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In standard quantum mechanics, reference
frames are treated as abstract entities. We
can think of them as idealized, infinite-mass
subsystems which decouple from the rest of
the system. In nature, however, all refer-
ence frames are realized through finite-mass
systems that are subject to the laws of quan-
tum mechanics and must be included in the
dynamical evolution. A fundamental physical
theory should take this fact seriously. In this
paper, we further develop a symmetry-inspired
approach to describe physics from the perspec-
tive of quantum reference frames. We find a
unifying framework allowing us to systemat-
ically derive a broad class of perspective de-
pendent descriptions and the transformations
between them. Working with a translational-
invariant toy model of three free particles,
we discover that the introduction of relative
coordinates leads to a Hamiltonian structure
with two non-commuting constraints. This
structure can be said to contain all observer-
perspectives at once, while the redundancies
prevent an immediate operational interpreta-
tion. We show that the operationally mean-
ingful perspective dependent descriptions are
given by Darboux coordinates on the con-
straint surface and that reference frame trans-
formations correspond to reparametrizations
of the constraint surface. We conclude by con-
structing a quantum perspective neutral struc-
ture, via which we can derive and change per-
spective dependent descriptions without refer-
ring to the classical theory. In addition to the
physical findings, this work illuminates the in-
terrelation of first and second class constrained
systems and their respective quantization pro-
cedures.
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1 Introduction
1.1 On quantum reference frames
In this work, we follow the paradigm that the proper-
ties of physical systems S have no absolute meaning
but are only defined relatively to some other content
of the universe. In theoretical classical mechanics and
special relativity the role of this ”other content of the
universe” is usually played by abstract frames of ref-
erence. As we treat these frames as external entities,
they must be non-dynamical and sufficiently decou-
pled from S. Upholding the paradigm, let us think of
reference frames as abstractions of physical systems,
for example ideal rigid bodies with imprinted rulers
defining orientations and distances. For such refer-
ence frames to not be affected by S, their mass must
be much larger than that of S, at best infinite.
Of course, in reality, all reference frames are re-

alised by finite-mass systems, for example some mea-
surement devices in a laboratory. A fundamental ap-
proach should take the fact seriously that those real
reference frames are subject to the laws of physics.
This means that we cannot simply conjure up new
frames, like we do in Galilean or Lorentz transforma-
tions. Instead, all reference frames must already be
explicitly included in the dynamical evolution. Fol-
lowing this line of thought, reference frame transfor-
mations can be naively understood as ”jumping” be-
tween distinct parts of our system.

The conviction that meaningful physical statements
can only be made about the relation between things
and not about the relation between things and ab-
stract space is at the core of Mach’s principle. Ac-
cording to one of the many circulating versions of this
conjecture, Mach suggests that ”Local inertial frames
are affected by the cosmic motion and distribution of
matter” [1]. Historically, some effort was made to con-
struct purely relational mechanics in line with Mach’s
principle. Two exemplary Machian frameworks can
be found in [2] and [3].

As a second paradigm, we assume the universal
validity of quantum mechanics.1 Now, if reference
frames are realised through physical systems they

1Essentially, we adopt an Everettian view on quantum me-
chanics (see [4]). The question of how to interpret Everett’s
proposal, especially concerning the origin of probabilities, is
subject to ongoing debate. The interested reader may find an
overview in [5].

must also be subject to the laws of quantum theory
(see [6]). One can for instance imagine transform-
ing to another laboratory being in superposition to
or entangled with the present one. In accepting both
paradigms, we need to face the question of how to
describe physics from the perspective of quantum ref-
erence frames (QRFs) and how to relate between such
descriptions.

QRFs have been extensively discussed in litera-
ture, with the greatest share of papers examining top-
ics in quantum information and in finite dimensional
Hilbert spaces [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
The main focus lies here on operational aspects of
QRFs, such as how to communicate quantum infor-
mation without a shared frame of reference. In [18,
19, 20] the relation of QRFs to superselection rules
is discussed. Finally, the role of QRFs in infinite-
dimensional Hilbert spaces and in the context of quan-
tum foundations is investigated [21, 22, 23, 24, 25].

1.2 On perspective neutral structures
Our departing point is the paper ”Quantum mechan-
ics and the covariance of physical laws in quantum
reference frames” [24]. Giacomini, Castro-Ruiz and
Brukner derived the transformations between refer-
ence frames attached to quantum particles without
referring to an absolute background. It is shown that
there is no unique way of defining such a transforma-
tion but that its form depends on a choice of preferred
coordinates. The findings shine light on what a the-
ory of ”quantum general covariance” could look like,
a notion relevant in the context of quantum gravity.

The paper ”A change of perspective: switching
quantum reference frames via a perspective-neutral
framework” [25] aims to rederive the outcomes of [24]
from first principles, embedding them in a structure
better suited for generalization. Inspired from gen-
eral relativity and quantum gravity the mathematical
framework of constrained Hamiltonian systems is ap-
plied. The starting point is a Lagrangian with trans-
lational invariance. The Legendre-transformation of
this Lagrangian fails to be surjective, resulting in a
Hamilton theory which features a constraint of the to-
tal momentum and contains redundant variables. The
resulting structure is thus interpreted as an observer-
independent meta-theory which contains, so to say, all
perspectives at once but is void of direct operational
meaning.

Operationally meaningful observer-dependent de-
scriptions can then be obtained by fixing the re-
dundancies, which classically amounts to a choice of
gauge. It is shown that canonical transformations be-
tween two observer-dependent descriptions can be un-
derstood as gauge-transformations. To obtain the as-
sociated quantum picture the authors follow two dis-
tinct paths. In the reduced quantization, the authors
fix the redundancies classically before quantizing the
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system. This yields the quantum physics as seen from
a specific observer. In the Dirac quantization it is
the other way around: One quantizes first, then fixes
the redundancies by a projection on the constraint-
eigenstates. This leads to a perspective-neutral quan-
tum theory. Vanrietvelde et al. show that one can
re-obtain the lot of observer-dependent descriptions
by unitarily rotating the system prior to projecting
such that the constraint acts only on a selected de-
gree of freedom.

In the opinion of the present author the approach
introduced in [25] has one major downside: the un-
symmetrical treatment of positions and momenta.
While the theory features a constraint for the total
momentum, there is none for the center-of-mass. A
consequence of this privileged role of the momenta
is that only a fraction of all perspective dependent
descriptions can be obtained. Likewise, only the
reference-frame transformations switching between
those frames, constituting only a small subset of all
possible canonical transformations, can be derived.
How to embed the remaining ones is left unclear.

1.3 Summary of results
In this article, we aim to address the identified short-
comings of [25]. We will discover that the theory cre-
ated by Vanrietvelde et al. can be understood as part
of a richer, more symmetrical framework where the
positions and momenta are treated on equal footing.
The resulting theory allows to uncover a broader set
of perspective dependent frames, some of which were
concealed in the original approach. Furthermore, we
will systematically obtain the transformations con-
necting the perspective dependent frames, both in the
classical and in the quantum picture. We will thus be
able to derive additional transformations discussed in
[24] from first principles. Besides those merits, in our
extended framework, all appearing (relative) variables
will be equipped with a clear physical meaning relat-
ing them to the description of an idealized outside
observer. This will render the theory more accessible
and further lead to a reinterpretation of some of the
variables appearing in the original theory. It should
be emphasized that the physics underlying the frame-
work of the present article are equal to those of the
original theory by Vanrietvelde et al., as both theories
start from the same Lagrangian. We therefore expect
to partly re-derive the results of [25].

The approach proposed in this article starts with a
transformation to relative coordinates. This leaves us
only with gauge-independent coordinates and elimi-
nates all references to a Newtonian background al-
ready at the Lagrangian level. The associated Hamil-
tonian theory is more symmetrical and features two
constraints for both relative positions and momenta.
Unfortunately, the constraints do not commute, thus
preventing direct quantization. We tackle this diffi-

culty following two paths.

At first, we employ the reduced quantization
scheme. Here we make use of the so-called Dirac-
bracket, which can be understood as the Poisson
bracket restricted to the constraint surface. Its core
advantage is that the constraints Dirac-commute,
paving the way for quantization. However, this comes
at a price: We will see that the Dirac bracket is not
of canonical form, i.e. that phase space coordinates
referring to different particles do not commute along
the constraint surface in general. In the style of Vanri-
etvelde et al. we interpret the set of Dirac-commuting,
redundant coordinates as the classical perspective-
neutral structure.

It can then be shown that the correct observer-
dependent descriptions are given by those intrinsic
coordinates of the constraint surface, whose Dirac
bracket satisfies the canonical commutation relations.
We will focus on two such descriptions: In the rela-
tive position frame two selected position coordinates
match those seen from an external infinite mass-
observer. In the relative momentum frame this holds
for two momentum coordinates. While the former is
included in [25], the latter is a new feature of the the-
ory. The relative frames can now easily be quantized
via the standard recipe. But since the quantization
takes place only after having resolved the redundan-
cies one cannot obtain a full quantum perspective neu-
tral structure via the reduced quantization scheme.

To fix this, we follow a second path: We further ex-
pand the phase space and modify the constraints to
make them commute. It will be shown that partially
gauge fixing this extended space leaves us with a class
of symplectomorphic auxiliary spaces. One of them is
identical to the perspective-neutral structure found
by Vanrietvelde et al., thus proving that the original
theory is fully embedded in our new framework. How-
ever, the physical interpretation of the appearing rel-
ative variables must change. There appears to be evi-
dence that only one of the many possible gauge fixes is
physically meaningful. Thus, the gauge freedom will
be replaced by the freedom to choose a set of darboux
coordiantes. Quantizing the extended structure then
yields the sought-after quantum perspective-neutral
structure.

To re-obtain the perspective-dependent quantum
descriptions we carry out a quantum symmetry reduc-
tion. It consists of two unitary transformations, each
followed by a projection on either constraint. We will
discover that with the first unitary we decide between
relative position and relative momentum description,
while the second unitary determines which particle
will serve as the reference frame. Finally, we will see
how the quantum perspective neutral structure can
be employed to change between quantum reference
frames. Figure 1 shows the connections between the
various structures in a simplified scheme.
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Figure 1: A schematic summary of the reduced and the Dirac quantization scheme. Here, PNS stands for ”perspective-neutral
structure” and PDD for ”perspective-dependent description”.

2 Classical Theory
2.1 Mathematical preliminaries: constrained
Hamiltonian systems
In this section we will compactly review the math-
ematical formalism of constrained Hamiltonian sys-
tems, following largely [26]. The well-informed reader
may skip this part.

2.1.1 Constraints through the Legendre transformation

Let us write the Euler-Lagrange-equations for a given
Lagrangian L in their expanded form

q̈n′Jn′n = ∂L

∂qn
− q̇n′

∂2L

∂qn′∂q̇n
, (1)

where

Jn′n = ∂2L

∂q̇n′∂q̇n
. (2)

We observe that this linear equation determines the
accelerations q̈n uniquely only when the Jacobian is
invertible, that is when the determinant

det

(
∂2L

∂q̇n′∂q̇n

)
(3)

does not vanish. This translates directly into the
Hamilton formalism since Jn′n can be written as

Jn′n = ∂pn′

∂qn
. (4)

We see that the non-vanishing of the determinant 3 is
the condition for the invertibility of the velocities as
function of the coordinates and momenta.
If the rank of Jn′n is equal to N − M then

the Legendre-transformation maps onto a N − M -
dimensional submanifold of the phase-space. Only
configurations contained in this subspace are physi-
cally meaningful. The constraint surface can be de-
scribed by M constraints

φm(q, p) ≃ 0, m = 1...M. (5)

We have introduced the weak equality symbol ≃ to
emphasize that the quantity φm is numerically re-
stricted to be zero, but does not vanish throughout
phase space [26]. This means that the derivatives of
φm do not vanish on the constraint surface in gen-
eral. Therefore, the φ’s have in general nonzero Pois-
son brackets with other phase-space functions or the
canonical coordinates and we must be cautious not
to solve the constraints before calculating the Pois-
son brackets. An equation that holds everywhere in
phase-space is called strong and will be denoted by
the regular equality sign ”=”.
In the presence of constraints the variations δqn and

δpn are no longer independent as we only allow for
variations that are tangent to the constraint surface.
We can equally state that all linear combinations of
constraint variations must be weakly zero, i.e.

ymδφm = ym
∂φm

∂pn
δpn + ym

∂φm

∂qn
δqn ≃ 0. (6)

Comparing this equation with(
∂H

∂qn
+ ∂L

∂qn

)
δqn +

(
∂H

∂pn
− q̇n

)
δpn = 0. (7)

and making use of the Euler-Lagrange equations leads
to the Hamilton equation of motion for a constrained
system

q̇n = ∂H

∂pn
+ ym

∂φm

∂pn
= ∂HT

∂pn

ṗn = −∂H

∂qn
− ym

∂φm

∂qn
= ∂HT

∂qn
.

(8)

Here we have introduced the total Hamiltonian

HT = H(q, p) + ym(q, p, t)φm(q, p) (9)

as the original Hamiltonian plus linear combinations
of the constraints.
HT is only well defined on the physical constraint

surface and can be extended arbitrarily in the ex-
tended space. Choosing a specific extension corre-
sponds to choosing the free auxiliary parameters ym.
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Figure 2: Illustration of the relation between velocities and momenta in a constrained system. The figure shows the Legendre
transformation of a 2-dimensional system with the Lagrangian L = 1/2(q̇1 − q̇2)2. The momenta are p1 = q̇1 − q̇2 and
p2 = q̇2 − q̇1. Since p1 = −p2 the tuple (p1, p2) describes only a 1-dimensional subspace of the (q̇1, q̇2)-space and all the q̇’s
on the line q̇2 − q̇1 = c are mapped on the same point p2 = −p1 = c. We thus need additional parameters ym(q, q̇) to render
the transformation invertible.

As all physically sensible configurations must lie on
the constraint surface, this extension does not change
their respective energy values.
With the total Hamiltonian we can write the total

time derivative of any function as

Ḟ (q, p) = [F,HT ] = [F,H] + [F, ymφm]
= [F,H] + [F, ym]φi + ym[F,φm]
≃ [F,H] + ym[F,φm].

(10)

2.1.2 Computing the consistency conditions

Consistency requires that the constraints be preserved
in time, i.e that their total time derivative vanishes on
the constraint surface. So plugging them into equa-
tion 10 gives rise to the consistency conditions

φ̇m = [φm, H] + ym′ [φm, φm′ ] ≃ 0, (11)

with

m,m′ = 1, . . . ,M. (12)

These equations reduce to one of the following three
types [27]:

Cycle: If φm commutes with all φm′ but not with H,
we obtain a relation of the form φk(p, q) ≃ 0.
If linearly independent of the former constraints,
this relation consitutes a further constraint on
the system. It is evident that this new constraint
must be conserved as well, leading to a new con-
sistency condition and so forth. The cycle con-
tinues until we reach one of the stops below.

Stop 1: If φm does not commute with at least one
constraint, we do not obtain a new constraint
but a relation for the y’s.

Stop 2: The equation reduces to either 0 = 0 or 1 = 0.
The first case is automatically satisfied and leads
to no further constraint, while the second one
points to an inconsistency in the equations of mo-
tions. Such theories start from self-contradictory
Lagrangians and are of no interest.

Having exhausted all equations we are left with a
complete set of J constraints. We can add them to the
total Hamiltonian and let the consistency conditions
run now over all constraints

[φj , H] + yj′ [φj , φj′ ] ≃ 0, j, j′ = 1, . . . , J. (13)

This set of linear equation is over-complete, since a
part of it has already been solved to derive the sec-
ondary constraints. We see that the solutions depend
crucially on the matrix of commutators

∆jj′ = [φj , φj′ ]. (14)

If it is invertible then we can find unique solutions
for all yj and thus the Hamiltonian and the time evo-
lution of the system is unique too. If, however, ∆jj′

has a vanishing determinant, then there are some zero
eigenvectors and not all ym are uniquely determined.

Let us quickly introduce some new terminology. In
[28], Dirac referred to any function on phase-space
as first class, whose Poisson bracket with every con-
straint is weakly equal zero

[F,φj ] ≃ 0 j = 1...J. (15)

The Hamiltonian, for example, is first class by design.
A function which has at least one non-vanishing Pois-
son bracket with any constraint is called second class.
We now perform linear transformations φj →

ajj′φj′ on the constraints. Our aim is to split the
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such transformed constraints into a subset γα of first
class constraints and a subset Φα of second class con-
straints. As combinations of weakly vanishing quanti-
ties also vanish weakly, the linear transformation does
not change the theory. After having successfully car-
ried out the transformation we can write the matrix
of commutators in the form

∆ =
(

[γa, γb] [Φα, γb]
[γa,Φβ ] [Φα,Φβ ]

)
=
(

0 0
0 Cαβ

)
(16)

The first class constraints γa do not impose any
condition on their respective ya, which means that
ya are arbitrary functions of the phase-space coordi-
nates and time. The second class constraints Φα, on
the contrary, have well defined yα, which we can com-
pute by means of the equations 13. Finally we can
write our new total Hamiltonian as the sum of the
original Hamiltonian plus linear combinations of all
constraints

HT = H + yαΦα + ya(p, q, t)γa

= H ′ + ya(p, q, t)γa,
(17)

where
H ′ = H + yαΦα. (18)

2.1.3 Gauge transformations by first-class constraints

Note that the above total Hamiltonian HT decom-
poses into two parts. While H ′, containing the orig-
inal Hamiltonian plus the second-class constraints,
generates a deterministic evolution, the contribution
from ya(p, q, t)γa is completely arbitrary.

Let us take e.g. f(q, p) = q and compute its value
after an infinitesimal time span for distinct values of
the ya. We will obtain two different outcomes, their
difference being

∆q(t0 + δt) = δt(ya − y′
a)[q, γa]. (19)

As the time-dependence of the functions ya is not ac-
cessible, we have no means of saying anything about
the evolution of q. This is of course incompatible
with the deterministic character of classical mechan-
ics. If we want unique solutions, it must be that op-
erationally we cannot distinguish between two config-
urations (qi, pi) and (q′

i, p
′
i) connected by a so-called

gauge transformation

qi → q′
i = qi + ya[qi, γa]

pi → p′
i = pi + ya[pi, γa].

(20)

This means that even though a physical state is fully
determined by the variables (q, p), the converse is not
true: A state does not uniquely determine a point in
phase-space of q’s and p’s but a whole set of points.
From equation 20 we learn that the gauge transfor-
mations connecting these points are generated by the
first class constraints, which is in accordance with
Noether’s theorem [29].

Furthermore, not all functions on phase-space cor-
respond to physically measurable quantities. It is only
the gauge invariant functions, that are those whose
Poisson bracket with every first-class constraint van-
ishes weakly, which can be regarded as physically
meaningful observables.
Second class constraints do not act as gauge gen-

erators, as they would map states out of the con-
straint surface. This can be seen by taking any second
class constraint Φα and checking the transformation
induced by any other second class constraint Φβ

Φα → Φ′
α = Φα + ϵ[Φα,Φβ ] ̸≃ 0. (21)

2.2 Transformation to relative coordinates
In this section, we will work out the central structure
of our paper, the second-class constrained Hamilto-
nian system. The departing point is a toy-model La-
grangian of three free particles in one dimension, read-
ing

L(x, ẋ) = 1
2

3∑
i=1

miẋ
2
i − M

2 ẋ2
cm, (22)

where

xcm = (
3∑

i=1
mixi)/M

is the center-of-mass-position and

M =
3∑

i=1
mi

the total mass of the system. By subtracting the
center-of-mass kinetic energy we have rendered the
Lagrangian invariant under local translations

(qi, q̇i) → (qi + f(t), q̇i + ḟ(t))

where f(t) is an arbitrary function of time. Because of
this gauge symmetry the physical description depends
only on relative degrees of freedom but not on the
choice of external reference frame [25].

The starting idea of this paper is to make the
reference-frame independence explicit by going over
to the coordinates

x1 − x2 = q3

x3 − x1 = q2

x2 − x3 = q1

1
M

3∑
i=1

mixi = qcm.

(23)

The three relative coordinates qi are invariant under
local spatial translations, while the center-of-mass co-
ordinate remains gauge dependent and still refers to
the Newtonian background.
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Figure 3: The figure shows the transformation 23 schematically. We notice that after the transformation qcm remains the only
coordinate with respect to an external observer and that the qi are redundant.

In geometrical terms the transformation 23 corre-
sponds to a mapping from R3 into R4, reaching only
points on the 3-dimensional hypersurface

q1 + q2 + q3 ≡ Q = 0. (24)

It follows that the qi are redundantly defined; we can
always express one of the relative distances by means
of the other two.2

The Lagrangian 22 expressed in the new coordi-
nates reads

L′(q, q̇) = 1
2

3∑
i=1

µiq̇
2
i + q4(q1 + q2 + q3) (25)

where we have introduced the quantities

µi = mjmk

M
, i ̸= j ̸= k, (26)

which are called reduced masses and added the con-
straint Q together with a Lagrange multiplier q4. The
calculation is given in appendix A.

Given only the Lagrangian 25, the role of q4 as a
Lagrange multiplier is not apparent. It follows that
q4 = q4(t) can be treated as just another dynami-
cal variable and that it enters the formalism on equal
footing with the first three qi [31]. We observe that
the Lagrangian, as expected, does not depend on the
gauge-dependent center-of-position qcm. This degree
of freedom is of no physical relevance and will be dis-
carded.

2In classical mechanics constraints are often introduced to
approximate very strong and short-ranged forces (see for ex-
ample [30]). Not so in this case, where the constraint is truly a
logical necessity and any deviation from the constraint surface
is prohibited by the definition of the coordinates.

Let us now apply the methods established through-
out section 2.1 to obtain the Hamilton theory. We
start by computing the conjugate momenta

pi = ∂L

∂q̇i
= µiq̇i i = 1, 2, 3

p4 ≃ 0.
(27)

There is one constraint p4 ≃ 0, which is added with
yet another Lagrange multiplier yi to the standard
Hamiltonian H ′ yielding

H ≃ H ′(q, p) + yiΦi

≃
∑

i

piq̇i(q, p) − L(q, q̇i(q, p)) + yiΦi

≃ 1
2

3∑
i=1

(
p2

i

µi
− q4qi

)
+ yp4.

(28)

Starting from Hamiltonian 28 we need to work
through the consistency scheme discussed in section
2.1.2. The calculation, done in detail in appendix B,
yields the Hamiltonian

H = 1
2
∑

i

p2
i

µi
. (29)

together with 2 effective constraints

Φ1 =
∑

i

qi, Φ2 =
∑

i

pi

µi
. (30)

In the original phase-space Porig ∼ R6, coordinatized
by the qi and pj , they define a 4-dimensional con-
straint surface Φ1 ≃ Φ2 ≃ 0, on which all physi-
cally sensible configurations must lie. Clearly, they
are second-class as

[Φ1,Φ2] =
∑

i

1
µi
. (31)
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It can be shown that the structure 29 & 30 is sym-
plectomorphic to the perspective neutral structure
proposed in [25], i.e. to

H = 1
2
∑

i

p̃2
i

mi
, Φ1 =

∑
i

p̃i, (32)

if the latter is gauge fixed by

Φ̃2 =
∑

i

µixi.
3 (33)

In the following sections, we will see that this choice
of gauge is critical for the construction of our ver-
sion of the perspective neutral structure which even-
tually leads to the derivation of further perspective-
dependent descriptions. In fact, it is the critical dif-
ference between our work and [25], where the sys-
tem was gauge-fixed by qi = 0. There, the gauge fix
33 must seem arbitrary as there is no reason to as-
sume a preferred role for this specific observer. In our
scheme, however, it becomes clear, that it is exactly
33 which gives meaning to the variables as relative co-
ordinates. In other words: if one starts with relative
variables, 33 arises as necessary consequence of the
over-parametrization of the configuration space.

3 Reduced quantization of second
class constraints
3.1 Mathematical preliminaries: Dirac bracket
and Darboux coordinates
If there are no constraints present and the phase-space
is linear there is a standard quantization recipe (see
e.g. Dirac [32], p. 84ff). It tells us to assign to each
function an operator acting on some Hilbert space
H such that the commutator of quantum operators
equals iℏ times the operator of the Poisson bracket

[F̂, Ĝ] = iℏ[̂F,G]. (34)

In the presence of second-class constraints the
quantization procedure is more involved. Classically,
the constraints restrict the system to a submanifold
of the original phase space. We would like to mirror
this behaviour in the quantum theory by imposing the
restrictions

Φ̂α |ϕ⟩phys = 0 ∀ α (35)

on the state vectors |ϕ⟩phys which span the phys-
ical Hilbert space Hphys. From the consecutive

3The canonical transformation is induced by

xi =
µi√

κ
qi, p̃i =

√
κ

µi
pi,

where
κ =

m1m2m3

m1 + m2 + m3
.

application of constraints Φ̂αΦ̂β |ϕ⟩phys = 0 and

Φ̂βΦ̂α |ϕ⟩phys = 0 it follows readily that

[Φ̂α, Φ̂β ] |ϕ⟩phys = 0. (36)

The commutator of second class constraints however
is not a constraint itself so that equation 36 is only
satisfied when |ϕ⟩phys = 0. But then Hphys = {0}
and the theory is trivial [33].

The difficulties originate already in the classical
theory: While the constraints vanish on the constraint
surface, their first derivatives in general do not, leav-
ing the Poisson bracket ambiguous. This means, for a
function f on the phase space and a constraint Φ ≃ 0
we have f + Φ ≃ f , but in general

[f, g] ̸≃ [f + Φ, g]. (37)

A solution to both the problems in classical and
quantum theory was developed by P.A.M. Dirac in
1950 (see [27] and for a detailed derivation [28]). He
generalized the original Poisson bracket to the Dirac
bracket, given by

{F,G} = [F,G] − [F,Φα]Cαβ [Φβ , G] (38)

where Cαβ is the inverse of the second-class bracket-
matrix Cαβ appearing in 16. The core advantage is
that the Dirac bracket of an arbitrary function with
any second class constraint vanishes:

{Φα, F} = 0. (39)

From a geometrical viewpoint, the Dirac bracket
is related to the pull-back of the symplectic two-
form onto the constraints surface and picks up only
those variations tangent to it [26]. As a consequence,
there are in general always contributions from non-
Poisson-commuting observables. This entails that
Poisson-commuting observables are in general not
Dirac-commuting. We will see this concretely in the
next section.

By virtue of 39, the Dirac bracket, unlike the Pois-
son bracket, is unambiguous, i.e.

f ′ ≃ f → {f ′, ·} ≃ {f, ·},

such that we can set the constraints to zero before
computing the bracket. To quantize a second-class
system, we simply replace the Poisson bracket by the
Dirac Bracket in the correspondence rule

[F̂, Ĝ] = iℏ{̂F,G}. (40)

The constraint operators can now be given any c-
values, in particular Φα = 0, enforcing the restriction
35. When we have found a representation of 40 we
have found the quantum theory.

Caveat: This is a highly nontrivial problem which
has no general solution. It can be solved only
in special instances, for example when the Dirac
bracket amounts to c-numbers. Luckily, this is
exactly the case for our system at hand.
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There is yet an alternative to trying to solve 40 di-
rectly. With the Dirac bracket, the second-class con-
straints can be treated as strong identities express-
ing some canonical coordinates in terms of others.
This allows us to go over to intrinsic (local) coor-
dinates ui(q, p), πi(q, p), i = 1, . . . , N − M spanning
the constraint surface. Expressed in the new coordi-
nates the constraints Φα(qn(ui, πi), pn(ui, πi)) vanish
identically [34]. Of special interest are those intrin-
sic coordinates which Dirac-commute according to the
canonical commutation relations

{ui(q, p), πj(q, p)} = δij (41)
{ui(q, p), uj(q, p)} = {πi(q, p), πj(q, p)} = 0. (42)

They are referred to as Darboux coordinates [34].
When they are found, we have obtained a reduced the-
ory, with no constraints present and no redundancies
left. The Darboux coordinates are nicely canonical
so that from this point on we can follow the standard
quantization procedure to obtain the quantum theory.

Caveat: Darboux coordinates are only defined up to
a canonical transformation, but canonical quan-
tization and canonical transformations are gener-
ally non-commutative operations. They do com-
mute only for linear and point transformations
(in both q and p) [35].

Last but not least it is worth noticing that the Dirac
bracket with any first class constraint is weakly equal
to the Poisson bracket. Thus the equations of motions
remain invariant under the replacement

Ḟ = {F,H} ≃ [F,H]. (43)

3.2 The classical perspective-neutral structure
We will now apply the reduced quantization scheme
to our theory at hand. At first, let us compute the
Dirac-bracket. The bracket-matrix 14 reads

C =
(

0 µ
−µ 0

)
(44)

where we have introduced

µ =
∑

i

1
µi
. (45)

Since either C−1 or the Poisson bracket of coordinates
and constraints vanish, most of the terms in 38 drop
out and we obtain

{qi, qj} = 0
{pi, pj} = 0

{qi, pj} = δij − 1
µµi

.

(46)

In the style of Vanrietvelde et al. I now pro-
pose to interpret the Dirac bracket 46 along with

the constraints 30 and the Hamiltonian 29 as the
classical perspective-neutral structure, living in the 6-
dimensional phase space Porig. As all relative vari-
ables are treated on equal footing it contains all per-
spectives at once while the inherent redundancies pre-
vent an immediate operational interpretation.

Note that position and momentum observables of
different particles do not Dirac-commute. This fol-
lows from the fact, that the qi’s and pi’s form a re-
dundant over-parametrization of the phase space. As
we restrict to the constraint surface, a variation of one
of the qi’s (pi’s, respectively) necessarily entails some
variation of the other relative position or momentum
coordinates.

This has the seemingly counter-intuitive conse-
quence that the Dirac-bracket of two q’s and two p’s,
naively chosen as intrinsic coordinates, does not ful-
fill the canonical commutation relations, i.e., that this
choice of intrinsic coordinates is non-Darboux. In the
quantum picture, the impossibility to find simultane-
ous eigenvectors of the q̂’s and p̂’s even for distinct
particles follows. Therefore, from the perspective of
one particle the Hilbert space of the two other parti-
cles can not be partitioned as Hi,j = Hi ⊗Hj and the
standard quantization recipe is bound to fail.

Thinking in physical terms, the commutation re-
lations 46 mean that qi and pj cannot be measured
simultaneously and that there exist uncertainty re-
lations between those variables. But why should a
position measurement of one particle affect the mo-
mentum of another unrelated particle? The solution
to this alleged paradox lies again in the finite mass
m of the system serving as reference frame and has
already been presented in [21, 22, 23]. It follows from
the uncertainty principle that if one wants to measure
the position of a particle with an accuracy ∆x a finite
amount of momentum

∆p > ℏ
∆x (47)

has to be exchanged. The system serving as ref-
erence frame is therefore boosted by an uncertain
amount ∆p

m . In classical mechanics one can always
keep the amount of exchanged momentum arbitrary
small, such that ∆p << m. In the quantum regime,
however, this approximation is no longer valid as
masses are small and ∆p increases with measurement
accuracy. Here, one can always envisage a measure-
ment where ∆p ∼ m, resulting in a non negligible
kickback of the reference system [21].

Note that there is no configuration of the masses
which reproduces the standard bracket structure for
all three coordinate pairs. If, however, one of the
particles masses is much larger than the others, this
particle can serve as a classical reference frame. For
example, for m1 >> m2 ∼ m3 the mass term mi

M =
1

µµi
converges to zero and we re-obtain the canon-

ical commutation relations. Further, µ1 → 0 and
µ2 → m3, µ3 → m2 such that the perspective-neutral
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Figure 4: The figure shows a naive choice of internal coordinates (ui, πj) that do not Dirac-commute according to the canonical
commutation relations. The position vectors qi on the left hand side live in the configuration space. Displayed on the right
hand side are the momentum vectors pj , living in momentum space.

Hamiltonian 29 converges to the standard Hamilto-
nian for a two-particle system. This is an important
result. It shows that the standard way of describing
physics from an infinite-mass frame is fully embedded
in our newly developed framework.

3.3 Perspective-dependent frames
In the section above, we saw that not all sets of intrin-
sic coordinates are physically useful. Thus, if we want
observer-dependent descriptions which can be canon-
ically quantized for arbitrary mass configurations we
must search for Darboux coordinates. To keep it sim-
ple and not encounter any mathematical pitfalls we
restrict to those which are linear in the original posi-
tions and momenta and do not mix them. Their most
general form is given byq1

q2
q3

 =

m1AuA +m1BuB

m2AuA +m2BuB

m3AuA +m3BuB


p1
p2
p3

 =

n1AπA + n1BπB

n2AπA + n2BπB

n3AπA + n3BπB

 .

(48)

The 12 coefficients must satisfy 4 constraints∑
i

miA = 0
∑

i

niA

µi
= 0∑

i

miB = 0
∑

i

niB

µi
= 0

(49)

as well as 9 Darboux conditions

miAnjA +miBnjB = δij − 1
µµi

(50)

with

i, j = 1, 2, 3. (51)

The Darboux conditions enforce the canonical com-
mutation relations between the intrinsic coordinates.
Of these 13 constraints only 8 are linearly indepen-
dent, leaving us with 4 free coefficients.

Still, we are left with a plethora of possible descrip-
tions. How do we choose among them? I propose to
coordinatize the constraint surface by two of the qi

or pj and then to complete the remaining coordinates
according to 49 - 50. Following this line of thought, I
want to lay emphasis on two internal descriptions. For
m1 → ∞ both of them will converge to the ”classical”
description from an external infinite-mass frame.

3.3.1 The relative position frame

Let us choose m2A = −m3B = 1 and m2B = m3A = 0
and set the placeholders to A = 3, B = 2, such that
the position coordinates are named according to figure
4. By applying the constraints and working through
the Darboux conditions we arrive atq1

q2
q3

 =

u2 − u3
u3

−u2


p1

p2

p3

 = 1
µ

 ( π2
µ3

− π3
µ2

)
1

µ3
π2 + (µ− 1

µ2
)π3

−(µ− 1
µ3

)π2 − 1
µ2
π3

 .

(52)

In this description we have a direct expression for the
distances between particle 1 & 3 and 1 & 2, respec-
tively, while the distance between 2 & 3 can only be
indirectly computed through u2 − u3. It seems there-
fore reasonable to interpret 52 as the physics seen from
the perspective of particle 1. The internal position ob-
servables are in accordance with those seen from an
external infinite-mass frame, while the internal mo-
mentum observables are linear combinations thereof.
By such reasoning we name this set of variables the
relative position frame of particle 1.
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Plugging 52 into the perspective-neutral Hamilto-
nian 29 yields

Hq1 = 1
2µ

(
( µ
µ3

− 1
µ2

3
)π2

2 +( µ
µ2

− 1
µ2

2
)π2

3 +2π2π3

µ2µ3

)
(53)

which looks tidier when expressed in the original
masses

Hq1 = 1
2

(
m1 +m2

m1m2
π2

2 + m1 +m3

m1m3
π2

3 + 2π2π3

m1

)
.

(54)
The index q next to H indicates that we are we are
in the relative position representation and the 1 that
we are using particle 1 as reference frame. Observe
that apart from the potential energy, which we have
assumed to be zero, our outcome is identical to the
findings of [25]. The modification to other particles
follows readily.

3.3.2 The relative momentum frame

Let us now choose n2A = −n3B = 1 and n2B = n3A =
0 and set the placeholders again to A = 3, B = 2, such
that the momentum coordinates are named according
to the right side of figure 4. In this setup we coordi-
natize the constraint surface byq1

q2
q3

 = 1
µ

 1
µ1

(v3 − v2)
v2
µ2

+ (µ− 1
µ2

)v3
−(µ− 1

µ3
)v2 − v3

µ3


p1
p2
p3

 =

−µ1( ρ3
µ2

− ρ2
µ3

)
ρ3

−ρ2.


(55)

Observe that now only the momenta of particle 2 & 3
correspond to the external view, while the remaining
momentum and all positions are expressed through
linear combinations of the v’s and ρ’s. We will call
this set of internal observables the relative momentum
frame of particle 1. In this frame the Hamiltonian
reads

Hp1 = 1
2

(µ1 + µ2

µ2
2

ρ2
3 + µ1 + µ3

µ2
3

ρ2
2 − 2µ1

µ2µ3
ρ2ρ3

)
.

(56)

The relative momentum frame cannot be derived
directly via the framework of [25]. This shows that
while encompassing its precursor’s finding, the ap-
proach proposed in this article shines further light on
the theory of QRFs.

3.4 Changing quantum reference frames
Our next objective is to find the connection between
canonical QRF-transformations and the perspective
neutral structure. In contrast to the work of Vanri-
etvelde et al., in our framework, reference frame trans-
formations cannot amount to gauge transformations,

as there is no gauge-freedom in purely second-class
systems. In exchange, we have the freedom to choose
any Darboux-parametrization of the constraint sur-
face, each of which is corresponding to a perspective
dependent description. As all sets of Darboux co-
ordinates are connected via a canonical transforma-
tion, we can conclude: To canonically transform be-
tween two perspective dependent descriptions means
to Darboux-reparametrize the constraint surface.

Finding the (quantum) canonical transformation
connecting two descriptions is a three-step-process:

1. We write the original, relative phase space vari-
ables (q, p) in terms of the two sets of Darboux
coordinates (uj , πj) and (ūj , π̄j).

2. We use this embedding in the perspective neu-
tral structure to find the expression of one set of
coordinates in terms of the other, i.e.

ūi = aijuj

π̄i = bijπj .
(57)

3. To obtain the transformation in the quantum pic-
ture we compute the unitary representation of
the given canonical transformation, e.g. by the
methods derived in [36] or by means of appendix
C.

Let us make this procedure explicit in three examples,
where we set mi = 1 for simplicity.

3.4.1 Relative position to relative position

If we want to compute the transformation between
two relative position frame, for instance of particle 1
and 2, we writeq1

q2
q3

 =

u2 − u3
u3

−u2

 =

 −ū3
ū3 − ū1
ū1


p1
p2
p3

 = 1
3

 π2 − π3
π2 + 2π3

−2π2 − π3

 = 1
3

−π̄1 − 2π̄3
−π̄1 + π̄3
2π̄1 + π̄3

 .

(58)

From this we can read off the canonical transforma-
tion

u2 = −ū1, u3 = ū3 − ū1

π2 = −(π̄1 + π̄3) π3 = π̄3.
(59)

Giacomini et.al [24] found that the transformation
59 can be represented by the unitary operator

H2 ⊗H3 → H3 ⊗H1

Ŝq1→q2 = Q̂2,1e
iû2π̂3

(60)

where Q̂A,B is the position parity-swap operator, act-
ing on vectors in HA ⊗HB as

Q̂A,B |x⟩A ⊗ |Ψ⟩B = |Ψ⟩B ⊗ |−x⟩C . (61)
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3.4.2 Relative momentum to relative momentum

We write out the relative momentum representations
of particle 1 and 2:q1

q2
q3

 = 1
3

 u2 − u3
u2 + 2u3

−2u2 − u3

 = 1
3

−ū1 − 2ū3
−ū1 + ū3
2ū1 + ū3


p1
p2
p3

 =

π2 − π3
π3

−π2

 =

 π̄3
π̄3 − π̄1
π̄1

 .

(62)

Again, we read off the canonical transformation

u2 = −(ū1 + ū3) u3 = ū3

π2 = −π̄1, π3 = π̄3 − π̄1.
(63)

and the associated unitary

H2 ⊗H3 → H3 ⊗H1

Ŝp1→p2 = P̂2,1e
iπ̂2û3

(64)

where P̂A,B is now the momenta parity-swap opera-
tor, acting as

P̂A,B |p⟩A ⊗ |Ψ⟩B = |Ψ⟩B ⊗ |−p⟩C . (65)

3.4.3 Relative position to relative momentum

This time, we compute the transformation between
the relative position and relative momentum of parti-
cle 1. We writeq1

q2
q3

 =

u2 − u3
u3

−u2

 = 1
3

 ū2 − ū3
ū2 + 2ū3

−2ū2 − ū3


p1
p2
p3

 = 1
3

 π2 − π3
π2 + 2π3

−2π2 − π3

 =

π̄2 − π̄3
π̄3

−π̄2

 (66)

Again, we read off the canonical transformation

u2 = 1
3(2ū2 + ū3) u3 = 1

3(ū2 + 2ū3)

π2 = 2π̄2 − π̄3, π3 = −π̄2 + 2π̄3

(67)

The associated unitary representation is

H1 ⊗H2 → H1 ⊗H2

Ŝq1→p1 = e−i log 3
2 (u2−u3)(π2−π3),

(68)

see appendix C for the detailed derivation. Since we
do not change particle, no parity-swap operator ap-
pears.

4 Towards a first-class theory
4.1 Mathematical preliminaries: The abelian
conversion method
In the reduced quantization approach only the intrin-
sic variables spanning the reduced phase-spaces Ppersp

are quantized. Thus, to obtain the perspective depen-
dent quantum descriptions and the transformations
between them we had to resort to the the classical
perspective neutral structure. This is somewhat un-
fortunate. We would rather have a quantum perspec-
tive neutral structure, from which we could derive the
perspective-dependent descriptions without ever re-
ferring to the classical theory.

Remember, that the non-commutativity of the
second-class constraints was the main obstruction to
a direct quantization of Ppersp. If we could some-
how turn them first-class, most of our problems would
be solved. This is the basic idea behind the abelian
conversion scheme, first introduced in [37]. Instead
of passing on to the Dirac bracket and reducing the
Phase space, we take the opposite direction and ex-
tend it even further by introducing new sets of canon-
ical coordinates. On this extended phase-space we
then convert the original second class to first class
constraints. Canonical quantization of the extended
phase is straightforward and will yield the sought-
after perspective-neutral structure in the quantum
picture. Let us quickly summarise the main ideas.

When converting, we have to keep the physical de-
grees of freedom constant. But contrary to second
class constraints, first class constraints entail a gauge
symmetry. Thus, we have to add 2M coordinates ψa

for every 2M second class constraint [38]. We demand
that they fulfill the canonical symplectic structure

[ψa, ψb] = ωab, ω =
(

0 1
−1 0

)
(69)

[ya, ψb] = 0 ∀ a, b, (70)

where we have condensed the old positions and mo-
menta into a single variable, writing

qi = yn, n = 1 ... N, pi = yn, n = N + 1 ... 2N.

On the extended phase space Pext, coordinatized
by (yn, ψm), the original second class constraints are
converted into abelian4 first class constraints

Φ̃α = Φ̃α(y, ψ)

by requiring that they fulfill the differential equations

[Φ̃α, Φ̃β ] = 0 ∀ α, β (71)

with the initial conditions

Φ̃α(y, ψ = 0) = Φ(y). (72)

We must further ensure that the extended gauge-
system is dynamically equivalent to the original
second-class system. This is achieved by a spe-
cific extension of the dynamical phase-space func-
tions F (y) → F̃ (y, ψ) [38]. The abelianized functions

4The condition that the new constraints need to have an
abelian structure is not mandatory. In the non-abelian case,
equation 71 can have the more general form [Φ̃α, Φ̃β ] = cγ

α,β
Φ̃γ .
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F̃ (y, ψ) have to be gauge invariant with respect to all
converted constraints

[Φ̃α, F̃ ] = 0 (73)

and for ψ = 0 have to coincide with the old ones

F̃ (y, ψ = 0) = F (y). (74)

The initial conditions 72 and 74 ensure that by gauge
fixing the system with ψa = 0 we regain the equations
of motion of the original theory.
Finding solutions to the equations 71 - 74 turns

out to be highly nontrivial. Fortunately, we do not
need to discuss the general case. Amorim and Das
showed in [39] that when the original constraints are
linear in the phase space coordinates the abelianized
constraints can be written as

Φ̃α = Φα +Xαaψ
a, (75)

where
XαaXβbω

ab = −Cαβ . (76)

In this case, the computation of the converted
phase-space functions is much simpler as well. We
find that a set of gauge-independent Dirac observables
is given by

ỹc = yc − ψbωabX
αa[Φα, y

c]y = yc − ψbBc
b . (77)

Due to the linearity of the coordinate functions, the
matrix B is constant. The ỹc commute by construc-
tion with all abelianized constraints

[Φ̃α, ỹ
c] = [Φα, y

c] − [Φα, ψ
b]Bc

b −XαaB
c
b [ψa, ψb]

= [Φα, y
c] −XαaB

c
bω

ab

= 0
(78)

Any observable, e.g. the Hamiltonian, defined by the
replacement

H̃(y, ψ) = H(ỹ)

inherits this property and becomes also first class.
The total Hamiltonian is obtained by adding the first-
class constraints to H̃, yielding

H̃T (y, ψ) = H(ỹ) +
∑

i

λiΦ̃i.

4.2 The extended phase-space
Let us employ the Abelianization scheme for our sys-
tem at hand. We start with relation 76, which in
matrix form can be written as

XωXT = −C (79)
Carrying out the matrix multiplication we obtain the
following equations for the elements of X(

a b
c d

)(
0 1

−1 0

)(
a c
b d

)
=
(

0 −cb+ da
−ad+ cb 0

)
=
(

0 −µ
µ 0

)
.

(80)

So the general form of X is given by

X =
(
a b
c d

)
where cb− da = µ (81)

This is just a rescaling of the defining condition da−
cb = 1 for 2D canonical transformations [36]. We
denote the new set of canonical variables extending
the original phase-space by (p, q). With 75 we obtain
the transformed constraints

Φ̃1 =
∑

i

qi + aq + bp (82)

Φ̃2 =
∑

i

pi

µi
+ cq + dp. (83)

acting on the extended 8-dimensional phase space.
They are proofed to be first class when the condition
cb − da = µ holds. Now we compute the functions ỹ
via the equation 77. B is given in matrix form by

B = ω−1X−1∥[Φα, y
c]∥ (84)

=
(

0 −1
1 0

)
1

−µ

(
d −b

−c a

)(
0 0 0 1 1 1

−µ1
−1 −µ2

−1 −µ3
−1 0 0 0

)
(85)

= − 1
µ

(
aµ1

−1 aµ2
−1 aµ3

−1 c c c

b µ1
−1 b µ2

−1 b µ3
−1 d d d.

)
(86)

where ∥aij∥ denotes the matrix with components aij .
We can thus compute the Dirac observables

q̃i = qi + 1
µµi

(aq + bp) i = 1, 2, 3 (87)

and

p̃i = pi + 1
µ

(cq + dp) i = 1, 2, 3. (88)
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The Hamiltonian becomes

H̃ = 1
2
∑

i

(pi + (cq+dp)/µ)2

µi
+ λ1Φ̃1 + λ2Φ̃2. (89)

This is the most general form of the extended struc-
ture. However, the explicit representation of the ex-
tended phase space does not matter, as [aq+ bp, cq+
dp] = ad − bc = −µ. So before we continue, let us
choose a = 1, d = −µ, b = c = 0 to simplify the nota-
tion. With this, the extended constraints read

Φ̃1 =
∑

i

qi + q ≃ 0 (90)

Φ̃2 =
∑

i

pi

µi
− µp =

∑
i

pi − p

µi
≃ 0, (91)

the Dirac observables

q̃i = qi + q

µµi
(92)

p̃i = pi − p (93)

and the Hamiltonian

H̃ = 1
2
∑

i

(pi − p)2

µi
+ λ1Φ̃1 + λ2Φ̃2. (94)

4.3 Halfway down: The intermediate phase-
spaces
The 8 dimensional extended phase space Pext was ex-
plicitly constructed so that the original phase space
is reestablished by gauge fixing q ≃ p ≃ 0. There is
no need, however, to do this simultaneously. We can
fix either one of the gauges and define a Dirac bracket
on the such obtained 6-dimensional second-class con-
straint surface. Passing on to intrinsic coordinates
then yields an symplectomorphic set of intermediate
phase spaces Pint which still feature one first-class
constraint.
Let us at first partially gauge fix the extended sys-

tem by Φ3 = p ≃ 0. We now have a mixed theory
featuring one first-class constraint Φ2 and two second
class constraints Φ1 & Φ3. With [Φ1,Φ3] = 1 the
Dirac-bracket reads

{qi, pj} = δij {q, p} = 0
{qi, p} = 0 {q, pj} = 0.

(95)

Again, we can go over to intrinsic Darboux coordi-
nates defined by q = −Φ1 and p = 0. Both q and p
drop out and we are left with the intermediate mo-
mentum space Pint,p, characterised by

q̃p,i = qi − Φ1

µµi
Φ2 =

∑ pi

µi
≃ 0

p̃p,i = pi Hp = H(pi) + λ′
2Φ2.

(96)

This structure is symplectomorphic to the classical
perspective neutral structure established in [25], con-
nected via the canonical transformation 3. We could

now fix the gauge with qi ≃ 0 to obtain internal per-
spectives symplectomorphic to those found in [25].
However, only fixing the gauge with Φ1 ≃ 0 reinstates
the relative meaning of the coordinates and brings
us back to Porig. We see that the gauge-freedom
exploited in [25] can be replaced by a preferred
gauge and the freedom to choose internal Darboux-
coordinates.

If we instead gauge fix by q ≃ 0 first, we obtain the
intermediate position space Pint,q

q̃q,i = qi Φ1 =
∑

qi ≃ 0

p̃q,i = pi − Φ2

µ
Hq = H(pi) − 1

2µΦ2
2 + λ′

1Φ1.

(97)
It is easy to see that gauge-fixing the system a second
time by Φ2 ≃ 0 leads us back to original phase space.

It remains to check if the spaces 97 and 96 are sym-
plectomorphic. Indeed, we find that they are con-
nected by the transformation

Sq→p : Pint,q → Pint,q

pi − 1
µ

∑ pj

µj
→ p̄i

qi → q̄i − 1
µµi

∑
q̄j ,

(98)

which can be shown to be canonical by

∂p̄i

∂pj
= δij − 1

µµj
= ∂qi

∂q̄j

∂p̄i

∂qj
= δij − 1

µµj
= ∂pi

∂q̄j
.

(99)

5 Dirac Quantization of first class con-
straints
5.1 Mathematical preliminaries
Having worked through the Abelianization scheme
we have obtained a pure first-class Hamiltonian sys-
tem. Various methods of quantizing such a system
are known (see [26], chapter 13, for an overview). An
alternative can be found in the Dirac quantization.
Here one quantizes the full extended phase-space in-
cluding redundant degrees of freedom and solves the
constraints in the quantum theory. To this end we
promote all coordinates on Pext to operators acting on
an extended Hilbert Space Hext and require that the
physical states are zero eigenstates of the constraints

Φ̂α |ϕ⟩phys = 0. (100)

This condition is tantamount to requiring that phys-
ical states are invariant under gauge transformations

eiϵαΦ̂α |ϕ⟩phys = |ϕ⟩phys ∀α (no sum) (101)
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generated by the constraints [26]. We can find solu-
tions by group averaging [40] via the projector

δΦ : 1
4π2

∫ +∞

−∞
eis1Φ1ds︸ ︷︷ ︸

=2πδΦ1

∫ +∞

−∞
eitΦ2dt︸ ︷︷ ︸

=2πδΦ2

|χ⟩ext = |χ⟩phys ,

(102)

where we used that when [Â, B̂] = 0 the identity

eÂB̂ = eÂeB̂ holds such that we can project on each
constraint individually by δΦi .
This projective method is also used in quantum in-

formation where it is usually referred to as ”G-twirling
[14]. In QI one deals mostly with compact groups, in
which case the projector is well defined. However,
the group associated with the constraint 100 is non-
compact and the (improper) projector 102 does not
converge on Hext. In other words, the physical states
are not actually contained in L2(R4) as they are not
square-integrable. A ”home” for the projector and
the physical state can be found in the so-called rigged
Hilbert space [41, 42, 43], with the hermitian and
(presumably) positive definite scalar product [40]

(δΦf, δΦg)phys = [δΦ(g)](f)=̂ ⟨f | δΦ |g⟩
∀f,g ∈ Dext.

(103)

5.2 The perspective-neutral structure in the
quantum picture
Putting hats on the observables, equations 90 - 94
comprise what we call the quantum perspective-
neutral structure. A quantum state in the extended
Hilbert space Hext, for example given in momentum
representation by

|χ⟩ext =
∫
χ(p⃗, p) |p⃗⟩ |p⟩ dp⃗dp. (104)

has 4 degrees of freedom, twice as many as physically
observable. Again, these redundancies must be fixed
to re-obtain the perspective-dependent descriptions.
Here we follow largely the quantum symmetry reduc-
tion scheme of Vanrietvelde et al.: We define a unitary
trivialization map T̂ that transforms one constraint in
such a way that it acts only on one variable.5 After
an (improper) projection on this trivialized constraint
we can discard the now redundant degrees of freedom.
As we are dealing we two constraints we need two triv-
ialization maps, each followed by a projection.
It seems sensible to get rid of the additional 4th

degree of freedom at the very beginning, as how to
physically interpret it remains - at least to the author
- rather obscure. To this end, we can choose to project

5In the literature, such trivialization maps were employed
in different contexts. E.g., see [44] for their use in the canon-
ical quantization of non-Abelian gauge fields and [45] for an
appliance related to quantum canonical transformations.

on any linear combination of the constraints, given
that it is rotated to act only one the (q, p)-slot. We
thus obtain one of many intermediate Hilbert spaces
Hint, which are the quantum analogues of the inter-
mediate phase spaces. By repeating the procedure -
trivialization followed by projecting - for a coordinate
of our liking we arrive at the perspective dependent
description. We will now have a look at the symmetry
reduction scheme in detail.

5.3 Relative position and momentum frame re-
visited
5.3.1 The intermediate and relative position frames

Let us start with an initial projection on p̂ = 0. We
therefore need to define the trivialization map

T̂p = e− i
µ q̂Φ̂2 (105)

which rotates the constraints to

T̂p
ˆ̃Φ1T̂

†
p = Φ̂1 = 0, T̂p

ˆ̃Φ2T̂
†
p = p̂ = 0. (106)

Acting with T̂p on a general state in Hext following
up with the projector δT Φ̃2T † = δp yields

δpT̂p |χ⟩ext =∫
χ(p⃗,

∑
i

pi

µiµ
) |p1⟩ |p2⟩ |p3⟩ dp⃗⊗ |p = 0⟩ . (107)

We can use this result to compute the action of δpT̂p

on the Dirac observables and on the Hamiltonian 94.
From p̂ δpT̂p |χ⟩ext = 0 it follows that

ext ⟨χ| (Tp)†(δp)†p̂ δpT̂p |χ⟩ext = 0
→ (δp)†p̂δp = 0

(108)

So after acting with Tp we can discard all terms con-
taining p̂, which leaves us with

ˆ̃qi → q̂q,i = q̂i

ˆ̃pi → p̂q,i = p̂i − Φ̂2

µ

ˆ̃H → Ĥq = Ĥ(pq,i)

= Ĥ(pi) − 1
2µ Φ̂2

2 + λ̂qΦ̂1

(109)

Now all information is stored in the first three slots
and as in the classical case q̂ and p̂ have dropped en-
tirely from the formalism. It is therefore permissible
to discard the 4th degree of freedom altogether by
projecting onto the classical gauge fixing condition

|χ⟩q =
√

2π ⟨q = 0| δpT̂p |χ⟩ext =
∫
dp ⟨p| δpT̂q|χ⟩ext

=
∫
χq(p⃗) |p1⟩ |p2⟩ |p3⟩ dp⃗.

(110)
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where
χq(p⃗) = χ(p⃗,

∑
i

pi

µiµ
).

The structure above is the quantum version of 97.
We therefore speak of the intermediate position space
Hint,q.
To dispose of the remaining redundancy and obtain

the perspective-dependent quantum state we must
carry out the symmetry reduction once more. Con-
trary to the first projection, we are now free to choose
the slot we want to get rid of. This amounts to defin-
ing another trivialization map, such that the trans-
formed constraint acts only on the d.o.f. in question.
For example, to get rid of the first slot we apply

T̂q1 = e−i π
2 (q̂2p̂3−q̂3p̂2)e−ip̂1(q̂2+q̂3) (111)

While the second exponential is the actual trivial-
ization operator, the first one induces the canonical
transformation

q2 → q3 p2 → p3 (112)
q3 → −q2 p3 → −p2. (113)

This 90°-rotation in the (q2, q3)- and (p2, p3)-
subspaces is needed to bring the coordinate names
in accordance with those used in the reduced quanti-
zation scheme. T̂q1 rotates the remaining constraint
to

T̂q1Φ̂1T̂
†
q1 = q̂1 (114)

Let us apply T̂q1 followed by the projection√
2π ⟨p1 = 0| δq1 to the Dirac-observables. We thereby

obtain a new description in Hpersp:q1
q2
q3

 →

q2 − q3
q3

−q2


pq,1
pq,2
pq,3

 → 1
µ

 p2
µ3

− p3
µ2

p2
µ3

+ p3(µ− 1
µ2

)
−p2(µ− 1

µ3
) − p3

µ2

 .

(115)

Plugging this into the Hamiltonian 109 we arrive at

Ĥq → Ĥq1 = 1
2µ

(
( µ
µ3

− 1
µ2

3
)p̂2

2+( µ
µ2

− 1
µ2

2
)p̂2

3+2 p̂2p̂3

µ2µ3

)
.

(116)

This is equal to the relative position Hamiltonian 53
from the perspective of particle 1, which we obtained
through the reduced-quantization method. There are
no constraints or redundancies left. We can sum-
marise the whole process by

|χ⟩qi = ⟨pi = 0| ⟨q = 0| δqiδpTqiTp |χ⟩ext . (117)

5.3.2 The intermediate and relative momentum frames

Now let us project on q̂ = 0 first. In this case we
apply the trivialization map

T̂q = e−ip̂Φ̂1 (118)

which rotates the constraints to

T̂q
ˆ̃Φ1T̂

†
q = q̂ = 0 T̂q

ˆ̃Φ2T̂
†
q = Φ̂2 = 0. (119)

This rotation, followed by the projection√
2π ⟨p = 0| δq̂ transforms the Dirac-coordinates

and the Hamiltonian to

ˆ̃qi → q̂p,i = q̂i − Φ1

µµi

ˆ̃pi → p̂p,i = p̂i

ˆ̃H → Ĥp = Ĥ(pp,i) = Ĥ + λ′
2Φ2.

(120)

It comes as no surpise, that the above structure is
the quantum version of the classical intermediate mo-
mentum space. To obtain the perspective-dependent
description we must rotate the system once more, this
time by

T̂p1 = e−i π
2 (q̂2p̂3−q̂3p̂2)eiµ1q1( p̂2

µ2
+ p̂3

µ3
) (121)

and then project by
√

2π ⟨p1 = 0| δp1 . This transforms
the Dirac-coordinates toqp,1

qp,2
qp,3

 → 1
µ

 1
µ1

(q3 − q2)
q2
µ3

+ q3(µ− 1
µ2

)
−q2(µ− 1

µ3
) − q3

µ2
.


p1
p2
p3

 →

µ1( p2
µ3

− p3
µ2

)
p3

−p2.

 .

(122)

The Hamiltonian becomes

Ĥp → Ĥp1 = 1
2

(µ1 + µ2

µ2
2

p̂2
3

+ µ1 + µ3

µ2
3

p̂2
2 − 2µ1

µ2µ3
p̂2p̂3

)
. (123)

We have therefore arrived at the relative-
momentum description from the perspective of par-
ticle one. We can again condense the process to

|χ⟩pj = ⟨qj = 0| ⟨p = 0| δpj
δqTpj

Tq |χ⟩ext . (124)

5.4 Changing quantum reference frames via
the perspective neutral structure
Now let us see how to change reference frames via
the the quantum perspective-neutral theory. We will
focus on the three cornerstone-transformation of type
60, 64 and 68, by whose combination one can compose
arbitrary maps. To transform between relative posi-
tion frames we make use of the intermediate position
space. That means, to recover transformations like
60 we at first invert the quantum symmetry reduction
and re-embed Hq1 into Hq, followed by a projection
on Hq2. Concretely, in [25], it is proofed that this
map is given by

Ŝqi→qj :=
∫
dqj ⟨qj | T̂qj (T̂qi)† |qi = 0⟩ ⊗ [·] (125)
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where the reduced state |χ⟩q1 must be inserted into
the empty slot [·].
Likewise, a transformation between two relative

momentum maps can be implemented by

Ŝpi→pj :=
∫
dpj ⟨pj | T̂pj (T̂pi)† |pi = 0⟩ ⊗ [·]. (126)

Observe, that via the intermediate spaces we can
switch between particle-perspectives but not between
relative position and momentum representation. To
make this possible we have to go all the way up and
make use of the extended Hilbert space. Transforma-
tions of the type 68 are thus implemented by

Ŝqi→pi :=
∫
dqdpj ⟨pj | T̂pj ⟨q = 0| T̂q(T̂p)† |p = 0⟩ ⊗ (T̂pi)† |qi = 0⟩ ⊗ [·]. (127)

6 Recap and Comparison

Let us review our framework’s mathematical struc-
ture and and compare it to that of Vanrietvelde et
al.. Both frameworks originated from the same trans-
lational invariant, toy model Lagrangian. The re-
derivation of some of the results was, therefore, ex-
pected and desired. While in [25] the Legendre trans-
formation was performed on the original, gauge de-
pendent variables, in this article we first introduced
gauge-invariant, relative variables. This mapping en-
tailed a constraint of the relative positions. The Leg-
endre transformation led to the known constraint for
the sum of relative momenta, yielding a symmetrical
Hamiltonian structure living in Porig.

As the constraints were second-class, there was no
gauge freedom to exploit and we could not obtain the
perspective dependent descriptions by gauge fixing.
Instead we showed that the perspective dependent
descriptions can be understood as Darboux coordi-
nates on the constraint surface. This approach al-
lowed us to derive a broader class of perspective de-
pendent frames. In addition to the already known
relative momentum frames Ppi we derived the new
relative position frames Pqj . Following this line of
thought, we also had to adapt our understanding of
reference frame transformations. While in [25] ref-
erence frame transformations were related to gauge
transformations, we showed that they can be un-
derstood as Darboux-reparametrizations of the con-
straint surface. Thus, we were not only able to recover
the transformations Ppi → Ppj connecting relative
momentum frames, but could derive the transforma-
tions Pqi → Pqj between relative position frames and
Pqi → Ppi between relative position and relative mo-
mentum frames. Canonical quantization of the per-
spective dependent phase spaces then led us to the
perspective dependent Hilbert spaces Hqi and Hpi.

Our next objective was to find the quantum per-
spective neutral structure. To this end, we ex-
panded the original phase space to Pext and modi-
fied the constraints to make them first class, a pro-
cess called Abelianization. Canonical quantization
of Pext yielded the sought-after perspective neutral
Hilbert space Hext. To return to the perspective de-
pendent frames, we followed an extended version of

the quantum symmetry reduction scheme employed in
[25]. Having two constraints, two trivialization maps
and two projections were needed. Since it was not
clear how to interpret the additional degrees of free-
dom physically, we tried to get rid of them first. We
could do this by either projecting on p̂ = 0 or q̂ = 0 (or
any linear combinations thereof), both options lead-
ing to the unitary equivalent, intermediate Hilbert
spaces Hint,q and Hint,p. We found that projecting
on q̂ = 0 resulted in a Hilbert space equivalent to the
auxiliary Hilbert space of [25]. Trivializing and pro-
jecting on the remaining constraint then lead us back
to the various perspective dependent Hilbert spaces.
We could then make use of the quantum perspec-

tive neutral structure to switch perspectives. Jump-
ing between two relative momentum frames is done by
first inverting the second symmetry reduction, thus
embedding Hpi into Hp and then projecting onto a
different degree of freedom. In an analogous way we
could change between two relative position frames. To
switch relative position to relative momentum, how-
ever, we had to go all the way up and and embed the
perspective dependent descriptions in the extended
Hilbert space.
till, there is one part missing. Where is the origi-

nal phase space of [25] hidden in our framework? We
found that partially gauge fixing Pext led us to the in-
termediate phase spaces Pint,q and Pint,p which could
be shown to be isomorphic to the auxiliary space in
[25]. But even though their visual appearance is al-
most identical, there is an important interpretive dif-
ference. As the coordinates have relative meaning in
our framework, fixing the gauge by qi = 0 is physically
unjustified. The only permissible gauge is

∑
qi ≃ 0,

leading us back to Porig.

7 Limitations and Outlook
In the present article, we have further developed the
first-principle approach to quantum reference frames
introduced by Vanrietvelde et al.. Our construction
provides a unifying framework to systematically de-
rive a large class of perspective dependent descriptions
and the transformations connecting them. However,
it can count only as a very first step towards a general
theory of quantum reference frames.
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Pext ∼ R8

Pint,q Pint,p∼

Porig ∼ R6

Pqi ∼ R4 ∼ Ppi

Darboux
coordinates

q = 0 p = 0

Φ2 ≃ 0 Φ1 ≃ 0

A
be

lia
ni

za
tio

n

q
i =

0

Hext

Hint,qHint,p ∼

Hpi ∼ Hqi

⟨q = 0| δpTp⟨p = 0| δqTq

⟨qi = 0| δqiTqi⟨pi = 0| δpiTpi

Dirac quantization

reduced quantization

Figure 5: A summary of all the spaces and their connections making appearance in this article. The orange-coloured parts
of the framework have either direct counterparts in [25] (Ppi, Hpi) or are connected by the symplectomorphism defined in
3 (Pint,p, Hint,p). This is a visual demonstration of the full integration of the original framework in our broader structure.
The horizontal axis indicates the number of unphysical degrees of freedom featured in the theory. The further on top, the
more redundant coordinates are present. The strong equations q, p, qi = 0 should be understood as including the transition to
intrinsic coordinates.
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Some of the necessary generalization are obvious.
Our framework covered only a toy model of three free
particles in one dimension. As a first step, it should be
generalized to multiple particles in 3d space. In [46],
it is shown that in this case globally valid gauge condi-
tions are impossible. Since we can regard two second
class constraints as mutual gauge fixes, this will likely
obstruct the definition of globally valid Darboux coor-
dinates. Further, we should investigate systems with
non-vanishing potential energy. It is not obvious that
the Dirac bracket will remain its simple form in this
case.

In our simple toy-model, we only obtained a sub-
set of all canonical transformations between quan-
tum reference frames. The limiting factor was the
general non-commutativity of canonical transforma-
tions and canonical quantization. To not encounter
possible mathematical pitfalls, we restricted to linear
canonical transformations which do not mix positions
and momenta. This excludes the larger part of the
extended Galilean transformations, like boosts and
transformations to accelerated reference systems, as
presented in [24]. To extend the framework, a better
understanding of the interplay of canonical quantiza-
tion and canonical transformations is crucial.

Finally, if our aim is to develop a theory about
quantum gravity, a generalization to relativistic sys-
tems is a plausible next step. Some research papers
advance in this direction [47, 48]. But to the author’s
knowledge, there does not yet exist a comprehensive
theory describing transformations between finite-mass
reference frames moving with relativistic velocities,
not even at the classical level. Only after we have
better understood the particularities of such systems
from a classical viewpoint we can start working to-
wards a Lorentz-invariant theory of quantum refer-
ence frames.
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A The Lagrangian in relative coordinates
Let us walk through the short computation of the Lagrangian in relative coordinates 25. We start by expanding
the center-of-mass-term and pulling it under the sum, yielding

L(x, ẋ) = 1
2

3∑
i=1

(
miẋ

2
i − m2

i

M
ẋ2

i

)
− 1
M

∑
i<j

mimj ẋiẋj . (A1)

Let us have a closer look at the first term (i = 1) of this expression:

m1ẋ
2
1 − m2

1
M

ẋ2
1 = 1

M

(
m1(m1 +m2 +m3) −m2

1)
)
ẋ2

1 = m1(m2 +m3)
M

ẋ2
1. (A2)

Expanding both sums we obtain

L = 1
2M (m1(m2 +m3)ẋ2

1 +m2(m1 +m3)ẋ2
2 +m3(m1 +m2)ẋ2

3 − 2m1m2ẋ1ẋ2 − 2m1m3ẋ1ẋ3 − 2m2m3ẋ2ẋ3

which we can contract to full squares to arrive at

L = 1
2M

(
m1m2(ẋ1 − ẋ2)2 +m1m3(ẋ1 − ẋ3)2 +m2m3(ẋ2 − ẋ3)2) . (A3)

Plugging in the relative coordinates 23 and making use of the reduced masses µi then yields the Lagrangian 25.

B Derivation of the consistency conditions
This appendix shows the detailed computation of the consistency conditions

Φ̇m = [Φm, HT ] ≃ 0 (B1)

and the derivation of the full constraint algebra starting from the Hamiltonian

HT = 1
2

3∑
i=1

(
p2

i

µi
− q4qi

)
+ yp4 (B2)

and the constraint Φ1 = p4 ≃ 0.
Since p4 commutes with all coordinates but q4, we recover easily constraint 24 by

Φ̇1 = [p4, HT ] =
3∑

i=1
qi = Φ2 ≃ 0. (B3)

Plugging this again in B1 yields

Φ̇2 = [
3∑

i=1
qi,

1
2

3∑
j=1

p2
j

µj
+ q4

3∑
i=1

qi + yp4]

= 1
2
∑
i,j

1
µj

[qi, p
2
j ] = 1

2
∑
i,j

2
µj

[qi, pj ]pj =
∑
i,j

1
µj
δijpj (B4)

=
3∑

i=1

pj

µj
= Φ3 ≃ 0. (B5)

We continue with

Φ̇3 = [
3∑

i=1

pj

µj
, q4

3∑
i=1

qi] =
∑
i,j

q4[ pj

µj
, qi] =

∑
i,j

q4

µj
δij (B6)

= µq4 = Φ4 ≃ 0, (B7)
Φ̇4 = [µq4, yp4] = µy[q4, p4] (B8)

= µy ≃ 0. (B9)

Accepted in Quantum 2023-08-23, click title to verify. Published under CC-BY 4.0. 22



Since the last equation gives a condition for the Lagrange-multiplier, the process terminates here. We are left
with four constraints

Φ1 = p4 ≃ 0,

Φ2 =
∑

i

qi ≃ 0,

Φ3 =
∑

i

pi

µi
≃ 0,

Φ4 = µq4 ≃ 0

(B10)

and one condition for the Lagrange multiplier
y ≃ 0. (B11)

Note that the product of two weak equations Φi ≃ Φj ≃ 0 is a strong equation, that is its Poisson bracket

[F,ΦiΦj ] = [F,Φi]Φj + Φi[F,Φj ] ≃ 0 (B12)

with an arbitrary function F (q, p) vanishes on the constraint surface. We can therefore discard the last two
terms from the Hamiltonian B2 and simply write

HT = 1
2
∑

i

p2
i

µi
. (B13)

Since both q4 and p4 are restricted to zero, they carry no physical information and can be discarded from the
formalism [28]. This means that the system at hand lives in a 6-dimensional phase-space and features two
constraints.

C The unitary position-to-momentum map
To find the unitary operator

Ŝq1→p1 = eλr̂ (C1)

inducing the canonical transformation

u2 = 1
3(2ū2 + ū3) u3 = 1

3(ū2 + 2ū3)

π2 = 2π̄2 − π̄3, π3 = −π̄2 + 2π̄3

(C2)

we first compute the invariants of the transformation

I1 = u2 + u3, I2 = π2 + π3. (C3)

In the unitary representation I1 and I2 must also stay invariant [49]. Using the Hadamard identity we can write

ŜÎiŜ
† = Îi + λ[r̂, Îi] + 1

2!λ
2[r̂[r̂, Îi]] + 1

3!λ
3[r̂[r̂[r̂, Îi]]] + . . .

!= Îi. (C4)

We thus see that we must choose r̂ such that the commutator [r̂, Îi] vanishes. After a little guesswork we find

r̂ = (û2 − û3)(π̂2 − π̂3). (C5)

It remains to calculate the phase λ. To this end we compute e.g.

Ŝπ̂2Ŝ
† = π2 + π2 − π3

2 (e2is − 1). (C6)

Comparing this with C2 we find s = −i log(3)
2 . This leaves us with the sought-after unitary operator

Ŝq1→p1 = e−i log 3
2 (û2−û3)(π̂2−π̂3). (C7)
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