3), it does not
pose a practical problem. Indeed, exponentially ac-
curate δ-approximate unitary designs can be imple-
mented already with linear-depth quantum circuits
[21].

Quantum measurements. Let pM,ψV denote
the probability distribution of a quantum process in
which a fixed pure quantum state ψ0 is evolved ac-
cording by unitary V and is subsequently measured
via a n-outcome POVM M = (M1,M2, . . . ,Mn). In
other words pM,ψV

i = tr(V ψ0V
†Mi).

Accepted in Quantum 2023-08-24, click title to verify. Published under CC-BY 4.0. 3



Theorem 2 (Average-case distinguishability of
quantum measurements – Theorem 2 from [37]). Let
M,N be n-outcome POVMs on Hd and let ν be a
distribution on on U(Hd) forming δ-approximate 4-
design for δ = δ′

(2d)8 , for δ′ ∈ (0, 1
3). We then have

E
V∼ν

TV(pM,ψV ,pN,ψV ) ≈ dm
av(M,N) , where

dm
av(M,N) = 1

2d

n∑
i=1

√
∥Mi −Ni∥2

HS + tr(Mi −Ni)2 .

(3)

Quantum channels. Let pΛ,ψV ,U by the probabil-
ity distribution associated to a quantum process in
in which a fixed pure quantum state ψ0 is subse-
quently acted on by unitary V , channel Λ and uni-
tary U , and is subsequently measured in the com-
putational basis of H. In other words we have
pΛ,ψV ,U
i = tr(|i⟩⟨i|UΛ(V ψ0V

†)U †).

Theorem 3 (Average-case distinguishability of
quantum channels – Theorem 3 from [37]). Let Λ, Γ
be quantum channels acting on Hd. let ν be a distri-
bution on on U(Hd) forming δ-approximate 4-design
for δ = δ′

(2d)8 , for δ′ ∈ (0, 1
9). Then we have

E
V∼ν

E
U∼ν

TV(pΛ,ψV ,U ,pΓ,ψV ,U ) ≈ dch
av(Λ, Γ ) , where

dch
av(Λ, Γ ) = 1

2

√
∥JΛ − JΓ ∥2

HS + tr ((Λ− Γ )[τd]2)
(4)

and JΛ denotes Jamiołkowski-Choi state of Λ.

Remark 3. Having defined randomized distin-
guishability strategies, it is natural to ask how they
compare to optimal protocols on a d-dimensional
Hilbert space Hd. We give upper bounds on the max-
imal ratio between worst-case and average-case dis-
tances to answer this. It turns out that this ratio
is at most d

1
2 , d, d

3
2 for quantum states, measure-

ments, and channels, respectively. This implies that
there exist scenarios where the optimal protocol for
distinguishing two quantum objects performs expo-
nentially better than protocol using random quan-
tum circuits. Indeed, in the technical version of the
manuscript, [37] we construct examples that satu-
rate those bounds.

The above theorems suggest to define average-case
distances between quantum states, measurements,
and channels via formulas ds

av, dm
av, dch

av appearing
in approximations (2), (3), and (4). This approach
has several pleasant consequences. First, functions
describing these distances can be expressed via sim-
ple, degree-two polynomials in underlying objects

and can be easily explicitly computed for objects
acting on systems of moderate dimension (no opti-
mization is needed as in the case of the diamond
norm [50]). Second, all average-case distances uti-
lize in some way the Hilbert-Schmidt norm. This
gives this norm an operational interpretation it did
not possess before (especially for quantum states for
which ds

av(ρ, σ) = 1
2∥ρ − σ∥HS). Third, it turns out

that so-defined distances satisfy plethora of natural
properties such as subadditivity: ds

av(ρ1 ⊗ ρ2, σ1 ⊗
σ2) ≤ ds

av(ρ1, σ1) + ds
av(ρ2, σ2), joint convexity:

ds
av(
∑
α pαρα,

∑
α pασα) ≤

∑
α pαds

av(ρα, σα), or re-
stricted data-processing inequalities (typically vari-
ous distances dav are non-increasing under applica-
tion of unital quantum channels). See [37] for details
and proofs of various properties of average-case dis-
tances. Fourth, while it may seem that condition
of being (approximate) 4-design is quite stringent,
from a recent paper [21] it follows that ensembles
of quantum circuits required by Theorems 1-3 can
be realized by random circuits in the 1D brickwork
architecture in depth O(N) (with moderate prefac-
tors) [21]. Finally, we expect that our average-case
distances will more accurately capture the behav-
ior of errors in the performance of quantum objects
in generic moderate size quantum algorithms (note
that many architectures of variational circuits used
in NISQ algorithms are expected to exhibit, on aver-
age, design-like behavior [41]). We back up this last
claim numerically by testing the usefulness of our
distance measures on families of random quantum
circuits originating from random instances of varia-
tional quantum algorithms on few-qubit systems.

Applications. For all the reasons mentioned
above, we believe that introduced distances will
prove useful in analyzing the practical performance
of near-term quantum processors. We expect that
they can also be useful in other branches of quantum
information requiring the usage of randomized pro-
tocols like quantum communication, quantum com-
plexity theory, or quantum machine learning. The
following simple examples illustrate potential useful-
ness of our results.

Application 1: Noise in quantum advantage exper-
iments.

Here we consider examples which help to under-
stand how noise affects average probability distri-
butions in experiments with random circuits sam-
pling. First, AC distances between noisy and ideal
state allow to lower-bound average TVDs between
target and noisy distributions. Second, AC dis-
tances allow to upper-bound average-case TVD be-
tween noisy distribution and trivial (uniform) one.
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Indeed, to bound average TVD between uniform
and noisy distribution, one calculates AC distance
to maximally mixed state I

d (states), trivial POVM
MI =

(
I
d , . . . ,

I
d

)
(measurements), or maximally de-

polarizing channel Λdep that acts as Λdep(ρ) = I
d for

any state ρ (channels). This follows directly from
definitions of AC distances – see Lemmas 23, 24 and
25 in [37].

In what follows, most of the examples make use
of some average noise parameter qav (with different
meaning for each example) that describes an average
(over qubits) probability of errors of considered type
not occurring. In most of them, we make an assump-
tion that qav ≤ N

√
1
2 . This is done solely to achieve

a particularly appealing form of lower bounds. One
can derive expressions that are more complicated
and do not require this assumption (see SM for de-
tails and proofs of the following examples). In gen-
eral, since N

√
1
2

N→∞−−−−→ 1, the assumption becomes
less restrictive for higher-dimensional systems and
the presented bounds are intended for use in such
cases.

Example 1 (Pauli eigenstates and ten-
sor product Pauli noise). Consider state
ψpauli = ⊗N

i=1 |±ri⟩⟨±ri|, where ri ∈ {x, y, z},
i.e., |±ri⟩ is any Pauli eigenstate on qubit i (with
eigenvalue +1 or −1.). Consider tensor product
Pauli channel Λpauli = ⊗N

i=1Λ
pauli
i , where single-

qubit channel is Λpauli
i (ρ) =

∑
j=1 p

(i)
j σjρσj with

j ∈ {1, x, y, z}, σ1 = I, and p
(i)
j ≥ 0,

∑
j p

(i)
j = 1.

Define q(i) = p
(i)
1 + p

(i)
ri , i.e., a probability of

applying on qubit i a gate that stabilizes the state
of that qubit (namely, either identity or Pauli
matrix of which |±ri⟩ is an eigenstate). Define
average properties of noise as qav = 1

N

∑N
i=1 q

(i)

and fav = 1
N

∑N
i=1 q

(i)(1 − q(i)). Assume q(i) ≥ 1
2

for each qubit and that qav ≤ N

√
1
2 . Then we have

ds
av(Λpauli(ψpauli), I

d
) < 1

2 exp (−2fav N) , (5)

ds
av(Λpauli(ψpauli), ψpauli) > 1

2

√
1 − 2(qav)N , (6)

The above example might be relevant, for exam-
ple, in QAOA algorithms where input state is of-
ten indeed a tensor product Pauli state [13], or can
be useful for estimating effects of state-preparation
errors for standard setting where input state is
|0⟩⟨0|⊗N . We see that with growing system size, the
average noisy distribution approaches uniform dis-
tribution exponentially quickly (while moving away
from target distribution).

This demonstrates that even in the absence of
noise in random unitaries, the state-preparation er-
rors will quickly aggregate. Exactly the same be-
haviour is demonstrated for the following simplified
measurement noise model.

Example 2 (Symmetric bitflip measurement noise).
Consider a noisy version TsymP of computational
basis measurement P, where Tsym = ⊗N

i=1Tsym
i

and kth effect of noisy measurement is given by
(TsymP)k =

∑
l T

sym
kl |l⟩⟨l|. Here for each qubit we

have Tsym
i = p(i)I + (1 − p(i))σx, where (1 − p(i))

is a bitflip error probability on ith qubit. Define
fav = 1

N

∑N
i=1 p

(i)(1 − p(i)). Assume p(i) ≥ 1
2 for

each qubit. Then we have

dm
av(TsymP,MI) < 1

2exp (−2fav N) , (7)

The above means that even in the absence of
state-preparation and gate errors, for symmetric bit-
flip noise the resulting average distribution exponen-
tially quickly converges to uniform. We now consider
a distance from ideal measurement for more realistic
case of generic tensor product measurement noise.

Example 3 (Generic tensor product measurement
noise). Let P = (|x⟩⟨x|)x∈{0,1}N be a computa-
tional basis measurement on N qubit system. Let
M = (Mx)x∈{0,1}N be a POVM specified by effects
Mx = Λ†

1(|x1⟩⟨x1|) ⊗ . . . ⊗ Λ†
N (|xN ⟩⟨xN |), where Λi

are quantum channels affecting i’th qubit, and Λ†
i is

the conjugate of Λi. Define classical success prob-
ability as p(i)(k|k) = tr

(
Λ†
i (|xi⟩⟨xi|) |xi⟩⟨xi|

)
and

corresponding average q
(i)
av = pi(0|0)+p(i)(1|1)

2 . Let
qav := 1

N

∑N
i=1 q

(i)
av . Assume that for each qubit

q
(i)
av ≥ 1

2 and that qav ≤ N

√
1
2 . Then we have

dm
av(M,P) > 1

2

√
1 − 2(qav)N . (8)

The quantity qav is the survival probability of
classical single-qubit state |xi⟩⟨xi| that goes through
a channel Λi, averaged over all qubits and input
states. We note that those quantities are routinely
reported in experimental works, which makes the
above bound particularly useful. Indeed, data from
recent quantum advantage experiments [5, 51] sug-
gests that qav is around 97% (we take average of val-
ues reported in both papers). Assume perfect gates,
no state preparation errors and qav = 0.97. Further-
more, assume that random circuits used in experi-
ments form approximate 4-designs (this assumption
is consistent with results of [25]). Then from The-
orem 2 it follows that if readout errors remain con-
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stant with scaling of the system, for a 54-qubit quan-
tum computer, on average (over realizations of ran-
dom quantum circuits) output distributions pM,ψV

will have a constant ≈ 0.13 TV-distance from the
ideal probability distributions pP,ψV solely due to
effects of readout noise.

Example 4 (Tensor product Pauli noise in the mid-
dle of the circuit). Consider tensor product Pauli
channel Λpauli defined in Example 1. For each qubit
i define ||p(i)||22 =

∑
j

(
p

(i)
j

)2
, and corresponding

average pav2 = 1
N

∑N
i=1 ||p(i)||22, as well as average

probability of application of identity channel pav1 =
1
N

∑
i=1 p

(i)
1 . Assume pav1 ≤ N

√
1
2 . Then we have

dch
av(Λpauli, Λdep) < 1

2exp (−pav2 N) , (9)

dch
av(Λpauli, I) > 1√

2

√
1 − 2 (pav1 )N . (10)

Recall that the above scenario corresponds to in-
serting local Pauli noise "between" two random cir-
cuits (two averages in Eq. (4)). Similarly to previous
cases, whenever there is non-zero noise, we will ob-
serve an exponential convergence to the trivial dis-
tribution and high separation from ideal distribution
corresponding to identity channel I.

Example 5 (Single Pauli error the middle of the cir-
cuit). Consider tensor product channel Λ(i)

σ that ap-
plies some traceless unitary σ on qubit i (and iden-
tity to all other qubits). Then we have

dch
av(Λ(i)

σ , I) = 1√
2
. (11)

Physically, the above may correspond to a unitary
noise applying one of Pauli matrices on qubit i some-
where in the circuit. We then observe a constant
separation (value of 1√

2) between ideal distribution
and the noisy distribution. Such significant average
distance between noisy and target distribution sug-
gests that local strong coherent errors can dramati-
cally affect the performance of a given device in typ-
ical circumstances. This result is in agreement with
empirical observations made in Refs. [5, 8] where
single-qubit errors were causing "speckle pattern" of
output bitstrings probabilities to break, resulting in
very low cross-entropy benchmarking fidelity.

Application 2: Sample efficient distinguishability
of quantum objects with incoherent access

Example 6. For any pure state ψ on Hd we have
ds

av (ψ, τd) = 1
2

√
1 − 1

d .

It follows that a single round of a randomized pro-
tocol implicit in the definition of ds

av (cf. Remark
1), realized via approximate 4-design and computa-
tional basis measurements, gives a constant bias in
distinguishing any pure N qubit state ψ from the
maximally mixed state: pav

succ ≳ 0.57. This probabil-
ity can be made arbitrarily close 1 by repeating the
protocol and using the majority-vote strategy. Im-
portantly, this method does not utilize the coherent
access or a quantum memory (in a sense defined, e.
g., in [2, 29]). We note that a related but distinct
scenario is considered in Ref. [2]. There, the au-
thors introduced the task of PurityTesting corre-
sponding to discrimination between unknown Haar-
random pure random state and maximally mixed
state. For N qubit systems, Theorem 4 of [2] im-
plies exponential lower bound for the query com-
plexity k (number of usages of unknown quantum
state) needed to succeed in this task, given incoher-
ent access to objects in question. In contrast, our
randomized measurement protocol gives high statis-
tical distinguishability already for a single query for
all states ψ. The difference comes from the fact that
in the scenario considered in Example 6 the random
state is arbitrary but known.

Example 7. Let ΛU be a a unitary channel corre-
sponding to a unitary U on Hd and let Λdep be a
depolarizing channel i.e. Λdep(ρ) = τd for any ρ.
Then we have dch

av (ΛU , Λdep) = 1
2

√
1 − 1

d2 .

In related task FixedUnitary studied in [2], one
is asked to distinguish unknown Haar-random uni-
tary channel ΛU from Λdep. Exponential query com-
plexity lower bound incoherent protocols was shown
in [2]. By repeating analogous reasoning as for
states, we get that when ΛU is arbitrary but known,
randomized, non-adaptive, and incoherent protocol,
utilizing two realizations of approximate 4-designs,
gives constant bias in success probability of discrim-
ination of ΛU from Λdep using just a single query.

Application 3: Strong complexity of quantum
states and unitaries. The above o examples have
interesting consequences for the notion of a strong
state and unitary complexity investigated in [10].
There, the authors defined complexity C∆ of N -
qubit pure state ψ (resp. unitary circuit ΛU ) as the
number of elementary gates needed to construct a
circuit necessary to implement a two-outcome mea-
surement discriminating between ψ (resp. depolar-
izing channel Λdep) with success probability psucc =
1
2 +∆. Our results imply that if the requirement of
two-outcome measurement is relaxed, then measure-
ments realizable with circuit depths r = poly(N)
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(a) Quantum states, distance to ideal distribution (b) Quantum states, distance to uniform distribution

(c) Quantum measurements, distance to ideal distribution (d) Quantum channels, distance to ideal distribution

Figure 2: Results of numerical studies for comparison between worst-case distance, average-case quantum distance and
numerically calculated mean TVD. Plots 2a, 2c and 2d correspond to distance to ideal (noiseless) distribution. For states,
we additionally plot distance to uniform (trivial) distribution on plot 2b. For average-case distance, we also plot value
corresponding to lower bound on average-case TVD (following from Eqs. (2), (3), (4)). In case of worst-case distance, "lb"
indicates lower-bound. Average-case quantum distances were calculated explicitly. Mean TVDs were calculated between
(exact numerical) probability distributions over 1000 random instances of random unitaries.

can succeed in these discrimination tasks with a con-
stant bias ∆∗ for all states ψ and unitary channels
ΛU . This renders the so-defined notion of complexity
trivial - all states and unitaries will have complexity
C∆ ≤ poly(N), unless bias δ satisfies ∆ > ∆∗.

We note that large average-case distance dav im-
plies only information-theoretic distinguishability
of quantum objects. The cost of classical post-
processing needed to distinguish the probability dis-
tributions resulting from randomized protocols can
be very large since they operate on exponentially
large sample space.

Numerical results. Here we present the results
of numerical studies of small-size quantum systems.
We compare scaling with the system size for worst-
case distance, average-case distance, and a mean
TVD taken over an ensemble of random unitaries.
The mean Total-Variation distance is calculated nu-
merically over two types of ensembles of unitaries
with a structure of variational circuits. One ensem-
ble has a QAOA-like structure, while the other is a
standard hardware-efficient VQE ansatz [47], both

initialized with random parameters (see SM for ex-
act form). Based on recent results [41], we expect
them to form (approximate) unitary 4-designs.

We consider the following scenarios.

1. (States) We compare a randomly chosen Pauli
eigenstate affected by random local Pauli noise
with its ideal version (Fig. 2a) and with max-
imally mixed state I

d (Fig. 2b ). This is the
scenario considered in Example 1. The error
probabilities are chosen randomly from range
[0.001, 0.01].

2. (Measurements) The noisy measurement is a
tensor product POVM constructed from single-
qubit measurements obtained via Quantum
Detector Tomography [35] of IBM’s 15-qubit
Melbourne device. We compare it to ideal
computational-basis measurement (Fig. 2c).
Since the measurement noise in superconduct-
ing devices is usually highly asymmetric [36],
we do not expect it to converge to the uniform
distribution.
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3. (Channels) We compare channel correspond-
ing to random tensor product 1-qubit rota-
tions around a random axis with ideal iden-
tity channel I (Fig 2d). Explicitly, the uni-
tary corresponding to the channel has a form⊗N

k=1 exp(−iγkV (k)), where V (k) is chosen ran-
domly to be X, Y or Z gate, and γk ∈
[0.025π, 0.0313π]. Similarly to POVMs, we do
not expect coherent errors to bring noisy distri-
butions close to the uniform distribution.

In each case, the number of circuit layers is ⌊1.5N⌋.
In Fig. 2 we collectively present the results of all sim-
ulations. Recall that both ensembles presented in
Fig. 2 consist of circuits that are variational QAOA
and VQE circuits with random parameters. From
the plots, it is clear that in all studied cases for
those ensembles, the average-case quantum distance
is both significantly closer and more similar in scal-
ing to the mean Total Variation distance between
distributions in question, as compared to worst-case
distance.
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A Worst-case quantum distances

As mentioned in the main text, commonly used distance measures are based on optimal statistical distin-
guishability of the objects in question. We have the following statistical interpretations of trace distance
dtr between quantum states [43], operational distance dop [42, 49] between quantum measurements, and the
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diamond norm distance d⋄ [43] between quantum channels

dtr(ρ, σ) = max
M

TV(pρ,M,pσ,M) , (12)

dop(M,N) = max
ρ

TV(pρ,M,pρ,N) , (13)

d⋄(Λ, Γ ) = max
ρ, M

TV(pρ,Λ,M,pρ,Γ,M) . (14)

For the case of states, the maximization is over POVMs M used to distinguish them. We have a dual situation
for measurements, the maximization is over input quantum states used to differentiate between one POVM
and another. Finally, for the case of quantum channels and the diamond norm – the maximization is over
both input states (on a possibly extended system) and over POVMs applied after a channel is implemented.

B Simplified proofs of main Theorems
Here we present simplified versions of proofs of Theorems 1, 2, and 3 from the main text. We refer the
Reader to [37] for detailed calculations. Since in the main text we omitted dependence on δ in δ-approximate
unitary designs, we consider here proofs only for exact (not approximate) unitary designs. The functional
dependence for approximate designs, as well as proofs for approximate designs, can be found in [37].

B.1 Lower and upper bounds on absolute values
In scenarios we consider, we aim to find bounds on a random variable that is a Total-Variation distance
(TVD) between two probability distributions. Note that since the expectation value is linear, it suffices to
focus attention on a single outcome probability, and then add resulting bounds to obtain bounds on TVD.

Let us thus denote by Xi = pi − qi the value of a difference of probabilities of measurement outcome i
taken from probability distributions p and q that correspond to two quantum-mechanical protocols. This is a
shorthand notation – the protocols are described in the main text and correspond to discrimination between
two states, measurements, or general channels. Conveniently, it turns out that for considered scenarios and
probability measures (Haar measure and unitary designs), one can find real parameters a such that the
following holds.

Lemma 1. (Lower bound on absolute value)

a
√

(E[X2
i ]) ≤ E|Xi| , (15)

where the value of a depends on whether we discriminate between states, measurements, or channels.

Proof. From Lemmas 4, and 5 in [37] it follows that one can find constants a such that

E[X4
i ] ≤ 1√

a

(
E[X2

i ]
)2

. (16)

We note that Lemma 4 from [37] is Lemma 2 from [34], while Lemma 5 from [37] is one of the results in the
accompanying technical manuscript [37]. Recall that Berger’s inequality [7] states that for random variable
Y with well-defined 2nd and 4th moments, we have

(E[Y 2])
3
2

(E[Y 4])
1
2

≤ E|Y | , (17)

Then the proof follows from combining Eq. (16) with Berger’s inequality.

At the same time, we have that the following holds for any random variable Y .

Lemma 2. (Upper bound on absolute value)

E[|Y |] = E[
√
Y 2] ≤

√
E[Y 2] .
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Proof. The above is a special case of Jensen’s inequality [30] which states that for a concave function f we
have E[f (Y )] ≤ f

(
E[Y ]

)
.

From the above one can see that to obtain both lower and upper bound on TVD it suffices to calculate
the 2nd moment of |Xi|. To do so, the following Lemma will be useful.

Lemma 3 (Ancillary integral for 2nd moment). Let A be a Hermitian operator on (Hd) and µ be a Haar
measure. Then we have

E
U∼µ

[
tr(|i⟩⟨i|UAU †)2

]
= 1
d(d+ 1)

(
tr(A2) + tr(A)2

)
. (18)

Proof. We first write simple manipulation

E
U∼µ

[
tr(|i⟩⟨i|UAU †)2

]
= E

U∼µ

[
tr
(
(U †)⊗2|i⟩⟨i|⊗2U⊗2A⊗2

)]
. (19)

This allows us to evaluate the RHS using standard techniques of Haar measure integration (see, e.g., [24,
Prop. 6]), and obtain that it is proportional to P(2)

sym, i.e., projector onto 2-fold symmetric subspace of
H⊗2

d . Then the proof follows from applying identities P(2)
sym = 1

2 (I + S) and tr
(
SA⊗2) = tr

(
A2), where

S =
∑d
i,j=1 |ij⟩⟨ji| is a generalized SWAP operator.

B.2 Proofs of Theorems 1 and 2

For states and measurements, the proofs are essentially identical, thus we consider them together. As stated
above, obtaining both bounds reduces to calculating second moments of |Xi|, which we will now outline.

Consider discrimination of states ρ and σ. We calculate the second moment by applying Lemma 3 to
operator ∆i = ρ− σ, which yields

E
U∼µ

[X2
i ] = E

U∼µ
tr(U †|i⟩⟨i|U∆i)2 = 1

d(d+ 1) tr(∆2) = 1
d(d+ 1) ||ρ− σ||2HS. (20)

Note that the RHS does not depend on index i. The proof concludes by taking a square root of the RHS
and summing over i.

Consider discrimination of measurements M and N. In analogy to states, we calculate the 2nd moment by
applying Lemma 3 to operator ∆̃i = Mi −Ni, and obtain

E
U∼µ

[X2
i ] = E

U∼µ
tr(U †ψ0U∆̃i)2 = 1

d(d+ 1)
(
tr(∆̃2

i ) + tr(∆̃i)2
)
. (21)

B.3 Proof of Theorem 3

In the case of states and measurements, there was only a single average (over projective measurements for
states and over pure states for measurements). However, for quantum channels we have both quantum inputs
and outputs, thus we need to calculate two averages. Consider discrimination between two channels Λ and
Γ . Denote ∆ = Λ− Γ .

To proceed, we first apply Theorem 1 to perform averaging over projective measurements after the appli-
cation of the channel (or, equivalently, averaging over unitaries acting on the output of channels followed
by fixed measurement in a standard basis). In this way, we remove one integral and reduce the problem
to finding bounds on the expected value of E

ψ∼νS
∥∆[ψ]∥HS = E

ψ∼νS

[√
tr (∆[ψ]2)

]
. Using the same line of

arguments as before, this quantity can be lower and upper bounded by evaluating E
ψ∼νS

tr
(
∆[ψ]2

)
. This is

done by first performing simple manipulation

E
ψ∼νS

[
tr
(
∆[ψ]2

)]
= E

ψ∼νS

[
tr
(
S∆[ψ]⊗2

)]
= tr

(
S E
ψ∼νS

[
∆[ψ]⊗2

])
. (22)
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The last term in the above can then be evaluated using standard techniques of Haar measure integration
(see, e.g., [24, Prop. 6], and recall the proof of Lemma 3). The computation yields

E
ψ∼νS

[
tr(∆[ψ]2)

]
= d2

d(d+ 1)

(
tr
(
∆

[ I
d

]2
)

+ tr
(
S∆⊗2

[ S
d2

]))
. (23)

Noticing that tr
(
S∆⊗2

[
S
d2

])
= ∥J∆∥2

HS concludes the proof.

C Proofs of claims in Examples 1-4
As mentioned in the main text, Examples 1-5 follow directly from more general expressions in examples in
technical manuscript [37]. Specifically, the Example 1 follows from Example 9, Examples 2 and 3 follow
from Example 10 (in case of Example 3 arguments are slightly more involved, as presented below), while
Examples 4 and 5 follow from Example 14.

We now recall statements of Example 9 for Reader’s convenience.

Example 8. [Example 9 from [37]] Consider state ψpauli = ⊗N
i=1 |±ri⟩⟨±ri|, where ri ∈ {x, y, z}, i.e., |±ri⟩

is any Pauli eigenstate on qubit i (with eigenvalue +1 or −1.). Consider tensor product Pauli channel
Λpauli = ⊗N

i=1Λ
pauli
i , where single-qubit channel is Λpauli

i (ρ) =
∑
j=1 p

(i)
j σjρσj with j ∈ {1, x, y, z}, σ1 = I,

and p
(i)
j ≥ 0,

∑
j p

(i)
j = 1. Define q(i) = p

(i)
1 + p

(i)
ri , i.e., a probability of applying on qubit i a gate that

stabilizes the state of that qubit (namely, either identity or Pauli matrix of which |±ri⟩ is an eigenstate).
Furthermore, assume that for each qubit i we have q(i) ≥ 1

2 . Then we have

ds
av(Λpauli(ψpauli), I

d
) = 1

2

√
ΠN
i=1

(
1 − 2q(i)(1 − q(i))

)
− 1
d
, (24)

ds
av(Λpauli(ψpauli), ψpauli) = 1

2

√
1 − 2ΠN

i=1q
(i) +ΠN

i=1(1 − 2q(i)(1 − q(i))) , (25)

We start by defining function f (i) = q(i)(1 − q(i)), as well as average noise properties qav = 1
N

∑N
i=1 q

(i)

and fav = 1
N

∑N
i=1 f

(i). We then bound Eq. (24) from above as√
ΠN
i=1

(
1 − 2f (i))− 1

d
≤
√
ΠN
i=1

(
1 − 2f (i)) , (26)

and continue with bounding (positive) expression inside square root as

ΠN
i=1

(
1 − 2f (i)

)
=
(

N

√
ΠN
i=1

(
1 − 2f (i)))N ≤

(∑N
i=1(1 − 2f (i))

N

)N
= (1 − 2fav)N ≤ exp(−2favN) , (27)

where in first inequality we used inequality between geometric and arithmetic means together with a fact
that xN ≥ yN for x > y > 0. In second inequality we used that for 0 ≤ x ≤ 1 and N ≥ 1, we have
(1 − x)N ≤ exp (−xN). Note that each term 2f (i) lies in interval 2f (i) ∈

[
0, 1

2

]
. Combining everything we

obtain

ds
av(Λpauli(ψpauli), I

d
) ≤ 1

2exp(−favN) , (28)

which concludes the proof of first bound.
To bound Eq. (25) from below, we start by again employing inequality between geometric and arithmetic

mean, namely

1 − 2ΠN
i=1q

(i) = 1 − 2
(

N

√
ΠN
i=1q

(i)
)N

≥ 1 − 2
(∑

i=1 q
(i)

N

)N
= 1 − 2 (qav)N , (29)
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which after combining with Eq. (25) yields

ds
av(Λpauli(ψpauli), ψpauli) ≥ 1

2

√
1 − 2 (qav)N +ΠN

i=1(1 − 2q(i)(1 − q(i))) ≥ 1
2

√
1 − 2 (qav)N . (30)

The above bound is valid provided that argument is still contained in the domain of square root, i.e., we
need to impose

1 − 2 (qav)N ≥ 0 =⇒ qav ≤ N

√
1
2 . (31)

Note that N

√
1
2

N→∞−−−−→ 1, and since qav is by definition lower than 1, the bound becomes less restrictive for
higher system sizes. For small systems it is valid only for high noise (small qav), but in such cases one can
simply use the exact expressions from Eqs. (24) and (25).

The exactly same reasoning is applied for Examples 2 and 4, for which all expressions have almost the
same functional forms (see [37]). We now consider bound from Example 3 from the main text, for which the
first part of the proof is slightly more involved due to more general noise model considered.

Example 9 (Example 3 from the main text). Let P = (|x⟩⟨x|)x∈{0,1}N be a computational basis measure-
ment on N qubit system. Let M = (Mx)x∈{0,1}N be a POVM specified by effects Mx = Λ†

1(|x1⟩⟨x1|) ⊗
. . . ⊗ Λ†

N (|xN ⟩⟨xN |), where Λi are quantum channels affecting i’th qubit, and Λ†
i is the conjugate of

Λi. Define classical success probability as p(i)(k|k) = tr
(
Λ†
i (|xi⟩⟨xi|) |xi⟩⟨xi|

)
and corresponding average

q
(i)
av = pi(0|0)+p(i)(1|1)

2 . Let qav := 1
N

∑N
i=1 q

(i)
av . Assume q(i)

av ≥ 1
2 for each qubit i and that qav ≤ N

√
1
2 . Then

we have

dm
av(M,P) > 1

2

√
1 − 2(qav)N . (32)

To prove the above, first one applies maximally-dephasing channel to both measurements and uses data-
processing inequality for average-case distance to bound the distance from below by the diagonal part of
the POVM M. Specifically, define dephased POVM Φdep(M) via its effects Φdep(M)i = Φdep(Mi), where
maximally dephasing channel acts on any operator A as Φdep(A) = diag(A), with diag(A) denoting diagonal
part of A. Note that for compuational basis measurement P we have Φdep(P) = P. Thus we have

dm
av(Φdep(M), Φdep(P)) ≥ dm

av(Φdep(M),P) . (33)

The above allows to treat noise as classical and look only on assignment infidelities for classical states (i.e.,
error probabilites when measured states are computational-basis states). Note that, importantly, maxi-
mally dephasing channel does not change the product structure of M. Thus we can treat this dephased
POVM Φdep(M) as related to computational basis measurement via some tensor product stochastic map
T =

⊗N
i=1 T(i), where T(i) acts on ith qubit and is specified by two success probabilities p(i)(0|0) and

p(i)(1|1) (see, for example, Ref. [38] for more details on stochastic readout noise). Thus we have

dm
av(M,P) ≥ dm

av(TP,P) , (34)

where TP is a POVM with ith effect given by (TP)i =
∑
i Tij |j⟩⟨j| and stochastic map T is defined via

diagonal elements of original POVM M (as in discussion above).
Now one applies Lemma 28 from technical version of the work [37] that lower bounds the distance via

symmetrized version of T, where now both error probabilities are the same and equal to q(i)
av = p(i)(0|0)+p(i)(1|1)

2
(note that this is equivalent to Pauli bitflip channel applied with probability q(i)

av ). Denote such symmetrized
version of T as Tsym. This gives

dm
av(TP,P) ≥ dm

av(TsymP,P). (35)

Therefore we reduced the lower bound to scenario considered in Example 2 from the main text, for which
the bound was proved above.
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D Details on numerical simulations
In the main text, we presented numerical results of calculating mean Total-Variation distances over ensembles
of random unitaries. Here we describe how those ensembles were constructed. In each case, the p-layer circuit
can be written as

Up =
p∏
j=1

Urot,j Uent,j . (36)

where Urot,j is a "rotation block" and Uent is an "entangling block". Exact form of the evolution, as well as
the initial state depend on the ensemble. We consider two such ensembles:

1. Circuits that originate from QAOA instance for fixed Hamiltonian H2SAT encoding fixed (random)
instance of random MAX-2-SAT problem [22]. In this case, the initial state is of the form |+⟩⊗N with
|+⟩ = 1√

2(|0⟩ + |1⟩), while unitary evolution is given by Urot,j := Uαj = exp
(
−iαj

∑N
k=1 σ

(k)
x

)
, and

Uent,j := Uβj
= exp (−iβjH2SAT), with σ

(k)
x being X gate on kth qubit. For each j, αj and βj are

N -dimensional vectors of parameters chosen randomly from range [−π, π].

2. Circuits of a form of generic Hamiltonian-independent VQE ansatz with initial state being |0⟩⊗N . We
choose the rotation block to be of the form Urot,j := Uαj =

⊗N
k=1 exp

(
−iα2j σ

(k)
Z

)
◦ exp

(
−iα2j+1 σ

(k)
Y

)
,

where σY , σZ are Y and Z gates. The entangling block is Uent,j = Uent :=
∏N−1
k=1 CXk,k+1 with CXk,l

denoting CX gate between qubits k and l. For each j, αj is a 2N -dimensional vector of parameters
chosen randomly from range [−π, π].

E Additional numerical results
Here we provide some additional plots with numerical results.

In Fig 3 we present the same plots as for Fig 2 in the main text, but with additional, third ensemble of
unitaries considered (see previous section for description of two ensembles used in the main text).

3. The third ensemble is similar to the second VQE-like (see previous section), but now rotation block
contains only Y rotations. Furthermore, the angles are not random, but they are chosen from a fixed
set of parameters that come from solutions of variational optimization. In other words, each used
unitary corresponds to a circuit that was found to be optimal in a VQE optimization (as opposed to
uniformly random angles taken for both previous ensembles). We use datasets from Ref. [17] where
authors developed an adaptive measurement scheme that improves performance of VQE.

Ensemble of type 3, due to limited computational resources, consist of only 7 − 12 unitaries (recall that
generating each unitary requires performing full VQE optimization). This implies that this ensemble does
not form even unitary 2-design. It is nevertheless still interesting to investigate its behaviour, since those
are circuits of particular practical importance.

From Fig. 3 we see that for distances between ideal and noisy distributions, the results are qualitatively
similar to random ensembles in case of states and channels, but significantly different for quantum measure-
ments. Recall that POVMs used to generate plot 3c are results of detector tomography of actual quantum
device from IBM. In this case, the noise affects results so much, that empirical TVDs are closer to worst-case
than to average-case bounds. In case of distance between noisy and uniform distribution for states (Fig. 3b)
we also observe that average-case distances do not capture well the behaviour of the distributions for unitaries
obtained in VQE optimization.

In Fig 4 we present histograms of TVDs over random unitaries. The data-points correspond to simulations
presented in Fig. 2 in the main text. The plots show how the TVDs concentrate for small system sizes and
demonstrate that all random points lied well within bounds provided by average-case distances.
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(a) Quantum states, distance to ideal distribution (b) Quantum states, distance to uniform distribution

(c) Quantum measurements, distance to ideal distribution (d) Quantum channels, distance to ideal distribution

Figure 3: Results of numerical studies for comparison between worst-case distance, average-case quantum distance and
numerically calculated mean TVD. The plot is exactly the same as Fig 2 in the main text, but with additional ensemble of
unitaries considered (see text description).
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(a) Quantum states, distance to ideal distribution (b) Quantum measurements, distance to ideal distribution

(c) Quantum channels, distance to ideal distribution

Figure 4: Histograms of TVDs obtained for random ensembles considered in numerical simulations corresponding to Fig 2
in the main text. Different shades of a given color (blue or green) correspond to different system sizes for a given ensemble
(QAOA or VQE). Bounds from average-case distances are indicated via dashed lines and for each dimension are the same
for both ensembles (they depend only on quantum objects in question, not on the choice of random ensemble).
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