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The generalized Q-function of a spin system can be considered the outcome probability
distribution of a state subjected to a measurement represented by the spin-coherent-state
(SCS) positive-operator-valued measure (POVM). As fundamental as the SCS POVM is
to the 2-sphere phase-space representation of spin systems, it has only recently been re-
ported that the SCS POVM can be performed for any spin system by continuous isotropic
measurement of the three total spin components [E. Shojaee, C. S. Jackson, C. A. Ri-
ofrío, A. Kalev, and I. H. Deutsch, Phys. Rev. Lett. 121, 130404 (2018)]. This arti-
cle develops the theoretical details of the continuous isotropic measurement and places it
within the general context of curved-phase-space correspondences for quantum systems.
The analysis is in terms of the Kraus operators that develop over the course of a contin-
uous isotropic measurement. The Kraus operators of any spin j are shown to represent
elements of the Lie group SL(2,C) ∼= Spin(3,C), a complex version of the usual unitary
operators that represent elements of SU(2) ∼= Spin(3,R). Consequently, the associated
POVM elements represent points in the symmetric space SU(2)\SL(2,C), which can be
recognized as the 3-hyperboloid. Three equivalent stochastic techniques, (Wiener) path
integral, (Fokker-Planck) diffusion equation, and stochastic differential equations, are ap-
plied to show that the continuous isotropic POVM quickly limits to the SCS POVM, placing
spherical phase space at the boundary of the fundamental Lie group SL(2,C) in an oper-
ationally meaningful way. Two basic mathematical tools are used to analyze the evolving
Kraus operators, the Maurer-Cartan form, modified for stochastic applications, and the
Cartan decomposition associated with the symmetric pair SU(2) ⊂ SL(2,C). Informed by
these tools, the three stochastic techniques are applied directly to the Kraus operators in
a representation-independent—and therefore geometric—way (independent of any spectral
information about the spin components).

The Kraus-operator-centric, geometric treatment applies not just to SU(2) ⊂ SL(2,C),
but also to any compact semisimple Lie group and its complexification. The POVM associ-
ated with the continuous isotropic measurement of Lie-group generators thus corresponds
to a type-IV globally Riemannian symmetric space and limits to the POVM of generalized
coherent states. This generalization is the focus of a sequel to this article.
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1 Introduction
1.1 What are generalized-coherent-state measurements?
The standard coherent state is that of a bosonic mode, drawn from the legacy of Roy Glauber, who
coined the term coherent state and demonstrated with others [1, 2, 3] the utility of these states in
quantum optics. The term generalized coherent state appears in the literature with different notions
of generalization [4, 5]. In this article, a generalized coherent state (GCS) refers mathematically
to states that are in the orbit of highest (or lowest) weight of a Hilbert space carrying a unitary
representation of a compact semisimple Lie group [6]. Under this definition, the simplest GCSs are the
spin coherent states (SCSs) [7], which carry an irreducible representation of the rotation group SO(3),
with highest weight usually referred to as the angular-momentum quantum number j. Ultimately,
compact, connected Lie groups are semisimple and therefore made of SU(2)s, the way in which such
SU(2)s can be put together being the subject of the theory of root systems [8, 9]. Therefore, a good
foundation upon which to build a discussion of generalized coherent states is to compare the 2-plane of
standard coherent states with the 2-sphere of spin coherent states (SCSs). Indeed, this article focuses
on that foundation by restricting the discussion to the spin coherent states of SU(2).

The standard coherent states of a bosonic mode and the SCSs of this paper (more generally, the
GCSs) have four analogous properties that define them. The first property is that coherent states are
the nondegenerate ground states of a particularly easy and integrable family of Hamiltonians,

(P − p)2 + (Q− q)2

2

∣∣∣∣q + ip√
2

〉
= 1

2

∣∣∣∣q + ip√
2

〉
and −(Bn̂)·J⃗ |j, n̂⟩ = −jB|j, n̂⟩. (1.1)

The integrability of these Hamiltonians is reflected by a group property or closure of the so-called
displacement operators,

D(α) = D

(
q + ip√

2

)
= e−iqP+ipQ

and D(n̂) = D
(
ẑ cos θ + (x̂ cosϕ+ ŷ sinϕ) sin θ

)
= e−iθ

(
Jy cosϕ−Jx sinϕ

)
,

(1.2)

which by the Baker-Campbell-Hausdorff lemma have a multiplication defined entirely by the Lie algebra
of their generators,

[iQ,−iP ] = i1 and [−iJx,−iJy] = −iJz, etc. (1.3)
Such displacement operators connect these easy Hamiltonians to each other,

(P − p)2 + (Q− q)2

2 = D

(
q + ip√

2

)
P 2 +Q2

2 D

(
q + ip√

2

)†

and n̂·J⃗ = D(n̂)JzD(n̂)†. (1.4)

They therefore connect the coherent states into a single orbit of the Lie group of displacements; this
is the second property of the coherent states,

|α⟩ = D(α)|0⟩ and |j, n̂⟩ = D(n̂)|j, ẑ⟩. (1.5)

The third property is that coherent states are those states annihilated by the lowest-order ladder
operators,

D(α)aD(α)†|α⟩ = 0 and D(n̂)J+D(n̂)†|j, n̂⟩ = 0, (1.6)
where a = (Q+iP )/

√
2 is the modal annihilation operator and J+ = Jx+iJy is the angular-momentum

raising operator. It is in this sense that these states are said to be of highest weight.
The fourth and final property is that all the coherent states are diffeomorphic to tensor powers of

a fundamental1 coherent state,

|α⟩⊗N ⊗ |
√
sα⟩ ∼=

∣∣∣α√N + s
〉

and
∣∣ 1

2 , n̂
〉⊗2j ∼= |j, n̂⟩. (1.7)

1For GCSs generally there are a number of fundamental representations given by the rank of the Lie group.
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The first of these diffeomorphisms is defined by the application of a number-preserving unitary that
puts all the amplitude into a single mode. The second of these diffeomorphisms is defined by projecting
onto the subspace of completely symmetrized states. On the one hand, the diffeomorphism for the
standard coherent states is equivalent to continuously rescaling the amplitude (N ≥ 0, 0 ≤ s ≤ 1);
this is a reflection of the Stone-von Neumann theorem, which essentially states that there is only one
unitary representation of the Weyl-Heisenberg group. On the other hand, the diffeomorphism for spin
coherent states introduces the well-known discrete quantum number j, enumerating the inequivalent
representations of the rotation group. This distinction between these two examples is ultimately due
to the topology of the two phase spaces, whereupon introducing quantum fluctuations, a plane has no
relative size, whereas a sphere does—and this has everything to do with the difference between the
classical limit of bosonic modes versus spin.

By Schur’s lemma, coherent states that carry an irreducible representation (often shortened to
irrep) of their Lie group form a so-called “overcomplete” resolution of the identity,

1
π

∫
C
d2α |α⟩⟨α| = 1 and (2j + 1)

∫
S

2

dθ sin θ dϕ
4π |j, n̂⟩⟨j, n̂| = 1. (1.8)

Thus these projectors onto coherent states can be considered as POVM elements of a coherent POVM,
|α⟩⟨α|/π for standard coherent states and (2j+1)|j, n̂⟩⟨j, n̂| for SCSs. These are the standard coherent-
state POVM and SCS POVM.

Given a state ρ, the distribution of outcomes for the coherent measurement is usually called the
Q-function,

Q(α) = 1
π
⟨α|ρ|α⟩ and Q(j)(n̂) = (2j + 1) ⟨j, n̂|ρ|j, n̂⟩ . (1.9)

The outcomes of the coherent measurement define a continuous manifold. This manifold can be
analyzed irrespective of the quantum theories used here to introduce them. Specifically, these manifolds
have their own harmonic spectra, which span the Hilbert space of square-integrable functions. This
independent nature of a manifold provides a principle-based procedure for quantization as well as a
classical phase-space correspondence by attaching the notion of harmonic to that of an irreducible
tensor, so-called Weyl maps, illustrated here with Wigner functions for a density operator ρ,

Wρ(α) =
∫
C
d2z χ(z)eαz

∗−α∗
z ↔ ρ =

∫
C
d2z χ∗(z)eza

†−z∗
a

and W (j)
ρ (n̂) =

√
2j + 1

∑
l,m∈j⊗j∗

χml Y
l
m(n̂) ↔ ρ =

∑
l,m∈j⊗j∗

χml
∗
T lm.

(1.10)

A general analysis of this phase-space correspondence and the harmonic functions and associated
irreducible (harmonic) tensors is deferred to yet another article. For the present, we note that the case
of a bosonic mode can be misleading when one generalizes to curved spaces. The harmonic tensors
eza

†−z∗
a for a bosonic mode turn out to have the same structure, so-called Pontryagin duality, as the

displacement operators that make the coherent states from the highest-weight state (vacuum). This is
not the case for SCSs or for GCSs generally.

The differences between the flat 2-plane phase space of a bosonic mode and the curved 2-sphere
phase space of a spin, already apparent in the tensor-power relations of equation 1.7 and becoming
more apparent in the brief discussion of harmonic functions and irreducible tensors, are considered
further in a meditation near the end of the concluding section 4, where discussed is the fundamental
nature of “position” measurements.

Generalized coherent states offer a comprehensive physical theory for quantum systems because they
represent not only basic states, but also basic operations and basic measurements. For optical systems,
these are the laser, so-called amplitude displacements, and heterodyne measurement. For spin systems,
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Figure 1: Table of phase spaces and their basic state preparations, operations, and measurements; considered for
bosons, collective spin, multiqubits, and fermions. The first of these phase spaces is flat, and the other four are
curved. The middle three (unitary) groups are compact, and the last is noncompact. This last example, though
beyond the scope of this article and the sequel, has been included to emphasize the analogy with fermions. Items in
red, though mathematically well studied, do not appear to be operationally/measurement theoretically understood
enough to become standard experimental practice. The aim of this article is to elucidate how the SCS POVM can
be performed by a continuous isotropic measurement; a sequel [19] applies the same techniques generally to realize
the generalized-coherent measurement for an arbitrary compact, connected Lie group, such as the three in this table.
All five examples have as phase spaces a manifold known as a globally Riemannian symmetric space (although the
standard phase space for a bosonic mode C is not usually cast in this way). These phase-space symmetric spaces
should not be confused with the type-IV symmetric spaces that star in this article and the sequel. For completeness,
the fifth symmetric space for bosons is said to be type-II and the middle three are type-I. The first symmetric space
is often omitted from the general topic of symmetric spaces because the isometry group is reductive rather than
semisimple. As a symmetric space, the flat spaces are associated with the quotient (SO(d) ⋉ Rd)/SO(d).

these are the ground state of a dipole in a magnetic field, rotations, and the measurement corresponding
to the so-called SCS POVM. With respect to the agenda of building a quantum computer or near-term
scalable quantum (NISQ) device, there are two more examples of GCS, multiqubit and fermion systems,
which seem especially relevant. For multiqubit systems, the basics are the product states, one-local
transformations, and the measurement corresponding to a POVM of projectors onto the product states.
For fermionic systems, the basics are the Bardeen-Cooper-Schriefer (BCS) superconductors, Bogoliubov
transformations, and the measurement corresponding to what could be called the BCS-coherent-state
POVM. As this list adds on to the SCS, what is apparent is that the measurement aspect of the GCSs
still has a disconnect between their theoretical existence and what an experimentalist might imagine
doing (see figure 1).

Hand-in-hand with the subject of coherent states are the subjects of phase-space correspondence
and quantization. In the standard case, these subjects are associated with the Weyl-Heisenberg group
and Hamiltonian mechanics as they act on a phase space of “qs and ps” [10, 11, 12, 13, 14]. Of course,
more general mathematical programs for phase-space and quantization have been developed [4, 5,
10, 15, 16, 17, 18]. At every level of application and understanding, it is worth pointing out that
the experimental utility of phase space in quantum optics is far more comprehensive (and therefore
standard) than in any other school of physics, even though there are phase spaces “just as good”
for other physical systems, such as the sphere for spin, the Cartesian product of Bloch spheres for
multiqubits, and the manifold of BCS coherent states (a.k.a. DIII) for fermions. The reason for this
substandard utility beyond quantum optics, specifically the lack of a measurement paradigm, is almost
surely due to the conceptual and technical difficulties that accompany continuous phase spaces that
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are curved.

1.2 Why perform generalized-coherent-state measurements?
The SCS POVM is essential for a foundation of the experimental application of continuous phase-space
correspondence to spin systems: states are uniquely defined by the distribution of their outcomes un-
der the SCS POVM, a distribution called the generalized Q-function, which is distributed over the
spherical shape of the phase space. Yet a performance of the SCS POVM prior to [20, 21] had been
undiscovered and even doubted. It is our hope that the ability to perform the SCS POVM as offered by
this article (and the GCS POVM in the next) will inspire physicists both experimental and theoretical
to embody more fully the potential of generalized phase-space correspondence.

Fundamentally, a theory can be considered physical only if it can address three basic aspects—the
trinity—of physical reality: basic states to prepare, basic intermediate operations to do, and basic
measurements to perform [22]. By basic, what we’re referring to is the kind of complexity that is
normally described in the language of observables and their operator algebra. With spin systems,
for example, the basic observables are the spin components, usually denoted Jk. By corresponding
these observables with the infinitesimal generators of rotation, an (associative) operator algebra is
uniquely defined. Abstract algebra aside, what this means is that every Hamiltonian on an irreducible
spin system is a polynomial in the spin components. In this case, the most basic of operators are
those linear in the spin components. In turn, it is understood that the most basic kinds of states to
prepare are the ground states of such linear Hamiltonians, the most basic kinds of operations to do
are the unitaries representing rotation (generated by linear Hamiltonians), and the most basic kinds of
measurements to perform conventionally have outcomes corresponding to the spectrum of such linear
Hamiltonians.

Several comments on this operator/Hamiltonian language normally used are therefore in order.
In the context of quantum mechanics, the concept of an operator is inherently a triple entendre,
describing states, operations, and measurements alike. While this accomplishment of the operator
is both admirable and extremely elegant, it means that practicing the theory can become rather
obtuse. In particular, this triple entendre can give a false impression that measurement is an entirely
developed concept. These days, the conventional physicist is often perfectly happy with what is known
as the von Neumann measurement or strong measurement, with instantaneous collapse. For the more
measurement-theoretically refined are the concepts of positive-operator-valued measure (POVM) and
Kraus operator [23].

With respect to generalized coherent states, there are at least two distinct kinds of measurement
that could be considered basic. Returning to the example of spin, the more standard is the von
Neumann measurement of spin component, which has outcomes arranged discretely by the quantum
numbers or weights, m = j, j − 1, . . . ,−j, the highest of which uniquely defines the Hilbert space if
it is irreducible. The alternative basic measurement is that of the SCS POVM. The SCS POVM is,
in a real sense, more fundamental than the spin-component measurement for two reasons. The first
is because its outcomes are arranged on a phase space that is representation-independent, which is to
say it has a geometry that is “classical” and “prequantum” [24]. Representation-dependent information
such as j appears as the smallest features of the Q-function of the state being sampled. The second
reason is that sampling such a Q-function is already tomographically complete for any irreducible
representation, as opposed to standard von Neumann measurements, which would require measuring
at least O(j) linear observables.

This fundamental sampling of the Q-function thus brings forward a practical reason for performing
GCS POVMs. Specific to the agenda of building a quantum computer or NISQ device, the examples
of multiqubit and fermionic systems are particularly relevant. Multiqubit and fermionic systems have
just as good phase spaces and harmonic functions, albeit the phase spaces are curved, as the standard
for bosonic systems. In the context of multiqubit tomography, the GCS POVM is just as good as

Accepted in Quantum 2022-11-08, click title to verify. Published under CC-BY 4.0. 6



more standard measurements such as MUBs. Specifically, the number of samples needed to predict
a k-local expectation value with sufficient certainty scales polynomially in the number of qubits (see
appendix A for a brief discussion.) The GCS measurement does have, due to its representation inde-
pendence, its own distinct way of seeing errors. Besides tomography, a GCS measurement would come
with an entire suite of analogous concepts that are present for standard coherent states. A description
of the fermionic GCS POVM and phase-space correspondence will be given in the sequel on general
semisimple Lie groups [19].

One final motivation is worth mentioning, especially as it was the setting that originally inspired
this work. The SCS POVM is known to be optimal for estimating an unknown qubit state given
finitely many copies [7]. In that context, two conversations arose in an attempt to discover how to
perform the SCS POVM, and both concluded that the SCS POVM could not be easily performed. The
first of these conversations worked off the idea that one can replace the SCS POVM with a discrete
POVM consisting of finitely many outcomes composing a spherical 2j-design, which in turn could be
implemented via a Neumark extension. Such extended measurements turn out not to be amenable
to large spins in practice [25, 26, 27, 28]. The second of these conversations developed the idea
that since for Glauber coherent states, heterodyne measurement is a “single-shot” implementation of
isotropic homodyne measurements, perhaps the SCS POVM has an analogue as a single-shot isotropic
measurement of spin components. Such single-shot measurements turn out never, even in principle, to
perform as well as an SCS POVM for j > 1

2 [29, 30, 31].

1.3 How to perform and analyze a generalized-coherent-state measurement.
This article and its sequel [19] explain how the GCS POVM for any compact semi-simple Lie group can
be performed by the continuous isotropic measurement of the generators of the Lie group. Almost all
of the new concepts are present in the simplest case of spin, so we devote this article to analyzing the
theoretical performance of continuous isotropic measurement for the SCS POVM. The sequel focuses
on the continuous isotropic measurement for the general semisimple case to realize the corresponding
GCS POVM.

The SCS POVM can, in principle, be performed by a very simple procedure, the continuous isotropic
measurement of the three spin components (figure 2.) In particular, we show that the POVM elements
of the continuous isotropic measurement are, in not much time, almost always projectors onto spin
coherent states. More specifically, this “almost always” and “in not much time” refer to the fact that a
continuous isotropic measurement of spin component at a measurement rate γ collapses exponentially
to the spin-coherent measurement in just a few collapse times,

τcollapse = 1
γ

. (1.11)

It already having been announced [20, 21] that the continuous isotropic measurement approaches
the SCS POVM, this article exists for three reasons. The first is that the performance of this POVM
was originally advertised in the setting of optimal qubit estimation, which limits, we think, both inter-
pretation and application of the result. The second is that the mathematical concepts and perspectives
that underlie the result, which are not standard in quantum information, were not explained, as is often
the case with the initial presentation of a discovery. The third is that there was an error in the analysis
of [20], a missing ballistic term—precisely a coth a, highlighted in the Fokker-Planck equation 3.179
and the corresponding SDE 3.214—which made the collapse of the POVM appear to be slower, an
inverse-square-root collapse in time instead of an exponential collapse.

To many, that the spin-coherent measurement is performed by an isotropic measurement should
appear painfully obvious (see figure 2). Those with a background in quantum optics will appreciate
that the analogue of this result for bosonic systems is that isotropic measurement of the quadrature
components, known as the heterodyne measurement, performs the standard coherent POVM. Obvious

Accepted in Quantum 2022-11-08, click title to verify. Published under CC-BY 4.0. 7



Figure 2: Schematic diagram of the continuous isotropic measurement. The collective-spin components Jk of an
ensemble of elementary spins are measured by their Stokes interaction with the polarizations of three lasers.

as this may be to the physical intuition, however, a distinct feature of performing the spin-coherent
measurement, which separates it from heterodyne, is the presence of a single, nonzero measurement
collapse time (equation 1.11). That such a measurement collapse time must be nonzero has been
implicitly appreciated in [29, 30, 31], as “single-shot” measurements are precisely this assumption.

So what’s taking so long to collapse? The fact of the matter is that a coherent-state outcome takes
time whenever the phase space has curvature, as does the two-sphere for spin.2 Mathematically, this
fact is contained in the observation that spin observables are “more noncommutative” than quadra-
ture observables. Intuitively, the POVM element that develops from the outcomes of the continuous
isotropic measurement starts at the identity, at the center of the sphere of SCSs and takes a time, a few
collapse times, to pick spontaneously a direction, after which it moves exponentially in that direction
to the SCS sphere on the surface. In this description the interior of the sphere is a 3-hyperboloid, on
whose boundary at infinity live the SCSs. An equally important aspect of the collapse time being due
to curvature is that it is representation independent, which is to say it doesn’t depend on the Hilbert
space specified by the usual quantum number j. Indeed, that there is a single collapse time, inde-
pendent of representation, will to some be perhaps the most surprising feature of this analysis. From
the perspective of phase space, this is to say that the time it takes a quasiprobability to collapse to a
minimum-uncertainty distribution is representation independent; the dependence on representation is
only in the width of that minimum uncertainty relative to the radius of the phase space.

To describe this collapse of the continuous isotropic measurement of spin components to the
SCS POVM and all its aforementioned properties requires a mathematical tool set that is beyond
what most physicists consider worth learning. Yet these tools are precisely those that were on the
minds of many of the mathematicians behind the formulation of quantum theory originally [35, 36].
These are the tools of differential geometry, particularly of Riemannian symmetric spaces. Although
a dominant source of inspiration for 19th and 20th century mathematics [35, 37], differential geome-
try appears to have become a somewhat esoteric subject for most physicists today. Yet more recent
years are showing that these classical techniques can be quite relevant, both within quantum informa-
tion [38] and beyond [39]. A sincere hope of the authors is that this illustration of the SCS POVM (and,
more generally, GCS POVMs in the sequel) will stimulate further work in this direction, bringing the
foundational ideas of classical differential geometry back to quantum measurement theory and, more
generally, giving them their proper place in quantum information.

Though originating from classical thought, these geometrical techniques can be applied to the cur-
rent formulations of quantum measurement theory only after several further innovations are made.
The most basic of these are to be found in section 2. The first innovation is to appreciate that the

2An important exception to the general rule that phase-space curvature dictates a nonzero collapse time occurs
in the fundamental representation—spin- 1

2 for SU(2)—where all pure states are SCSs. Then measuring in a random
basis is a single-shot realization of the SCS POVM. The continuous isotropic measurement of spin has been considered
previously [32, 33, 34] in this exceptional case of a qubit.
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stochastic nature of continuous measurement can be dealt with entirely at the level of the statistics of
Kraus operators. This is already two steps removed from the typical master-equation analysis found
throughout most of current quantum measurement theory [40]: the first step suspends the application
of the superoperatorK⊙K† to a state, as in the expressionK⊙K†(ρ) = KρK†; the second step analyzes
the Kraus operators themselves, instead of the tensor product K⊙K†. A second innovation is to realize
that continuous isotropic measurements have Kraus operators that exhibit submanifold closure; that
is, the Kraus operators that describe a continuous isotropic measurement are points in a 6-dimensional
complex semisimple Lie group SL(2,C) that is a submanifold of the manifold GL(2j + 1,C) of all
possible Kraus operators for a spin-j system. A third innovation is to recognize that the submanifold
statistics are representation independent: that is, such Kraus-operator statistics do not depend on the
spectrum of the observable spin generators, but rather only depend on the Lie algebra of transforma-
tions transiting the submanifold. A fourth innovation is the invention of what we call the modified
“Maurer-Cartan” stochastic differential (MMCSD), a generalization that we introduce to handle ap-
plication of the standard Maurer-Cartan form to stochastic processes.

Having set this basic foundation for analyzing noncommutative stochastic processes, Section 3 de-
fines and studies the continuous isotropic measurement of a spin system, a unitary representation of the
compact, connected Lie group SU(2) and therefore a finite-dimensional representation of the complex
semisimple Lie group SL(2,C). The tools applied to the analysis are those of the traditional stochastic
trinity of Wiener path integrals, diffusion equations, and stochastic differential equations [41]. Sec-
tion 3.1 shows that the measurement records up to time T make up an ensemble of sample paths that
can be partitioned into Kraus operators K, which label the relevant outcome information contained in
the measurement records and are described by a Kraus-operator distribution function DT (K). While
this is true for any continuous measurement, for the continuous isotropic measurement the Kraus-
operator distribution has support on a submanifold diffeomorphic to the complex semisimple Lie group
SL(2,C), so that the unconditioned, trace-preserving quantum operation for the measurement records
up to time T is a superoperator that has the form, which we call the semisimple unraveling,

ZT =
(
e−γT J⃗ 2

⊙e−γT J⃗ 2)
◦
∫
SL(2,C)
dµ(K)DT (K)K⊙K†, (1.12)

where γ is the measurement rate, J⃗ 2 = J2
x+J2

y+J2
z is the quadratic Casimir operator, and A⊙B†(ρ) ≡

AρB†. The Kraus-operator distribution thus becomes representation independent and is shown in
section 3.2 to be the solution of a diffusion equation corresponding to random walks in SL(2,C),

∂Dt

∂t
= γ

2 ∆[Dt], (1.13)

where defined is the isotropic measurement Laplacian,

∆[f ] = Jx←−

[
Jx←−

[f ]
]

+ Jy←−

[
Jy←−

[f ]
]

+ Jz←−

[
Jz←−

[f ]
]

, (1.14)

expressed using right-invariant derivatives,

X←−[f ](K) ≡ d

dt
f
(
eXtK

)∣∣∣
t=0

. (1.15)

Sections 3.3 and 3.4 transform the isotropic measurement Laplacian to partial derivatives correspond-
ing to the pieces of the Cartan decomposition K = V eaJzU , which is a representation-independent
interpretation of the singular-value decomposition. A key result of the analysis in sections 3.2–3.4
is that the isotropic measurement Laplacian describes diffusion locally into 3-dimensional surfaces in
SL(2,C), which do not mesh into 3-submanifolds, so the diffusion ultimately explores the entirety of
SL(2,C). Section 3.5 provides a visualization of this diffusion and thus of the Kraus-operator geometry
of SL(2,C).
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The POVM elements E = K†K = U†e2aJzU sit in a submanifold of the positive operators called
a type-IV symmetric space, which in this case is the 3-hyperboloid of constant negative curvature,
SU(2)\SL(2,C). The POVM elements are independent of the postmeasurement unitary V , and be-
cause of the isotropy of the measurement, they are uniformly distributed in the POVM unitary U .
The parameter a characterizes the purity [42] of E; a physicist might think of 2a as the inverse tem-
perature of the thermal state e2aJz/Tr(e2aJz ) corresponding to a uniform magnetic field along the z
direction. The marginal of the Kraus-operator distribution, summed over postmeasurement unitaries
V , corresponds to the POVM, which satisfies the completeness relation

1 =
∫
SU(2)
dµ(U) U†

(
e−2γT J⃗ 2

∫
R+
daPT (a)e2aJz

)
U , (1.16)

where defined is the spin-purity distribution, Pt(a), which in section 3.6 is shown to satisfy the Fokker-
Planck equation,

∂

∂t
Pt(a) = γ

2
∂

∂a

[
sinh2a

∂

∂a

[
1

sinh2a
Pt(a)

]]
= −γ ∂

∂a

[
coth aPt(a)

]
+ γ

2
∂2

∂a2Pt(a). (1.17)

The Kraus operators arising from the measurement records satisfy a stochastic differential equation
(SDE), which we write here in terms of the MMCSD,

dK K -1 − 1
2(dK K -1)2 = J⃗ ·√γ dW⃗t, (1.18)

where dW⃗t is a vector Wiener increment, which represents the three outcomes for the measurement at
time t in a time interval dt. This equation is equivalent to the diffusion equation 1.13, and just like
the diffusion equation, it can be parsed into coupled SDEs for the pieces of the Cartan form, V , a, and
U . These SDEs are developed in section 3.7. An advantage of SDEs over diffusion and Fokker-Planck
equations, aside from being more straightforward to derive, is that the SDEs display the behavior of
the Kraus operator for a given measurement record. Most important to this article is the SDE for the
purity parameter,

da = γ dt coth a+√γ dY z , (1.19)

where dY z is the “radial component” of the vector Wiener increment. Notable is that this equation, like
the Fokker-Planck equation for Pt(a), is effectively decoupled from the “angular” coördinates contained
in U and V , although these angular coördinates (specifically U) are the source of the coth a term.

A crucial point is that these behaviors of the Kraus operator and POVM are representation in-
dependent and, for that reason, can be considered “classical” or “prequantum” [24]. As detailed in
section 3.8, the story told by the SDEs is that there is an initial period, lasting roughly a collapse
time, during which a trajectory spontaneously picks a direction along the 3-hyperboloid, after which
the Kraus operator moves nearly ballistically along this direction to the surface of the sphere at infinity,
where live the SCSs. During the ballistic phase, the mean and variance of the radial coördinate a both
grow as γt. This is the main result for spin, that spin-isotropic continuous measurement performs the
spin-coherent measurement “almost always” and “in not much time at all,” just a few collapse times.
More precisely, asymptotic in the total time T , a reasonable measure of impurity, PE = e−2a of the
POVM element E = U†e2aJzU is bounded by

ProbT
(
PE = e−2a > e−γT

)
≲

√
2

πγT
e−γT/8, (1.20)

independent of representation.
The innovations of section 3 are thus essentially four in number. The first is the invention of the

continuous spin-isotropic measurement, which comes from [20, 21]. The second is the semisimple un-
raveling, which establishes a direct connection of the continuous isotropic measurement to the theory
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of symmetric spaces and complex semisimple Lie groups, specifically SU(2) ⊂ SL(2,C). The third is
the introduction and description of the isotropic measurement Laplacian for the Kraus-operator distri-
bution, where the fundamental idea of backaction appears rigorously as a nonintegrability. The fourth
is the analytic details of how the continuous spin-isotropic measurement collapses to the SCS POVM.

Innovative though we hope this article and the sequel to be, it is worth noting that the fundamen-
tal nature of the collapse has in essence already been celebrated by algebraic geometers for almost
a century in the form of what is called the Borel fixed-point theorem [43]. The Borel fixed-point
theorem roughly states that the only orbits of SL(2,C) (or any complex semisimple Lie group) that
are compact are the orbits of highest weight, that is, the GCSs. The implication is that all the other
noncompact orbits have only one place to go, to the GCSs. Simply put, this fixed-point property is yet
another reason why GCS POVMs are “Gaussian,” because of this “central limit” property. Although
not as pure or extremely refined as an algebraic geometer might prefer, the differential-geometric and
measurement-theoretic settings of this article and the sequel still qualify, we believe, as fundamental
contributions. Indeed, the measurement-theoretic techniques for continuous measurements developed
here are a considerable refinement of the usual “Gaussian” intuitions most contemporary practitioners
have come to appreciate.

Equations 1.12–1.20 encapsulate how the continuous isotropic measurement of spin component
performs the SCS POVM. Beautiful though they are, they are in this moment only inspirational and
aspirational, a compact summary bereft of the scaffolding of technique and analysis that leads to
understanding. They are put here as a siren song to entice the interested reader into mastering the
mathematical tools to derive and understand them and to appreciate fully both their beauty and their
implications.

Since this article was submitted to Quantum in July 2021 and accepted in November 2022, the
authors, instead of working on the sequel [19], have produced two papers on simultaneous measurements
of noncommuting observables, one on the general theory [44] and one specifically on simultaneous
measurement of position and momentum [45].

2 Two pillars: Measurement theory and differential geometry
This section overviews the two fundamental concepts upon which an understanding of the continuous
isotropic measurement can be set: the Kraus operator and the Maurer-Cartan form. Section 2.1 in-
troduces the Kraus operator of measurement theory [23, 38] with an immediate focus on continuous
measurement [40, 46, 47, 48, 49, 50]. Section 2.2 introduces the Maurer-Cartan form of differential
geometry [51, 52] and discussses its application to the metric and curvature of classical differential
geometry. The Maurer-Cartan will prove essential for analyzing the stochastic differential equations
to appear [39, 53]. The topics of these two sections are more-or-less standard in their respective fields,
with perhaps the exception of the modified Maurer-Cartan stochastic differential of section 2.2.3. A
significant feature in common between the Kraus operator and Maurer-Cartan form is their fundamen-
tal ability to detach: Kraus operators are detached from specifying the state that could cause their
outcome, and Maurer-Cartan forms are detached from specifying the control that could cause their
displacement.

2.1 Measurement theory and the Kraus operator
This section introduces notation for the more-and-more standard formalism of quantum measurement
theory [23, 22, 54], with the emphasis on continuous measurement. The basic building block is the
“single-shot” measurement, modeled by coupling the system of interest to a meter that, in turn, is
subjected to a von Neumann measurement. The meter state, coupling, and measurement of choice
are a zero-mean Gaussian, a controlled displacement, and measurement of the quadrature conjugate
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to the displacement generator. These choices are made because the central-limit-theorem asserts that
for every meter with a second moment, nonadaptivity will cause that meter in the continuum limit to
behave effectively as a Gaussian meter. For the (nonadaptive) continuous isotropic measurement, of
course, different physical realizations will give rise to different perturbative corrections.

2.1.1 “Single-shot” measurement

The Hilbert space of the system of interest we symbolize by H0, with the system state denoted by ρ
and the measured observable by X. Measurements will be based on the standard model of coupling a
meter to the system of interest and performing a von-Neumann measurement on the meter. For meter,
choose the usual representation of the Weyl-Heisenberg group,

[Q,P ] = i, (2.1)

often referred to as a continuous-variable system. Prepare the meter in a pure state |ψ⟩, interact the
meter and system of interest with a Hamiltonian

Ht = 2
√
γt σP⊗X, (2.2)

and then subject the meter to a measurement of Q. The constants here are chosen in anticipation of
the result that emerges below. In particular, the constant σ, which has the units of Q so that σP
has the units of action (as does Ht), is drawn from the meter wavefunction; for the case of interest, a
zero-mean-Gaussian meter state, σ2 is chosen to be the second moment of Q.

The (unnormalized) state of the system after a measurement that has outcome q is

dq ⟨q|e−iHt|ψ⟩ ρ ⟨ψ|eiHt|q⟩ = dqM(q)ρM(q)†, (2.3)

from which one extracts the Kraus operator corresponding to outcome q,

M(q) = ⟨q|e−iHt|ψ⟩ = e−2
√
γtσXd/dq⟨q|ψ⟩ =

〈
q − 2

√
γtσX

∣∣ψ〉, (2.4)

and the corresponding superoperator,

dZψ,X(t) = dqM(q)⊙M(q)†. (2.5)

Here we use the “odot” notation [55, 56, 57], whose action and adjoint action are

A⊙B†(X) = AXB† and (X)A⊙B† = A†XB. (2.6)

The superoperator 2.5 is a quantum-operation-valued measure (QOVM), also known as an instru-
ment [22]. A sum over this measure gives the trace-preserving superoperator

Zψ,X(t) =
∫
dqM(q)⊙M(q)†. (2.7)

If the meter is in a zero-mean Gaussian state, with wavefunction

√
dq ⟨q|ψ⟩ =

√
dq√
2πσ2

e−q2
/2σ2

, (2.8)

then the Kraus operators are

√
dqM(q) =

√
dq√
2πσ2

e−q2
/2σ2

e(
√
γt/σ)qXe−γtX2

, (2.9)
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and the QOVM 2.5 becomes

dZX(t) = e−γt(X2⊙I+I⊙X2) ◦ dq√
2πσ2

e−q2
/2σ2

e(
√
γt/σ) q(X⊙I+I⊙X). (2.10)

This expression is made possible by the fact that everything in these expressions commutes. Once we
specialize to weak measurements below, we only need the superoperator 2.9 and the trace-preserving
sum 2.7 to second order in

√
γt. It is, however, a useful illustration of the utility of the odot notation

to find the exact expression for ZX(t), by noting that the Gaussian integral in ZX(t) is∫
dq√
2πσ2

e−q2
/2σ2

e(
√
γt/σ) q(X⊙I+I⊙X) = eγt(X⊙I+I⊙X)2

/2. (2.11)

Substituting gives

ZX(t) =
∫
dZX(W ) = e−γt(X⊙1−1⊙X)2

/2. (2.12)

The natural measure of coupling strength between system and meter is
√
γt/σ. To describe contin-

uous measurements, it is a good idea to separate a measure of coupling strength from the “measurement
time” t, so let us replace the outcome q with the natural Gaussian random variable for the measurement
outcomes,

W = q

σ

√
t. (2.13)

Its Gaussian measure,

dµ(W ) = dW√
2πt

exp
(
−W

2

2t

)
, (2.14)

leads to renormalized Kraus operators,√
dqM(q) =

√
dµ(W )L(W ) =

√
dµ(W )e

√
γ WX−γtX2

. (2.15)

The QOVM superoperator 2.5 becomes

dZX(W ) = dµ(W )L(W )⊙L(W )†. (2.16)

The trace-preserving superoperator of equation 2.12 can be interpreted as a partition function in which
the “microstates” are replaced by classical (perhaps hidden) outcomes.

The usual POVM is

dEX(W ) = (1)dZX(W ) = dµ(W )L(W )†L(W ). (2.17)

That ZX is trace preserving is equivalent to the completeness of the POVM,

1 =
∫
dEX(W ) = (1)

∫
dZX(W ), (2.18)

and thus is symbolized by
(1)ZX = 1. (2.19)

This is easy to see from
(1)(X ⊙ 1− 1⊙X) = X −X = 0. (2.20)
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2.1.2 Continuous measurement

To perform several measurements symbolized by partitions dZ1, dZ2, etc., the total QOVM is their
composition

dZ(. . . ,W2,W1) = · · · ◦ dZ2(W2) ◦ dZ1(W1). (2.21)

The parameters in each dZk can in principle be adaptive—that is, dZk can be a function of the dZl(Wl)
for l < k. Moreover, for nonadaptive measurements, the measured observable X can change from one
measurement to the next.

Continuous measurements are infinitesimally generated by weak measurements. With a suitable
reëstablishment of notation, a weak measurement has coupling parameters

γt −→ γ dt≪ 1, (2.22)

so that the natural outcome random variable,

W −→ dW , (2.23)

becomes the usual Wiener increment, and

L(dW ) = eX
√
γ dW−X2

γ dt (2.24)

is interpreted in the usual way as consisting of a stochastic displacement generated by X and a drift
generated by X2.

For a continuous sequence of weak measurements of total duration T , the QOVM 2.21 becomes

DZ[dW[0,T )] = dZ
(
dWT−dt, . . . , , dW1dt, dW0dt

)
= dZT/dt−1

(
dWT−dt

)
◦ · · · ◦ dZ1

(
dW1dt

)
◦ dZ0

(
dW0dt

)
= Dµ[dW[0,T )]L[dW[0,T )]⊙L[dW[0,T )]

†,
(2.25)

where the Wiener-path measure for a continuous measurement of duration T is

Dµ[dW[0,T )] =
T/dt−1∏
n=0

dµ(dWndt) =

T/dt−1∏
n=0

d
(
dWndt

)( 1
2πdt

)T/2dt
exp
(
−
∫ T−dt

0

dW 2
t

2dt

)
. (2.26)

For a nonadaptive measurement of a (perhaps time-changing) observable Xt,

L[dW[0,T )] = L(T ) = exp
(
XT−dt

√
γ dWT−dt −X

2
T−dtγ dt

)
· · · exp

(
X1dt
√
γ dW1dt −X

2
1dtγ dt

)
exp
(
X0dt
√
γ dW0dt −X

2
0dtγ dt

) (2.27)

solves the time-dependent stochastic differential equation (SDE),

dL(t) =
[
L
(
dWt

)
− 1
]
L(t) =

(
Xt

√
γ dWt −

1
2X

2
t γ dt

)
L(t), (2.28)

with initial condition L(0) = 1. The labeling of the successive weak measurements makes clear that the
Wiener increment dWt applies to the measurement that runs from t to t+ dt and thus is statistically
independent of L(t); hence the SDE 2.28 uses the Itô stochastic calculus. In particular, the expansion
of the exponential L

(
dWt

)
uses the Itô rule,

dW 2
t = dt. (2.29)
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The upper limit T−dt in the integral in equation 2.26 is a one-time reminder that this integral does not
include the increment dWT ; we drop the −dt henceforth. The temporal subscripts on Wiener incre-
ments and Wiener measures are often omitted, to reduce clutter, whenever the subscript is unnecessary
or clear from context.

In the nonadaptive SDE 2.28, the measured observable can still be a function of time. If Xt is
independent of time, the SDE has the trivial solution

L(T ) = L[dW[0,T )] = exp
(
X

∫ T

0

√
γ dWt − γTX

2

)
. (2.30)

2.2 Differential geometry and the Maurer-Cartan form
In introducing what is now called the Maurer-Cartan form, Maurer and Cartan had the theory of
algebraic groups in mind [35]. Maurer was the first explicitly to bring attention to the Maurer-Cartan
form, but it was Cartan who turned it into an entire method for doing differential geometry [51, 52].
Although usually unnoticed, the Maurer-Cartan form is present even now in such familiar things as
unitary evolution under the Schrödinger equation, dU/dt = −iHU (and any other noncommutative
evolution for that matter). This will thus be our starting point for the introduction of the Maurer-
Cartan form, except of course we are more generally interested in Kraus-operator evolution, dK/dt =
ΩK, where Ω is not restricted to be Hermitian.

Although present in dU/dt = −iHU , the Maurer-Cartan form as a principle is quite subtle. One
way to get at it is to notice that we can formally rearrange things like unitary evolution into an equation
dU U -1 = −iHdt and thereby appreciate two things. First, if we think of unitaries as points in a
manifold, the right-hand-side of this equation does not depend on “position”—that is, the Hamiltonian
and the time aren’t considered functions of the unitary they cause to change. Second, the left-hand-
side of this equation, which is the Maurer-Cartan form dU U -1, is purely a function of the manifold
(in this example the unitary group) and therefore allows us to perform calculations that are detached
from having to imagine a fixed Hamiltonian. In modern terms, this detachment is formalized by
the inventions of the exterior derivative (such as dU) and the tangent vector (often denoted d/dt) so
that derivatives with respect to displacements can be thought of as a “product” of the two, dU/dt =
dU(d/dt)), similar to how we use inner products to detach states and measurement outcomes.

While somewhat standard in differential geometry, the Maurer-Cartan form will be quite foreign
to the typical quantum physicist. Though the Maurer-Cartan form is more-or-less equivalent, as we
have just discussed, to the familiar Schrödinger equation, it nonetheless serves a different purpose, that
being to describe the geometry and topology of the manifold it travels through. For our purposes, the
Maurer-Cartan form has proven very useful for understanding Kraus-operator evolution. Section 2.2.1
introduces the Maurer-Cartan form in the context of differentiable motion. To use the Maurer-Cartan
form for stochastic calculus, we’ve found it useful to invent a modification that we call the modified
Maurer-Cartan stochastic differential, and that is the topic of section 2.2.3. We believe that the style
of section 2.2.1 and the content of section 2.2.3 are novel, our basic references being [39, 53] and many
of the references therein.

2.2.1 Differentiable motion

For a Lie group G, the Lie algebra g as a vector space is considered to be tangent to the identity. Not
only can the elements of g displace from the identity but so too can they displace away from any other
point by a first-order differential equation,

dK

dt
= ωµXµK, (2.31)

where {Xµ} is a basis for g and the ωµ are real numbers. Here and throughout the article, we use the
Einstein summation convention for repeated upper and lower indices. Before proceeding, we caution
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that we are particularly interested in the situation where g is the complexification of a Lie algebra
g◦ of a compact group G◦. In the complexified Lie algebra, an anti-Hermitian generator −iJµ and
its Hermitian counterpart Jµ are R-linearly-independent generators, and both appear in sums such as
that in equation 2.31.

For the purpose of this article, a discussion of how to interpret equation 2.31 in its purest sense [8,
58] will be replaced with the simple appreciation that equation 2.31 is well defined for any matrix
representation, in which case it is like a standard Schrödinger equation for unitary evolution, except
that K is not restricted to be unitary (that is, ωµXµ is not, as just noted, restricted to be anti-
Hermitian). That being said, it is vital to appreciate also that equation 2.31 and therefore the rest of
this discussion is fundamentally representation independent, by the Baker-Campbell-Hausdorf lemma.

Equation 2.31 actually has multiple concepts within it and a great invention of modern differential
geometry is the ability to detach them from each other. In particular, K on the left represents any
point in the manifold G while t is a parameter along some particular curve. On the right, we have a
basis of vector fields, {Xµ←−

}, acting on points K according to

Xµ←−
[K] ≡ XµK; (2.32)

these are said to be right invariant as they have the property

Xµ←−
[KL] = Xµ←−

[K]L. (2.33)

On the right, Xµ←−
[K] is said to be “pushed forward” along the diffeomorphism L from the point K to

the point KL.
The basis vector fields exist independent of the particular curves we can imagine; rather, all the

information about the direction along which a curve displaces is in the coefficients ωµ, and it is here
where there is a subtle attachment. Denoting the tangent to the curve by d/dt and defining the
(curve-independent) fields of linear functionals (a.k.a. one-forms),

θµ(Xν←−
) = δµν , (2.34)

dual at each point K to the basis vector fields, this attachment can be expressed explicitly,

ωµ = θµ
(
d

dt

)
. (2.35)

Defining the exterior derivative (gradient) of any function f ,

df

(
d

dt

)
≡ df

dt
, (2.36)

we can rewrite equation 2.31 as

dK

(
d

dt

)
= dK

dt
= Xµ←−

[K] θµ
(
d

dt

)
= Xµ←−

⊗ θµ
(
K, d

dt

)
, (2.37)

where the tensor

Xµ←−
⊗ θµ (2.38)

is a kind of identity operator. The curve can now be removed from equation 2.31,

dK = Xµ←−
⊗ θµ

(
K, ...

)
= Xµ←−

[K]θµ, (2.39)
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thus liberating the concept of a changing K from the information needed to specify a particular
direction of change.

The tensor 2.38 and its application in equation 2.39 are the foundations of (Élie) Cartan’s method
of moving frames [51, 52]. The dual vector and 1-form bases, {Xµ←−

} and {θµ}, are special in that they

are pushed around the manifold by the action of the group. The identity tensor 2.38 is “moving” in
the sense that it is defined at every point by the action of the group in a presumably continuous, but
perhaps nonintegrable fashion. Inserting explicitly the location K of the one-forms, one has

dK = Xµ←−
[K]θµK . (2.40)

The remarkable part of Cartan’s method is in realizing that the right-invariant linearity of the Xµ←−
expresses a fundamental relationship between the space around that point, K, and the space around
the origin, the identity 1, by the Maurer-Cartan form,

dK K -1 = Xµ←−
[1]θµK = Xµθ

µ
K , (2.41)

often referred to as a g-valued one-form. Said another way, the Maurer-Cartan form 2.41 is a tensor
that differentiably maps any tangent vector at K to a tangent vector at 1.

This article uses a right-invariant Maurer-Cartan form because of the standard way the Schrödinger
equation is written, with the future to the left. The standard treatment in differential geometry,
however, is to consider a left-invariant Maurer-Cartan form. These sides and pictures are enough to
make any physicist dizzy, so let us take a moment to reflect on them. Similar to how the imagination
of a manifold can be detached from imagining particular curves with equation 2.35, the imagination of
a (wave)function can be detached from imagining particular values of its argument, that is, “positions,”
by considering a Hilbert-space inner product with a state vector |ψ⟩,

ψ(Ω) = ⟨Ω|ψ⟩ . (2.42)

The standard choice of quantum physicists is to put the state in the right side of the inner product
and the position in the left. These positions as vectors in the left of an inner product can also define
states such as GCSs. For GCSs {|Ω⟩} of a unitary representation D of a compact Lie group {U}, the
shape of these positions is defined by a left-action or “Heisenberg picture” of the group,

D(U)|Ω⟩ = |U · Ω⟩, (2.43)

and it is in this picture that a left-invariant Maurer-Cartan form is usually used in geometry. That
the standard expression of a Schrödinger equation results in considering a right-invariant Maurer-
Cartan form is because the geometry is rather in the argument of a (wave)function, which means that
standardizing the action on the state to be left defines a right-action on the positions,

⟨Ω|D(U)|ψ⟩ =
〈
U -1 · Ω

∣∣∣ψ〉 = ψ(U -1 · Ω), (2.44)

corresponding to the “Schrödinger picture.”

We draw attention to three aspects of the Maurer-Cartan form, which emphasize its versatility and
centrality. The first is that the moving tangent vector Xµ←−

is, like all tangent vectors, a derivative opera-

tor; in equation 3.44, it emerges in the central role played in this article, as the right-invariant derivative
at the point K of a function along the curve eXµtK leading from K. The tangent-vectors/derivative-
operators {Xµ←−

} are special in that, as right-invariant derivatives, they are a basis-vector field that

moves rigidly around the manifold under the group action.
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The second aspect reiterates what we have already stressed. The tensor dK of equation 2.40
is conceptually quite different from what people usually have in mind when writing a differential
displacement such as “dK = XµKω

µdt”. Indeed, the tensor 2.40 is ready to reproduce displacements
in all directions. Particularly, by applying the one-form to an infinitesimal displacement at K, denoted
by a tangent vector dxνXν←−

with infinitesimal coefficients dxν , the tensor returns the infinitesimal
displacement,

dK
(
dxνXν←−

)
= dxνXµ←−

[K]θµ(Xν←−
) = dxµXµ←−

[K] . (2.45)

Despite the apparent triviality, the conceptual difference is important: the tensor dK is a geometric
object, which can be geometrically imagined—detached is the word we have used—without imagining
a particular displacement, while differentials such as these infinitesimal coefficients dxν by definition
cannot. This kind of detachment of the imagination is not only useful, but also quite blissful.

The third aspect turns out to deserve its own section.

2.2.2 Relationship to classical differerential geometry: Metric and curvature

The third aspect of the Maurer-Cartan form is that the metric tensor on the manifold G is the
symmetric 2-tensor constructed from the Maurer-Cartan form:

g = λRe
[

tr
(
dK K -1 ⊗ dK K -1)] = λRe

[
tr(XµXν)

]
θµ ⊗ θν . (2.46)

Before being able to use this, one must think about the normalization. Because we are considering
semisimple Lie groups, the metric components, λRe[tr(XµXν)], in the orthogonal moving frame {θµ}
are composed of a representation-dependent normalization, called the Dynkin index (1/2λ), while the
rest of the distance and angle information is representation independent and called the Killing form
of the Lie algebra defined by the generators Xµ. We discuss briefly below how the representation-
independent overall normalization is absorbed into the representation-dependent constant λ so that
the metric is given by the Killing form. The metric tensor g is a detached geometric object. Like the
Maurer-Cartan form, it becomes attached by applying it to an infinitesimal tangent vector at K,

g
(
dxµXµ←−

, dxνXν←−
)

= λRe
[

tr(XµXν)
]
dxµ dxν = ds2, (2.47)

the result being the conventional line element ds2.
It turns out that one doesn’t need a sophisticated understanding of the metric tensor in the analysis

of this paper or the sequel. This is fortunate because there are subtleties in the use of the metric that
need not be dealt with here. In the analysis of this paper and the sequel, the metric components
are the inherent expression of isotropy and can be used for that purpose without further elaboration.
Nonetheless, it is instructive to appreciate that the relation between the Maurer-Cartan form and the
metric tensor is a central concept in Cartan’s method of orthogonal moving frames, where the Maurer-
Cartan form, a sort of square root of the metric tensor, offers a foundation for all of differential
geometry [59]. Indeed, a reader, encountering our several references to curvature as the feature that
distinguishes GCS phase spaces from standard flat phase space, might justifiably appreciate some
evidence that we know what the curvature is, so we undertake a short digression to provide that
evidence. For that purpose, we extend the notation in a way that serves us in section 3: we use
Roman indices to denote the anti-Hermitian generators {−iXb} that span g◦ and Greek indices for the
Hermitian generators {Xµ} that remain in g.

One more ingredient, concerning the normalization of and representation-independence of the met-
ric, is necessary. The (real) symmetric coefficients tr(XµXν) are invariant under the group G◦ and,
indeed, are the unique (up to a constant) symmetric 2-tensor that is so invariant. One uses this by
noticing that

tr
(
Y α
[
Xµ, [Xν ,Xα]

])
= −cµβ

αcνα
β (2.48)
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is invariant under G◦ and thus is proportional to tr(XµXν). Here {Y α} is a basis dual to {Xµ}, that
is, tr(Y αXµ) = δαµ, and the (real) structure constants are defined by

[Xα,Xβ ] = icαβ
µXµ. (2.49)

The expression 2.48 is usually written using the adjoint representation, denoted as

adA(X) ≡ [A,X], (2.50)

and in terms of a superoperator trace

Tr
(
adXµ

◦ adXν

)
= (Y α)adXµ

◦ adXν
(Xα) = tr

(
Y αadXµ

◦ adXν
(Xα)

)
= tr

(
Y α
[
Xµ, [Xν ,Xα]

])
.

(2.51)

Finally, one chooses the representation-dependent constant λ so that

λ tr(XµXν) = 1
2 Tr

(
adXµ

◦ adXν

)
= −1

2cµβ
αcνα

β = 1
2cµαβcν

αβ ≡ κµν , (2.52)

where κµν is the representation-independent Killing form for G◦. For the case at hand in this paper,
G◦ = SU(2), with standard spin components {Jµ} as generators and in the spin-j representation,
λj = 3/j(j + 1)(2j + 1), the structure constants are given by the antisymmetric symbol, cαβ

µ = ϵαβ
µ,

and the Killing form is the Kronecker-delta, κµν = δµν .
In the moving basis of right-invariant derivatives at a point K, {−iXb←−−−

,Xµ←−
}, the metric components

are given by the Killing form:

gab = −λ tr(XaXb) = −1
2cacdcb

cd = −κab,

gµν = λ tr(XµXν) = 1
2cµαβcν

αβ = κµν ,

gaµ = gµa = 0.

(2.53)

The key take-aways from these equations are that the Hermitian and anti-Hermitian sectors have
opposite signature and are “Minkowski-orthogonal” at each point K.

To find the curvature, one can use the Cartan method of moving frames or introduce Riemann-
normal coördinates at each point. Either way, all the components of the Riemann curvature tensor in
the right-invariant basis are specified by

λ tr
(
[Xα,Xµ][Xβ ,Xν ]

)
= −κγδcαµ

γcβν
δ = −cαµγcβν

γ . (2.54)

For G◦ = SU(2), this quantity is

λj tr
(
[Jα, Jµ][Jβ , Jν ]

)
= −ϵαµγϵβν

γ = δανδµβ − δαβδµν . (2.55)

The nonzero components of the Riemann tensor (up to the usual index symmetries) are given explicitly
by

Rcadb = 1
4λ tr

(
[Xa,Xc][Xb,Xd]

)
= −1

4cacfcbd
f , (2.56)

Rµανβ = 1
4λ tr

(
[Xα,Xµ][Xβ ,Xν ]

)
= −1

4cαµγcβν
γ , (2.57)

Rcaµα = −1
4λ tr

(
[Xα,Xµ][Xa,Xc]

)
, (2.58)

Rαaβb = −1
4λ tr

(
[Xα,Xa][Xβ ,Xb]

)
. (2.59)

Notice that the curvature is a consequence of the noncommutativity of the Lie algebra. We return to
the curvature briefly at the end of the concluding section, relating it to the concepts and techniques
developed in section 3.
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2.2.3 Nondifferentiable motion

Applied to stochastic processes, the Maurer-Cartan form is still very useful, even though the nondif-
ferentiable nature of stochastic displacement prevents the straightforward detachment enjoyed by the
bilinear nature of differentiation. Thus this section introduces a modification to the Maurer-Cartan
form that we will call a modified “Maurer-Cartan” stochastic differential (MMCSD). The MMCSD
proves useful for the noncommutative stochastic calculus to be encountered later. In particular, the
MMCSD keeps clear the moving tangent structures that are still present in random walks on a mani-
fold. The quotation marks are meant to remind that stochastic calculus did not emerge until well after
the original setting of Cartan, yet the moving-frame aspects that the Maurer-Cartan form handles
in the differentiable setting are the same as in the stochastic setting [41, 60, 61, 62, 63, 64]. It is
interesting to note that Hilbert’s fifth problem appears to make apparent that Hilbert was intuitively
aware of this. It is also interesting to note that Itô, the inventor of the most useful form of stochastic
calculus and the one used here, was seemingly unaware of Cartan, as Cartan’s influence would not
take off until the late 1940s.

If K is a point in the Lie group G and X is a Hermitian generator in its Lie algebra g, then a
purely stochastic displacement randomly steps to the new point

K ′ = eX
√
γ dWK ∈ G, where dW 2 = dt. (2.60)

Yet in a matrix representation this displacement corresponds to the stochastic differential equation

dK =
(
X
√
γ dW + 1

2X
2γ dt

)
K, (2.61)

which, because of the Itô rule, appears to have a drift term. This “drift” is not obviously along the
tangent space, despite that K ′ is clearly in G; this can quickly become confusing when carrying out
more intricate calculations, such as the stochastic calculus in section 3.7.

To clean things up, equation 2.61 can equivalently be considered an expression for the Maurer-
Cartan differential,

dK K -1 = X
√
γ dW + 1

2X
2γ dt, (2.62)

where intentionally the word “form” is avoided because the left-hand-side is not detached from the
tangent-vector stochastic displacement. To make the right-hand-side reflect the purely stochastic
nature of this displacement in G, simply observe that equation 2.61 is equivalent to

dK K -1 − 1
2(dK K -1)2 = X

√
γ dW . (2.63)

The left-hand-side of this equation is what we will call the MMCSD. Notice that, crucially, this equation
for the MMCSD, obtained as equivalent to equation 2.61, which relies on the Itô rule, comes instead
directly from expanding the exponential eX

√
γ dW to second order, without the need ever to invoke the

Itô rule. Thus, for example, equation 2.28 can be expressed as

dLL-1 − 1
2(dLL-1)2 = X

√
γ dW −X2γ dt; (2.64)

by identifying the true drift term −X2γ dt, which does depend on invoking the Itô rule, equation 2.63
more manifestly reflects that the displacement of the generator 2.24 is truly not tangent to (the repre-
sentation of) g. For isotropic measurements, it is easy to deal with these nontangential displacements,
as shown in the next section.

It is useful to record an important rule for manipulating MMCSDs. Start with

0 = d(KK -1) = dK K -1 +K dK -1 + dK dK -1 = dK K -1 +K dK -1 + dK K -1K dK -1, (2.65)
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and further

dK K -1K dK -1 = −(dK K -1)2 = −(K dK -1)2 = −1
2(dK K -1)2 − 1

2(K dK -1)2 (2.66)

and thus

K dK -1 − 1
2(K dK -1)2 = −

(
dK K -1 − 1

2(dK K -1)2
)

. (2.67)

In particular, this shows that the MMCSD of a unitary K = U is anti-Hermitian.
We have said that the MMCSD cannot be detached to become a tensorial geometric object. The

main reason for that is not the stochastic context, but rather that the two parts of the MMCSD
detach to become tensors of different rank. Nonetheless, we note that the first part becomes the
Maurer-Cartan form while the second part, after a trace, becomes the metric tensor.3

3 Spin-coherent-state measurement and the manifold SL(2,C)
Having brought forward the basic concepts, we now introduce the continuous isotropic measurement
for spin systems and show that it performs the SCS POVM. This section is designed to try to ease into
the more general methods that are used in the sequel on general compact, connected Lie groups [19].
Thus, in this section we often rely on intuition and prior knowledge about spin systems and SU(2),
but relate things to the general concepts needed in the sequel; the hope is that the reader can thereby
transfer knowledge about SU(2) to that more general setting.

Section 3.1 introduces the nonadaptive continuous isotropic measurement, the semisimple unravel-
ing, and the Kraus-operator distribution. Section 3.2 translates the sample paths of the Kraus-operator
distribution into a diffusion equation with generator we call the isotropic measurement Laplacian. Sec-
tion 3.3 introduces the Cartan decomposition (of type-IV symmetric spaces) and applies it to analyze
the details of the isotropic-measurement diffusion of the Kraus-operator distribution. Section 3.4 dis-
cusses the Cartan decomposition in the more general context of the Cartan-Weyl basis. Section 3.5
provides a visualization of the Kraus-operator geometry of SL(2,C) by restricting to SL(2,R). Sec-
tion 3.6 marginalizes the Kraus-operator distribution to the distribution function of the POVM and
derives the Fokker-Planck equation satisfied by the POVM. Section 3.7 revisits the Cartan decompo-
sition to derive an equivalent description of the continuous isotropic measurement in terms of SDEs.
The entire section is, at least nominally, aimed at section 3.8, which finally analyzes in detail, in a bit of
an anti-climax, how the continuous isotropic measurement collapses exponentially to the SCS POVM.
The most significant point of this main result is that this “collapse” of the continuous isotropic mea-
surement to the SCS POVM has three distinct qualities: it is representation independent, it is without
regard to any state, and it is not von Neumann with a fundamental collapse time.

The central players of this section are the compact Lie group SU(2) and its complexification
SL(2,C). Their Lie algebras, spanned by the familiar “spin observables,” are

su(2) = span
{
−iJµ = −iσµ/2

}
and sl(2,C) = su(2)⊕ isu(2). (3.1)

While the matrix representations of these groups and algebras are familiar to many physicists and quan-
tum information scientists, what is less familiar are their analytic and geometric aspects, specifically
their right-invariant differentiation and Haar-invariant integration. By virtue of doing the appropriate
calculations, the representation-independent, geometric nature of the results becomes apparent.

3In [44, 45], the reader can find further commentary on the Maurer-Cartan form and the MMCSD and the relation
between the stochastic calculus, in both Stratonovich and Itô forms, and the linear tangent and cotangent spaces on the
group manifold.
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3.1 The continuous isotropic measurement of spin and the semisimple unraveling
3.1.1 Continuous isotropic measurement

The continuous isotropic measurement of spin is generated by the simultaneous and continuous mea-
surement of the spin components Jx, Jy, and Jz at equal rates. Although noncommuting observables
cannot be measured simultaneously in the strong sense, finitely many noncommuting observables can
be measured simultaneously when measured weakly. The QOVM is thus generated by the weak QOVM,
corresponding to simultaneous measurement of the three spin components during a time dt,

dZ(dW⃗ ) ≡ dZ(dW z) ◦ dZ(dW y) ◦ dZ(dW x)

≡ dµ(dW⃗ )L(dW⃗ )⊙L(dW⃗ )†.
(3.2)

The three independent (uncorrelated) Wiener increments have overall measure given by the isotropic
Gaussian

dµ(dW⃗ ) ≡ d(dW x)d(dW y)d(dW z)
(2πdt)3/2 exp

(
−dW⃗

2

2dt

)
(3.3)

and thus satisfy the Itô rule
dWµdW ν = δµνdt. (3.4)

In words, the Wiener increments are uncorrelated and have variances keyed to the measurement time dt.
Most importantly, we have

L(dW⃗ ) ≡ exp
(
Jz
√
γ dW z − J2

z γ dt
)

exp
(
Jy
√
γ dW y − J2

yγ dt
)

exp
(
Jx
√
γ dW x − J2

xγ dt
)

= eJ⃗·√γ dW⃗−J⃗ 2
γ dt = eJ⃗·√γ dW⃗ e−J⃗ 2

γ dt,
(3.5)

where J⃗ · dW⃗ = JµdW
µ is a 3-dimensional Wiener increment and

J⃗ 2 = J2
x + J2

y + J2
z (3.6)

is the familiar quadratic Casimir operator. Because the three scalar Wiener increments are uncor-
related, the Itô rule 3.4 sets to zero the commutator cross terms when expanding to order dt, thus
making time ordering irrelevant. This means that the three spin components can be weakly measured
simultaneously and leads to the expressions on the second line of equation 3.5.

An alternative and equivalent approach to continuous isotropic measurement is to measure a ran-
domly chosen spin component, n̂ · J⃗ , with direction n̂ sampled randomly from the 2-sphere or from
a spherical two-design [20, 21]. A slight motivation for our approach of the three simultaneous mea-
surements is that steady simultaneous measurements seem more amenable to experimental realization
than unsteady random changes in measurement basis.

It will be useful—indeed, critical to the analysis—to rewrite the weak Kraus operator 3.5 as

L(dW⃗ ) = K(dW⃗ )e−J⃗ 2
γ dt, (3.7)

where the unnormalized weak Kraus operator is

K(dW⃗ ) = eJ⃗·√γ dW⃗ . (3.8)

This becomes important because of the isotropy of the measurement, whose effect is that the drift terms
from the quadratic generators balance out, only contributing to the normalization of the QOVM, as
represented by the famous property of Casimir operators, namely that

[J⃗ 2, Jµ] = 0. (3.9)
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For a Hilbert space carrying an irreducible representation (often shortened to irrep) with spin quantum
number j (a.k.a. highest weight),

J⃗ 2 = j(j + 1)1j . (3.10)

Thus the drift terms e−J⃗ 2
γ dt commute with everything and can be combined so that their only effect

is to contribute to the overall normalization of the QOVM.
To describe the isotropic measurement for a time T , we repeat the steps from equation 2.25 to 2.29,

but for three simultaneous measurements in each dt instead of one. The QOVM is a path integral of
the measurement record,

DZ[dW⃗[0,T )] = dZ
(
dW⃗T−dt

)
◦ · · · ◦ dZ

(
dW⃗1dt

)
◦ dZ

(
dW⃗0dt

)
≡ Dµ[dW⃗[0,T )] e

−γT
(
J⃗

2⊙1+1⊙J⃗ 2
)
◦K[dW⃗[0,T )]⊙K[dW⃗[0,T )]

†,
(3.11)

with the renormalizing drift terms combined as promised. Here Dµ[dW⃗[0,T )] is the isotropic Wiener
measure,

Dµ[dW⃗[0,T )] =

T/dt−1∏
n=0

d3(dW⃗ndt

)( 1
2πdt

)3T/2dt
exp
(
−
∫ T

0

dW⃗t · dW⃗t

2dt

)
(3.12)

(we remind that the integral in the exponential does not include the Wiener increment dW⃗T ), and

K[dW⃗[0,T )] = K(T ) = K(dW⃗T−dt) · · ·K(dW⃗0dt) = eJ⃗·√γ dW⃗T −dt · · · eJ⃗·√γ dW⃗1dteJ⃗·√γ dW⃗0dt (3.13)

is the solution to the SDE

dK(t) ≡
[
K(dW⃗t)− 1

]
K(t)

=
(
J⃗ ·√γ dW⃗t + 1

2JµJνγ dW
µ
t dW

ν
t

)
K(t)

=
(
J⃗ ·√γ dW⃗t + 1

2 J⃗
2γ dt

)
K(t),

(3.14)

with initial condition K(0) = 1. The MMCSDs of the unormalized Kraus sample paths of the isotropic
measurement satisfy

dK K -1 − 1
2(dK K -1)2 = J⃗ ·√γ dW⃗ , (3.15)

a result that comes from expanding the exponential in K(dW⃗t) to second order, as in the second line
of equation 3.14, and does not rely on the Itô rule used in the third line.

The unnormalizing of the Kraus operator makes apparent the submanifold-closure property of the
continuous isotropic measurement; that is, K remains in an analytic subgroup of SL(H0,C), differomor-
phic and group-homomorphic to SL(2,C). The normalization term e−J⃗ 2

γ dt is the isotropic version of
the true drift term identified when the MMCSD is introduced in section 2.2.3; the submanifold-closure
property of K(dW⃗ ) is equivalent to saying that its MMCSD has no drift term.

As in equation 2.12, it is easy to see that the trace-preserving superoperator of the QOVM 3.11 is

ZT =
∫
DZ[dW⃗[0,T )]

= e−γT
(
J⃗

2⊙1+1⊙J⃗ 2
)
◦
∫
Dµ[dW⃗[0,T )] K[dW⃗[0,T )]⊙K[dW⃗[0,T )]

†

= e−γT
(
J⃗

2⊙1+1⊙J⃗ 2
)
◦ e

1
2γT
(
J⃗⊙1+1⊙J⃗

)2

= e− 1
2γT
(
J⃗⊙1−1⊙J⃗

)2

.

(3.16)
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This result further emphasizes that the effect of the quadratic drift in the isotropic measurement is to
renormalize the superoperator to be trace preserving.

3.1.2 Kraus-operator distribution and the semisimple unraveling

That each K(dW⃗t) remains in an analytic subgroup of SL(H0,C), homomorphic to SL(2,C), means
that we can further partition or rebin the sum over possible measurement records to a sum over possible
Kraus operators in SL(2,C). To do so, let dµ(K) be a Haar measure (unique up to normalization) of
the group SL(2,C), and define the singular δ-distribution,∫

SL(2,C)
dµ(K) δ

(
K0,K

)
f(K) ≡ f(K0), (3.17)

for any function f : SL(2,C) −→ C. Specifically, the measure dµ(K) is invariant under group mul-
tiplication both on the left and the right, dµ(LK) = dµ(K) = dµ(KL), and thus also dµ(K) =
dµ(KK -1) = dµ(K -1). Consequently, the δ-distribution has many useful properties, in particular,

δ(K0,K) = δ(LK0,LK) = δ(K0L,KL) = δ(1,KK -1
0 ) = δ(K -1,K -1

0 ) = δ(K,K0) . (3.18)

To see this, define

LL[f ](K) ≡ f(LK), (3.19)

and notice that

f(K0) = L
L

-1 [f ](LK0)

=
∫
SL(2,C)
dµ(K) δ

(
LK0,K

)
L
L

-1 [f ](K)

=
∫
SL(2,C)
dµ(K) δ

(
LK0,K

)
f(L-1K)

=
∫
SL(2,C)
dµ(K) δ

(
LK0,LK

)
f(K).

(3.20)

This and a similar observation for right multiplication, using

RL[f ](K) ≡ f(KL), (3.21)

get all but the last equality in equation 3.18, which follows from applying the same set of steps
to I[f ](K) ≡ f(K -1). Throughout the following, we adopt the normalization convention that an
integration measure on a compact domain integrates to unity on that domain.

With the Haar measure and associated δ-distribution, we can organize the measurement records
dW⃗[0,t) into bins labeled by the Kraus operator they evaluate to, K = K[dW⃗[0,t)], the sum over which
defines the Kraus-operator distribution,

Dt(K) ≡
∫
Dµ[dW⃗[0,t)] δ

(
K[dW⃗[0,t)],K

)
, (3.22)

normalized to unity by∫
SL(2,C)

dµ(K)Dt(K) =
∫
Dµ[dW⃗[0,t)]

∫
SL(2,C)

dµ(K) δ
(
K[dW⃗[0,t)],K

)
=
∫
Dµ[dW⃗[0,t)] = 1. (3.23)
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The superoperator 3.16 can then be reëxpressed as

ZT = e−γT
(
J⃗

2⊙1+1⊙J⃗ 2
)
◦
∫
SL(2,C)
dµ(K)DT (K)K⊙K†, (3.24)

which we will call the semisimple unraveling. In this way of thinking, all the sample paths that lead
to the same Kraus operator have the same effect, labeled by the Kraus operator itself. One standard
way of talking about quantum operations would absorb the Kraus-operator distribution into the Kraus
operators, saying that the Kraus operator for outcome K is

√
DT (K)K, but we leave the distribution

separate, because it becomes now the object of interest. Indeed, now is the time to emphasize what we
are doing by stating explicitly what we are not doing. We are not studying the probability distribution
of outcomes from an actual continuous isotropic measurement; that is not our interest and would
require inserting an initial state in equation 3.24. Instead, we are interested in how the ensemble of
Kraus operators, which contain the relevant, but unrealized outcome information, evolves within the
QOVM 3.24—that is, how the distribution Dt(K) changes with t—in order to determine where the
QOVM is supported as the continuous isotropic measurement proceeds; this question is independent
of initial state.

Combining equations 3.16 and 3.24 gives a Hubbard-Stratonovich-transformation-like expression,∫
SL(2,C)
dµ(K)DT (K)K⊙K† =

∫
Dµ[dW⃗[0,T )] K[dW⃗[0,T )]⊙K[dW⃗[0,T )]

† = e
1
2γT
(
J⃗⊙1+1⊙J⃗

)2

. (3.25)

Worth stressing is that the trace-preserving character of the superoperator 3.16 and the completeness
of the isotropic-measurement POVM can now be expressed as

1 = (1)ZT = e−2γT J⃗ 2
∫
SL(2,C)
dµ(K)DT (K)K†K. (3.26)

The completeness of the isotropic-measurement POVM ensures that probabilities of actual outcomes,
given an initial state, are normalized to unity. Notice that the completeness property 3.26 includes a
representation-dependent contribution from the Casimir operator, whose role in the expression can be
thought of as normalizing actual-outcome probabilities.

The isotropy of the measurement is manifest in the Kraus-operator distribution by the property

DT

(
UKU -1) = DT (K), (3.27)

which holds for every unitary U ∈ SU(2). This comes from transferring, via the properties of the
δ-function, the rotation of K to rotation of K[dW⃗[0,T )], which becomes rotation of the vector Wiener
increments and thus changes nothing because the Wiener measure Dµ[dW⃗[0,T )] is isotropic (that is,
rotationally invariant). It should be appreciated that the SDE 3.15 for K is independent of initial
condition, but the isotropy of the Kraus distribution is premised on having an isotropic initial condition,
most simply, as here, K(0) = 1. Indeed, the definition 3.22 of the Kraus distribution assumes that
particular initial condition. Were one to use an arbitrary initial condition K(0), all the instances of
K[dW⃗[0,T )] would become K[dW⃗[0,T )]K(0), and the Kraus distribution would be

Dt

(
K
∣∣K(0)

)
≡
∫
Dµ[dW⃗[0,t)] δ

(
K[dW⃗[0,t)]K(0),K

)
, (3.28)

with the result that the isotropy of the measurement would be expressed as Dt

(
UKU -1∣∣K(0)

)
=

Dt

(
K
∣∣UK(0)U -1).
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3.1.3 Representation dependence and the effects of anisotropy

A very important thing to keep clear is which parts of the semisimple unraveling of the QOVM in
equation 3.24 are representation dependent and which are not. On the one hand is the dµ(K)DT (K)
part, which is representation independent. In particular, this means any sample path that results in
K is best calculated by multiplying literal 2× 2 elements of SL(2,C). On the other hand, even though
K⊙K† satisfies the group property (K⊙K†) ◦ (L⊙L†) = (KL)⊙ (KL)† by definition, the Kraus
operators K have the actual matrix elements denoting quantum transitions and for a spin-j system,
are (2j + 1)× (2j + 1) matrices. Thus K⊙K† is the representation-dependent piece of the semisimple
unraveling 3.24. The notation we use, which is usual for quantum physicists, is really a bit terrible
and could be made clearer by, for example, replacing equation 3.24 with

ZT = e−γT
(
J⃗

2⊙1+1⊙J⃗ 2
)
◦
∫
SL(2,C)
dµ(g)DT (g)K(g)⊙K(g)†, (3.29)

where K : SL(2,C) −→ SL(H0,C) is the representation. Clarity not being the entire point of life,
however, we will stick with expressions like equation 3.24.4

Before moving on to the diffusion equation for the Kraus-operator distribution, we digress briefly
to consider a question where representation dependence comes to the fore, particularly, appreciating
more fully the consequences of isotropy, by considering how to describe continuous, but anistropic
measurements of the three spin components. Nothing changes in the discussion of measuring all three
spin components weakly and simultaneously, except that we now imagine that each spin component is
measured with its own coupling strength√γµ =

√
γ(1 + ϵµ), with the ϵµs being anisotropy parameters.

It is convenient to assume that the average measurement rate is γ, so that the anisotropy parameters
average to zero,

∑
µ ϵµ = 0. The weak Kraus operator for the three simultaneous measurements,

analogous to equation 3.5, is

L(dW⃗ ) ≡ exp
(
Jz
√
γz dW

z − J2
z γz dt

)
exp
(
Jy
√
γx dW

y − J2
yγx dt

)
exp
(
Jx
√
γy dW

x − J2
xγy dt

)
= exp

(∑
µ

Jµ
√
γµ dW

µ

)
exp
(
−γ dt

∑
µ

(1 + ϵµ)J2
µ

)
= L̂(dW⃗ )e−J⃗ 2

γ dt,
(3.30)

where in the last line is separated out an unnormalized weak and anistropic Kraus operator,

L̂(dW⃗ ) = e−ϵγ dtQK̂(dW⃗ ), (3.31)

with

K̂(dW⃗ ) = exp
(∑

µ

Jµ
√
γµ dW

µ

)
, (3.32)

ϵQ =
∑
µ

ϵµJ
2
µ. (3.33)

The QOVM for measurements up to time T looks just like equations 3.11–3.13, but with L̂(dW⃗ ) in
place of the isotropic K(dW⃗ ) in the overall Kraus operator 3.13. Running this measurement for a time
T = ndt gives a total Kraus operator

L̂[dW⃗[0,T )] = e−ϵγ dtQK̂(dW⃗T−dt) · · · e
−ϵγ dtQK̂(dW⃗1dt)e

−ϵγ dtQK̂(dW⃗0dt)

= K̂ne
−ϵγ dt K̂ -1

n QK̂n · · · e−ϵγ dt K̂ -1
2 QK̂2e−ϵγ dt K̂ -1

1 QK̂1

≡ K̂[dW⃗[0,T )]Â[dW⃗[0,T )],

(3.34)

4Clarity eventually triumphed in [44, 45], where the authors do adopt the explicitly representation-independent,
group-theoretic notation.
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where

K̂k = K̂(tk = kdt) = K̂
[
dW⃗[0,kdt)] = K̂

(
dW⃗(k−1)dt

)
· · · K̂

(
dW⃗0dt

)
. (3.35)

The total QOVM becomes

DZ[dW⃗[0,T )]

= Dµ[dW⃗[0,T )] e
−γT

(
J⃗

2⊙1+1⊙J⃗2
)
◦
(
K̂[dW⃗[0,T )]⊙K̂[dW⃗[0,T )]

†
)
◦
(
Â[dW⃗[0,T )]⊙Â[dW⃗[0,T )]

†
)

.

(3.36)

The total Kraus operator 3.34 thus divides into two parts. The term K̂
[
dW⃗[0,kdt)] evolves anisotropi-

cally, but remains in the submanifold SL(2,C), with MMCSD

dK̂ K̂ -1 − 1
2(dK̂ K̂ -1)2 =

∑
µ

Jµ
√
γµ dW

µ. (3.37)

The term Â[dW⃗[0,T )] leaves SL(2,C) in a representation-dependent way, but evolves according to an
equation,

dÂ Â-1 = −ϵγ dt K̂ -1QK̂, (3.38)

whose stochastic character lies in the contribution from the stochastic trajectory of K̂. This way of
treating the anistropy as a perturbation is akin to handling a Hamiltonian perturbation by working in
an interaction picture.

These anisotropic equations deserve a thorough analysis, which would only require time and care,
but that analysis lies beyond the scope of this paper. What can be said for now is that one can
neglect the term Â[dW⃗[0,T )] if ϵγTj2 ≪ 1. In particular, if one is interested in integrating for just a
few collapse times, which is sufficient to see all the important effects of the measurement—of course,
the point of a thorough analysis would be to see whether other effects arise for longer integration
times—the continuous isotropic measurement is robust to anisotropy if

ϵ≪ 1
j2 . (3.39)

Although this bound on anisotropic error is sufficient, it is perhaps not necessary, because the isotropic
analysis suggests that the statistics of K̂ = V eaJzU are such that K̂ -1QK̂ is zero on average.

3.2 Diffusion of the Kraus-operator distribution and the isotropic measurement Laplacian
The Kraus-operator distribution Dt(K) satisfies a diffusion equation, which we now derive for the
continuous isotropic measurement. More specifically, the Wiener-like path integral 3.11 leads to the
Feynman-Kac-like formula 3.22, and these correspond to a diffusion equation for the Kraus-operator
distribution of the semisimple unraveling 3.24. What “-like” here refers to is the particular noncommu-
tative character of the quantities we’re concerned with—specifically, the K⊙K† and the δ(K0,K)—as
compared to the commuting numbers usually considered in a Wiener integral or Feynman-Kac for-
mula.5 Noncommutativity aside, there is still in our problem a straightforward group structure, em-
bodied in equations 3.13, which tells us that the differential time evolution of the Kraus distribution

5It should be noted that the “Wiener-like path integral” 3.11 is formally analogous to the Wilson line of nonabelian
gauge theories, except that our “gauge group” is noncompact.
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is given by a convolution or Chapman-Kolmogorov-like equation,

Dt+dt(K) =
∫
dµ
(
dW⃗t

)
Dµ[dW⃗[0,t)] δ

(
eJ⃗·√γ dW⃗tK[dW⃗[0,t)],K

)
=
∫
dµ
(
dW⃗t

) ∫
Dµ[dW⃗[0,t)] δ

(
K[dW⃗[0,t)], e

−J⃗·√γ dW⃗tK
)

=
∫
dµ
(
dW⃗

)
Dt

(
e−J⃗·√γ dW⃗K

)
,

(3.40)

where the t of the last Wiener increment is dropped in the third line, dµ(dW⃗ ) is the isotropic Gaus-
sian 3.3, which has mean and variance〈

dWµ〉 = 0 and
〈
dWµdW ν〉 = δµνdt, (3.41)

and, generally, 〈
f(dW⃗ )

〉
≡
∫
dµ
(
dW⃗

)
f(dW⃗ ). (3.42)

The density inside the integral over the last triple of outcomes, Dt

(
e−J⃗·√γ dW⃗K

)
, can be expanded in

a Taylor series,

f(eXK) = f(K) + X←−[f ](K) + 1
2X←−

[
X←−[f ]

]
(K) + . . . , (3.43)

where defined are the right-invariant derivatives,

X←−[f ](K) ≡ d

dt
f
(
eXtK

)∣∣∣
t=0

, (3.44)

which have their name because
X←−
[
RK [f ]

]
= RK

[
X←−[f ]

]
, (3.45)

where RL[f ](K) = f(KL).
Acting on the function f(K) = Kk

l, which takes K to its matrix element Kk
l, the right-invariant

derivative gives

X←−
[
Kk

l

]
= (XK)kl. (3.46)

A shorthand for such matrix-element functions is to allow X←− to act directly on K,

X←−[K] = XK, (3.47)

The derivative of an arbitrary function f(K) then follows from the chain rule,

X←−[f ] = X←−
[
Kk

l

] ∂f

∂Kk
l

= (XK)kl
∂f

∂Kk
l

. (3.48)

There is an important generalization, to functions of K and K†, which we need down the road.
Appreciate first that

X←−[K†] = d

dt

(
eXtK

)†
∣∣∣
t=0

= (XK)†, (3.49)

which is equivalent to

X←−[(Kl
k)∗] = ((XK)lk)∗. (3.50)
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This means that the chain rule should be generalized to

X←−[f ] = X←−
[
Kk

l

] ∂f

∂Kk
l

+ X←−
[
(Kk

l)
∗] ∂f

∂(Kk
l)

∗ = (XK)kl
∂f

∂Kk
l

+ ((XK)kl)
∗ ∂f

∂(Kk
l)

∗ . (3.51)

Applying the Taylor series 3.43 to equation 3.40 gives

Dt+dt(K) = Dt(K)−√γ
〈
dWµ〉Jµ←−[Dt](K) + 1

2γ
〈
dWµdW ν〉Jµ←−[Jν←−[Dt]

]
(K)

= Dt(K) + 1
2γ dt

∑
µ

Jµ←−
[
Jµ←−

[Dt]
]
(K)

= Dt(K) + 1
2γ dt∆[Dt],

(3.52)

where

∆[f ] = κµνJµ←−
[
Jν←−

[f ]
]

= Jx←−

[
Jx←−

[f ]
]

+ Jy←−

[
Jy←−

[f ]
]

+ Jz←−

[
Jz←−

[f ]
]

(3.53)

is a Laplacian we dub the isotropic measurement Laplacian. In particular, we will call equation 3.53
the Casimir expression of the isotropic measurement Laplacian, to contrast it with another expression
of the isotropic measurement Laplacian to be encountered in equation 3.102. Here κµν = δµν is the
raised form of the SU(2) Killing form, which is a Kronecker delta in the usual basis {Jµ},

κµν = δµν =

1 0 0
0 1 0
0 0 1

 . (3.54)

The Kraus distribution of the isotropic measurement thus satisfies the diffusion equation,

∂Dt

∂t
= γ

2 ∆[Dt], (3.55)

a compact equation that packs a lot of content. It is important to appreciate that this diffusion
equation is equivalent to the SDE 3.15 for the Kraus operator. Unwrapping the content of the diffusion
equation and the Kraus-operator SDE is done by introducing the Cartan decomposition of the Kraus
operator. We start with the isotropic measurement Laplacian over the next three sections, not because
it is easier than dealing with the SDE (section 3.7), but because it is harder and, by being harder,
provides more insight into the geometry of SL(2,C). It is useful to appreciate here that neither the
diffusion equation nor the Kraus-operator SDE depends on having an isotropic initial condition, but
both preserve isotropy when the initial condition is isotropic.

A couple of features of the isotropic measurement Laplacian are important to appreciate right off
the bat. First, the isotropic measurement Laplacian is isotropic in the sense that

∆ ◦ LV = LV ◦∆ (3.56)

for every V ∈ SU(2). There is another isotropic Laplacian we could call the isotropic unitary Laplacian,

∆̂[f ] = κµν−iJµ←−−−
[
−iJν←−−−

[f ]
]

= −iJx←−−−

[
−iJx←−−−

[f ]
]

+−iJy←−−−

[
−iJy←−−−

[f ]
]

+−iJz←−−−

[
−iJz←−−−

[f ]
]

, (3.57)

which corresponds to doing random infinitesimal unitaries. Notice that

−iX←−− ̸= −iX←−; (3.58)
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functions f over a complex Lie group for which −iX←−−[f ] = −iX←−[f ] are said to be complex analytic,
generalizing the Cauchy-Riemann equations. The Kraus operators could be made to diffuse by a
Fokker-Planck equation similar to 3.55, except with any positive linear combination of ∆ and ∆̂,
simply by doing both continuous isotropic measurement and isotropic random infinitesimal unitaries
simultaneously. Further, there are K ∈ SL(2,C) for which

∆ ◦ LK ̸= LK ◦∆. (3.59)

The differential operator that is invariant under all K ∈ SL(2,C) is the mixed-signature operator
∆− ∆̂, a reflection of the mixed-signature metric identified in equation 2.53.

The second important feature is that the isotropic measurement Laplacian corresponds to a noninte-
grable diffusion in SL(2,C), in contrast to the isotropic unitary Laplacian in SU(2). The random steps
corresponding to ∆ and to ∆̂ are contained in a 3-dimensional subspace tangent to the 6-dimensional
SL(2,C). The crucial difference between ∆ and ∆̂ is expressed in the simple facts,[

−iHermitian←−−−−−−−−−,−iHermitian←−−−−−−−−−
]

= −iHermitian←−−−−−−−−−, (3.60)[
Hermitian←−−−−−−−, Hermitian←−−−−−−−

]
̸= Hermitian←−−−−−−−. (3.61)

Thus diffusion from the identity under ∆̂ remains in a 3-dimensional submanifold of SL(2,C), namely
SU(2), whereas diffusion from the identity under ∆ is not integrable, meaning that the diffusion will
not remain in a 3-dimensional submanifold of SL(2,C). Indeed, the 3-dimensional diffusion generated
by ∆ permeates the entirety of SL(2,C).

3.3 The Cartan decomposition and partial-derivative expressions
To get a better sense of the nonintegrable diffusion of the Kraus operators generated by the isotropic
measurement Laplacian ∆ of equation 3.53, it is useful to transform the right-invariant derivatives into
more user-friendly partial derivatives. We already know that the right-invariant derivatives are the
derivative operators associated with basis vectors in the Cartan moving frame; the task of transforming
the right-invariant derivatives is that of transforming to a different set of basis vectors. A singular-value
decomposition of the Kraus operator,

K = V eAU , (3.62)
offers a natural way of breaking up K into parts because of the way it interacts with Hermitian
conjugation. The singular-value decomposition is an example of the abstract geometric concept of a
Cartan decomposition, about which more will be discussed in section 3.4, which can be thought of as
a comment on the calculations of this section.

Due to the submanifold closure of the MMCSD 3.15 and the semisimple unraveling 3.24, the factors
in the singular-value decomposition are exponentials in the linear spin components. More specifically,
the “POVM unitary” U and “postmeasurement unitary” V represent elements of SU(2), while the
singular factor is generated by A = aJz for some real number a. In other words, the algebra of
equation 3.62 is essentially representation independent, as the calculations of this section should make
apparent. In doing the transformation, it is important to keep in mind that the only coördinate we
are using is a. We could explicitly coördinate U and V , thereby providing a complete coördinatization
of K, but this is unnecessary for this article’s purpose and would obscure the results behind a fog of
coördinate derivatives.

To keep the notation under control, we let Jα denote the Hermitian generators and Lb = −iJb the
anti-Hermitian generators. The objective is to transform from the right-invariant derivatives, Jµ←−

and

Lb←−
= −iJb←−−

, to new partial derivatives defined in the following way: let ∂a be the derivative with respect

to a holding U and V constant, let Lb←−
0 = −iJb←−−

0 be the right-invariant derivative of V holding A and

U constant, and let Lα←−
1 = −iJα←−−−

1 be the right-invariant derivative of U holding V and A constant.
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Geometrically, the submanifold of POVM elements,

E = K†K = U†e2aJzU , (3.63)

generally called a type-IV symmetric space, is in the shape of a 3-hyperboloid,6 which has negative
constant curvature and on which ∂a generates radial displacements along the radial coördinate a and
the derivatives Lα←−

1, for α = x, y, generate angular displacements. On the other hand, the derivatives

Lb←−
0 generate changes in the postmeasurement unitary which by construction leave the POVM element

invariant.
The superscripts “0” and “1” do double duty. First, they distinguish the new partial derivatives

from the original right-invariant derivatives; second, the “0" is used for derivatives that act on the
postmeasurement unitary and “1" for derivatives that act on the symmetric space. The latter dis-
tinction is further reinforced by using early-alphabet Latin indices (b,c,d,...) for derivatives on the
postmeasurement unitary and Greek indices for derivatives on the symmetric space. This notation is
admittedly redundant and ramshackle—and becomes more so when we introduce yet further partial
derivatives in section 3.6—but it will get us through.

3.3.1 The gauge-theoretic nature of the partial derivatives

It is important now to appreciate that the displacements generated by Lb←−
0 are not independent of the

changes in POVM element, even though they hold the POVM element constant. This is fundamentally
contained in the fact that equation 3.62 has a differential gauge degree of freedom,

K(V ,A,U) = K(V e−iJzχ,A, eiJzχU). (3.64)

For the purpose of describing POVM elements, one way to fix this gauge is to restrict the index α on
Lα←−

1 to run only over α ∈ {x, y} (see section 3.4); for the analysis of this section, however, there comes

a point in the analysis where the gauge freedom allows us simply to disregard Lz←−
1.

Also important to appreciate is that the singular-value decomposition can be written as a polar
decomposition,

K = V UU†eaJzU = W
√
E, (3.65)

where W = V U is a different take on the postmeasurement unitary and
√
E = U†eaJzU is a particular

embedding of the 3-hyperboloid into SL(2,C). One says that U “diagonalizes”
√
E by rotating it to

be eaJz . What the polar decomposition and the singular-value decomposition indicate is that it is
more straightforward to regard the square roots of POVM elements,

√
E, as populating the positive

submanifold of SL(2,C), rather than the POVM elements themselves. That is what we generally do in
what follows, without constantly drawing attention to the fact that

√
E is the the square root of the

POVM element associated with K. In the polar decomposition, the gauge freedom resides wholly in
U and does not require the postmeasurement unitary W to participate. One way to fix the gauge is to
consider the unitaries U to have the form of the angular displacement operators D(n̂) of equation 1.2;
the 3-hyperboloid can then be seen to be made up of nested 2-spheres labeled by the radial coördinate a
and coördinated by the standard spherical polar coördinates θ and ϕ coming from D(n̂). Although
the spherical displacement D(n̂) will be the most familiar to many, this way of globally fixing U is not
useful for considering continuous changes in U .

6A POVM element must satisfy E ≤ 1, so the 3-hyperboloid is really the submanifold of all (strictly) positive operators.
Any positive operator can be renormalized to be a POVM element by dividing by the largest eigenvalue; moreover, in the
present context, the POVM element ought to have a measure attached, in which case the renormalization is unnecessary.
Thus we proceed without apology by referring interchangeably to the 3-hyperboloid as consisting of POVM elements or
positive operators.
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We mention two final points before getting started on the transformation of the derivatives. First,
Kraus operators are transformations that describe how a quantum state changes after a measurement,
and that is how they have appeared so far in our analysis. Once the postmeasurement unitary is split
off, however, what is left is a POVM element or an unnormalized quantum state. This introduces a
subtle change in perspective from transformations to measurement statistics and quantum states and is
how an analysis of continuous isotropic measurements ends up identifying generalized coherent states.
More importantly, however, it demonstrates how Kraus operators are the unifying mathematical object
necessary for quantum theory [22], uniting the quantum trinity of states, intermediate operations, and
measurements. Second, the singular-value decomposition 3.62 will be used again in section 3.7 to
translate the SDE 3.15 for K into a useable form. Every step in that translation is mirrored in the
transformation of derivatives. In particular, of the partial derivatives introduced above, only the radial
derivative on the 3-hyperboloid, ∂a, is a coördinate derivative; that the other derivatives, Lb←−

0 and Lα←−
1,

are not coördinate partial derivatives reappears in the SDE analysis in that the MMCSDs for V and
U are not coördinate differentials. Derivative analysis is usually a bit computationally backwards and
more cumbersome than SDE translations, illustrating the general rule that dealing with differential
forms is more straightforward than dealing with tangent vectors, and here is no exception. Nevertheless,
these cumbersome vector derivatives do accomplish something: they point in particular directions in
SL(2,C) and generate displacements in those directions; they thus point the way to a clear, geometric
picture of the Kraus-operator diffusion.

3.3.2 Transformation from right-invariant to partial derivatives

Pushing the new partial derivatives to a right-invariant basis is an exercise in paying attention to what
one is doing. One first applies the partial derivatives to the singular-value decomposition 3.62:

Lb←−
0[K] = Lb←−

[V ]eAU = LbV e
AU = LbK, (3.66)

∂a[K] = V ∂a[eA]U = V Jze
AU = V JzV

-1K, (3.67)

Lα←−
1[K] = V eALα←−

[U ]

= V eALαe
−AV -1K

= V
(
eadA(Lα)

)
V -1K

= V
(

cosh adA(Lα) + sinh adA(Lα)
)
V -1K.

(3.68)

The last of these equations uses the adjoint notation of equation 2.50,

adA(X) ≡ [A,X], (3.69)

and also a significant generalization of the Euler formula,

eAXe−A = eadA(X) = cosh adA(X) + sinh adA(X). (3.70)

In particular, V cosh adA(Lα)V -1 is anti-Hermitian and V sinh adA(Lα)V -1 is Hermitian. It is crucial
to appreciate that we can consider arbitrary functions of adA and that all such functions are linear
when applied to X. It is also useful to appreciate that eλadA = eadλA = (eadA)λ and that

eadA(eλX) = eAeλXe−A = eλe
adA (X), (3.71)

which is a generating function for the obvious properties eadA(Xn) = eAXne−A =
(
eadA(X)

)n. Math-
ematicians usually refrain from writing expressions like eadA(eλX) and eadA(Xn) because eadA acting
on linear generators is considered more fundamental and distinguished as “the adjoint representation.”
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The properties listed for adA apply for any operator A. For the case at hand, the Lie algebra of
SL(2,C) with A = aJz, things take the simple form,

eadA(Lα) = LbC
b
α + JµS

µ
α (3.72)

(recall that we use the Einstein summation convention for repeated upper and lower indices), that is,

cosh adA(Lα) = LbC
b
α and sinh adA(Lα) = JµS

µ
α , (3.73)

where the matrices are

Cbα ≡ δ
b
α cosh a+ P bα

(
1− cosh a) =

1 0 0
0 cosh a 0
0 0 cosh a

 , (3.74)

Sµα ≡ ϵzα
µ sinh a =

0 0 0
0 0 − sinh a
0 sinh a 0

 , (3.75)

with

P bα ≡ δ
b
zδ
z
α =

1 0 0
0 0 0
0 0 0

 . (3.76)

The antisymmetric symbol ϵµν
β gives the structure constants of the Lie algebra,

[Jµ, Jν ] = iϵµν
βJβ , (3.77)

The Killing form and the structure constants are related by equation 2.52,

κµν = −1
2ϵµβ

αϵνα
β = 1

2ϵµαβϵν
αβ = δµν . (3.78)

The sinh adA part of the exponential describes diffusion within the 3-hyperboloid, and the cosh adA
part describes the aforementioned diffusion from the 3-hyperboloid into the postmeasurement unitary.
It should be clear how the matrices work—the indices are ordered z first, then x, then y—but their
mechanics is illuminated by an understanding of the Cartan-Weyl basis, which we discuss in the next
section.

The last ingredient is the matrix in SO(3) that represents V in the adjoint representation:

V JµV
-1 ≡ JνR

ν
µ. (3.79)

That R is an element of SO(3) is the statement that it preserves the Killing form,

κµν = καβR
α
µR

β
ν ; (3.80)

moreover, R preserves the structure constants,

ϵαβ
µRγµ = ϵµν

γRµαR
ν
β . (3.81)

The inverse of R is

(R-1)µν = κµβRαβκαν , (3.82)

which in the standard basis of κ is just the usual transpose. It must be kept in mind that Rµν is a
function of the postmeasurement unitary V , since we do not indicate this dependence explicitly in the
following analysis.
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Putting all this together leads to

Lb←−
0[K] = LbK = Lb←−

[K], (3.83)

∂a[K] = JµKR
µ
z = Jµ←−

[K]Rµz, (3.84)

Lα←−
1[K] = −iJbKR

b
cC

c
α + JµKR

µ
νS

ν
α = Lb←−

[K]RbcC
c
α + Jµ←−

[K]RµνS
ν
α. (3.85)

Dropping the operation on K leaves the desired relations between the derivatives,

Lb←−
0 = Lb←−

, (3.86)

∂a = Jµ←−
Rµz, (3.87)

Lα←−
1 = Lb←−

RbcC
c
α + Jµ←−

RµνS
ν
α. (3.88)

The first and last of these equations invite attention. The α = z component of equation 3.88, when
combined with equation 3.86, says that Lz←−

1 = Lb←−
Rbz = Lb←−

0Rbz, which is the promised expression of
the local gauge freedom,

Lz←−
1 − Lb←−

Rbz = 0, (3.89)

allowing us always to replace Lz←−
1 with Lb←−

0Rbz.
By defining the derivative operator eα,

ez ≡ ∂a and eα ≡ Lα←−
1 for α = x, y, (3.90)

we can combine equations 3.87 and 3.88 into

eµ = Jλ←−
RλνG

ν
µ + Lc←−

Rcbω
b
µ, (3.91)

where

Gνµ ≡ S
ν
µ + P νµ = ϵzµ

ν sinh a+ P νµ =

1 0 0
0 0 − sinh a
0 sinh a 0

 , (3.92)

ωbµ ≡ C
b
µ − P

b
µ =

(
δbµ − P

b
µ

)
cosh a =

0 0 0
0 cosh a 0
0 0 cosh a

 . (3.93)

Solving for the right-invariant derivatives, we have

Lb←−
= Lb←−

0, (3.94)

Jµ←−
=
(
eν − Lb←−

(Rω)bν
)

(G-1R-1)νµ = ∇ν(G-1R-1)νµ, (3.95)

where defined are new derivative operators,

∇ν ≡ eν − Lb←−
(Rω)bν = Jµ←−

(RG)µν . (3.96)

It is rewarding to appreciate that the derivative Lb←−
Rbz = Lb←−

0Rbz = Lz←−
1 does not contribute to

Lb←−
(Rω)bα. We spell out explicitly that

∇z = Jµ←−
Rµz = ez = ∂a, (3.97)

∇x = sinh a Jµ←−
Rµy = ex − cosh aLb←−

Rbx = Lx←−
1 − cosh aLb←−

0Rbx, (3.98)

∇y = − sinh a Jµ←−
Rµx = ey − cosh aLb←−

Rby = Ly←−
1 − cosh aLb←−

0Rby, (3.99)
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Keep in mind that Lb←−
differentiates functions of the postmeasurement unitary V , whereas ez = ∂a

differentiates functions of the radial coördinate a on the 3-hyperboloid and eα ≡ Lα←−
1, α = x, y,

differentiates the angular directions on the 3-hyperboloid, which are in the POVM unitary U .
The isotropic unitary Laplacian 3.57 on SU(2) describes diffusion in the postmeasurement unitary,

holding the POVM element constant. In contrast, the isotropic measurement Laplacian,

∆[f ] = κρσ(G-1R-1)µρ∇µ
[
(G-1R-1)νσ∇ν

[
f
]]

, (3.100)

as one sees by substituting equation 3.96 into 3.53, is a new sort of beast that, as promised, de-
scribes both diffusion across the 3-hyperboloid and from the 3-hyperboloid into the postmeasure-
ment unitary. It is notable that there is no diffusion from the postmeasurement unitary back into
the 3-hyperboloid. Indeed, the derivatives {∇µ} instantiate the aforementioned diffusion into a 3-
dimensional local subspace of SL(2,C)—these derivatives span the same 3-dimensional subspace as
the right-invariant derivatives Jµ←−

—but because the derivatives {∇µ} are not closed under Lie brack-

ets, this diffusion is not integrable, does not remain in a 3-dimensional subspace, and indeed explores
the entirety of SL(2,C).

Nonetheless, given that RG transforms from the Killing form to metric components

gµν = κρσ(RG)ρµ(RG)σν = κρσG
ρ
µG

σ
ν =

1 0 0
0 sinh2a 0
0 0 sinh2a

 , (3.101)

identical to the metric of the standard 3-hyperboloid of constant negative curvature, one might guess
that the isotropic measurement Laplacian has a form analogous to the Laplace-Beltrami operator,

∆[f ] = 1√
det g

∇µ
[√

det g gµν∇ν
[
f
]]

, (3.102)

a form we will call the Cartan expression of the isotropic measurement Laplacian. Written out explicitly
in terms of radial and angular derivatives, the Cartan expression becomes (recall that ∇z = ∂/∂a)

∆[f ](K) = 1
sinh2a

∂

∂a

[
sinh2a

∂f
(
K
)

∂a

]
+ 1

sinh2a

(
∇x
[
∇x[f ]

]
(K) +∇y

[
∇y[f ]

]
(K)

)
. (3.103)

Though our Laplace-Beltrami guess is correct, justifying it requires a few more steps, which we now
undertake. A justification is required because the angular derivatives ∇x and ∇y are not coördinate
partial derivatives. Before doing that, however, a word about the metric components 3.101: this is not
a new metric, but rather the components of the 3-hyperboloid metric in the partial-derivative basis,
with RG being the transformation matrix from the right-invariant derivative basis.

One begins the derivation of the Cartan expression by converting equation 3.101 to (G-1R-1)βν =
κνγ(RG)γδ g

δβ . Substituting this into the isotropic measurement Laplacian 3.100 and manipulating a
little gives

∆[f ] = (G-1R-1)µρ∇µ
[
(RG)ρσ g

σν∇ν
[
f
]]

= ∇µ
[
gµν∇ν

[
f
]]

+ (G-1R-1)µρ∇µ
[
(RG)ρσ

]
gσν∇ν

[
f
]

= ∇µ
[
gµν∇ν

[
f
]]

+ (G-1R-1)µρ∇σ
[
(RG)ρµ

]
gσν∇ν

[
f
]

+ (G-1R-1)µρ∇[µ

[
(RG)ρσ]

]
gσν∇ν

[
f
]
,

(3.104)
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where introduced is standard square-bracket notation for antisymmetrizing on indices. The reason to
reverse the order of the α and ν indices is to employ the formula for the derivative of a determinant,

(G-1R-1)µρ∇σ
[
(RG)ρµ

]
=
∇σ
[

det(RG)
]

det(RG) =
∇σ
[√

det g
]

√
det g

, (3.105)

where the last form follows from equation 3.101. Putting this back into the isotropic measurement
Laplacian brings the finish line into sight,

∆[f ] = 1√
det g

∇µ
[√

det g gµν∇ν
[
f
]]

+ (G-1R-1)µρ∇[µ

[
(RG)ρσ]

]
gσν∇ν

[
f
]
, (3.106)

with only the last term to deal with.
The crucial part of that last term is

∇[µ

[
(RG)ρσ]

]
= Rρν∇[µ

[
Gνσ]

]
−Gν [σ∇µ]

[
Rρν

]
= Rρνe[µ

[
Gνσ]

]
− (Rω)b[µG

ν
σ]Lb←−

[
Rρν

]
.

(3.107)

To deal with the second term here, one needs the derivative of the rotation matrix R, which comes
from working with the left-hand side of Lb←−

[
V JνV

-1] = Lb←−
[Rρν ]Jρ,

Lb←−
[
V JνV

-1] = Lb←−
[V ]JνV

-1 + V JνLb←−
[V -1]

= LbV JνV
-1 − V JνV

†Lb

= (LbJρ − JρLb)R
ρ
ν

= −i[Jb, Jρ]R
ρ
ν

= ϵbρ
µJµR

ρ
ν ,

(3.108)

resulting in

Lb←−
[Rρν ] = ϵbλ

ρRλν . (3.109)

That in hand, a tedious exercise in index manipulation shows that the two terms in equation 3.107 are
equal,

Rρνe[µ
[
Gνσ]

]
= (Rω)b[µG

ν
σ]Lb←−

[
Rρν

]
= −Rρνϵz[µ

νδzσ] cosh a, (3.110)

so that

∇[µ

[
(RG)ρσ]

]
= 0. (3.111)

Important in its own right, this result we discuss further in the next section; for the present, what it
does is to confirm that the isotropic measurement Laplacian has the Cartan expression 3.102.

3.4 The Cartan-Weyl basis: Meanings of the commutator, refreshed
The purpose of this subsection and the next is to elaborate on the differential geometry present in
the Cartan expression of the isotropic measurement Laplacian. For the reader who wants to get to
the main result, the collapse of the isotropic measurement to the SCS POVM, as quickly as possible,
these two subsections should be skipped. On the other hand, the reader who wants to understand the
Kraus-operator geometry of SL(2,C) should read these two sections without fail.
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Although every quantum scientist appreciates a good singular-value decomposition, it is fair to
say that most do not consider its differential or topological aspects explicitly. We say “explicitly”
because these differential and topological aspects were ultimately, but not originally [65], realized
to be algebraic in nature. In particular, the geometry and topology of the 6-dimensional manifold
SL(2,C) (and all subsequent quotients thereof) are entirely a function of the Lie algebra sl(2,C) of
right-invariant derivatives. Quantum information scientists will, almost by definition, have a thorough
familiarity with this Lie algebra, but instead as the commutators of Pauli matrices. For this very
reason, it seems worth taking a moment to comment on the features of sl(2,C) as they are interpreted
for understanding motion in the manifold of Kraus operators, SL(2,C), and the 3-hyperboloid of
positive operators, SU(2)\SL(2,C). Specifically, these considerations are important for revealing a
perspective contained in equations 3.66–3.68 and 3.72–3.76 of the preceding section.

To prepare for the general analysis in the sequel [19], we will use general notation here, but spe-
cialized at every step to SU(2) and its complexification SL(2,C). Thus let G◦ = SU(2) be a compact,
connected Lie group, with Lie algebra g◦ = su(2), and G = SL(2,C) be its complexification, with
Lie algebra g = sl(2,C) = su(2) ⊕ isu(2). Linearly independent generators of SU(2) are the anti-
Hermitian angular-momentum components Lb = −iJb = −iσb/2, where the σbs are the standard Pauli
matrices, and the generators of SL(2,C) are these anti-Hermitian generators plus the Hermitian gen-
erators Jµ. The local subspaces of the isotropic measurement Laplacian are spanned by the Hermitian
right-invariant vector fields, ig◦←−

.
The map from Kraus operators to POVM elements is a global projection,

π : G −→ E ≡ G◦\G, where π(K) = K†K, (3.112)

which defines G to be a fiber bundle with fibers π -1(E) ∼= G◦ corresponding to the postmeasurement
unitaries. There are various diffeomorphic right inverses or global “(cross)sections” of this projection,
the most distinct being the positive square root,

σ : E −→ G, where σ(E) =
√
E. (3.113)

Whatever global section one considers, its tangent spaces, by the very definition of the section, have
integrable Lie algebras, and this means, in particular, that the subspaces ig◦←−

of the isotropic mea-
surement Laplacian, which are nonintegrable, are never tangent to any global section. This is the
differential manifestation of the simple fact that the product of two positive operators isn’t positive.
Although nonintegrable, the span of the isotropic measurement Laplacian is still quite manageable,
because the support of the POVM is a symmetric space. Specifically, the support G◦\G is a so-called
type-IV symmetric space (originally called a “space-E” by Cartan,) the geometry and topology of which
are entirely contained in the details of the Cartan-Weyl basis for G.

Let us now transcribe the Lie algebra of standard Pauli matrices into a notation that is standard
and more suited to the theory of symmetric spaces. In particular, let

k = g◦ = su(2) = span{−iJa} and p = ig◦ = isu(2) = span{Jµ}, (3.114)

so g ≡ sl(2,C) decomposes as a linear direct sum

g = g◦ ⊕ ig◦, (3.115)

orthogonal under the Killing form 2.53. Most importantly, this direct sum is not algebraic, as the
terms are not commuting Lie algebras, but rather

[g◦, g◦] ⊂ g◦, (3.116)
[g◦, ig◦] ⊂ ig◦, (3.117)

[ig◦, ig◦] ⊂ g◦. (3.118)
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Geometrically, equation 3.118, supplemented by equation 3.117, means that isu(2) generates local
translations in the three-hyperboloid of POVM elements; equations 3.116 and 3.117 mean that su(2)
generates local rotations. Lie algebras with this structure are called a symmetric pair or Cartan pair,
usually just denoted k ⊂ g.7 Cartan pairs for which p ∼= ik, as here, are called “type IV.”

The ability to complexify and the consequent existence of Hermitian conjugation are fundamental
to this entire structure. In the general symmetric-space setting, the relevant conjugation is a so-called
Cartan involution ι : g → g. For type-IV symmetric pairs, the Cartan involution is simply related to
Hermitian conjugation,

ι(X) = −X†. (3.119)

The fundamental theorem of symmetric pairs is that the subgroup K = eadk , generated by the
even subalgebra k = {X ∈ g : ι(X) = +X}, “diagonalizes” the odd term p = {X ∈ g : ι(X) = −X}.
Geometrically, this means that the space around a singular point is swept out by the symmetry
of that singular point in a way such that the orbits commute. This notion of commuting orbits is a
generalization of the radius, where the orbits are concentric spheres, and includes the notion of singular
values (where the orbits are concentric flag manifolds.) In this general setting, “radii” are generated
by a maximally commuting Cartan subalgebra,

a ≡ span{Jz}, (3.120)

in which case the angular directions are spanned by

[k, a] = span{Jx, Jy}, (3.121)

so that the tangent space of translations of the type-IV symmetric space, here the 3-hyperboloid, is
spanned by

p = a⊕ [a, k]. (3.122)

Perhaps the second fundamental theorem of symmetric pairs should be that the Cartan subalgebra
with equation 3.117 defines conjugate rotations which pair with the angular translations. In this
sense, equation 3.68 is a species of generalization of Kepler’s second law. It is standard to define the
centralizer

m ≡
{
X ∈ k :

[
a,X] = 0} = span{−iJz}, (3.123)

in which case
k = m⊕ [a, p]. (3.124)

The commutators in equations 3.122 and 3.124 indicate how to pair each angular translation with
an associated local rotation. In particular, the commutation relations,

adJz
(Jy) = −iJx and ad2

Jz
(Jy) = Jy, (3.125)

adJz
(Jx) = iJy and ad2

Jz
(Jx) = Jx, (3.126)

mean that the rotation −iJx is conjugate to the angular translation Jy and iJy is conjugate to Jx.
The sums and differences of these conjugates,

−iJ+ = Jy − iJx and J+ = Jx + iJy, (3.127)
iJ− = Jy + iJx and J− = Jx − iJy, (3.128)

are C-linear. These generators, said to be parabolic because

eJ+xJ−e
−J+x = J− + Jz2x− J+x

2, (3.129)

7The funny symbol k is a polish hook, which stands for the letter “k” in fraktur font; it should be pronounced as “k.”
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are more familiar to quantum physicists as Weyl generators for their algebraic ladder operator prop-
erties, used as a foundation for calculating quantum-theoretical predictions [6]. Together with the
Cartan subalgebra a = span(Jz), the parabolic generators define the Cartan-Weyl basis, which is
usually presented by the terse, but full commutation relations,

[Jz, J±] = ±J± and [J+, J−] = 2Jz. (3.130)

The parabolic generators are also at the heart of the Iwasawa decomposition [8].
The structure of conjugate rotations and translations, together with the Cartan subalgebra, is

expressed directly and elegantly in the Cartan (singular-value) decomposition 3.62 of the Kraus op-
erator, which plays out further in equations 3.72–3.76 and the subsequent analysis there, particularly
in the way the gauge freedom, m, is handled with the introduction of the differential operators eµ in
equation 3.91. To put this explicitly within the context of derivative operators, one should develop the
Lie-bracket structure of the derivative operators. For that purpose, one starts by appreciating that
the Lie brackets of right-invariant derivatives of G = SL(2,C) are algebraically anti-homomorphic to
the matrix commutators of the corresponding generators. To see this, recall that a consequence of the
chain rule 3.48 is that the action of a right-invariant derivative on a point K ∈ G reports everything
about that derivative’s action on any function f(K). Thus for X,Y ∈ g,

Y←−
[
X←−[K]

]
= Y←− [XK] = XY←− [K] = XYK, (3.131)

implying that
[Y←−,X←−] = [X,Y ]

←−−−−
= −[Y ,X]
←−−−−

. (3.132)

The minus sign is a feature of right-invariant derivatives. For the left-invariant derivative X−→, defined
by

X−→[f ](K) ≡ d

dt
f
(
KeXt

)∣∣∣
t=0

, (3.133)

one has
[Y−→,X−→] = +[Y ,X]

−−−−→
. (3.134)

The right-invariant derivatives that naturally diagonalize the isotropic measurement Laplacian 3.53
and postmeasurement unitary Laplacian 3.57 have Lie brackets that mirror the commutator structure
in equations 3.116–3.118: [

Lb←−
,Lc←−
]

= −[Lb,Lc]←−−−−
= −ϵbc

dLd←−
, (3.135)[

Lb←−
, Jα←−
]

= −[Lb, Jα]
←−−−−

= −ϵbα
βJβ←−

, (3.136)[
Jα←−

, Jβ←−
]

= −[Jα, Jβ ]
←−−−−−

= ϵαβ
bLb←−

. (3.137)

It is illuminating to consider the analogous Lie-bracket structure for the derivatives ∇ν = (RG)µνJµ←−
that appear in the Cartan expression 3.102 of the isotropic measurement Laplacian,[

∇µ,∇ν
]

= (RG)ρµ(RG)σν
[
Jρ←−

, J←−σ
]

+∇[µ
[
(RG)ρν]

]
Jρ←−

= (RG)ρµ(RG)σνϵρσ
bLb←−

= ϵρσ
cGρµG

σ
νR

b
cLb←−

= Fµν
cRbcLb←−

,

(3.138)

[
Lb←−

,∇ν
]

= (RG)µν
[
Lb←−

, Jµ←−
]

+ Lb←−
[Rµλ]GλνJµ←−

= 0, (3.139)
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where

Fµν
c ≡ ϵρσ

cGρµG
σ
ν (3.140)

is a transformed version of the structure constants. The derivatives ∇µ act both on the postmeasure-
ment unitary and across the symmetric space. They appear in the isotropic measurement Laplacian
as the differential manifestation of the basic feature that the product of two positive operators isn’t
generally positive, so that diffusion across the 3-hyperboloid of the POVM results in diffusion into the
postmeasurement unitary. Equation 3.138, which follows from equation 3.111, means that the ∇µs
afford the isotropic measurement Laplacian the Cartan expression 3.102. Equation 3.139 means that
the derivatives ∇µs are “extra-normal” to the Lb←−

in a way that we now describe.
Both the right-invariant derivatives Jµ←−

and the derivatives ∇µ are vector fields that are locally,

everywhere in SL(2,C), “Minkowski-orthogonal” to the postmeasurement fibers, in the sense of the
metric 2.53. They span, at every point in SL(2,C), a local 3-surface, orthogonal to the postmea-
surement fiber and into which the diffusion occurs. The fundamental nonintegrability of the diffusion
is that these 3-surfaces do not mesh to form global 3-submanifolds. Relative to the right-invariant
derivatives Jµ←−

, the ∇µs are rotated along the fiber and rescaled along the radial coördinate a so that

they commute with the fiber derivatives, as displayed in equation 3.139, and thus can be thought of
as “extra-normal” to the fiber derivatives.

To appreciate further the profound significance of the ∇µs, it is best to get beyond the blizzard of
indices and to compare explicitly, in the spirit of this section, the Lie brackets of the right-invariant
derivatives Jµ←−

with those of the ∇µs:[
Jz←−

, Jx←−
]

= Ly←−
,[

Jz←−
, Jy←−
]

= −Lx←−
,[

Jx←−
, Jy←−
]

= Lz←−
,

[
∇z,∇x

]
= − sinh aRbxLb←−

,[
∇z,∇y

]
= − sinh aRbyLb←−

,[
∇x,∇y

]
= − sinh2aRbzLb←−

.

(3.141)

Here one sees quite directly the effect of the rescaling and rotation on the ∇µs.
It is instructive, though not strictly necessary for this article, to recast the work of section 3.3 in

terms of a different set of partial derivatives, matched to the polar decomposition 3.65 instead of to
the singular-value decomposition 3.62. Thus let ∂a be the derivative with respect to a holding U and
W constant (hence, U and V constant), let Lb←−

2 = −iJb←−−
2 be the right-invariant derivative of W holding

A = aJz and U constant, and let Lα←−
3 = −iJα←−−−

3 be the right-invariant derivative of U holding W and
A constant. Going through the same steps as in section 3.3 gives us

Lb←−
2[K] = Lb←−

2[W ]
√
E = LbK = Lb←−

0[K], which implies Lb←−
2 = Lb←−

0 = Lb←−
, (3.142)

Lα←−
3[K] = WLα←−

3[U -1]eAU +WU -1eALα←−
3[U ]

= −V LαV
-1K + V eALαe

−AV -1K

= iJbKR
b
α + V

(
eadA(Lα)

)
V -1K

= −Lb←−
0[K]Rbα + Lα←−

1[K],

which implies Lα←−
3 = Lα←−

1 − Lb←−
Rbα. (3.143)

These relations include the matrix R that represents V ; it might be useful to introduce the matrix
representatives of W and U , but it is not necessary, provided one keeps in mind that R is a function
of V .

As in equation 3.88, the α = z component of equation 3.143 expresses the local gauge freedom 3.89,

Lz←−
3 = Lz←−

1 − Lb←−
Rbz = 0, (3.144)
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and as before, it is natural to define a new derivative operator fµ, which incorporates both the radial
and angular displacements on the 3-hyperboloid,

fz ≡ ∂a = ez and fα ≡ Lα←−
3 = eα − Lb←−

0Rbα for α = x, y, (3.145)

so that

fµ = eµ + Lc←−
Rcb(P

b
µ − δ

b
µ) = Jµ←−

RµνG
ν
λ + Lc←−

Rcb
(
ωbµ + P bµ − δ

b
µ

)
. (3.146)

What all this emphasizes is that the angular displacements in the 3-hyperboloid cannot be cleanly
separated from the postmeasurement unitary and thus local gauge transformations, such as that in
equation 3.146, occur in going between holding W fixed and V fixed.

As a prelude to the rest of our discussion, we draw attention to something the reader has probably
realized: the projector P bµ is used to project onto the radial displacements on the 3-hyperboloid, and
its complement, δbµ − P bµ, is used to project onto the corresponding angular displacements. The
ubiquitous presence of these projectors is an expression of the Cartan-Weyl basis and of the gauge
freedom in the singular-value and polar decompositions. Given this understanding, it is instructive
to compare the matrix ωbµ of equation 3.93, which appears in eµ, with the comparable matrix that
appears in fµ,

ωbµ + P bµ − δ
b
µ =

0 0 0
0 cosh a− 1 0
0 0 cosh a− 1

 . (3.147)

Both matrices involve a projection onto the angular displacements, meaning that it is only the angular
displacements on the 3-hyperboloid, not the radial displacement, that get mixed with the postmea-
surement unitary. More informative is to look at the derivatives

∇µ = eµ − Lc←−
Rcbω

b
µ

= fµ − Lc←−
Rcb
(
ωbµ + P bµ − δ

b
µ

)
= Jλ←−

RλνG
ν
µ.

(3.148)

The angular displacements of ∇µ are everywhere extra-normal to the postmeasurement unitary, as
we have already discussed in connection with the Lie brackets in equation 3.139. This is why these
derivatives appear in the Cartan expression of the isotropic measurement Laplacian. More to the
point, to give credit where credit is due, the isotropic measurement Laplacian identifies the directions
of displacements that are Minkowski orthogonal to the postmeasurement unitary and picks out the
particular rotation and rescaling of the derivatives that give rise to the Cartan expression.

3.5 Visualizing the Kraus-operator geometry of SL(2,C) via SL(2,R)
This section is devoted to visualizing the Kraus-operator geometry of the 6-dimensional SL(2,C) by
restricting to the subgroup SL(2,R), whose 3 dimensions are depicted in figure 3(a). The Kraus
operators in the subgroup SL(2,R) comprise the set{

K = e−iJyψeJzae−iJyϕ
}

= SL(2,R), (3.149)

where Jk = 1
2σk, and the σks are the standard Pauli matrices. The 2× 2 Pauli matrices define the so-

called defining representations of the abstract manifolds SL(2,C), SL(2,R), and SU(2). With respect
to the Cartan decomposition K = V eaJzU of equation 3.62, SL(2,R) is equivalent to restricting the
postmeasurement unitary to be V = e−iJyψ and the POVM unitary to be U = e−iJyϕ. For fixed a,
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Figure 3: Depiction of the geometry of 6-dimensional SL(2,C) by restricting to the 3 dimensions of SL(2,R).
This means restricting to one dimension in the postmeasurement-unitary fiber, that is, replacing SU(2) with SO(2),
and restricting to one dimension of angular displacement in the 3-hyperboloid, leaving the 2-hyperboloid E =
SO(2)\SL(2,R). The text of section 3.5 is an extended caption for this figure; the reader should look there for a full
explanation and discussion of what is going on here. (a) The three dimensions of SL(2,R). The horizontal plane
is the square-root embedding of the 2-hyperboloid, with the concentric circles being surfaces of constant radial
coördinate a; the vertical cylinder is a torus that represents the postmeasurement-unitary fibers for a particular
value of a. (b) The torus of (a) unfolded to be a flat plane with the boundaries periodically identified; vectors that
describe motion within the torus are indicated. (c) The torus of (b) for different values of radial coördinate a, with
the common feature being that the purple “light cone” of null vectors is held fixed at 45◦ as a varies. From the left,
cosh a = 1, cosh a = 2, cosh a = 4, and cosh a → ∞.

the pair (U ,V ) is diffeomorphic to a 2-torus, depicted in figure 3(a) as a cylindrical shell with periodic
boundary conditions, which in figure 3(b) is cut again and laid flat onto a rectangle. The red lines
are the orbits of V holding U constant, with the direction of increasing ψ up and to the right. The
blue lines are the orbits of U holding V constant, with the direction of increasing ϕ up and to the
left. In particular, the red lines are the postmeasurement-unitary fibers of the projection defined in
equation 3.112.

Relative to the polar decomposition K = W
√
E of equation 3.65, the SL(2,R) restrictions are that

W = V U = e−iJy(ψ+ϕ) and
√
E = U -1eJzaU = eiJyϕeaJze−iJyϕ = ea(Jz cosϕ−Jx sinϕ). (3.150)

The concentric circles around the identity in figure 3(a) are the points
√
E = U -1eJzaU , which are
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the positive-square-root “(cross)section” (defined in equation 3.113) of the POVM manifold, E , which
for SL(2,R) is restricted to a 2-hyperboloid. The a → ∞ limit of the 2-hyperboloid comprises (real,
positive, and infinite) multiples of the SCS projectors. In figure 3(a), the boundary is brought in from
infinity to the dotted circle. On the dotted circle are labeled, in qubit notation, the eigenstates of σz,
|0⟩ and |1⟩, and the eigenstates of σx, |±⟩ = (|0⟩ ± |1⟩)/

√
2. For a spin-j system, these states would

be |0⟩ = |j, ẑ⟩, |1⟩ = |j,−ẑ⟩, and |±⟩ = |j,±x̂⟩. The torus has a vertical axis labeled by ψ + ϕ and
a horizontal axis labeled by ψ − ϕ; the range of these angular coördinates is −2π ≤ ψ + ϕ < 2π and
−2π ≤ ψ − ϕ < 2π, with values increasing up and to the right.

Several vector fields, introduced as derivatives in sections 3.3 and 3.4, are shown. The black arrows
pointing away from the identity in figure 3(a) are the radial partial derivatives ∂a = ∇z. In figure 3(b),
Ly←−

0 = Ly←−
, as the partial derivative with respect to ψ holding a and ϕ fixed, is represented by the little

red arrows pointing up along the red orbits of V , and ey = Ly←−
1, as the partial derivative with respect

to ϕ holding a and ψ fixed, is represented by the little blue arrows pointing up along the blue orbits
of U . The purple arrows pointing to the left along the solid black line show the vector

Ly←−
3 = fy = ey − Ly←−

, (3.151)

which is the partial derivative with respect to ϕ holding ψ + ϕ and a fixed.
The Kraus-operator diffusion occurs along the directions given by the right-invariant derivatives

Jz←−
and Jy←−

. Finding these vectors is done most easily by using equations 3.90 and 3.91,

ez = ∂a = Jz←−
cosψ + Jx←−

sinψ ≡ Jz,ψ←−−
, (3.152)

ey = Ly←−
1 = Ly←−

cosh a− (Jx←−
cosψ − Jz←−

sinψ) sinh a. (3.153)

It is helpful to define the vector

Jx,ψ←−−
≡ Jx←−

cosψ − Jz←−
sinψ = Ly←−

coth a− ey csch a (3.154)

and to appreciate that Jz,ψ←−−
and Jx,ψ←−−

are linear combinations of Jz←−
and Jx←−

, rotated along the post-

measurement-unitary fiber so that Jz,ψ←−−
= ∂a = ∇z always points radially orthogonal to the tori and

Jx,ψ←−−
is always tangent to the tori and thus can be depicted as the small dark gray arrow in figure 3(b).

Of the derivative operators defined in equation 3.96, which give the Cartan expression of the isotropic
measurement Laplacian, the one in SL(2,R) that is important to us now is the angular derivative

∇y = ey − Ly←−
cosh a = −Jx,ψ←−−

sinh a, (3.155)

which points oppositely to Jx,ψ←−−
and has length scaled by sinh a. The dotted red arrow in figure 3(b)

shows how adding an appropriate multiple of Ly←−
to ey gives the vectors fy and ∇y.

One more ingredient completes the diagrams in figure 3, and that is the “light-cone” structure of
the fiber-bundle’s metric 2.53. The vectors Ly←−

and Jx,ψ←−−
have the same length and are “Minkowski-

orthogonal” according to this metric. Thus the vector

Ly←−
+ Jx,ψ←−−

= Ly←−
(1 + coth a)− ey csch a (3.156)

is a null vector and points along the light cone. The light cone is the only special structure on the
torus, so we put it at 45◦. This sets the aspect ratio of the torus, with the ratio of the horizontal
dimension to the vertical dimension in figure 3(b) given by tanh(a/2). The light cone is depicted by the
purple lines in figure 3(b). All the vectors depicted in figure 3(b), except fy, change direction relative
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to the light cone as a changes. The change in aspect ratio is shown in figure 3(c), where the four
diagrams are, from left to right, for cosh a = 1, cosh a = 2, cosh a = 4 (this is the case also depicted
in figure 3(b)), and cosh a → ∞. For a = 0, the torus collapses to the line that runs up the center of
figure 3(a). For a → ∞, the torus becomes a square and all the indicated vectors, except fy, become
null vectors.

At each point in SL(2,R) the Kraus operators diffuse into the plane spanned by ∂a and Jx,ψ←−−
(recall

equation 3.56). This plane, which is also spanned by ∇z and ∇y, is Minkowski-orthogonal to the
postmeasurement-unitary fiber (red line). As the center of the plane is pushed along the torus by the
path generated by Jx,ψ←−−

, the spanning vectors rotate around the center of the plane. The diffusion is

nonintegrable because the winding path does not close and because the pinwheeling planes do not mesh
for neighboring values of a. Further, it is really quite blissful to appreciate how the diffusion along
Jx,ψ←−−

, tangent to the torus, divides neatly into the two pieces in equation 3.154: the term Ly←−
coth a

describes diffusion of the postmeasurement unitary V , and the term −ey csch a describes diffusion of
the POVM unitary U ; the coth a and csch a recur in equations 3.214 and 3.215 of the SDE analysis in
section 3.7, where they describe, as here, the a-dependent size of these two sorts of diffusion.

It is instructive to comment briefly on what is lost by going from 6-dimensional SL(2,C) to 3-
dimensional SL(2,R). The postmeasurement-unitary fibers in SL(2,C) are diffeomorphic to the sub-
group SU(2), which has the geometry of a 3-sphere. The 3-sphere has a polar angle α, which can be
regarded as a radial direction in the fiber, and 2-spheres as “circles of latitude” at each value of α. When
going from SL(2,C) to SL(2,R), one loses the 2-spheres, but retains the full circles parametrized by
the polar angle, which become the SO(2) fibers of red lines depicted in figure 3(b). The 3-hyperboloid
becomes a 2-hyperboloid, losing one dimension of angular displacement; the nested 2-spheres of the
3-hyperboloid are replaced by the nested circles of figure 3(a). The story of diffusion in SL(2,R) is one
of motion in the radial direction of the 2-hyperboloid and 1-dimensional motion within the torus that
combines the circles of the fiber with the circles of the 2-hyperboloid. The motion within the torus
is along the line that is Minkowski-orthogonal to the postmeasurement-unitary fiber. The story in
SL(2,C) is essentially the same: there is diffusion along the radial direction of the 3-hyperboloid and
diffusion along 2-surfaces in the four angular dimensions (the “circles of latitude” in both the fiber and
the symmetric space), these 2-surfaces picked out by being Minkowski orthogonal to the SU(2) fibers.

3.6 Fokker-Planck equations for the POVM
The POVM distribution is a marginal of the Kraus-operator distribution and thus satisfies an induced
diffusion equation. The set of Kraus operators K that map to the same POVM element E = K†K are
parameterized exactly by a postmeasurement unitary. Formally these sets are preimages of the global
positive projection 3.112,

π : G −→ E ∼= G◦\G, defined by π(K) = K†K, (3.157)

where for the continuous isotropic measurement of spin, G ∼= SL(2,C) and G◦
∼= SU(2) due to the

submanifold closure. In particular, each preimage has a prototypical shape π -1(E) ∼= G◦ called the
fiber, thus making the set of Kraus operators a so-called fiber bundle. Since the fiber is itself a
group, the Kraus operators are more specifically called a principal bundle [52, 66]. The representation-
independent nature of this partition of the Kraus operators is important to appreciate. We issue a
reminder that although we are here restricting to the submanifold of Kraus operators explored by the
isotropic measurement, isomorphic to SL(2,C), Kraus operators over the entire Hilbert space could
just as well be considered.

By this marginalizing structure, the sum over Kraus operators can be partitioned into a sum over
the range of POVM elements of sums over each preimage,∫

SL(2,C)
dµ(K) =

∫
E
dµ
(
E
) ∫

π
-1(E)

dµE(K). (3.158)
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In particular, if we consider the polar decomposition 3.65 of the Kraus operators,

K = W
√
E, (3.159)

the postmeasurement unitaries W = V U represent the Lie group SU(2), whereas the radial factors√
E = U -1eaJzU represent the manifold of positive operators,

E = eisu(2) =
{
eσµβ

µ

: βµ ∈ R
}

, (3.160)

equivalent in differential geometry to the type-IV symmetric space “A1,” homeomorphic to the 3-
hyperboloid [58]. Thus for any function f : SL(2,C)→ C we can more specifically write the partition
as ∫

SL(2,C)
dµ(K) f(K) =

∫
E
dµ
(
E
) ∫

SU(2)
dµ(W ) f

(
W
√
E
)
. (3.161)

As such, the principal-fiber structure offers the induced marginal function f̄ : E → C a simple integra-
tion formula

f̄
(
E
)

=
∫
SU(2)
dµ(W ) f

(
W
√
E
)

, (3.162)

for which ∫
E
dµ
(
E
)
f̄
(
E
)

=
∫
SL(2,C)
dµ(K) f(K). (3.163)

Having brought forth the integral relationship between functions of Kraus operators and functions
of POVM elements, it is important to bring forward their differential relationship as well. The marginal
properties induced by the polar decomposition give the Kraus operators a type of product structure,
but the conditional nature of the fibers means that they are only loosely adjacent, a feature which
introduces a differential subtlety. Specifically, for any map π, a function F over its range defines a
unique “lifted” function F̂ over its domain,

F̂ (K) ≡ F
(
π(K)

)
, (3.164)

constant across each preimage. This is an important subtlety that should be kept in mind whenever
one considers the fundamental homeomorphism between a homogeneous space and the corresponding
coset space. Particular to our position projection 3.157, every function of POVM elements can be
thought of as a postmeasurement-unitary-invariant function of Kraus operators, which differentially
means

Lb←−
[F̂ ] = 0. (3.165)

The isotropic measurement Laplacian of equation 3.102 applied to such a function thus reduces to

∆[f̂ ] = 1√
det g

eµ

[√
det g gµνeν

[
f̂
]]

, (3.166)

which is the standard Beltrami Laplacian of the symmetric space E . In writing the Beltrami Laplacian,
we use the derivative operators eµ, but we could equally well substitute fµ or ∇µ for eµ or, indeed, ∇µ
plus any fiber- and E-dependent linear combination of the fiber derivatives Lb←−

(see dotted red arrow
in figure 3(b)).

Although implied, this is not quite enough to establish that the POVM evolves according to a
diffusion equation generated by the Beltrami Laplacian. To this end, consider the marginalized POVM
distribution function,

Dt

(
E
)
≡
∫
SU(2)
dµ(W )Dt

(
W
√
E
)
. (3.167)
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The base measure in the integral 3.161 for the POVM can be further partitioned into radial and angular
integrals, ∫

E
dµ
(
E
)
Dt

(
E
)

=
∫
R+
da sinh2a

∫
SU(2)
dµ(U)Dt

(
U -1e2aJzU

)
. (3.168)

(By differentiating the Cartan decomposition for the symmetric space, this integration formula can
be derived in a way analogous to the more common Weyl integration formula for semisimple groups.)
In this further partitioning into radial and angular integrals, the integral over unitaries U could be
restricted to an integral over the angular displacements D(n̂) of equation 1.2 (since rotations about
the z axis have no effect) and would therefore become the standard integral over spherical polar
coördinates, θ and ϕ. It is often convenient, however, to allow the integral over U to run over all of
SU(2), as written above, keeping in mind our convention that the integration measure is chosen so that
such integrals are normalized to unity. In addition, the integration of a over positive real numbers,
natural for regarding a as a radial coördinate, could be extended to all real numbers, with the resulting
double counting accounted for by introducing a factor of 1/2. The positive and negative parts of a are
the simplest example of what are known as Weyl chambers.

To derive the temporal evolution of the POVM, we could work with the polar decomposition,
marginalizing over W , but since we have been working more with the Cartan (singular-value) decom-
position, it is useful to switch to it by changing variables from W to V = WU -1to in the marginal
integration,

D̄t(E) = Dt

(
U†e2aJzU

)
=
∫
SU(2)
dµ(V )Dt

(
V eaJzU

)
. (3.169)

The temporal evolution follows from the diffusion equation 3.55,

∂Dt

(
E
)

∂t
=
∫
SU(2)
dµ(V ) ∂Dt(K)

∂t
= γ

2

∫
SU(2)
dµ(V ) ∆[Dt](K). (3.170)

The remainder of the calculation is about moving the marginal integral over V through the derivatives
in ∆. Plugging in the Cartan expression 3.103 of the isotropic measurement Laplacian gives, for any
function f(K) and its marginal f̄(E),∫

SU(2)
dµ(V ) ∆[f ](K) = 1

sinh2a

∂

∂a

[
sinh2a

∂f̄
(
E
)

∂a

]
+ 1

sinh2a

∑
α=x,y

∫
SU(2)
dµ(V )∇α

[
∇α[f ]

]
(K). (3.171)

For α = x, y, we have∫
SU(2)
dµ(V )∇α

[
∇α[f ]

]
(K) =

∫
SU(2)
dµ(V )

(
Lα←−

1 − cosh aRbαLb←−
0
)[(

Lα←−
1 − cosh aRbαLb←−

0
)[
f
]]

(K)

= Lα←−
1
[
Lα←−

1[ f̄ ]](E )− 2 cosh aLα←−
1
[ ∫

SU(2)
dµ(V )RbαLb←−

0[f]](K)

+ cosh2a

∫
SU(2)
dµ(V )RbαLb←−

0
[
RcαLc←−

0[f]](K)

= Lα←−
1
[
Lα←−

1[ f̄ ]](E ).
(3.172)

The final equality comes from using the anti-self-adjointness of the derivatives Lb←−
0 on their SU(2)

domain, ∫
SU(2)
dµ(V )RbαLb←−

0[f] = −
∫
SU(2)
dµ(V )Lb←−

0[Rbα]f = 0, (3.173)
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which vanishes because Lb←−
0[Rbα] = ϵbβ

bRβα = 0. Having moved the integral over V through all the

derivatives, we arrive at the Beltrami Laplacian on the marginalized function f̄
(
E
)
,∫

SU(2)
dµ(V ) ∆[f ](K) = 1

sinh2a

∂

∂a

[
sinh2a

∂f̄

∂a

]
+ 1

sinh2a

(
Lx←−

1
[
Lx←−

1[ f̄ ]]+ Ly←−
1
[
Ly←−

1[ f̄ ]])
= 1√

det g
eα

[√
det g gαβeβ

[
f̄
]]

,
(3.174)

where it is helpful to recall the definition 3.90 of the derivatives eα. The POVM distribution function
Dt(E) thus satisfies a diffusion equation generated by the Beltrami Laplacian,

∂Dt

∂t
= γ

2
1√

det g
eα

[√
det g gαβeβ

[
Dt

]]
. (3.175)

It is worth emphasizing that the geometry of the 3-hyperboloid of constant negative curvature, in
accord with the metric 3.101, is that of a radial coördinate a that measures distance between nested
2-spheres which have area ∝ sinh2a; the Beltrami Laplacian is the natural Laplacian for this geometry,
with the two angular derivatives making up the standard Laplacian on a 2-sphere.

The partitioning of POVM 3.168 suggests yet a further marginalization over the angular derivatives
on the 3-hyperboloid,

Pt(a) ≡ sinh2a

∫
SU(2)
dµ(U)Dt

(
U -1e2aJzU

)
, (3.176)

where the latter form follows from the isotropy of the POVM distribution function and the sinh2a is
included so that Pt(a) is normalized relative to da (the Haar measure of the additive R),∫

R+
daPt(a) = 1. (3.177)

One sees immediately that

sinh2a

∫
SU(2)
dµ(U)

∫
SU(2)
dµ(V ) ∆[Dt] = ∂

∂a

[
sinh2a

∂

∂a

[
Pt(a)
sinh2a

]]
= −2 ∂

∂a

[
coth aPt(a)

]
+ ∂2Pt(a)

∂a2 ,

(3.178)

which means that Pt(a) satisfies the Fokker-Planck equation,

∂Pt(a)
∂t

= −γ ∂
∂a

[
coth aPt(a)

]
+ γ

2
∂2Pt(a)
∂a2 . (3.179)

The first-derivative coth a term gives a a characteristically ballistic behavior; it is this ballistic behavior
that was missing from the analysis of [20].

It is important to appreciate that the diffusion equations for Dt(E) and Pt(a) follow directly from
marginalizing the diffusion equation 3.55 for the Kraus-operator distribution, Dt(K), with no need to
assume isotropy of the distribution functions. For the situation of primary interest, however, when
Dt(K) is isotropic, satisfying equation 3.27, the POVM distribution is also isotropic and thus specified
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entirely by Pt(a). The isotropy of the POVM distribution follows trivially from

Dt

(
UE U -1) =

∫
SU(2)
dµ(W )Dt

(
WU
√
E U -1

)
=
∫
SU(2)
dµ(W )Dt

(
U -1WU

√
E
)

=
∫
SU(2)
dµ(W )Dt

(
W
√
E
)

= Dt

(
E
)
,

(3.180)

and then, again trivially,

Dt

(
E
)

= Dt

(
U -1e2aJzU

)
= Dt

(
e2aJz

)
= Pt(a)

sinh2a
. (3.181)

The completeness of the continuous-isotropic-measurement POVM, expressed in equation 3.26, can
now take multiple forms:

e2γtJ⃗ 2

=
∫
SL(2,C)
dµ(K)Dt(K)K†K

=
∫

E
dµ
(
E
)
Dt

(
E
)
E

=
∫
R+
daPt(a)

∫
SU(2)
dµ(U)U -1e2aJzU

=
∫
SU(2)
dµ(U)U -1

(∫
R+
daPt(a)e2aJz

)
U .

(3.182)

Taking the trace of the last of these yields the interesting identity in a spin-j representation,∫
R+
daPt(a)Tr

(
e2aJz

)
= (2j + 1)e2γtj(j+1). (3.183)

This identity is considered further in [44].

As the singular parameter a gets large, eaJz approaches a multiple of a pure state. Specifically, for
a spin-j system this would be the one-dimensional projector onto the SCS |j, ẑ⟩. The POVM element
E = U -1e2aJzU approaches a multiple of the SCS determined by the angular displacement U -1. For
this reason, we call Pt(a) the measurement purity distribution. The Fokker-Planck equation 3.179 for
a indicates that, shortly after a collapse time 1/γ, Pt(a) becomes a Gaussian whose mean (increasing
ballistically) and variance (increasing diffusively) both grow as γt. Without any further analysis, this
already makes clear that the continuous isotropic measurement approaches the SCS POVM “almost
always” and “in not much time.”

We will quantify the approach to the SCS POVM more precisely in section 3.8. Before getting
to that analysis, however, we derive in the next section the SDEs for the various parts of the Cartan
decomposition of K. In particular, the Fokker-Planck equation 3.179 is the Kolmogorov forward
equation corresponding to the SDE for the radial coördinate a. Much easier to derive than the diffusion
equations, the SDEs also tell a story of the sample paths or trajectories—that is, how the Kraus
operator evolves as the outcomes of the continuous isotropic measurement are recorded.

3.7 Stochastic differential equations for each measurement record
Having described the continuous isotropic measurement as a whole in sections 3.2–3.6, it is time to
turn attention back to each Kraus operator and its corresponding POVM element as a function of
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the measurement as it is recorded. This can be done very elegantly by direct application of the
Cartan decomposition to the fundamental stochastic differential equation 3.15, stated again here for
convenience in terms of the MMCSD,

dK K -1 − 1
2(dK K -1)2 = J⃗ ·√γ dW⃗ . (3.184)

The Cartan decomposition is, in essence, equivalent to the singular-value decomposition of K, yet it
is different in emphasizing the differential and analytic perspectives provided by the representation-
independent group structure, rather than the spectral information in any given representation. Specif-
ically, the singular-value decomposition of any Kraus operator of the isotropic measurement is, by
closure of the Lie algebra and the Baker-Campbell-Hausdorff lemma, such that the unitaries repre-
sent elements of SU(2) and the positive diagonal is generated by the standard Jz, thus generating a
manifold diffeomorphic to SL(2,C). In particular, as in equation 3.62,

K(t) = V (t)eA(t)U(t), (3.185)

where U and V represent elements of SU(2), generated by the −iJµ, and A = aJz is Hermitian and
diagonal in the standard basis.

The SL(2,C) MMCSD on the left of equation 3.184 can be expanded in the factors of the Cartan
decomposition 3.185 by a basic application of the product and Itô rules for derivatives,

dK = dV eAU + V

(
dA+ 1

2(dA)2
)
eAU + V eAdU + dV dA eAU + V dAeAdU + dV eAdU . (3.186)

Here we use that A = aJz commutes with dA = da Jz to write deA =
(
dA + 1

2 (dA)2)eA. To get the
MMCSD, we first find

dK K -1 = V

(
V -1dV + dA+ 1

2(dA)2 + eAdU U -1e−A

+ V -1dV dA+ dA eAdU U -1e−A + V -1dV eAdU U -1e−A
)
V -1,

(3.187)

so

(dKK -1)2 = V

(
(V -1dV )2 + (dA)2 + eA(dU U -1)2e−A

+
{
V -1dV , dA

}
+
{
dA, eAdU U -1e−A

}
+
{
V -1dV , eAdU U -1e−A

})
V -1,

(3.188)

where {X,Y } = XY + Y X denotes an anticommutator. Therefore the SL(2,C) MMCSD of K is

dKK -1 − 1
2(dKK -1)2 = V

(
V -1dV − 1

2(V -1dV )2 + dA+ eA
(
dU U -1 − 1

2(dU U -1)2
)
e−A

+ 1
2

[
V -1dV , dA

]
+ 1

2

[
dA, eAdU U -1e−A

]
+ 1

2

[
V -1dV , eAdU U -1e−A

])
V -1

= V

(
V -1dV − 1

2(V -1dV )2 + cosh adA

(
dU U -1 − 1

2(dU U -1)2
)

+ dA+ sinh adA

(
dU U -1 − 1

2(dU U -1)2
)

+ 1
2

[
V -1dV , dA

]
+ 1

2

[
dA, eAdU U -1e−A

]
+ 1

2

[
V -1dV , eAdU U -1e−A

])
V -1.

(3.189)
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Now decompose the MMCSDs of the SU(2) elements V and U into stochastic terms, iV dΨV -1 and
−idΦ, and ballistic terms, iV GV -1dt and −iHdt, so then

dV V -1 − 1
2(dV V -1)2 = iV dΨV -1 + iV GV -1dt and dU U -1 − 1

2(dU U -1)2 = −idΦ− iHdt.
(3.190)

Transforming the stochastic and ballistic elements of the MMCSD for V is done so that the transformed
MMCSD that appears in equation 3.189 is

V -1dV − 1
2(V -1dV )2 = idΨ + iGdt; (3.191)

the appearance of this transformed MMCSD also accounts for the choice of opposite signs in the two
MMCSDs. Since the MMCSD of a unitary is anti-Hermitian, dΨ, dΦ, G, and H are all Hermitian.
Decompose dA as well into ballistic and stochastic parts,

dA = da Jz =
(
dα+ vdt

)
Jz. (3.192)

Substituting these decompositions into the second part of equation 3.189 expresses the SL(2,C)
MMCSD as

dKK -1 − 1
2(dKK -1)2 = V

(
idΨ− i cosh adA

(
dΦ
)

+ iGdt− i dt cosh adA(H)

+ dαJz − i sinh adA
(
dΦ
)

+ v dt Jz − i dt sinh adA(H)

+ 1
2

[
idΨ, dA

]
+ 1

2

[
dA,−ieAdΦ e−A

]
+ 1

2

[
idΨ,−ieAdΦ e−A

])
V -1.

(3.193)

To avoid any possible confusion, we note that G is not the matrix G introduced in equation 3.92 and
used throughout section 3.3.

There are many things to observe in equation 3.193. The first line is anti-Hermitian, whereas
the second line is Hermitian; therefore, the two sets of terms are R-linearly independent. Moreover,
−i sinh adA

(
dΦ + Hdt

)
is a linear combination of Jx and Jy, so these terms are linearly independent

of the Jz terms that arise from dA; this linear independence is already telling us that things come
apart naturally in terms of the Cartan-Weyl basis of section 3.4. The third line, consisting entirely
of commutators, is ballistic. Thus the strategy will be to solve for the stochastic terms on the first
two lines and to use those results to evaluate the ballistic terms on the third line, which allows one
then to find the relations among the ballistic terms on all three lines. Concerning the nature of the
overall conjugation by V that has been factored out, more observations can be made. Geometrically,
this corresponds to thinking of the MMCSD in terms of a basis of generators that we call the moving
frame. In terms of the POVM elements, E = K†K, the postmeasurement-unitary V is a gauge degree
of freedom. The POVM elements themselves are points in a type-IV symmetric space, which in this
case is a 3-hyperboloid.

Returning to the fundamental equation 3.184, it is very helpful to move the conjugation by V to
the right-hand side and there to decompose the measurement record in terms of the moving frame
introduced (inversely) in equation 3.79,

V -1J⃗ V ·√γ dW⃗ = J⃗ ·√γ dY⃗ , (3.194)

where the moving-frame Wiener increments are

dY µ = (R-1)µνdW
ν . (3.195)
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Starting, as promised, with the stochastic terms, we see that

0 = dΨ− cosh adA
(
dΦ
)
, (3.196)

√
γ dY z = dα, (3.197)

Jx
√
γ dY x + Jy

√
γ dY y = −i sinh adA

(
dΦ
)
. (3.198)

Expanding
dΦ = Jµdϕ

µ = J⃗ · d⃗ϕ, (3.199)

we can revisit equation 3.73 to find that

cosh adA
(
dΦ
)

= JbC
b
µdϕ

µ

= Jz dϕ
z +

(
Jx dϕ

x + Jy dϕ
y) cosh a,

(3.200)

sinh adA
(
dΦ
)

= iJνS
ν
µdϕ

µ

= iϵzµ
νJν dϕ

µ sinh a

= i(d⃗ϕ× J⃗ )z sinh a
= i
(
Jy dϕ

x − Jx dϕ
y) sinh a.

(3.201)

The global gauge transformation of the Cartan decomposition, expressed in equation 3.64, induces the
local gauge transformation

V -1dV → V -1dV − iJzdχ and dU U -1 → dU U -1 + iJzdχ. (3.202)

Let us fix the gauge locally by choosing
dϕz = 0, (3.203)

which is equivalent to the gauge choice recommended after equation 3.64. This gauge choice simplifies
equation 3.200 to

cosh adA
(
dΦ
)

= dΦ cosh a, (3.204)

Now equations 3.196 and 3.198 become

dΨ = cosh adA
(
dΦ
)

= dΦ cosh a, (3.205)

dΦ = i csch adA

(
Jx
√
γ dY x + Jy

√
γ dY y

)
=
(
Jx
√
γ dY y − Jy

√
γ dY x

)
csch a. (3.206)

These two equations, together with equation 3.197 determine all the stochastic terms in the MMCSD,
but it is perhaps instructive to write them as

dΦ = −√γ ϵzµ
νJνdY

µ csch a = −√γ(dY⃗ × J⃗ )z csch a, (3.207)

dΨ = −√γ ϵzµ
νJνdY

µ coth a = −√γ(dY⃗ × J⃗ )z coth a, (3.208)

or even more explicitly as

dϕz = 0,
dϕx = √γ dY y csch a,
dϕy = −√γ dY x csch a,

and
dψz = 0,
dψx = √γ dY y coth a,
dψy = −√γ dY x coth a,

(3.209)

where is introduced, in the obvious way, dΨ = Jµdψ
µ = J⃗ · d⃗ψ. It is quite important to point out

that in spite of the notation, these differentials, as well as the original differentials 3.207 and 3.208,
are not differentials of actual coördinates; nevertheless, for how they are used here, this subtlety has
no consequences.
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All this in hand, let’s return to the commutators on the third line of equation 3.193. The first
two commutators, though not zero, involve products of dY z with dY x and dY y and thus are zero
stochastically and can be omitted. The third commutator, in contrast, gives rise to an all-important
ballistic term,

1
2

[
idΨ,−ieAdΦ e−A

]
= 1

2
[

cosh adA
(
dΦ
)
, sinh adA

(
dΦ
)]

= −Jzγ dt coth a. (3.210)

Attending to the ballistic terms on all three lines of equation 3.193 leads to

0 = G− cosh adA(H), (3.211)
0 = sinh adA(H), (3.212)
0 = v − γ coth a. (3.213)

The second of these conditions says that H is proportional to Jz, and then the first says that G = H,
with the result that one can dispense with both G and H using the same gauge freedom already applied
to the stochastic terms.

The third equation is the important one, as it puts a ballistic term, corresponding to velocity
v = γ coth a, into the SDE for the radial coördinate a,

da = γ dt coth a+√γ dY z. (3.214)

This ballistic term was missed in the analysis of [20], and this SDE is the precise site of its omission.
One should recognize that the Kolmogorov forward equation for the radial SDE is the Fokker-Planck
equation 3.179. These equations both indicate that after roughly a collapse time τcollapse = 1/γ or
so, a is a Gaussian variable that grows ballistically as γt, with a variance that also grows as γt.
What happens during the initial collapse time is that a typical trajectory chooses a direction to move
ballistically outward on the 3-hyperboloid. This spontaneous choice of direction is contained in the
SDE for the POVM unitary U , which describes angular displacements on the 3-hyperboloid,

dU U -1 − 1
2(dU U -1)2 = −idΦ =

(
−iJx

√
γ dY y + iJy

√
γ dY x

)
csch a. (3.215)

Once the radial coördinate is moving ballistically and thus becoming large, the csch a term goes to
zero and hence freezes out the POVM unitary, thus choosing the direction of motion of the POVM
element along the 3-hyperboloid. The postmeasurement unitary V obeys a similar SDE, with the
crucial difference that csch a is replaced by coth a,

V -1dV − 1
2(V -1dV )2 = idΨ =

(
iJx
√
γ dY y − iJy

√
γ dY x

)
coth a. (3.216)

The early-time behavior of V is nearly the same as that of U , but once a is growing ballistically, coth a
goes to 1, and V moves randomly under the influence of the stochastic measurement records as long as
the continuous measurements continue to continue. More precisely, V moves randomly on the 2-sphere
of displacement operators D(n̂) of equation 1.2. In summary, this means that the continuous isotropic
measurement “almost always” and “in not much time” projects any initial state into an outer product
of SCSs, in which which the direction of the postmeasurement SCS, determined by V , is initially
correlated with the POVM SCS, i.e., with the direction U , but continues to wander randomly on the
2-sphere of SCSs under the influence of V .
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3.8 Exponentially fast collapse to the SCS POVM
In this section, surely an anti-climax at this point, we quantify the “collapse” of the continuous isotropic
measurement of spin to the SCS POVM to be exponential in time. The task is to quantify precisely how
the POVM element K†K = E = U -1e2aJzU approaches the 2-sphere boundary of the 3-hyperboloid
at infinity, where live the SCSs or, more precisely, infinite multiples of rank-one projectors that are
the SCSs. That the typical trajectory approaches the boundary at infinity is clear from the late-time
behavior of a.

To make things more precise, we introduce a measure of purity of a positive operator E. Letting
|ψ⟩ be the eigenvector of E with the largest eigenvalue, λ1, we define our measure of purity as the
maximum support of E on directions orthogonal to the dominant eigenvector,

PE ≡
max|ϕ⟩

(
⟨ϕ|E|ϕ⟩

∣∣ ⟨ϕ|ψ⟩ = 0
)

λ1
= λ2
λ1

, (3.217)

where λ2 is the second-largest eigenvalue of E. Note that we are now, for the first time in this article,
considering representation-dependent quantities, specifically |ψ⟩, λ1, and λ2. This purity satisfies
0 ≤ PE ≤ 1, with PE = 0 if and only if E = λ1|ψ⟩⟨ψ| is a multiple of a rank-one projector. One could
argue that this is not a very good measure of purity since a rank-two projector has the same purity
as a projector of any higher rank, but this argument doesn’t cut any ice for the case at hand, the
late-time behavior of the unnormalized thermal state E = U -1e2aJzU , where λ2 = e2a(j−1) = e−2aλ1
is exponentially smaller than λ1 and the other eigenvalues are exponentially smaller than λ2. Thus
we adopt as our measure of purity, PE = e−2a, and bound the probability that after a time T , PE is
larger than ϵ:

ProbT
(
PE > ϵ

)
= ProbT

(
a < ln(1/

√
ϵ )
)

=
∫ ln(1/

√
ϵ)

0
daPT (a). (3.218)

The reason the purity limits to zero is that after a collapse time or so, the ballistic motion of a,
characterized by the mean value of a growing as γt, dominates the diffusion of a, which leads to a
variance that grows as γt. Indeed, it is obvious that the purity of a typical trajectory goes to zero
exponentially as e−2γt. To make progress on the probability 3.218, we use the late-time, asymptotic
Gaussian form, PT (a) ∼ e−(a−γT )2

/2γT /
√

2πγT , giving the following sequence of steps:

ProbT
(
PE > ϵ

)
∼ 1√

2πγT

∫ ln(1/
√
ϵ)

0
da e−(a−γT )2

/2γT

≤ 1√
2πγT

∫ ln(1/
√
ϵ )

−∞
da e−(a−γT )2

/2γT

= 1
2erfc

(
γT − ln(1/

√
ϵ )√

2γT

)
≤
√

γT

2π
(
γT − ln(1/

√
ϵ )
)2 exp

(
−
(
γT − ln(1/

√
ϵ )
)2

2γT

)
.

(3.219)

All the inequalities here are strict, except the initial asymptotic expression. We suspect this, too, is
a strict upper bound, because the velocity v = γ coth a is always larger than the asymptotic velocity
γ, meaning that probability migrates ballistically away from the origin faster than what is contained
in the asymptotic Gaussian. Such rapid migration from the origin is inherent in a radial coördinate,
in order that probability not slop over into negative a. Indeed, the small-a version of the SDE 3.214,
da = γ dt/a+√γ dY z, is the SDE for a radial coördinate in three flat spatial dimensions undergoing
isotropic diffusion. Thus the actual velocity v = γ coth a > γ/a is always greater than the flat-space
radial velocity γ/a and, moreover, asymptotes to the nonzero measurement rate γ, thus providing the

Accepted in Quantum 2022-11-08, click title to verify. Published under CC-BY 4.0. 53



ballistic motion that drives the POVM element to purity in a representation-independent collapse time.
Nonetheless, we have not been able to demonstrate our suspicion that the first line of equation 3.219 is
a strict upper bound, so we just leave the asymptotics, reassured by the fact that the constant ballistic
velocity makes the bound so good that there is little reason to stress over making it better. Perhaps
the best way to write the bound is to let ϵ = e−γT , so that

ProbT
(
PE > e−γT

)
≲

√
2

πγT
e−γT/8, (3.220)

clearly demonstrating the exponential collapse of the POVM—and thus also the postmeasurement
state—to a SCS.

4 Conclusion and Transition
The initial objective of this article was to show, by building on and correcting the work of [20], that the
SCS POVM can be performed by continuous isotropic measurement of the three spin components—and
in doing so, to prepare for a similar consideration of the generalized coherent states of any compact,
connected Lie group [19]. Were this all that was accomplished, however, there would be no need for a
paper of anything like the length of this one. The length is justified, we believe, because the process
of fully understanding how the Kraus operators of the continuous isotropic measurement traverse
the fiber bundle that is a complex semisimple Lie group involves connections to and development and
application of various theoretical techniques, old and new, and uncovers the geometry of the symmetric
space of POVM elements and of the curved phase space on the boundary of the symmetric space. In
particular, the continuous-isotropic-measurement QOVM was naturally unravelled as a path integral
over the spin-component measurement records. These measurement records were shown to generate
Kraus-operator trajectories in the 6-dimensional manifold SL(2,C)—hence the Kraus-operator focus
of the analysis—thus revealing the semisimple unraveling and the representation-independent Kraus-
operator distribution function. The Kraus-operator trajectories were analyzed by equivalent diffusion-
equation and stochastic-differential-equation methods. Since SL(2,C) is a semisimple Lie group, these
methods of analysis could be carried out completely by use of the Kraus operator’s Maurer-Cartan form
and its Cartan (singular-value) decomposition. The diffusion-equation approach led to the isotropic
measurement Laplacian, which notably describes a nonintegrable diffusion that diffuses locally into
3-dimensional subspaces of SL(2,C), but globally explores the entirety of SL(2,C). The stochastic-
differential-equation method motivated the introduction of a modification of the Maurer-Cartan form,
a modification that matches it to the Itô stochastic calculus.

The chief result of all this analysis was that the continuous isotropic measurement collapses to
the SCS POVM “almost always” and “in not much time at all.” More precisely, the POVM element
of a trajectory gets exponentially close, as measured by purity, to the pure-state (Bloch) 2-sphere of
SCSs, sitting on the boundary at infinity of the 3-hyperboloid of POVM elements, and it does so at
an exponential rate given by the measurement rate γ of the continuous measurements. Moreover, the
nonzero collapse time is a necessary consequence of the curvature (inherent in the semisimplicity of
SL(2,C)) of the 3-hyperboloid and limiting 2-sphere of the POVM. Finally, if one thinks in terms of
states instead of Kraus operators, the postmeasurement state is also exponentially close to a SCS, with
a position on the 2-sphere that becomes uncorrelated from the POVM element in a time also on the
order of 1/γ. It is perhaps worth noting the technical point that the Bloch sphere at infinity is both
the Zariski boundary and the Borel fixed point of the manifold of Kraus operators.

The most striking feature of the analysis, we believe, is its representation independence—that is, it
did not require reference to any spectral information about the rotation generators, such as the usual
quantum numbers j and m. Instead, the analysis relied on the concepts of modern quantum mea-
surement theory, POVMs, Kraus operators, and superoperators, which are the quantum expressions of
very general concepts of states, processes, and measurements, concepts that have meaning outside of
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quantum theory. The Kraus operators never wander outside a submanifold diffeomorphic to SL(2,C),
independent of representation, which means that these general concepts were used in a way that is
really more “classical” or “prequantum” [24] than it is “quantum.”

Having discussed how and why the SCS POVM is performed by the continuous isotropic measure-
ment of the linear spin components, it becomes clear that this result applies to any unitary representa-
tion of any compact, connected Lie group. That this generalization becomes clear is because compact,
connected Lie groups have semisimple Lie algebras for which there is already a highly developed and
satisfying theory [8, 35, 43, 66]. The heart of the theory of semisimple Lie groups is in the so-called
Cartan-Weyl basis, which is more usually known to define a set of generalized ladder operators that are
great for calculating quantum-theoretical predictions [6]. Algebraically rich though it is, the Cartan-
Weyl basis was originally discovered for a very different purpose, which seems to have been forgotten
soon after its discovery [65]. This purpose was to generate a coördinate system for the symmetric
spaces and complex semisimple groups, of which the 3-hyperboloid of and SL(2,C) are examples. In-
deed, it is this original purpose for which we needed the Cartan-Weyl basis here: to demonstrate,
independent of quantum representation, that generalized continuous isotropic measurements perform
generalized-coherent measurements “almost always” and “in not much time at all.” Getting to that
demonstration of the Cartan-Weyl basis in its full generality is the subject of our next article. This
article, focusing on SU(2), broadly hints at the role of the Cartan-Weyl basis, in section 3.4, to set the
current analysis within the general context necessary for the sequel [19].

One point, perhaps obvious to all, yet still worth repeating, is that the continuous isotropic mea-
surement is not a von Neumann measurement. The thrust of this article and the next, though not
acted on explicitly in these two articles, is that physics, in general, and quantum theory, in partic-
ular, is founded on (generally curved) phase spaces, the GCSs that live on those spaces, and the
continuous isotropic measurements of group generators that identify the GCSs. From this perspective,
von Neumann measurements, originally thought to be fundamental, are viewed as very far from that
and are decidedly secondary to phase-space measurements, exemplified by the continuous isotropic
measurement of group generators that leads to coherent measurement of the GCS POVM.

In this vein, we meditate briefly on the distinction between “position” measurements and coherent-
state measurements. For wavefunctions on the real line, these terms have obviously distinct meanings.
Yet it should be noted that the treatment of the measurement of standard Glauber coherent states
(heterodyne measurement) as an isotropic measurement of the two quadratures is essentially indifferent
to whether [Q,P ] = i1 or [Q,P ] = 0, and in that sense the isotropic measurement is not different from
a two-dimensional position measurement. At the same time, there is a stark difference between the
two-dimensional flat space and the one-dimensional flat space, notably that the one-dimensional flat
space does not support pure-state Wigner functions. For this reason, Wigner-Weyl quantization of
the real line requires considering the cotangent bundle, a refinement of the product rule of ordinary
calculus and the Hamilton equations of classical mechanics. Curved spaces such as the 2-sphere are
also quantized by a variation of the cotangent bundle, an orthogonal frame bundle. Unlike the flat
case, however, curvature supplies a noncommutative structure to displacement in the form of the
holonomy experienced by its connections. For all manifolds of covariant constant curvature [51, 58],
the orthogonal frame bundle is itself a semisimple Lie group, such as SU(2), and thus the usual operator
methods follow. In this context, however, it should be appreciated that a curved phase space, such
as the 2-sphere, is more analogous to a configuration space of position values than to a space of
position and momentum values; the actual “momenta” of this configuration space are the infinitesimal
generators −iJk as vector fields on the configuration space. The flat two-dimensional phase space of
the Weyl-Heisenberg group can be thought of productively in this same way, as a configuration space
coördinated by canonical variables q and p, with the infinitesimal generators, iP and −iQ, considered
as momenta on the configuration space. That one can identify these two concepts in a flat phase
space is the idiosyncratic property that characterizes flat phase spaces, adherence to which is most
misleading when trying to generalize to curved phase spaces.

We end with one final teaser, regarding the curvature tensor on the bundle, whose components in
the basis of right-invariant derivatives are spelled out in equations 2.56–2.59. If at each point in the
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bundle, one extends the local surface orthogonal to the fiber out to curvature order along the local
embedding of the symmetric space, one finds that the curvature of this surface has components

Rµανβ = λ tr
(
[Xα,Xµ][Xβ ,Xν ]

)
= −cαµγcβν

γ , (4.1)

which is different from equation 4.1 by a factor of 4 ! Keeping in mind that these local surfaces do not
mesh to form a global embedding of the symmetric space, one can nonetheless identify these to be the
curvature components of the symmetric space. Now the punch line: the cross terms in the curvature
of equations 2.58 and 2.59 are one aspect of the nonintegrability of the local orthogonal surfaces,
and so, too, is the factor of 4. This alone is sufficient motivation to write an article that inverts
the approach of this article, that is, letting continuous isotropic measurements reveal the geometry of
complex semisimple Lie groups, by instead starting from the firm foundation of geometry to explore
the quantum trinity of states, processes, and measurements.
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A Multiqubit tomography by GCS POVM
For multiqubit systems, much attention has been brought to finite phase spaces [13, 14] but the phase
space we are referring to here is the continuous phase space of product states [67],

|n̂1, n̂2, . . . , n̂m⟩ ≡ |n̂1⟩|n̂2⟩ · · · |n̂m⟩ = U1 ⊗ U2 ⊗ · · · ⊗ Um|00 . . . 0⟩, (A.1)

where |n̂⟩⟨n̂| = U |0⟩⟨0|U† = 1
2 (1 + σ⃗ · n̂) is the pure state corresponding to a unit vector n̂. These

states are “coherent” [4, 5] by the basic action of carrying an irreducible representation of SU(2)×m.
The corresponding coherent measurement (analogous to heterodyne) has as POVM elements

2mdµ(n̂1)dµ(n̂2) · · · dµ(n̂m)|n̂1, n̂2, . . . , n̂m⟩⟨n̂1, n̂2, . . . , n̂m|, (A.2)
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where dµ(n̂) is the rotation-invariant measure on the 2-sphere,∫
S

2
dµ(n̂) =

∫ π

0

dθ sin θ
2

∫ 2π

0

dϕ

2π = 1. (A.3)

The outcomes of performing this coherent measurement on a state are samples from the (normalized)
“Q-function”

Qρ(n̂1, n̂2, . . . , n̂m) = 2m ⟨n̂1, n̂2, . . . , n̂m|ρ|n̂1, n̂2, . . . , n̂m⟩ , (A.4)

where ρ is the usual density matrix of the state. The “P -functions” of the Pauli observables are

Pσµ1
⊗σµ2

⊗···⊗σµm
(n̂1, n̂2, . . . , n̂m) = Yµ1

(n̂1)Yµ2
(n̂2) · · ·Yµm

(n̂m), (A.5)

where

Y0(n̂) = 1, Y1(n̂) = 3 sin θ cosϕ, Y2 = 3 sin θ sinϕ, and Y3(n̂) = 3 cos θ (A.6)

are the usual “l = 0” and “l = 1” spherical harmonics, normalized in a nonstandard way matched to
this presentation. In such expressions, we let k denote the number of µi not equal to zero (that is, the
degree of the k-local term). Having organized the quantum information of a multiqubit system in this
way, the k-local expectation values,

Tr
(
ρ σµ1

⊗σµ2
⊗ · · · ⊗σµm

)
=
∫
S

2×S2×···×S2
dµ(n̂1)dµ(n̂2) · · · dµ(n̂m)Qρ(n̂1, n̂2, . . . , n̂m)Pσµ1

⊗σµ2
⊗···⊗σµm

(n̂1, n̂2, . . . , n̂m), (A.7)

are easily estimated from a set of samples X by

Tr
(
ρ σµ1

⊗σµ2
⊗ · · · ⊗σµm

)
∼

∑
(n̂1,n̂2,...,n̂m)∈X

Pσµ1
⊗σµ2

⊗···⊗σµm
(n̂1, n̂2, . . . , n̂m). (A.8)

For fermions, the natural phase-space correspondence is with the manifold of superconducting BCS
coherent states, which will be discussed in the sequel [19].
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