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The triangular-lattice Fermi-Hubbard
model has been extensively investigated in
the literature due to its connection to chi-
ral spin states and unconventional super-
conductivity. Previous simulations of the
ground state of the doped system rely on
quasi-one-dimensional lattices where true
long-range order is forbidden. Here we
simulate two-dimensional and quasi-one-
dimensional triangular lattices using state-
of-the-art Auxiliary-Field Quantum Monte
Carlo. Upon doping a non-magnetic chi-
ral spin state, we observe evidence of chi-
ral superconductivity supported by long-
range order in Cooper-pair correlation and
a finite value of the chiral order parameter.
With this aim, we first locate the transi-
tion from the metallic to the non-magnetic
insulating phase and the onset of magnetic
order. Our results pave the way towards
a better understanding of strongly corre-
lated lattice systems with magnetic frus-
tration.

As a paradigmatic model for strongly cor-
related fermionic lattice systems, the Fermi-
Hubbard (FH) Hamiltonian still has many open
questions [1]. In two dimensions (2D), the FH
model captures the rich physics of metal to insu-
lator phase transitions (MIT) [2], itinerant mag-
netism [3] and spin liquids [4, 5, 6]. Quantum spin
liquids with non-abelian anyon excitations can
act as building blocks for topological quantum
computation and for the construction of fault-
tolerant quantum computers [7]. The idea be-
hind this non-magnetic insulator was proposed
in the seminal work by Anderson that describes
a resonating valence-bond state arising from geo-
metric frustration on the lattice [8, 9]. The sim-
plest lattice structure containing this kind of frus-
tration is the triangular one, which is relevant

for the understanding of molecular materials of
the κ-ET family [10, 11, 12, 13, 14]. Besides
geometrical frustration, charge fluctuations play
a role in the stabilization of quantum spin liq-
uids [15, 16]. The simulation of charge fluctua-
tions can be accomplished by introducing high-
order ring-exchange coupling to the effective spin
Hamiltonian [17, 18, 19, 20] or by considering the
Hubbard model itself. Additionally, the observa-
tion of Hubbard-model physics in triangular lat-
tices engineered in WeSe2/WeS2 moiré superlat-
tices [21, 22] and in quantum simulators [23, 24]
has inspired scientific interest in such systems. In
this work, we focus on the triangular-lattice FH
model described by the Hamiltonian

H = −t
∑

⟨ij⟩,α

(
c†

iαcjα + H.c.
)

+ U
∑

i

ni↑ni↓, (1)

where α =↑, ↓ is the electron spin, ⟨ij⟩ indi-
cates a sum over nearest-neighbour sites, ciα and
c†

iα respectively annihilates and creates an elec-
tron with spin α at the i-th lattice site, niα =
c†

iαciα is the number operator, t is the hopping
strength, and U is the intensity of the onsite in-
teraction. The non-interacting system is metallic
and, at half-filling (⟨niα⟩ = 1/2), the strongly
interacting FH Hamiltonian can be mapped into
the antiferrognetic (AFM) Heisenberg one, whose
ground state contains 120◦ long-range spin or-
der [25]. Away from these two cases (U/t = 0
and U/t ≫ 1), the precise nature of the system
is still under debate. For weak interactions, nu-
merical simulations assume an adiabatic connec-
tion with the non-interacting regime. Nonethe-
less, they might be overlooking a transition to
a phase with a small but non-vanishing gap [1].
In fact, renormalization-group calculations pre-
dict a d + id superconductor at U/t ≪ 1 in
2D [26, 27] and weak coupling analyses argue
that, at weak interactions, the quasi-1D system
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is a Luther-Emery liquid with time-reversal sym-
metry breaking [28]. For intermediate interac-
tions, the quest for spin liquids has been a sub-
ject of significant interest. Still, there is not even
theoretical agreement on whether the spin liq-
uid state exists in the FH model. While calcu-
lations ranging from variational cluster approxi-
mation [29, 30, 31], path integral renormalization
group [32, 33], strong coupling expansion [19],
dual fermion approach [34] and exact diagonaliza-
tion [35] to density matrix renormalization group
(DMRG) [36, 37, 38, 39] and variational Monte
Carlo (VMC) [40, 41] agreed in the existence of
a spin liquid state, dynamical cluster approxi-
mation studies [42] and earlier VMC computa-
tions [43, 44] detected a direct transition from
a metallic state to a magnetic ordered phase.
Among the theories that support the existence
of a spin liquid, its nature remains controversial.
Infinite-DMRG calculations predict a gapped chi-
ral spin liquid (CSL) [37, 38], while VMC simu-
lations on full 2D systems and finite-DMRG [36]
support a gapless spin liquid that preserves time-
reversal symmetry. Another finite-DMRG study
also supports the gapped CSL [39]. On the
other hand, a multi-method approach finds that,
at intermediate interactions, there is a competi-
tion between chiral and two distinct magnetic or-
ders: collinear and 120◦ order [45]. DMRG simu-
lations of the extended AFM-Heisenberg model
with four-spin interactions that arise naturally
from Mott-insulator physics corroborate the ex-
istence of a CSL in lattice geometries closer to
2D than the ones used in DMRG simulations of
the Hubbard model [20]. For the hole-doped sys-
tem, the quest for unconventional superconduc-
tivity in the Hubbard model is a matter of cur-
rent scientific interest due to its connection to
High-Tc superconductors [46, 47, 48, 49]. A re-
cent DMRG study of the doped triangular FH
predicts a rich phase diagram with fractionalized
excitations, spin and charge deconfinement and
enhanced Cooper-pair correlations [50]. Another
DMRG study estimates the spectral function of
one single hole doped in the triangular-lattice
CSL and observes spinon dynamics [51]. Also,
DMRG simulations of the extended t − J model
with three-spin chiral interactions in the triangu-
lar lattice predicted chiral superconductivity in
the system, evidenced by quasi-long-range-order
in the Cooper-pair correlations upon doping [52].

Shortly thereafter, emergent topological super-
conductivity was also reported in the simpler
t − J model [53]. However, DMRG performed
in quasi-1D lattices does not display true long-
range order, and one has to rely on a slow decay of
Cooper-pair correlations. Numerical simulations
via the Linked-Cluster Expansion algorithm pro-
vide several benchmarks to the finite temperature
triangular FH at intermediate to strong interac-
tions [54], but a clear description of the weakly
interacting regime, the classification of the spin
liquid state, and whether or not a superconduct-
ing phase would appear upon doping is still elu-
sive.

In this work, we numerically investigate the
ground state of the doped triangular FH in 2D.
Upon doping a non-magnetic chiral spin state
(CSS) we observe true long-range order in the
Cooper-pair correlations while the chiral order
parameter remains finite, i.e. a chiral supercon-
ductor. To simulate the CSS, we first locate the
MIT and the transition to the AFM phase.

1 Methods
We report the implementation of state-of-
the-art Auxiliary-Field Quantum Monte Carlo
(AFQMC) to simulate the ground state of the full
2D triangular lattice FH model. By imaginary-
time projection to the ground state we intend
to reduce the bias from VMC calculations. A
constrained-path (CP) approximation is required
to restore polynomial convergence (otherwise
plagued by the sign problem [55]) and the bias
from the variational ansatz is not completely re-
moved. However, simulations made in the past
for square lattices away from half-filling have been
shown to be accurate and provided several bench-
marks [56, 57, 58, 59, 60]. See Appendix A for fur-
ther details of the method and for a comparison
of the CP-AFQMC estimates of the triangular-
lattice ground-state energy with exact diagonal-
ization.

For the non-magnetic phases, we consider
the generalized Hartree-Fock ansatz (GHF) for
the imaginary-time projection. The mean-field
Hamiltonian associated to the GHF state is ob-
tained considering a partial particle-hole trans-
formation on a BCS Hamiltonian,

HMF = −t
∑
⟨ij⟩α

c†
iαcjα +

∑
i

Mic
†
i↑ci↓ + H.c., (2)
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where Mi = Ueff⟨c†
i↑ci↓⟩. The GHF ground state

is obtained via a self-consistent diagonalization of
Eq. (2) [60]. As done with Unrestricted Hartree
Fock (UHF) wave functions [59], we consider
Ueff = min(U, Umax

eff ). We noticed that Umax
eff /t =

4 gives meaningful estimates of the non-magnetic
states of the system. Our CP-AFQMC simula-
tions with the GHF ansatz became unstable for
strong interactions, see Appendix A for more ex-
planation concerning the instability. With this
ansatz, we were able to locate the MIT but not
the transition to the magnetic phase. To see
the transition to the 120◦ AFM phase, we also
perform simulations starting from a full Hartree-
Fock (FHF) ansatz. The ansatz that provides
the smaller energy after imaginary-time evolution
is our best representative of the system ground
state, see Appendix B for details.

In our simulations, we mainly consider lattices
with Nx = Ny = 12 sites along the êx = (a, 0)
and êy = (a/2,

√
3a/2) directions respectively

(see FIG. 1 for the lattice vectors and a visual
representation of the triangular FH model). Pe-
riodic boundary conditions are considered along
the horizontal and vertical directions. We also
run simulations with different lattice sizes to anal-
yse the finite-size effects. See the Appendix C for
the dependence of total energy and spin corre-
lations on the lattice size. Finally, to address
the effect of the dimensionality, we investigate
quasi-1D lattices with Nx = 36, Ny = 3 and
4, PBC along êy and open boundary condition
along êx. From now on, if not specified oth-
erwise, we are considering the 12 × 12 lattice.
We study spin-balanced systems at half filling
(n = N/M = 1, where N is the number of elec-
trons and M = NxNy) and with hole doping
(n < 1).

2 Results at half filling
We start by defining the charge structure factor

N(k) = 1
M

∑
i,j

eik·rij (⟨ninj⟩ − ⟨ni⟩⟨nj⟩) , (3)

with ni = ni↑ + ni↓, around the origin k = 0
to determine whether the system is gapped or
not. Since the charge gap ∆c is proportional to
limk→0 k2/N(k) [61, 62], a linear behavior around
k = 0 indicates that the system is metallic (gap-
less) and a quadratic behavior indicates that the

Figure 1: Triangular FH model. We display the lat-
tice vectors êx = (a, 0) and êy = (a/2,

√
3a/2). The cir-

cle depicts the formation of a doublon (doubly-occupied
site) with energy cost U . We also represent a hopping
process with energy scale −t. Ellipses depict Cooper
pairs in the singlet (|s⟩ = (| ↑↓⟩ − | ↓↑⟩)/

√
2) or triplet

(|t⟩ = (| ↑↓⟩ + | ↓↑⟩)/
√

2) states formed on the êy and
êx bounds of the triangular plaquettes.

system is insulating (gapped). More precisely, for
small k we have N(k) = ak2 + bk + O(k3), and
whenever b ̸= 0, ∆c = 0. We compute the coef-
ficients a and b by performing a quadratic fit to
our data. We considered the three allowed mo-
menta closer to the origin along k = (kx = 0, ky),
results are shown in FIG. 2 where we located
the MIT around 7 < Uc1/t ≤ 8. Our critical
interaction is in agreement with DMRG simula-
tions [36, 37] and a multi-method study [45]. The
Linked-Cluster-Expansion calculations, after an
extrapolation to zero-temperature regime, pre-
dict a critical interaction Uc1/t ∼ 7 [54], while
other DMRG simulations predict Uc1/t ∼ 9 [39].

0.0 2.5 5.0 7.5 10.0
U/t

0.00
0.05
0.10
0.15
0.20
0.25

a,
b

a
b

Figure 2: Metal-insulator transition. The coeffi-
cients of the expansion N(k) ≈ ak2 + bk as a function
of the interaction U/t. A nonzero value of b implies that
∆c = 0.

To further corroborate our findings, we com-
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pute the doublon density, d =
∑

i⟨ni↑ni↓⟩/M , for
which we expect different behaviors in the metal-
lic and insulating phases [63, 36]. In the metallic
phase the Brinkman-Rice picture predicts that d
decreases linearly with U [64], while for strong in-
teractions the doublon density shows Heisenberg
behavior [65], d = (2t2/U2 ∑

δ(1/4 − ⟨Si · Si+δ⟩),
where the sum runs over the nearest neighbours.
In Fig. 3 we display results for d as a function
of U/t. Our data for the doublon density show a
deviation from the linear behavior near the MIT.

0.0 2.5 5.0 7.5 10.0
U/t

0.00
0.05
0.10
0.15
0.20
0.25

d

Figure 3: Doublon density as function of the inter-
action strength U/t. The blue crosses represent our
data. The dotted line is a linear fit of the doublon-
density data for U/t < 7. The shaded area delimits
the region where Uc1 is located. The dashed curve is
the function d = (2t2/U2 ∑

δ(1/4 − ⟨Si · Si+δ⟩) with
⟨Si · Si+δ⟩ = −0.1837(7), see Ref. [66]. Error bars are
smaller than the markers size.

Analogously, the presence of a spin gap can be
accessed by the spin structure factor

S(k) = 1
M

∑
i,j

eik·rij ⟨Sz
i Sz

j ⟩, (4)

with Sz
i = ni↑ −ni↓. We do not see the emergence

of quadratic behavior in S(k) (Fig. 4), which in-
dicates the absence of a spin gap. The excita-
tions of the 120◦ Heisenberg antiferromagnet are
gapless magnons [67]. Therefore the presence of
a spin gap is not a good measure to locate the
AFM order in our system. On the other hand, the
presence of peaks in S(k) is a signature of long-
range magnetic order; for the 120◦ AFM those
peaks appear on the K points of the Brillouin
zone. In our simulations, we see the formation of
peaks on the K points which indicates the tran-
sition to the 120 ◦ phase with critical interaction

10 < Uc2/t ≤ 11 (see Appendix D). Our estimate
for the critical interaction is in agreement with
recent DMRG simulations [37], which locates the
transition at U/t = 10.6.

1.0 0.5 0.0 0.5 1.0
ky/

0.0
0.2
0.4
0.6
0.8
1.0

S(
k)

U/t = 0
U/t = 1
U/t = 2
U/t = 3
U/t = 4

U/t = 5
U/t = 6
U/t = 7
U/t = 8

U/t = 9
U/t = 10
U/t = 11
U/t = 12

Figure 4: Spin structure factor S(k) as a function
of U/t for k = (kx = 0, ky). The linear behavior around
ky = 0 indicates gapless spin excitation.

We investigate the chiral order parameter

χ =

∣∣∣∣∣∣
∑
△

⟨Si · (Sj × Sk)⟩

∣∣∣∣∣∣ , (5)

where the sum is over every triangular plaquette
of the lattice with vertexes i, j and k taken in the
clockwise direction and Sℓ =

∑
α,β=↑,↓ c†

ℓασαβcℓβ ,
with σ = (σx, σy, σz) a vector of Pauli matrices.

Our results for χ are show in Fig. 5 along-
side the Smax of S(k). We observe a competi-
tion between chiral and magnetic orders as the
interaction increases as reported for quasi-1D lat-
tices [45]. We see a sharp increase in Smax in the
transition to the AFM phase.

To analyse the effect of dimension in our re-
sults, we compute S(k) and χ for the quasi-1D
36 × 3 lattice. We see that the results in 2D and
quasi-1D agree reasonably well, but in quasi-1D
we see the AFM insulator with the peaks of the
spin structure factor at the M points, which is a
signature of a collinear AFM phase. We also anal-
yse the effect of the width of the quasi-1D systems
on the results by the simulation of a 36 × 4 lat-
tice, where we see competition between 120◦ and
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collinear orders. See Appendix D for the results
of the quasi-1D simulations. The existence of a
CSS was predicted in the non-magnetic insulating
phase by DMRG [37, 39, 50]. We also detect finite
chiral order before the transition to the insulat-
ing phase (U/t ≤ 7). This metallic chiral state is
in disagreement with the predictions of Ref. [37],
where the authors perform infinite-DMRG and
extrapolate the chiral-order parameter χ on the
bond dimension. A extrapolation of this sort is
not needed in CP-AFQMC simulations since the
summation over auxiliary-field paths restores all
the correlations in the system. Moreover, other
DMRG simulations of this system at weak doping
also report the observation of a chiral metal [50].
Another difference, between our results and the
ones of Ref. [37] after extrapolation, is the finite
value of χ near the transition to the magnetic
phase (11 ≤ U/t ≤ 12).Nevertheless, the compu-
tation of the chiral susceptibility in Ref. [45] also
shows evidence of chirality in the magnetic phase.

0.0 2.5 5.0 7.5 10.0 12.5
U/t

1

2

3

4

S m
ax

Smax

0.00
0.25
0.50
0.75
1.00
1.25

Figure 5: Magnetic versus chiral orders. Maxi-
mum value of S(k) (crosses). Chiral order parameter χ
(squares). The chiral parameter vertical axis is on the
right.

3 Doping the non-magnetic CSS
We search for signals of superconductivity in the
doped system by looking at the long-range be-
havior of Cooper-pair correlations. Following the
procedure described in Ref. [50] we define the cor-
relation function

C(r) = 1
3M

∑
i,δ̂

∣∣∣⟨∆†
i,êy

∆i+r,δ̂⟩
∣∣∣ , (6)

where δ̂ = {êx, êy, êx − êy}. The superconduc-
tivity order parameter ∆ is given by ∆ℓ,δ̂ =

(1/
√

2)
∑

α f(α)cℓαcℓ+δ̂ᾱ, where α =↑, ↓ and ᾱ
is the opposite spin of α. For pairs in the sin-
glet state, f(↑) = −f(↓) = 1, and for triplets
f(↑) = f(↓) = 1. We compute angle-averaged
C(r) in the non-magnetic CSS (U/t = 9) for
three distinct fillings of the hole doped system,
n = 17/18, 5/6 and 11/18, covering the weak-
, intermediate-, and strong-doping regimes [50].
The results are shown in Fig. 6. Quasi-long-
range-order observed in previous DMRG calcu-
lations was a hint to the existence of a supercon-
ducting phase in the 2D system [50]. Our simu-
lations provide, for the first time, clear evidence
of true long-range order in the 2D triangular FH
model. Furthermore, such long-range correlations
increase with the hole concentration. A striking
observation is that the chiral order parameter,
although reduced, remains finite at the interme-
diate hole density (n = 5/6), χ = 0.22(1). At
the highest hole concentration, the chiral order is
further suppressed. At n = 5/6, the triplet cor-
relations at large distances are slightly stronger
than the singlet ones. Upon further doping the
2D system, the singlet and triplet correlations are
(almost) degenerate.

We considered the effect of reduced dimen-
sionality by computing the Cooper-pair correla-
tions in our 36 × 3 lattice. As expected, we do
not see long-range order in quasi-1D. Still, in
the quasi-1D simulations, the triplet and singlet
correlations showed to be degenerate (see Ap-
pendix D). Notably, recent DMRG simulations
showed a strong finite-size dependence. Indeed,
singlet-pair correlations dominate for small sys-
tem sizes, whereas triplet-pair correlations are en-
hanced for wider cylinders [50].

The source of bias in our results is twofold:
finite size and the CP approximation. We an-
alyzed the effect of finite size in the chiral or-
der parameter χ and performed extrapolation to
the thermodynamic limit in four situations where
we observed chirality: i) in the metallic phase at
half filling (U/t = 6); ii) in the non-magnetic-
insulating phase at half filling (U/t = 9); iii)
in the superconducting phase at filling n = 5/6
and interaction U/t = 9; and iv) in the AFM
phase at half filling (U/t = 12). For the first
three cases, simulations were performed with lat-
tice sizes M = 48 (Nx × Ny = 6 × 8), M = 54
(9 × 6), M = 72 (6 × 12), M = 108 (9 × 12),
M = 144 (12 × 12), and M = 180 (12 × 15). The
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0 5
r/a

0.0

0.5

1.0
C(

r)/
C(

0)
(a) n = 11/18

n = 5/6
n = 17/18

6 8
r/a

0.00

0.05

0.10

C(
r)/

C(
0)

= 0.0583(9)

= 0.22(1)

= 0.34(3)

(b)

Figure 6: Cooper pair correlations. (a) Filled
(empty) markers represent correlations between pairs in
the triplet (singlet) state. Dashed lines represent an av-
erage of the correlations for r/a ≳ 5 (colors are match-
ing). (b) Long-range behavior of the correlations, the
chiral order parameter χ of each system is shown (col-
ors are matching). The interaction strength is U/t = 9.
When not shown, error bars are smaller than the markers
size.

M = 48 lattice under PBC is not compatible with
the 120◦ AFM phase, therefore, for this situation,
we consider an M = 36 (6 × 6) lattice. Results
are shown in FIG. 7, where we see evidence that
χ would remain finite when extrapolated to the
thermodynamic limit M → ∞. For the doped
case, the simulation of the filling n = 5/6 is not
compatible with the M = 54 lattice. Therefore,
for this calculation, we used n = 22/27.

0.00 0.01 0.02
1/M

0.0

0.2

0.4

0.6

0.8

U/t = 6, n = 1
U/t = 9, n = 1

U/t = 9, n = 5/6
U/t = 12, n = 1

Figure 7: Chiral order parameter as a function of
the inverted lattice size 1/M . The dashed lines are lin-
ear fits showing the extrapolation to the thermodynamic
limit 1/M → 0.

To measure the bias from the CP approxima-
tion, we computed χ for the system described by
the mean-field Hamiltonian of Eq. (2). Our re-

sults for Ueff/t = 4 is zero, showing that chiral-
ity for U/t ≥ 4 emerges from the imaginary-time
evolution regardless of the system size.

4 Discussion and Conclusion.

We implemented for the first time AFQMC simu-
lations of the zero-temperature triangular-lattice
FH model. The method of choice is a state-
of-the-art technique that provides unbiased esti-
mates subjected to a small systematic error aris-
ing from constraints that eliminate the fermionic
sign problem. We located the transition to the in-
sulating phase with a critical interaction between
7 < Uc1/t ≤ 8. The transition to the magnetic
phase was located at 10 < Uc2/t ≤ 11. We ob-
serve a finite value of the chiral order parameter
in all phases observed, and in the insulating phase
there is competition between chiral and magnetic
orders. Finally, we considered hole doping the
non-magnetic CSS near the phase transition at
U/t = 9. Our results show long-range order in
the Cooper-pair correlations.

Topological states that break time-reversal
symmetry and have quasi-long-range order in the
Cooper-pair correlations were observed in DMRG
simulations of the t − J model extended to in-
clude three-spin chiral interactions [52]. Here we
reported the simulation of a chiral superconduc-
tor in the 2D triangular Hubbard model. For
filling n = 5/6, we see a finite superconducting
order parameter with chiral order and enhanced
triplet-pair correlations. A recent DMRG study
also finds emergent chiral superconductivity in
the t − J model [53], which further supports our
results.

A natural followup of this work would include:
(i) The characterization of our CSS via spin-flux
insertion to compute the Chern number [37, 52];
(ii) The evaluation of nonlocal correlations to un-
cover string patterns [68]; (iii) The investigation
of quasi-periodic lattices [69, 70] where the inter-
play between aperiodicity and long-range order
leads to exotic phases, analogously to supersolid-
ity [71] and glass physics [72, 73] in Bose systems;
(iv) The study of the extended FH model. Long-
range interactions can be engineered via Rydberg
dressing [74, 75, 76], as recently realised in square
lattices with unidirectional hopping [77].
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A Constrained path AFQMC
Let a given initial state |Ψ(0)⟩ be nonorthogonal to the ground-state of the Hamiltonian H, |Ψ0⟩. The
imaginary-time evolution |Ψ(τ)⟩ = exp(−τH)|Ψ(0)⟩ will asymptotically converge to |Ψ0⟩ as τ (a real
number) increases. In the AFQMC method the anti-symmetric wave function is written as a linear
combination of Slater determinants

|Ψ(τ)⟩ =
∑

k

ξ(Φk) |Φk(τ)⟩ . (7)

In our simulations, ξ(Φk) is not considered explicitly. As the imaginary-time evolution proceeds, Slater
determinants are replicated or killed. The number of a given |Φk⟩ in the sum resembles ξ(Φk) [56, 57].
In practice one starts at τ = 0 with all Slater Determinants equal to a given trial state |ΦT ⟩, an
approximation to the ground state usually obtained from mean-field theories, and update them by the
application of the imaginary-time evolution operator in a stochastic process. For large systems the
diagonalization of the FH Hamiltonian becomes impractical. It is then usual to consider the Trotter
formula [79] to factor the evolution operator into the product of three therms,

e−δτH = e− δτ
2 Ke−δτV e− δτ

2 K + O(δτ2), (8)

where, for the Fermi Hubbard (FH) Hamiltonian, K (V ) is the hopping (interaction) therm. If we
chose δτ small enough, the error introduced by neglecting the O(δτ2) therms in Eq. (8) can be made
smaller than the statistical uncertainty inherent to Monte Carlo calculations; the method remains
numerically exact. The desired limit τ = nδτ ≫ t−1, with t being the hopping strength, is obtained
after n successive applications of this small-δτ approximation to |Ψ(0)⟩. A given iteration on the Slater
Determinants is

|Φn+1
k ⟩ = e− δτ

2 Ke−δτV e− δτ
2 K |Φn

k⟩, (9)

where the superscript n indicates the imaginary time τ = nδτ . The application of one-body operators
in |Φn

k⟩ results in another Slater Determinant. Therefore, both exp(−δτK/2) only propagates |Φn
k⟩.

On the other hand, since V is a sum of two-body operators, the remaining exponential imposes a
challenge. To handle it, one can use the Hubbard-Stratonovich decomposition to transform the two-
body interaction into one-body ones between each electron and auxiliary fields x. We choose the spin
discrete decomposition [3],

e−δτni↑ni↓ = e− δτ
2 U(ni↑+ni↓) ∑

x=±1
p(x)eγx(ni↑−ni↓), (10)

with p(x) = 1/2 and γ being given by the relation cosh(γ) = exp(δτU/2). Considering the FH
Hamiltonian H, one writes

eδτH ≈
∑

x⃗

p(x⃗)e− β
2 KBV (x⃗)e− β

2 K , (11)

where x⃗ = (x1, x2, ..., xM ) is a configuration of auxiliary fields, with M the number of lattice sites,
to be sampled within Monte Carlo calculations, p(x⃗) = (1/2)M is a probability distribution function
(pdf) and BV (x⃗) is a product of one-body exponentials. Explicitly,

BV (x⃗) =
∏

i

e− δτ
2 U(ni↑+ni↓)+γxi(ni↑−ni↓). (12)

The stochastic simulation of Eq. (9) is very inefficient since p(x⃗) is constant, and an importance
sampling technique is required [56, 57]. The importance sampling is also useful to define an estimator
to the properties of the system and to determine the constraints that eliminate the sign problem. The
importance function we implement is OT (Φn

k) = ⟨ΦT | Φn
k⟩, which leads to the modified imaginary-time

evolution
|Ψ̃n+1⟩ =

∑
x⃗

p̃(x⃗)e− δτ
2 KBV (x⃗)e− δτ

2 K |Ψ̃n⟩, (13)
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with the modified pdf p̃(x⃗) = OT (Φn
j )p(x⃗)/OT (Φn−1

j ). The pdf now depends on the overlap with the
approximated ground state after and before the diffusion procedure. Since the pdf p̃(x⃗) is usually not
normalized, we define the normalization factor of each Slater determinant N(Φn

k), and the iterative
projection equation becomes

|Φn
k⟩ = N(Φn

k)
∑

x⃗

p̃(x⃗)
N(Φn

k)e− δτ
2 KBV e− δτ

2 K
∣∣∣Φn−1

k

〉
. (14)

To handle the normalization we introduce weights to each Slater Determinant |Ψ̃n⟩ =
∑

k ωn
k |Φn

k⟩, and
in each iteration the weights are updated as ωn

k = N(Φn
k)ωn−1

k , with ω0
k = 1 . In practice, the sampling

of the pdf p̃(x⃗) is done considering individually each auxiliary field in the configuration x⃗. A detailed
description of how to implement the aforementioned sampling and how to updated the weights is given
in Ref. [58].

The equivalence between |Φn
k⟩ = − |Φn

k⟩ causes a sign problem that prevents numerical convergence.
To eliminate the sign problem, auxiliary-field paths are constrained to a region of the configuration
space were OT (Φn

k) > 0 (akin to the fixed-node approximation [80]). Due to the equivalence between
the positive and negative regions of the ground state, the method is numerically exact if the nodal
structure of the trial wave function is equivalent to the ground-state one. Unfortunately the latter is
unknown in the majority of cases and |ΦT ⟩ is used as an approximation to it. For that reason, the
constrained-path approximation has a systematic error shown to be small [56, 57, 58, 60].

Ground-state estimates of the system total energy can be obtained using the mixed estimator,

⟨H⟩mix =
∑

k ωn
k En

k∑
j ωn

k

, (15)

with En
k = ⟨ΦT |H|Φn

k⟩/OT (Φn
k) and sufficiently large n. As can be noticed, the mixed estimator is

only exact if the operator in the numerator of Eq. (15) commutes with the Hamiltonian H.
Estimates of other physical observables require the back-propagation technique [56, 81, 82]. The

back-propagation estimator is constructed from the formula

⟨O⟩bp ∝ ⟨ΦT |e−τbpHOe−(τ−τbp)H |Ψ(0)⟩, (16)

which asymptotically reaches the average value of the observable O in the ground state for τ − τbp and
τbp ≫ t−1. The numerical evaluation of Eq. (16) is implemented efficiently by storing the auxiliary
fields sampled in the forward propagation exp(−τbpH)|Ψ(0)⟩ and using them to back propagate ⟨ΦT |.
For a detailed description of this estimator see Ref. [82].

Additional simulation details. Our time step is δτ = 10−2/t, with 103 Slater determinants. Also, we
see convergence of our estimates with τbp = 1.6/t.

Instability in the strong interaction regime. We noticed that for U/t ≥ 10, the weights of the Slater
Determinants suffer from strong oscillations, which cause higher variances in our final results. These
oscillations are controlled by the importance function, i.e., the mean-field ansatz being projected in
imaginary time.

Comparison with exact diagonalization. To have an estimate of the effect of the CP approximation
in our simulations, we considered a 3 × 3 triangular lattice filled with 6 electrons under open boundary
conditions. We computed the relative difference between the ground-state energy calculated with
exact diagonalization and CP-AFQMC. The results are shown in FIG. 8 where we also show the
relative difference associated with the mean-field GHF ansatz with Ueff = min(U, 4t).
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Figure 8: Comparison with exact diagonalization. The relative difference between the energies is defined as
∆ = (E − EED)/EED, where EED was computed with exact diagonalization and E with the CP-AFQMC simulation
or the mean-field ansatz. The mean-fielf ansatz is the one in Eq. (2) with Ueff = min(U, 4t).

B Mean-field ansätze
The FHF Hamiltonian [83] that we test in the regime of strong interactions is

HFHF = −t
∑
⟨ij⟩σ

(c†
iσcjσ + H.c.) + Ueff

∑
i

(1
2⟨ni⟩ni − 1

4⟨ni⟩2 − 1
2⟨Si⟩ · Si + 1

4 |⟨Si⟩|2
)

, (17)

where we omitted the terms that do not conserve the number of particles. We tested the FHF ansatz
and the GHF one, from Eq. (2), considering Ueff = min(U, Umax

eff ) with Umax
eff = 2t, 4t and 6t. The

results for the ground-state energy are in Table 1.

Umax
eff 2t 4t 6t

GHF (U = 9t) E/t = −77.0(1) E/t = −76.9(1) E/t = −76.9(1)
FHF (U = 9t) E/t = −77.1(1) E/t = −77.3(2) E/t = −73.03(8)

GHF (U = 12t) E/t = −53.5(3) E/t = −54.3(3) E/t = −54.3(3)
FHF (U = 12t) E/t = −53.4(4) E/t = −54.3(4) E/t = −55.48(8)

Table 1: Ground-state energy. Simulations of the 12 × 12 system with U/t = 9 ans 12 and different initial
ansätze.

Considering the variational principle, the state that provides the smaller energy after imaginary-time
evolution is the best representation of the ground state of the system for a given value of U/t. For
example, in FIG. 9 we show the spin structure factor of the U/t = 9 case after imaginary-time evolution
starting from four different ansätze. We see sharp peaks in the spin structure factor after evolution
from the FHF ansatz with Umax

eff = 6t. Those peaks are evidence of long-range magnetic order, but
since the other ansätze provided a smaller energy, the ground state of the system for U/t = 9 is
non-magnetic.

We computed the spin structure factor of the FHF ansatz with Umax
eff = 6t itself and concluded

that long-range magnetic order after imaginary-time evolution is reminiscent of this initial choice.
Therefore, for U/t ≥ 9 we perform simulations with two different ansätze: a) the GHF one with
Umax

eff = 4t and b) the FHF one with Umax
eff = 6t. After imaginary-time evolution, the state with

smaller energy is our best representation of the ground state of the system for a particular value of
U/t. In FIG. 10, we show the difference between those energies, which indicates a phase transition
to the magnetic phase with critical interaction close to U/t = 11. We emphasize that, due to the CP
approximation, our imaginary-time evolution is not variational. Therefore, care must be taken when
comparing the ground-state energies projected from GHF and FHF ansätze. Even though, we notice
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Figure 9: Spin structure factor for U/t = 9 after imaginary-time evolution from four different ansätze. All results
are for allowed momenta in the considered geometry.

that the difference between those energies is always greater than our measure of the error due to the CP
approximation (FIG. 8), excluding the case of interaction U/t = 11. This corroborates the transition
to the magnetic phase at strong interactions.
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Figure 10: Difference between energies obtained evolving the GHF (Umax
eff = 4t) and the FHF (Umax

eff = 6t) ansätze
in imaginary time.
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C Finite system size effects
We compute the total energy of the system at half filling for two lattice sizes, with 108 sites (Nx ×Ny =
9 × 12) and 144 sites (Nx × Ny = 12 × 12). The energies are shown in FIG. 11.

0.0 2.5 5.0 7.5 10.0
U/t

2.0

1.5

1.0

0.5

E/
t

0 10

0.0025

0.0000/t
Figure 11: Total energy per lattice site. The blue circles represent the 12 × 12 lattice. In the inset, we show
the relative difference ∆ = (E12×12 − E9×12)/E12×12.

We compute Smax for the 12 × 12 and 9 × 12 lattices to see the effect of the system size in the
spin correlations. Results are shown in FIG. 12, where size effects influence the spin correlations from
intermediate to strong coupling.
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Figure 12: Spin structure factor. The maximum value of S(k) for two different lattice sizes.
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D Comparison between 2D and quasi-1D
In FIG. 13 we compare results for Smax and χ in 2D (12 × 12) and quasi-1D (36 × 3). We see that, for
the quasi-1D system, Smax suddenly increases for interactions between 11 < U/t ≤ 12 indicating the
transition to the AFM phase. For the 2D lattice, the increment of Smax happens earlier and is much
more pronounced. We emphasize that all simulations in quasi-1D were made considering the GHF
ansatz.
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1.25

Figure 13: (Color online) Magnetic versus chiral orders at half filling. Comparison between results for the 2D
lattice (12 × 12) and the quasi-1D (36 × 3) one as function of U/t. Filled (empty) markers are results for the 2D
(quasi-1D) lattice.

We also compute the Cooper pair correlations for the quasi-1D system at U/t = 9, and as expected
by the Mermin-Wagner theorem, they do not display long-range order. We considered the fillings
n = 17/18 and n = 5/6, see FIG. 14.
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Figure 14: (Color online) Cooper pair correlations. Results for the quasi-1D (36 × 3) lattice. Green crosses
represent the results at n = 5/6, and red circles are results at n = 17/18. Filled symbols are for triplet pairs, and
empty ones for singlets (they are degenerate). The inset shows the long-range behavior. The interaction is U/t = 9.

Furthermore, In FIG. 15 we show the spin structure factor S(k) for U/t = 9, 10, 11 and 12. The
maxima of S(k) is around K for the 2D lattice, but it moves to the M in quasi-1D. In both cases one
can see the formation of peaks indicating spin order.

Finally, we analyze the influence of the width of the quasi-1D systems in our results. We compare
the chirality and the spin correlations in 36 × 3 and 36 × 4 lattices; results are shown in FIG. 16.
In both systems, we see the transition to the magnetic phase marked by a sudden increase of Smax,
but for the quasi-1D cylinder of width four, the peaks of the spin structure factor S(k) seem to be
more intense in the K rather than in the M points as was noticed in the width-three system (refer to
FIG. 15b for the width-three result). Nonetheless, we also see high values of S(k) at the M points for
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Figure 15: Spin structure factor for interactions U/t = 9, 10, 11 and 12 at half filling. (a) Results for the 2D
lattice with 144 sites. (b) Results for the quasi-1D system with 108 sites. The dashed hexagons in (a) and (b) delimit
the first Brillouin zone of the triangular lattice. K points are on the vertexes of the hexagons, and M points are in
the middle of its edges. All results are for allowed momenta in the considered geometry.

the width-four system. This indicates competition between two different magnetic orders as reported
in Ref. [45]. Chirality is also seen in both systems.
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Figure 16: Spin structure factor and chirality for interactions U/t = 9, 10, 11 and 12 at half filling in quasi-1D.
(a) Comparison between the results of the 3 × 36 (empty markers) and the 4 × 36 (full markers) systems. (b) Spin
structure factor of the 4 × 36 lattice.
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