Energy-efficient quantum non-demolition measurement with a spin-photon interface

Maria Maffei1, Bruno O. Goes2, Stephen C. Wein2,3, Andrew N. Jordan4,5, Loïc Lanco6, and Alexia Auffèves7,8

1Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
2Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
3Quandela SAS, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
4Institute for Quantum Studies, Chapman University, 1 University Drive, Orange, CA 92866, USA
5Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
6Université Paris Cité, Centre for Nanoscience and Nanotechnology (C2N), F-91120 Palaiseau, France
7MajuLab, CNRS–UCA-SU-NUS-NTU International Joint Research Laboratory
8Centre for Quantum Technologies, National University of Singapore, 117543 Singapore, Singapore

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Spin-photon interfaces (SPIs) are key devices of quantum technologies, aimed at coherently transferring quantum information between spin qubits and propagating pulses of polarized light. We study the potential of a SPI for quantum non demolition (QND) measurements of a spin state. After being initialized and scattered by the SPI, the state of a light pulse depends on the spin state. It thus plays the role of a pointer state, information being encoded in the light's temporal and polarization degrees of freedom. Building on the fully Hamiltonian resolution of the spin-light dynamics, we show that quantum superpositions of zero and single photon states outperform coherent pulses of light, producing pointer states which are more distinguishable with the same photon budget. The energetic advantage provided by quantum pulses over coherent ones is maintained when information on the spin state is extracted at the classical level by performing projective measurements on the light pulses. The proposed schemes are robust against imperfections in state of the art semi-conducting devices.

Spin-photon interfaces (SPIs) are key devices of quantum technologies, aimed at coherently transferring quantum information between spin qubits (storage qubits) and propagating pulses of polarized light (flying qubits). Following a pathway recently opened in the fields of quantum technology and quantum metrology, we explore the potential of SPIs to perform energy-efficient operations by exploiting quantum resources. The operation that we analyze is the main building block of most SPIs-based technological applications: the spin’s quantum non-demolition (QND) measurement. After being initialized and scattered by the SPI, the state of a light pulse depends on the spin state. It thus plays the role of a pointer state, information being encoded in the light's temporal and polarization degrees of freedom. Our study is grounded on a novel, fully Hamiltonian, resolution of the spin-light dynamics based on a generalization of the collision model. We explore the impact of different photonic statistics of the propagating field on the quality of the QND measurement at fixed energy. We focus on a low-energy regime where the light carries a maximum of one excitation in average and compare a coherent field with a quantum superposition of zero and single photon states. We find that the latter gives rise to a more precise spin’s QND measurement than the former hence providing an energetic quantum advantage. We show that this advantage is robust against realistic imperfections of state-of-the-art SPIs’ implementations with quantum dots.

► BibTeX data

► References

[1] Tatjana Wilk, Simon C. Webster, Axel Kuhn, and Gerhard Rempe. Single-atom single-photon quantum interface. Science, 317 (5837): 488–490, 2007. 10.1126/​science.1143835.
https:/​/​doi.org/​10.1126/​science.1143835

[2] A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt. Tunable ion–photon entanglement in an optical cavity. Nature, 485 (7399): 482–485, May 2012. ISSN 1476-4687. 10.1038/​nature11120.
https:/​/​doi.org/​10.1038/​nature11120

[3] W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu. Observation of entanglement between a quantum dot spin and a single photon. Nature, 491 (7424): 426–430, November 2012. ISSN 0028-0836, 1476-4687. 10.1038/​nature11573.
https:/​/​doi.org/​10.1038/​nature11573

[4] Alisa Javadi, Dapeng Ding, Martin Hayhurst Appel, Sahand Mahmoodian, Matthias Christian Löbl, Immo Söllner, Rüdiger Schott, Camille Papon, Tommaso Pregnolato, Søren Stobbe, Leonardo Midolo, Tim Schröder, Andreas Dirk Wieck, Arne Ludwig, Richard John Warburton, and Peter Lodahl. Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide. Nature Nanotechnology, 13 (5): 398–403, May 2018. ISSN 1748-3395. 10.1038/​s41565-018-0091-5. Number: 5 Publisher: Nature Publishing Group.
https:/​/​doi.org/​10.1038/​s41565-018-0091-5

[5] H. J. Kimble. The quantum internet. Nature, 453 (7198): 1023–1030, June 2008. ISSN 0028-0836, 1476-4687. 10.1038/​nature07127.
https:/​/​doi.org/​10.1038/​nature07127

[6] C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity. Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon. Physical Review B, 78 (8): 085307, August 2008. 10.1103/​PhysRevB.78.085307. Publisher: American Physical Society.
https:/​/​doi.org/​10.1103/​PhysRevB.78.085307

[7] Cristian Bonato, Florian Haupt, Sumant S. R. Oemrawsingh, Jan Gudat, Dapeng Ding, Martin P. van Exter, and Dirk Bouwmeester. CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Physical Review Letters, 104 (16): 160503, April 2010. 10.1103/​PhysRevLett.104.160503. Publisher: American Physical Society.
https:/​/​doi.org/​10.1103/​PhysRevLett.104.160503

[8] Ido Schwartz, Dan Cogan, Emma R. Schmidgall, Yaroslav Don, Liron Gantz, Oded Kenneth, Netanel H. Lindner, and David Gershoni. Deterministic Generation of a Cluster State of Entangled Photons. Science, 354 (6311): 434–437, October 2016. ISSN 0036-8075, 1095-9203. 10.1126/​science.aah4758.
https:/​/​doi.org/​10.1126/​science.aah4758

[9] N. Coste, D. A. Fioretto, N. Belabas, S. C. Wein, P. Hilaire, R. Frantzeskakis, M. Gundin, B. Goes, N. Somaschi, M. Morassi, A. Lemaître, I. Sagnes, A. Harouri, S. E. Economou, A. Auffeves, O. Krebs, L. Lanco, and P. Senellart. High-rate entanglement between a semiconductor spin and indistinguishable photons. Nature Photonics, April 2023. ISSN 1749-4885, 1749-4893. 10.1038/​s41566-023-01186-0.
https:/​/​doi.org/​10.1038/​s41566-023-01186-0

[10] Dan Cogan, Zu-En Su, Oded Kenneth, and David Gershoni. Deterministic generation of indistinguishable photons in a cluster state. Nature Photonics, 17 (4): 324–329, April 2023. ISSN 1749-4893. 10.1038/​s41566-022-01152-2. Number: 4 Publisher: Nature Publishing Group.
https:/​/​doi.org/​10.1038/​s41566-022-01152-2

[11] John von Neumann and M. E. Rose. Mathematical Foundations of Quantum Mechanics (Investigations in Physics No. 2). Physics Today, 8 (10): 21–21, 10 1955. ISSN 0031-9228. 10.1063/​1.3061789.
https:/​/​doi.org/​10.1063/​1.3061789

[12] C.A. Fuchs and J. van de Graaf. Cryptographic distinguishability measures for quantum-mechanical states. IEEE Transactions on Information Theory, 45 (4): 1216–1227, May 1999. ISSN 00189448. 10.1109/​18.761271.
https:/​/​doi.org/​10.1109/​18.761271

[13] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum-enhanced measurements: Beating the standard quantum limit. Science, 306 (5700): 1330–1336, 2004. 10.1126/​science.1104149.
https:/​/​doi.org/​10.1126/​science.1104149

[14] Jian Qin, Yu-Hao Deng, Han-Sen Zhong, Li-Chao Peng, Hao Su, Yi-Han Luo, Jia-Min Xu, Dian Wu, Si-Qiu Gong, Hua-Liang Liu, Hui Wang, Ming-Cheng Chen, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. Unconditional and robust quantum metrological advantage beyond n00n states. Phys. Rev. Lett., 130: 070801, Feb 2023. 10.1103/​PhysRevLett.130.070801.
https:/​/​doi.org/​10.1103/​PhysRevLett.130.070801

[15] Alexia Auffèves. Quantum technologies need a quantum energy initiative. PRX Quantum, 3: 020101, Jun 2022. 10.1103/​PRXQuantum.3.020101.
https:/​/​doi.org/​10.1103/​PRXQuantum.3.020101

[16] Francesco Ciccarello, Salvatore Lorenzo, Vittorio Giovannetti, and G. Massimo Palma. Quantum collision models: Open system dynamics from repeated interactions. Physics Reports, 954: 1–70, 2022. ISSN 0370-1573. 10.1016/​j.physrep.2022.01.001.
https:/​/​doi.org/​10.1016/​j.physrep.2022.01.001

[17] Francesco Ciccarello. Collision models in quantum optics. Quantum Measurements and Quantum Metrology, 4 (1), December 2017. ISSN 2299-114X. 10.1515/​qmetro-2017-0007.
https:/​/​doi.org/​10.1515/​qmetro-2017-0007

[18] Maria Maffei, Patrice A. Camati, and Alexia Auffèves. Closed-System Solution of the 1D Atom from Collision Model. Entropy, 24 (2): 151, January 2022. ISSN 1099-4300. 10.3390/​e24020151.
https:/​/​doi.org/​10.3390/​e24020151

[19] Netanel H. Lindner and Terry Rudolph. Proposal for Pulsed On-Demand Sources of Photonic Cluster State Strings. Physical Review Letters, 103 (11): 113602, September 2009. ISSN 0031-9007, 1079-7114. 10.1103/​PhysRevLett.103.113602.
https:/​/​doi.org/​10.1103/​PhysRevLett.103.113602

[20] Peter Lodahl, Sahand Mahmoodian, Søren Stobbe, Arno Rauschenbeutel, Philipp Schneeweiss, Jürgen Volz, Hannes Pichler, and Peter Zoller. Chiral quantum optics. Nature, 541 (7638): 473–480, January 2017. ISSN 1476-4687. 10.1038/​nature21037. Number: 7638 Publisher: Nature Publishing Group.
https:/​/​doi.org/​10.1038/​nature21037

[21] C. W. Gardiner and M. J. Collett. Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A, 31: 3761–3774, Jun 1985. 10.1103/​PhysRevA.31.3761.
https:/​/​doi.org/​10.1103/​PhysRevA.31.3761

[22] Kunihiro Kojima, Holger F. Hofmann, Shigeki Takeuchi, and Keiji Sasaki. Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate. Phys. Rev. A, 70: 013810, Jul 2004. 10.1103/​PhysRevA.70.013810.
https:/​/​doi.org/​10.1103/​PhysRevA.70.013810

[23] Jonathan A. Gross, Carlton M. Caves, Gerard J. Milburn, and Joshua Combes. Qubit models of weak continuous measurements: markovian conditional and open-system dynamics. Quantum Science and Technology, 3 (2): 024005, February 2018. ISSN 2058-9565. 10.1088/​2058-9565/​aaa39f. Publisher: IOP Publishing.
https:/​/​doi.org/​10.1088/​2058-9565/​aaa39f

[24] Shanhui Fan, Şükrü Ekin Kocabaş, and Jung-Tsung Shen. Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Physical Review A, 82 (6): 063821, December 2010. 10.1103/​PhysRevA.82.063821. Publisher: American Physical Society.
https:/​/​doi.org/​10.1103/​PhysRevA.82.063821

[25] Kevin A. Fischer, Rahul Trivedi, Vinay Ramasesh, Irfan Siddiqi, and Jelena Vučković. Scattering into one-dimensional waveguides from a coherently-driven quantum-optical system. Quantum, 2: 69, May 2018. ISSN 2521-327X. 10.22331/​q-2018-05-28-69.
https:/​/​doi.org/​10.22331/​q-2018-05-28-69

[26] Alexander Holm Kiilerich and Klaus Mølmer. Input-output theory with quantum pulses. Phys.Rev.Lett., 123: 123604, Sep 2019. 10.1103/​ PhysRevLett.123.123604.
https:/​/​doi.org/​10.1103/​%20PhysRevLett.123.123604

[27] Maria Maffei, Patrice A. Camati, and Alexia Auffèves. Probing nonclassical light fields with energetic witnesses in waveguide quantum electrodynamics. Physical Review Research, 3 (3): L032073, September 2021. ISSN 2643-1564. 10.1103/​PhysRevResearch.3.L032073.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.L032073

[28] Rodney Loudon and Marlan O. Scully. The Quantum Theory of Light. Physics Today, 27 (8): 48–48, 08 1974. ISSN 0031-9228. 10.1063/​1.3128806.
https:/​/​doi.org/​10.1063/​1.3128806

[29] Holger F Hofmann, Kunihiro Kojima, Shigeki Takeuchi, and Keiji Sasaki. Optimized phase switching using a single-atom nonlinearity. Journal of Optics B: Quantum and Semiclassical Optics, 5 (3): 218, apr 2003. 10.1088/​1464-4266/​5/​3/​304.
https:/​/​doi.org/​10.1088/​1464-4266/​5/​3/​304

[30] D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel. A fiber Fabry–Perot cavity with high finesse. New Journal of Physics, 12 (6): 065038, June 2010. ISSN 1367-2630. 10.1088/​1367-2630/​12/​6/​065038.
https:/​/​doi.org/​10.1088/​1367-2630/​12/​6/​065038

[31] P. Hilaire, C. Antón, C. Kessler, A. Lemaître, I. Sagnes, N. Somaschi, P. Senellart, and L. Lanco. Accurate measurement of a 96% input coupling into a cavity using polarization tomography. Applied Physics Letters, 112 (20): 201101, May 2018. ISSN 0003-6951. 10.1063/​1.5026799. Publisher: American Institute of Physics.
https:/​/​doi.org/​10.1063/​1.5026799

[32] Howard J. Carmichael. Statistical Methods in Quantum Optics 2. Theoretical and Mathematical Physics, Statistical Methods in Quantum Optics. Springer-Verlag, 2008. 10.1007/​978-3-540-71320-3.
https:/​/​doi.org/​10.1007/​978-3-540-71320-3

[33] Hannes Pichler, Soonwon Choi, Peter Zoller, and Mikhail D. Lukin. Universal photonic quantum computation via time-delayed feedback. Proceedings of the National Academy of Sciences, 114 (43): 11362–11367, October 2017. 10.1073/​pnas.1711003114. Publisher: Proceedings of the National Academy of Sciences.
https:/​/​doi.org/​10.1073/​pnas.1711003114

[34] Philippe Grangier, Juan Ariel Levenson, and Jean-Philippe Poizat. Quantum non-demolition measurements in optics. Nature, 396 (6711): 537–542, Dec 1998. ISSN 1476-4687. 10.1038/​25059.
https:/​/​doi.org/​10.1038/​25059

[35] Wojciech Hubert Zurek. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75 (3): 715–775, May 2003. ISSN 0034-6861, 1539-0756. 10.1103/​RevModPhys.75.715.
https:/​/​doi.org/​10.1103/​RevModPhys.75.715

[36] Marlan O. Scully and M. Suhail Zubairy. Quantum Optics. Cambridge University Press, Cambridge, 1997. ISBN 978-0-521-43595-6. 10.1017/​CBO9780511813993.
https:/​/​doi.org/​10.1017/​CBO9780511813993

[37] M. J. Kewming, S. Shrapnel, and G. J. Milburn. Designing a physical quantum agent. Phys. Rev. A, 103: 032411, Mar 2021. 10.1103/​PhysRevA.103.032411.
https:/​/​doi.org/​10.1103/​PhysRevA.103.032411

[38] Andrew N. Jordan and Irfan Siddiqi. Quantum measurements: theory and practice. Cambridge University Press. In press.

[39] Dmitri V. Averin and Eugene V. Sukhorukov. Counting statistics and detector properties of quantum point contacts. Phys. Rev. Lett., 95: 126803, Sep 2005. 10.1103/​PhysRevLett.95.126803.
https:/​/​doi.org/​10.1103/​PhysRevLett.95.126803

[40] Andrew N. Jordan, Jeff Tollaksen, James E. Troupe, Justin Dressel, and Yakir Aharonov. Heisenberg scaling with weak measurement: a quantum state discrimination point of view. Quantum Studies: Mathematics and Foundations, 2 (1): 5–15, April 2015. ISSN 2196-5617. 10.1007/​s40509-015-0036-8.
https:/​/​doi.org/​10.1007/​s40509-015-0036-8

[41] W. Wang, Y. Wu, Y. Ma, W. Cai, L. Hu, X. Mu, Y. Xu, Zi-Jie Chen, H. Wang, Y. P. Song, H. Yuan, C.-L. Zou, L.-M. Duan, and L. Sun. Heisenberg-limited single-mode quantum metrology in a superconducting circuit. Nature Communications, 10 (1): 4382, Sep 2019. ISSN 2041-1723. 10.1038/​s41467-019-12290-7.
https:/​/​doi.org/​10.1038/​s41467-019-12290-7

[42] Philip Thomas, Leonardo Ruscio, Olivier Morin, and Gerhard Rempe. Efficient generation of entangled multi-photon graph states from a single atom. Nature, 608 (7924): 677–681, August 2022. ISSN 0028-0836, 1476-4687. 10.1038/​s41586-022-04987-5.
https:/​/​doi.org/​10.1038/​s41586-022-04987-5

[43] Chao-Wei Yang, Yong Yu, Jun Li, Bo Jing, Xiao-Hui Bao, and Jian-Wei Pan. Sequential generation of multiphoton entanglement with a Rydberg superatom. Nature Photonics, 16 (9): 658–661, September 2022. ISSN 1749-4885, 1749-4893. 10.1038/​s41566-022-01054-3.
https:/​/​doi.org/​10.1038/​s41566-022-01054-3

[44] J. C. Loredo, C. Antón, B. Reznychenko, P. Hilaire, A. Harouri, C. Millet, H. Ollivier, N. Somaschi, L. De Santis, A. Lemaître, I. Sagnes, L. Lanco, A. Auffèves, O. Krebs, and P. Senellart. Generation of non-classical light in a photon-number superposition. Nature Photonics, 13 (11): 803–808, November 2019. ISSN 1749-4893. 10.1038/​s41566-019-0506-3. Number: 11 Publisher: Nature Publishing Group.
https:/​/​doi.org/​10.1038/​s41566-019-0506-3

[45] Sarah Thomas and Pascale Senellart. The race for the ideal single-photon source is on. Nature Nanotechnology, 16 (4): 367–368, April 2021. ISSN 1748-3395. 10.1038/​s41565-021-00851-1. Number: 4 Publisher: Nature Publishing Group.
https:/​/​doi.org/​10.1038/​s41565-021-00851-1

[46] Natasha Tomm, Alisa Javadi, Nadia Olympia Antoniadis, Daniel Najer, Matthias Christian Löbl, Alexander Rolf Korsch, Rüdiger Schott, Sascha René Valentin, Andreas Dirk Wieck, Arne Ludwig, and Richard John Warburton. A bright and fast source of coherent single photons. Nature Nanotechnology, 16 (4): 399–403, April 2021. ISSN 1748-3387, 1748-3395. 10.1038/​s41565-020-00831-x.
https:/​/​doi.org/​10.1038/​s41565-020-00831-x

[47] Weijun Zhang, Qi Jia, Lixing You, Xin Ou, Hao Huang, Lu Zhang, Hao Li, Zhen Wang, and Xiaoming Xie. Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering. Phys. Rev. Appl., 12: 044040, Oct 2019. 10.1103/​PhysRevApplied.12.044040.
https:/​/​doi.org/​10.1103/​PhysRevApplied.12.044040

[48] Joshua Combes, Joseph Kerckhoff, and Mohan Sarovar. The SLH framework for modeling quantum input-output networks. Advances in Physics: X, 2 (3): 784–888, May 2017. ISSN 2374-6149. 10.1080/​23746149.2017.1343097.
https:/​/​doi.org/​10.1080/​23746149.2017.1343097

[49] Alexander Holm Kiilerich and Klaus Mølmer. Input-Output Theory with Quantum Pulses. Physical Review Letters, 123 (12): 123604, September 2019. ISSN 0031-9007, 1079-7114. 10.1103/​PhysRevLett.123.123604.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.123604

[50] C. W. Gardiner. Driving a quantum system with the output field from another driven quantum system. Physical Review Letters, 70 (15): 2269–2272, April 1993. ISSN 0031-9007. 10.1103/​PhysRevLett.70.2269.
https:/​/​doi.org/​10.1103/​PhysRevLett.70.2269

[51] H. J. Carmichael. Quantum trajectory theory for cascaded open systems. Physical Review Letters, 70 (15): 2273–2276, April 1993. ISSN 0031-9007. 10.1103/​PhysRevLett.70.2273.
https:/​/​doi.org/​10.1103/​PhysRevLett.70.2273

[52] Felix Motzoi, K. Birgitta Whaley, and Mohan Sarovar. Continuous joint measurement and entanglement of qubits in remote cavities. Physical Review A, 92 (3): 032308, September 2015. 10.1103/​PhysRevA.92.032308. Publisher: American Physical Society.
https:/​/​doi.org/​10.1103/​PhysRevA.92.032308

[53] Stephen C. Wein, Jia-Wei Ji, Yu-Feng Wu, Faezeh Kimiaee Asadi, Roohollah Ghobadi, and Christoph Simon. Analyzing photon-count heralded entanglement generation between solid-state spin qubits by decomposing the master-equation dynamics. Physical Review A, 102 (3): 033701, September 2020. 10.1103/​PhysRevA.102.033701. Publisher: American Physical Society.
https:/​/​doi.org/​10.1103/​PhysRevA.102.033701

Cited by

[1] Stephen C. Wein, "Simulating photon counting from dynamic quantum emitters by exploiting zero-photon measurements", Physical Review A 109 2, 023713 (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-15 10:31:56) and SAO/NASA ADS (last updated successfully 2024-04-15 10:31:57). The list may be incomplete as not all publishers provide suitable and complete citation data.