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In the recent years self-testing has grown into a rich and active area of
study with applications ranging from practical verification of quantum de-
vices to deep complexity theoretic results. Self-testing allows a classical veri-
fier to deduce which quantum measurements and on what state are used, for
example, by provers Alice and Bob in a nonlocal game. Hence, self-testing as
well as its noise-tolerant cousin—robust self-testing—are desirable features
for a nonlocal game to have.

Contrary to what one might expect, we have a rather incomplete under-
standing of if and how self-testing could fail to hold. In particular, could it be
that every 2-party nonlocal game or Bell inequality with a quantum advan-
tage certifies the presence of a specific quantum state? Also, is it the case that
every self-testing result can be turned robust with enough ingeniuty and ef-
fort? We answer these questions in the negative by providing simple and fully
explicit counterexamples. To this end, given two nonlocal games G1 and G2,
we introduce the (G1 ∨ G2)-game, in which the players get pairs of questions
and choose which game they want to play. The players win if they choose
the same game and win it with the answers they have given. Our counterex-
amples are based on this game and we believe this class of games to be of
independent interest.

1 Introduction

The notion of self-testing was first introduced by Mayers and Yao [20] and it has since
developed into an active and rich area of study (see [30] for a review). One major motiva-
tion behind self-testing is that it can be used by a classical verifier to certify that untrusted
quantum devices perform according to their specification. This is accomplished by de-
riving a quantum mechanical description of a quantum device merely from classical ob-
servations. More precisely, if Alice and Bob want to know the state and measurements of
their quantum devices, they can play a nonlocal game and check the output probabilities.
If this game is a self-test then after observing the desired output probabilities, Alice and
Bob can conclude that their devices must be implementing certain measurements on a
certain quantum state.

In addition to the early applications of self-testing to certification and device - inde-
pendent protocols, in the recent years it has been a key ingredient for important results
in quantum complexity theory [8, 21, 22, 12]. The most notable among these results is the
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recent breakthrough [12] establishing that MIP*=RE and resolving Connes’ Embedding
Problem which had resisted all attempts for over 50 years.

It was shown by Bell [2] that the predictions of quantum mechanics are not compatible
with any local hidden-variable theory. He obtained this result by showing that quantum
mechanics predicts violations of what are now known as Bell inequalities. Our definition
of self-testing will be given in the setting of nonlocal games [6] which are another way to
explore Bell inequalities and their violations. A (2-player) nonlocal game is played by two
collaborating players, Alice and Bob, and a referee. The referee gives questions to Alice
and Bob and they each have to respond with an answer. The players win according to a
function on questions and answers, which is known to the players beforehand. Crucially,
Alice and Bob are not allowed to communicate after they have received their questions.
They can, however, agree on a strategy ahead of time. In a quantum strategy Alice and Bob
can share an entangled state and use local measurements to come up with their answers.
Finding a quantum strategy for a nonlocal game which exceeds the winning probability
of any classical strategy yields a violation of a Bell inequality. We call quantum strategies
with the highest winning probability in a nonlocal game optimal quantum strategies.

Motivation and results. In a nutshell, self-testing says that any optimal quantum strategy
for some game G is equal to a reference strategy, up to local isometries. There are different
forms of self-testing. A game can self-test an optimal quantum strategy or just the shared
state of this quantum strategy. Also, a game can robustly self-test a strategy in which
case we in addition require that any near-optimal quantum strategy must be close to
an optimal reference strategy. For a nonlocal game G, an optimal quantum strategy S,
and state |ψ⟩ used in S, we have the following relation between the above forms of self-
testing:

G robustly self-tests S ⇒ G self-tests S ⇒ G self-tests |ψ⟩. (1)

So we see that robust self-tests are the strongest while self-tests of states are a weaker
form of self-testing. It is natural to ask for counterexamples showing that there are no
equivalences above.

Unsurprisingly, it is often easier to prove that a certain game self-tests a reference
strategy S but more care and effort is needed to show that this self-test is in fact robust.
In most known cases, however, the same argument that is used to establish a self-testing
result can also be turned robust by simply arguing that all the desired relations hold
approximately rather than exactly. In fact, there are no known examples of self-tests that
are not robust! Moreover, if a self-test is proven using a specific technique that leverages
representation theory of finite groups then robustness of such self-tests follows from the
Gowers-Hatami theorem [11, 33]. The idea here is that all representations of finite groups
are stable in a certain precise mathematical sense. Hence, one might hope that the same
holds true for self-tests and any (exact) self-test is necessarily robust. Regretfully, we
show that this is not the case, i.e., the converse of the first implication from (1) fails to
hold:

Theorem A (Theorem 5.2 & Example 5.3). There exists a nonlocal game G that exactly
self-tests a quantum strategy S, but this self-test is not robust.

The second question we address in this article is whether every 2-party nonlocal game
with quantum advantage self-tests some quantum state. The only known non-trivial set-
ups that do not self-test any quantum state are known in the many party case [10]. We
answer our second question in the negative:
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Theorem B (Theorem 6.2 & Example 6.13). There exists a game G that does not self-test
any state.

Discussion and outlook. Another way to get different forms of self-testing is to vary the
classical observations one has access to. In this article we have focused on self-testing
where we assume that a quantum strategy achieves optimal or near-optimal winning
probability in a nonlocal game. Another common form is where we derive self-testing
from optimal or near-optimal Bell inequality violations. Since every nonlocal game can
be cast as a Bell inequality, our counterexamples also hold in that setting. Finally, rather
than self-testing from a single numerical value (e.g. Bell violation or winning probability),
we can prove a self-testing result for quantum strategies that produce a certain quantum
correlation (collection of probabilities). As we explain in more detail below, our coun-
terexamples do not carry over to the setting of correlations. We summarize the known
counterexamples to self-testing, including results of this article, in the table below:

Non-robust
self-test

Not a measurement
self-test

Not a state
self-test

Nonlocal games Theorem A [7], [27], [29] Theorem B
Bell inequalities [13], [14] [1], [9], [10]
Extreme correlations ? [29], [31] ?

Table 1: Counterexamples for equivalence of different forms of self-testing in the three settings: nonlocal
games, Bell inequalities, and extreme correlations. Note that every counterexample for nonlocal games
also yields a counterexample for Bell inequalities.

We now comment on Table 1. We present the first example of a game that self-tests
a quantum strategy, but this self-test is not robust (Theorem A) in this article. Since
the correlations of the approximate optimal strategies of our game do not necessarily
converge to the self-tested strategy, we do not get a non-robust self-test for correlations.
We leave this as an open question. For obtaining an example of a game that does not self-
test measurements, one needs to construct games with inequivalent optimal strategies.
In [7] it was shown that the glued magic square game does not self-test measurements.
It turns out that this game still self-tests a quantum state [16]. This gives an example of a
game that self-tests a state but not the whole strategy. Another, elementary construction
of such a game is due to Storgaard [29, Section 5.6]: Take a game that is a self-test and
add a question to Bob’s question set for which the players always lose if Bob receives this
question. The game is still a state self-test, but the operators Bob uses for the additional
question are unknown to us. Another counterexample for measurement self-testing was
obtained by Kaniewski [13] in the framework of Bell inequalities. An extreme correlation
obtained by inequivalent strategies was first presented in [31] and studied further in [29].
In this article, we construct the first examples of two-party games that do not self-test
any state (Theorem B). As shown in the table above, an example of a three-party Bell
inequaltiy that does not self-test any state has been identified in [10]. Furthermore, Bell
inequalities that are maximally violated by states in an entangled subspace are studied in
[1] and [9], but all their examples use more than two parties. We do not know an extreme
correlation that does not self-test any state.
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Proof ideas. We now explain the key ideas behind our two main theorems. For obtain-
ing the examples of non-robust self-tests and games that do not self-test any state, we
introduce the (G1 ∨ G2)-game for nonlocal games G1 and G2. In this game the players re-
ceive pairs of questions, one from each game. They choose which question they answer
and win if they answered a question from the same game and additionally win this game
with their answers. We believe that the (G1 ∨ G2)-game may be of independent interest,
beyond the applications for self-testing results.

For the non-robust self-test (Theorem A), we let G1 be a game that has no perfect quan-
tum strategy, but a sequence of strategies whose winning probabilities converge to one.
Note that Slofstra constructed such a game in [28]. We choose G2 to be a pseudo-telepathy
game (i.e. a game with perfect quantum strategy, but no perfect classical strategy) that
self-tests some strategy S2. Then the (G1 ∨ G2)-game self-tests a strategy in which Alice
and Bob always choose game G2 and play according to S2. This self-test is not robust,
however, as there are near-optimal strategies for the (G1 ∨ G2)-game coming from the
near-optimal strategies for G1.

To obtain nonlocal games that do not self-test any state (Theorem B), it suffices to con-
struct a game with two optimal quantum strategies that use states with coprime Schmidt
ranks (see Lemma 6.1). In our case, those will be perfect quantum strategies. Note that
we can get perfect strategies for the (G1 ∨ G2)-game from perfect quantum strategies for
G1 and G2, respectively, by Alice and Bob always choosing the same game and playing
the perfect quantum strategy of this game. Thus, to get a game that does not self-test any
state, it suffices to find two pseudo-telepathy games that have perfect strategies using
states of coprime Schmidt ranks. Then the (G1 ∨ G2)-game will not self-test any state.

The magic square game is a pseudo-telepathy game with a strategy that uses a state
with Schmidt rank 4. Thus, we are left with finding a pseudo-telepathy game that has a
perfect quantum strategy with a state of odd Schmidt rank. Our example of such a game
is a (G, t)-independent set game, where G is the orthogonality graph of a 3-dimensional
weak Kochen-Specker set and some t ∈ N. The perfect quantum strategy uses a state of
Schmidt rank 3.

Structure of the article. In Section 2 we collect background material on nonlocal games.
We then define all forms of self-tests in Section 3 and provide some known results we will
use later on. Furthermore, we show that the synchronous magic square game self-tests a
quantum strategy. In Section 4 we introduce the (G1 ∨ G2)-game and establish some of its
properties in case when both G1 and G2 are pseudo-telepathy games. Using the (G1 ∨ G2)-
game, we construct a non-robust self-test in Section 5. Finally, we obtain games that do
not self-test states in Section 6.

2 Preliminaries

We state some basic facts and notions we will use throughout this article. We write [m] :=
{1, . . . ,m}. Each Hilbert space H considered in this article is finite-dimensional which
means that we have H ∼= Cd for some d ∈ N. We let ∥|ξ⟩∥ = (⟨ξ|ξ⟩)

1
2 for |ξ⟩ ∈ H. An

operator X ∈ B(H) is positive, if ⟨ξ|X|ξ⟩ ≥ 0 for all |ξ⟩ ∈ H. We write X ≤ Y if Y −X is
positive.

A positive operator valued measure (POVM) consists of a family of positive operators
{Mi ∈ B(H) | i ∈ [m]} such that

∑m
i=1Mi = 1B(H). If all positive operators are projections

(Mi = M∗
i = M2

i ), then we call {Mi ∈ B(H) | i ∈ [m]} with
∑m

i=1Mi = 1B(H) a projective
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measurement (PVM). A state |ψ⟩ is a unit vector in a Hilbert space H. Each state |ψ⟩ ∈ HA⊗
HB admits the so-called Schmidt decomposition |ψ⟩ =

∑m
i=1 λiai ⊗ bi, where {ai | i ∈ [m]}

and {bi | i ∈ [m]} are orthonormal sets in HA and HB , respectively, and λi ≥ 0 for all i.
The strictly positive values λi > 0 are called Schmidt coefficients. The Schmidt rank of a state
|ψ⟩ is the number n of Schmidt coefficients λi (counted with multiplicity) in a Schmidt
decomposition. We say that |ψ⟩ has full Schmidt rank if n = dim(HA) = dim(HB). For
|ψ⟩ =

∑m
i=1 λiai ⊗ bi, we let suppA(|ψ⟩) = span{ai}m

i=1 and suppB(|ψ⟩) = span{bi}m
i=1.

Furthermore, we say that a subspace K ⊆ H is an invariant subspace of X ∈ B(H) if
X(K) ⊆ K.

In the following, we describe the framework of nonlocal games [6]. A two-player non-
local game G is played between two collaborating players, Alice and Bob, and a referee. It
is specified by finite input sets IA, IB and finite output sets OA, OB for Alice and Bob, re-
spectively as well as a verification function V : IA×IB ×OA×OB → {0, 1} and a probability
distribution π on IA×IB . In the game, the referee samples a pair (x, y) ∈ IA×IB using the
distribution π and sends x to Alice and y to Bob. Alice and Bob respond with a ∈ OA and
b ∈ OB , respectively. They win if V (x, y, a, b) = 1. In our examples, we always use the
uniform distribution π. The players are not allowed to communicate during the game,
but they can agree on a strategy beforehand. A classical strategy for a nonlocal game is a
strategy in which Alice and Bob only have access to shared randomness. In a quantum
strategy, the players are allowed to perform local measurements on a shared entangled
state. Thus, a quantum strategy may be written as S = (|ψ⟩ ∈ HA ⊗ HB, {Exa}x, {Fyb}y),
where |ψ⟩ is the shared entangled state, {Exa}x are the POVMs for each x ∈ IA for Alice
and {Fyb}y are the POVMs for each y ∈ IB for Bob. A nonlocal game G is called syn-
chronous [23] if we have IA = IB , OA = OB and if Alice and Bob receive identical inputs,
they must answer with identical outputs to win, i.e. V (x, x, a, b) = 0 for a ̸= b.

The classical value ω(G) of a nonlocal game G is the greatest probability of winning
the game with a classical strategy. The quantum value ω∗(G) is the supremum over the
winning probabilities of the quantum strategies for the game. An optimal quantum strategy
is a quantum strategy achieving this quantum value. In contrary to the classical value,
the quantum value is not always attained [28]. In general, the quantum value is bigger
than the classical value. We are especially interested in pseudo-telepathy games, which are
games having a perfect quantum strategy (a strategy that allows the players to win with
probability one), but no perfect classical strategy.

3 Self-testing

In this section, we formally introduce the notion of self-testing. The idea of self-testing is
the following. A game self-tests an optimal quantum strategy S̃ if the strategy is unique,
in the sense that every other optimal strategy S is related the strategy S̃ by a local isome-
try. As in [19], we will say that S̃ is a local dilation of S.

Definition 3.1. Let S̃ = ( ˜|ψ⟩ ∈ H̃A ⊗ H̃B, {Ẽxa}x, {F̃yb}y), S = (|ψ⟩ ∈ HA ⊗ HB, {Exa}x,
{Fyb}y) be quantum strategies. We say that S̃ is a local dilation of S if there exist Hilbert
spaces HA,aux and HB,aux, a state |aux⟩ ∈ HA,aux ⊗ HB,aux and isometries UA : HA →
H̃A ⊗ HA,aux, UB : HB → H̃B ⊗ HB,aux such that with U := UA ⊗ UB it holds

U |ψ⟩ = |ψ̃⟩ ⊗ |aux⟩, (2)
U(Exa ⊗ 1)|ψ⟩ = [(Ẽxa ⊗ 1)|ψ̃⟩] ⊗ |aux⟩, (3)
U(1 ⊗ Fyb)|ψ⟩ = [(1 ⊗ F̃yb)|ψ̃⟩] ⊗ |aux⟩. (4)
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Note that if S̃ is a local dilation of S, then they induce the same correlation and thus
the same winning probability for a game G.

Remark 3.2. There is a slight abuse of notation in the previous Definition. The lefthand
side of equations (2), (3) and (4) is an element of H̃A ⊗ HA,aux ⊗ H̃B ⊗ HB,aux, whereas
the righthand side is an element of H̃A ⊗H̃B ⊗HA,aux ⊗HB,aux. We identify those Hilbert
spaces via the unitary that flips the second and the third tensor factors.

Remark 3.3. The equations (3) and (4) are equivalent to

U(Exa ⊗ Fyb)|ψ⟩ = [(Ẽxa ⊗ F̃yb)|ψ̃⟩] ⊗ |aux⟩.

Definition 3.4. Let G be a nonlocal game and S̃ = ( ˜|ψ⟩ ∈ H̃A ⊗ H̃B, {Ẽxa}x, {F̃yb}y) be an
optimal quantum strategy. We say that G self-tests the strategy S̃ if S̃ is a local dilation
of any optimal quantum strategy S = (|ψ⟩ ∈ HA ⊗ HB, {Exa}x, {Fyb}y). If only equation
(2) holds for all optimal quantum strategies S, we say that G self-tests the state |ψ̃⟩.

Remark 3.5. Some authors only impose that S̃ is a local dilation of any projective strategy
S. This is a priori a weaker notion of self-testing. We will see, however, that in some cases
(e.g. the magic square game) the PVM self-test can be used to prove a POVM self-test
for the synchronous version of the game.

We will now state some results of [19] on local dilations. Those will mostly help to
reduce proving self-testing for general quantum strategies to quantum strategies having
states with full Schmidt rank.

Lemma 3.6. [19, Lemma 4.8] Let X ∈ B(HA), Y ∈ B(HB) and |ψ⟩ ∈ HA ⊗ HB such
that (X ⊗ 1)|ψ⟩ = (1 ⊗ Y )|ψ⟩. Then suppA(|ψ⟩) is invariant under X and suppB(|ψ⟩) is
invariant under Y .

The next lemma and its corollary split [19, Lemma 4.9] into two parts, making the
lemma slightly more general. We do this since we need to use the lemma in its more
general form later on.

Lemma 3.7. Let G be a nonlocal game. Let S = (|ψ⟩ ∈ CdA ⊗ CdB , {Exa}x, {Fyb}y) be a
quantum strategy such that suppA(|ψ⟩) and suppB(|ψ⟩) are invariant under each Exa and
Fyb, respectively. Then there exists a quantum strategy S′ = (|ψ′⟩, {E′

xa}x, {F ′
yb}y) such

that |ψ′⟩ has full Schmidt rank and S′ is a local dilation of S.

Proof. We follow the proof of [19, Lemma 4.9]. Consider the Schmidt decomposition
|ψ⟩ =

∑r
i=1 αiξi ⊗ ηi and let UA : Cr → CdA , UB : Cr → CdB be isometries given by

UA =
r∑

i=1
ξie

∗
i , UB =

r∑
i=1

ηie
∗
i .

Then

E′
xa = U∗

AExaUA, F ′
yb = U∗

BFybUB

are positive operators and {E′
xa |x ∈ [r]}, {F ′

yb | y ∈ [r]} are POVMs. With |ψ′⟩ =
(U∗

A ⊗ U∗
B)|ψ⟩, we get a quantum strategy S′, where |ψ′⟩ has full Schmidt rank.

We will now show that S′ is a local dilation of S. Set HA,aux = CdA , HB,aux = CdB

and define isometries VA : CdA → Cr ⊗ CdA , VB : CdB → Cr ⊗ CdB by

VA(v) = U∗
A(v) ⊗ ξ1 + e1 ⊗ (1dA

− UAU
∗
A)(v),

VB(w) = U∗
B(w) ⊗ η1 + e1 ⊗ (1dB

− UBU
∗
B)(w),
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where v ∈ CdA , w ∈ CdB . Since suppA(|ψ⟩) and suppB(|ψ⟩) are invariant under each
Exa and Fyb, respectively, and UAU

∗
A and UBU

∗
B are the projections onto suppA(|ψ⟩) and

suppB(|ψ⟩), respectively, we have

(VA ⊗ VB)(Exa ⊗ Fyb)|ψ⟩ = (U∗
A ⊗ U∗

B)((Exa ⊗ Fyb)|ψ⟩) ⊗ (ξ1 ⊗ η1).

Furthermore, it holds

(U∗
A ⊗ U∗

B)(Exa ⊗ Fyb)|ψ⟩ = (U∗
A ⊗ U∗

B)(Exa ⊗ Fyb)(UAU
∗
A ⊗ UBU

∗
B)|ψ⟩

= (E′
xa ⊗ F ′

yb)|ψ′⟩,

since UAU
∗
A and UBU

∗
B are the projections onto suppA(|ψ⟩) and suppB(|ψ⟩), respectively.

This concludes the proof.

Corollary 3.8. Let G be a synchronous game and let S = (|ψ⟩, {Exa}x, {Fyb}y) a perfect
quantum strategy of G. Then there exists a perfect quantum strategy S′ = (|ψ′⟩, {E′

xa}x,
{F ′

yb}y) of G such that |ψ′⟩ has full Schmidt rank and S′ is a local dilation of S.

Proof. By [19, Corollary 3.6 (a)], we know (Exa ⊗ 1)|ψ⟩ = (1 ⊗Fxa)|ψ⟩. Lemma 3.6 yields
that suppA(|ψ⟩) and suppB(|ψ⟩) are invariant under each Exa and Fyb, respectively. We
obtain the result by Lemma 3.7.

We also have a transitivity result for local dilations. One can use it for proving self-
testing results in the follwing way. First show that a general optimal quantum strategy
dilates to a quantum strategy having a state of full Schmidt rank. Then check if the
reference strategy is a local dilation of any optimal strategy with a state of full Schmidt
rank.

Lemma 3.9. [19, Lemma 4.7] Let S1, S2 and S3 be quantum strategies. If S1 is a local
dilation of S2 and S2 is a local dilation of S3, then S1 is a local dilation of S3.

Finally, we give the definition of robust self-testing. Roughly speaking, a game ro-
bustly self-tests a quantum strategy S̃ if it self-tests the strategy and additionally, for
every almost optimal strategy S, a local dilation of S is close to S̃. For δ > 0, we say that
a quantum strategy is δ-optimal for a game G if the winning probability is greater or equal
to ω∗(G) − δ, where ω∗(G) is the quantum value of G.

Definition 3.10. Let G be a nonlocal game, S̃ = ( ˜|ψ⟩ ∈ H̃A ⊗ H̃B, {Ẽxa}x, {F̃yb}y) an
optimal quantum strategy. Then G is a robust self-test for S̃ if G is a self-test for S̃ and
for any ε > 0, there exists a δ > 0 such that for any δ-optimal strategy S = (|ψ⟩ ∈
HA ⊗ HB, {Exa}x, {Byb}y), there exists Hilbert spaces HA,aux and HB,aux, a state |aux⟩ ∈
HA,aux ⊗ HB,aux and isometries UA : HA → H̃A ⊗ HA,aux, UB : HB → H̃B ⊗ HB,aux such
that with U := UA ⊗ UB it holds

∥U |ψ⟩ − ˜|ψ⟩ ⊗ |aux⟩∥ ≤ ε,

∥U(Exa ⊗ 1)|ψ⟩ − [(Ẽxa ⊗ 1) ˜|ψ⟩] ⊗ |aux⟩∥ ≤ ε,

∥U(1 ⊗ F̃yb)|ψ⟩ − [(1 ⊗ F̃yb) ˜|ψ⟩] ⊗ |aux⟩∥ ≤ ε.
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3.1 The synchronous magic square game self-tests a quantum strategy

In this subsection, we show that the synchronous magic square game self-tests a quantum
strategy S̃ with maximally entangled state |ψ4⟩. In [34] it was shown that the magic
square game self-tests a strategy S. Note that their general strategies consist of projective
measurements, the case of strategies with POVMs is not considered. We will deduce a
POVM self-testing result for the synchronous magic square game from the PVM self-test
of the magic square.

We will first describe the magic square game of [5, Section 5] and then its synchronous
version. Note that there are also other versions of the magic square game. We choose the
one with minimal input and output sets. Consider the following set of equations

x1x2x3 = 1 (r1), x1x4x7 = −1 (c1),
x4x5x6 = 1 (r2), x2x5x8 = −1 (c2),
x7x8x9 = 1 (r3), x3x6x9 = −1 (c3).

In the magic square game, the referee sends one of the three equations on the left hand
side to Alice and one of the three equations on the right hand side to Bob. Alice answers
with a {−1, 1}-assignment of the variables such that their product is 1 and Bob answers
with a {−1, 1}-assignment of the variables such that their product is −1. The players
win the game, if their assignments coincide in the common variable of the equations they
received. More formally, we have

IA = R := {r1, r2, r3},
IB = C := {c1, c2, c3},
OA = O1 := {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)},
OB = O−1 := {(−1,−1,−1), (−1, 1, 1), (1,−1, 1), (1, 1,−1)},

VMS(ri, cj , a, b) =
{

1 if aj = bi,

0 otherwise.

Here a = (a1, a2, a3), b = (b1, b2, b3). Note that it is shown in [5, Section 5] that this game
is a pseudo-telepathy game.

The synchronous version of the magic square game is played as follows. The referee
sends one of the six equations above to Alice and one of them to Bob. They answer with
{−1, 1}-assignments such that the equations are fulfilled. Alice and Bob win the game
if their assignments coincide on the common variables of the equations they received.
Here, we have

IA = IB = R ∪ C, OA = OB = O1 ∪O−1,

V (x, y, a, b) =



VMS(x, y, a, b) if x ∈ R, y ∈ C, a ∈ O1, b ∈ O−1,

VMS(y, x, b, a) if x ∈ C, y ∈ R, a ∈ O−1, b ∈ O1,

1 if (x, y ∈ R, x ̸= y, a, b ∈ O1) or (x, y ∈ C, x ̸= y, a, b ∈ O−1),
δab if x = y ∈ R, a, b ∈ O1 or x = y ∈ C, a, b ∈ O−1,

0 otherwise.

The following self-testing statement for the magic square game was shown in [34].
We will use this theorem to deduce a self-testing statement for the synchronous magic
square game. Recall the Pauli matrices

σX =
(

0 1
1 0

)
, σY =

(
0 −i
i 0

)
and σZ =

(
1 0
0 −1

)
.

Accepted in Quantum 2023-07-04, click title to verify. Published under CC-BY 4.0. 8



Theorem 3.11 ([34]). Restricting to projective measurements, the magic square game self-
tests a perfect quantum strategy S = (|ψ4⟩, {Exa}x, {Fyb}y). Here |ψ4⟩ = 1

2
∑4

i=1 ei ⊗ ei

and Exa = 1
8(1 + a1X1)(1 + a2X2)(1 + a3X3), Fyb = 1

8(1 + b1Y
T

1 )(1 + b2Y
T

2 )(1 + b3Y
T

3 ),
where Xi and Yi are the i-th entries in row x and column y of

I ⊗ σZ σZ ⊗ I σZ ⊗ σZ

σX ⊗ I I ⊗ σX σX ⊗ σX

−σX ⊗ σZ −σZ ⊗ σX σY ⊗ σY

Corollary 3.12. Let S be as in Theorem 3.11. The synchronous magic square game self-
tests the perfect quantum strategy S̃ = (|ψ4⟩, {Ẽxa}x, {F̃yb}y), where

Ẽxa =


Exa if x ∈ R, a ∈ O1

F
T
xa if x ∈ C, a ∈ O−1,

0 otherwise,
F̃yb =


Fyb if y ∈ C, b ∈ O−1

E
T
yb if y ∈ R, b ∈ O1,

0 otherwise.

Proof. Let S′ = (|ψ′⟩, {E′
xa}, {F ′

yb}) be a perfect quantum strategy for the synchronous
magic square game. By Corollary 3.8, there exists a perfect quantum strategy Ŝ =
( ˆ|ψ⟩, {Êxa}, {F̂yb}) that is a local dilation of S′, where ˆ|ψ⟩ has full Schmidt rank, ˆ|ψ⟩ =∑d

i=1 λ̂iei ⊗ei with λ̂i > 0 for all i ∈ [d]. Furthermore, by [19, Corollary 3.6], the operators
Êxa and F̂yb are projections.

Let φ̂ := diag(λ̂i) ∈ Cd×d, i.e. φ̂ is a diagonal matrix with entries λ̂i. Let x ∈ R and
a ∈ O−1. Then

Tr(Êxaφ̂
2) = ⟨ψ̂|Êxa ⊗ 1|ψ̂⟩ = ⟨ψ̂|Êxa ⊗

∑
b

F̂yb|ψ̂⟩ = 0,

since ⟨ψ̂|Êxa ⊗ F̂yb|ψ̂⟩ = 0 for all y, b as a ∈ O−1. Since φ̂ is invertible, we conclude
Êxa = 0. We similarly get Êxa = 0 for x ∈ C, a ∈ O1 and F̂yb = 0 for y ∈ C, b ∈ O1 or
y ∈ R, b ∈ O−1.

By the previous argument, we get that {Êxa | a ∈ O1} and {F̂yb | b ∈ O−1} are PVMs
for x ∈ R, y ∈ C. Together with ˆ|ψ⟩, they form a perfect quantum strategy for the magic
square game. By Theorem 3.11, there exists Hilbert spaces HA,aux and HB,aux, a state
|aux⟩ ∈ HA,aux⊗HB,aux and isometries UA : ĤA → HA⊗HA,aux, UB : ĤB → HB ⊗HB,aux

such that with U := UA ⊗ UB it holds

U |ψ̂⟩ = |ψ4⟩ ⊗ |aux⟩,
U(Êxa ⊗ 1)|ψ̂⟩ = [(Exa ⊗ 1)|ψ4⟩] ⊗ |aux⟩,
U(1 ⊗ F̂yb)|ψ̂⟩ = [(1 ⊗ Fxa)|ψ4⟩] ⊗ |aux⟩ (5)

for x ∈ R, y ∈ C and a ∈ O1, b ∈ O−1.
Now, let x ∈ C and a ∈ O−1. By [19, Corollary 3.6 (a)], we have

U(Êxa ⊗ 1)|ψ̂⟩ = U(1 ⊗ F̂xa)|ψ̂⟩.

Furthermore, it holds

U(1 ⊗ F̂xa)|ψ̂⟩ = [(1 ⊗ Fyb)|ψ4⟩] ⊗ |aux⟩
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by (5). We conclude

U(Êxa ⊗ 1)|ψ̂⟩ = [(1 ⊗ Fyb)|ψ4⟩] ⊗ |aux⟩ = [(F T
xa ⊗ 1)|ψ4⟩] ⊗ |aux⟩ (6)

for all x ∈ C and a ∈ O−1. One similarly obtains

U(1 ⊗ F̂yb)|ψ̂⟩ = [(1 ⊗ E
T
yb)|ψ4⟩] ⊗ |aux⟩ (7)

for all y ∈ R and a ∈ O1. Since we know Êxa = 0 = Exa and F̂yb = 0 = Fyb for the
remaining x, y, a, b, we deduce from (5), (6) and (7) that the synchronous magic square
game self-tests the perfect quantum strategy S̃.

4 The (G1 ∨ G2)-game

Let G1 and G2 be nonlocal games. The (G1 ∨ G2)-game is played as follows: The referee
sends Alice and Bob a pair of questions (x1, x2) and (y1, y2), respectively, where x1, y1
are questions in G1 and x2, y2 in G2. Each of them chooses one of the questions they
received and responds with an answer from the corresponding game. To win the game,
two conditions have to be fulfilled:

(1) Alice and Bob have to choose questions from the same game,

(2) their answers have to win the corresponding game.

More formally, suppose the nonlocal games G1 and G2 have input sets IA,i, IB,i, output
sets OA,i, OB,i, verification functions VGi and probability distributions πi on IA,i × IB,i

for i = 1, 2. Then the (G1 ∨ G2)-game has input sets IA,1 × IA,2, IB,1 × IB,2, output sets
OA,1∪̇OA,2, OB,1∪̇OB,2 and verification function

V ((x1, x2), (y1, y2), a, b) =
{
VGi(xi, yi, a, b) if a ∈ OA,i and b ∈ OB,i for some i = 1, 2,
0 otherwise.

For the probability distribution, we take π = π1 × π2 on (IA,1 × IA,2) × (IB,1 × IB,2), i.e.
π((x1, x2), (y1, y2)) = π1(x1, y1)π2(x2, y2). In this article, we assume that the probability
distributions of G1 and G2 are uniform, so this will also be the case for the (G1 ∨ G2)-game.
The (G1 ∨ G2)-game will be used for our counterexamples in this article, we believe that
it can also be of independent interest.

We first check that the (G1∨G2)-game keeps its quantum advantage if one of the games
is a pseudo-telepathy game and the other one does not have a perfect quantum strategy.

Lemma 4.1. Let G1 be a pseudo-telepathy game and let G2 be a game with ω(G) < 1. Then
the (G1 ∨ G2)-game is a pseudo-telepathy game.

Proof. It is easy to see that the (G1 ∨ G2)-game has a perfect strategy. Indeed, Alice and
Bob can always choose to answer the question from G1 and then use a perfect quantum
strategy for G1 to come up with their answers.

It remains to show that there is no perfect classical strategy for the (G1 ∨ G2)-game.
First note that it suffices to show that there is no perfect deterministic strategy. For
contradiction assume that there is a perfect deterministic strategy S. If in this strategy
Alice chooses a question x1 for some pair (x1, x2), then we know that Bob has to choose y1
for all pairs (y1, y2), as otherwise there are questions for which the players lose the game.
A similar argument shows that Alice also always has to choose the questions from G1. This
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shows that in strategy S the players always choose to answer questions from G1. Hence, S
can be used to construct a perfect classical strategy for game G1 which is a contradiction.
Since G2 also does not admit a perfect classical strategy, a similar argument works if in
strategy S Alice chooses a question x2 for some tuple (x1, x2).

The following lemma will be used to show that restricting a POVM measurement
with a projection yields a POVM measurement on a smaller Hilbert space.

Lemma 4.2. [4, Proposition II, 3.3.2] Let A be a C∗-algebra, let a ∈ A be a positive element
and p ∈ A a projection. If a ≤ p, then ap = pa = a.

The next lemma shows that if we have a perfect quantum strategy for the (G1 ∨ G2)-
game, where Alice and Bob have non-zero probability of answering with some outputs
of G1, then there is a perfect quantum strategy for G1. In particular, this shows that if G2
has a perfect quantum strategy and G1 does not, the players will always choose to play
G2 and never G1.

Lemma 4.3. Let G1 and G2 be nonlocal games and consider the (G1 ∨ G2)-game as above.
If there is a perfect quantum strategy S = (|ψ⟩, {E(x1,x2)a}(x1,x2), {F(y1,y2)b}(y1,y2)) of the
(G1 ∨ G2)-game, where additionally

⟨ψ|E(x1,x2)a ⊗ F(y1,y2)b|ψ⟩ > 0 (8)

for some a ∈ OA,1 and b ∈ OB,1, then G1 has a perfect quantum strategy.

Proof. Let S′ = (|ψ′⟩ ∈ H′
A ⊗ H′

B, {E′
(x1,x2)a}(x1,x2), {F ′

(y1,y2)b}(y1,y2)) be a perfect quan-
tum strategy of the (G1 ∨ G2)-game. By restricting the state and the operators from
S′ to suppA(|ψ′⟩) ⊗ suppB(|ψ′⟩), we get a perfect quantum strategy S = (|ψ⟩ ∈ HA ⊗
HB, {E(x1,x2)a}(x1,x2),
{F(y1,y2)b}(y1,y2)) such that

⟨ψ|E(x1,x2)a ⊗ F(y1,y2)b|ψ⟩ = ⟨ψ′|E′
(x1,x2)a ⊗ F ′

(y1,y2)b|ψ
′⟩ (9)

and |ψ⟩ has full Schmidt rank, i.e. |ψ⟩ =
∑d

i=1 λiei ⊗ ei with λi > 0 for all i ∈ [d]. We
will first show∑

a∈OA,i

E(x1,x2)a =
∑

a∈OA,i

E(s1,s2)a,
∑

b∈OB,j

F(y1,y2)b =
∑

b∈OB,j

F(t1,t2)b

for all (x1, x2), (s1, s2) ∈ IA,1 × IA,2, i = 1, 2 and (y1, y2), (t1, t2) ∈ IB,1 × IB,2, j = 1, 2.
Note that we have ∑

a∈OA,1∪̇OA,2

E(x1,x2)a = 1 =
∑

b∈OB,1∪̇OB,2

F(y1,y2)b (10)

and ⟨ψ|E(x1,x2)a ⊗F(y1,y2)b|ψ⟩ = 0 for all a ∈ OA,i, b ∈ OB,j with i ̸= j, since S is a perfect
quantum strategy. Let φ := diag(λi) ∈ Cd×d, i.e. φ is the diagonal matrix with entries
λi. Let p(x1,x2)i :=

∑
a∈OA,i

E(x1,x2)a, i = 1, 2 and q(y1,y2)j :=
∑

b∈OB,j
F(y1,y2)b, j = 1, 2. It

holds

Tr(p(x1,x2)iφ(q(y1,y2)j)T
φ) = Tr(φ∗p(x1,x2)iφ(q(y1,y2)j)T)

= ⟨ψ|
∑

a∈OA,i

E(x1,x2)a ⊗
∑

b∈OB,j

F(y1,y2)b|ψ⟩ = 0
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for i ̸= j, since S is a perfect quantum strategy for the (G1 ∨ G2)-game. Thus, we have

p(x1,x2)iφ(q(y1,y2)j)T
φ = 0 (11)

for all i ̸= j. Using equations (10) and (11) several times, we get

p(x1,x2)iφ
2 = p(x1,x2)iφ((q(y1,y2)i)

T + (q(y1,y2)j)T)φ

= p(x1,x2)iφ(q(y1,y2)i)
T
φ

= (p(x1,x2)i + p(x1,x2)j)φ(q(y1,y2)i)
T
φ

= φ(q(y1,y2)i)
T
φ

= p(s1,s2)iφ(q(y1,y2)i)
T
φ

= p(s1,s2)iφ
2

for all (x1, x2), (s1, s2) ∈ IA,1 × IA,2 and i, j ∈ {1, 2}, i ̸= j. Since |ψ⟩ has full Schmidt
rank, φ is invertible and we obtain p(x1,x2)i = p(s1,s2)i for all (x1, x2), (s1, s2) ∈ IA,1 × IA,2.
One similarly shows q(y1,y2)j = q(t1,t2)j . From now on, we let pi := p(x1,x2)i, qj := q(y1,y2)j
for i = 1, 2, j = 1, 2.

We will now show that pi and qj are projections. Using equations (10) and (11), we
obtain

p1p2φ
2 = p1p2φ(qT

1 + q
T
2 )φ

= p1p2φ(qT
2 )φ

= p1(p1 + p2)φ(qT
2 )φ

= p1φ(qT
2 )φ

= 0.

Since φ is invertible, we obtain p1p2 = 0. In particular, we have p1 = p1(p1 + p2) = p2
1

and since we already know p1 = p∗
1, we get that p1 is a projection. It immediately follows

that p2 = 1 − p1 is a projection. One can similarly show that q1 and q2 are projections.
In the next step, we show p1 ̸= 0 ̸= q1. By (8) and (9), we have

⟨ψ|E(x1,x2)a ⊗ F(y1,y2)b|ψ⟩ = ⟨ψ′|E′
(x1,x2)a ⊗ F ′

(y1,y2)b|ψ
′⟩ > 0

for some a ∈ OA,1 and b ∈ OB,1. Since all E(x1,x2)a, F(y1,y2)b are positive, it holds

⟨ψ|p1 ⊗ q1|ψ⟩ ≥ ⟨ψ|E(x1,x2)a ⊗ F(y1,y2)b|ψ⟩ > 0

which implies p1 ̸= 0 ̸= q1.
In the last step, we construct a perfect quantum strategy for G1. Fix some x2 ∈ OA,2

and y2 ∈ OB,2 and define the quantum strategy S̃ for G1 as follows.

|ψ̃⟩ := (p1 ⊗ q1)|ψ⟩ ∈ p1HA ⊗ q1HB,

Ẽx1a := E(x1,x2)a,

F̃y1b := F(y1,y2)b

for x1 ∈ IA,1, y1 ∈ IB,1 and a ∈ OA,1, b ∈ OB,1. Note that p1 is the identity in B(p1HA)
and similarly q1 is the identity in B(q1HB). Using Lemma 4.2, we see that Ẽx1a ∈ B(p1HA)
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and F̃y1b ∈ B(q1HB). Thus {Ẽx1a | a ∈ OA,1} and {F̃y1b | b ∈ OB,1} are POVMs on the
space p1HA ⊗ q1HB for all x1, y1. Furthermore, we have

⟨ψ̃|Ẽx1a ⊗ F̃y1b|ψ̃⟩ = ⟨ψ|p1E(x1,x2)ap1 ⊗ q1F(y1,y2)bq1|ψ⟩
= ⟨ψ|E(x1,x2)a ⊗ F(y1,y2)b|ψ⟩

by Lemma 4.2. Since S = (|ψ⟩, {E(x1,x2)a}(x1,x2), {F(y1,y2)b}(y1,y2)) is a perfect quantum
strategy for the (G1 ∨ G2)-game, we know that

⟨ψ|E(x1,x2)a ⊗ F(y1,y2)b|ψ⟩ = 0

whenever V ((x1, x2), (y1, y2), a, b) = 0. But since we have a ∈ OA,1 and b ∈ OB,1, this is
by definition equivalent to VG1(x1, y1, a, b) = 0. We conclude that S̃ is a perfect quantum
strategy for G1.

We believe that the (G1 ∨ G2)-game is of independent interest. We now list a few nat-
ural directions of further inquiry. The first one that comes to mind is what happens if we
consider games with quantum advantage, but not necessarily perfect quantum strate-
gies in Lemma 4.1 and Lemma 4.3. Furthermore, one might ask about the non-signalling
strategies of the (G1 ∨ G2)-game. We leave those as open questions here. In this article,
we will use the (G1 ∨ G2)-game in the next sections to construct non-robust self-tests and
games that do not self-test any states.

5 A non-robust self-test

In this section, we construct a game that non-robustly self-tests a perfect quantum strat-
egy. The idea is to consider the (G1 ∨ G2)-game with the following games. We let G1 be a
game that has no perfect quantum strategy, but a sequence of quantum strategies whose
winning probabilities converge to 1. Note that such a game was constructed by Slofstra
in [28]. For G2 we take a pseudo-telepathy game that self-tests a quantum strategy. Then
the (G1 ∨ G2)-game still self-tests this strategy, because G1 has no perfect quantum strat-
egy. This self-test is not robust, however, since we can construct a near-optimal strategies
of (G1 ∨ G2)-game from the ones of G1 and these strategies are not close to the self-tested
strategy.

For our proof technique to go through, we need to choose a game G2 that is syn-
chronous. In this case we can ensure that if one of the players gets a pair of questions
(x1, x2) and chooses to play game G1, the question x2 does not matter for the output (see
part (ii) below).

Lemma 5.1. Let G1 be a nonlocal game and let G2 be a synchronous nonlocal game. Fur-
thermore, let S = (|ψ⟩, {E(x1,x2)a}(x1,x2), {F(y1,y2)b}(y1,y2)) be a perfect quantum strategy
for the (G1 ∨ G2)-game.

(i) It holds (E(x1,x2)a ⊗ 1)|ψ⟩ = (1 ⊗ F(y1,x2)a)|ψ⟩ for all x1 ∈ IA,1, y1 ∈ IB,1, x2 ∈ I2
and a ∈ O2.

(ii) For all x1, x3 ∈ IA,1, x2 ∈ I2, a ∈ O2 and y1, y3 ∈ IB,1, y2 ∈ I2, b ∈ O2, we have

(E(x1,x2)a ⊗ 1)|ψ⟩ = (E(x3,x2)a ⊗ 1)|ψ⟩ and (1 ⊗ F(y1,y2)b)|ψ⟩ = (1 ⊗ F(y3,y2)b)|ψ⟩.

(iii) If |ψ⟩ has full Schmidt rank, then E(x1,x2)a = E(x3,x2)a for x1, x3 ∈ IA,1, x2 ∈ I2,
a ∈ O2 and F(y1,y2)b = F(y3,y2)b for y1, y3 ∈ IB,1, y2 ∈ I2, b ∈ O2.
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Proof. Let S be as above and x1 ∈ IA,1, x2 ∈ I2, a ∈ O2. Since G2 is synchronous, it holds

⟨ψ|E(x1,x2)a ⊗ 1|ψ⟩ = ⟨ψ|E(x1,x2)a ⊗ F(y1,x2)a|ψ⟩ = ⟨ψ|1 ⊗ F(y1,x2)a|ψ⟩

for all y1 ∈ IB,1. Using the equation above and the fact that E2
(x1,x2)a ≤ E(x1,x2)a and

F 2
(y1,x2)a ≤ F(y1,x2)a, we obtain

∥(E(x1,x2)a ⊗ 1)|ψ⟩ − (1 ⊗ F(y1,x2)a)|ψ⟩∥2 = ⟨ψ|E2
(x1,x2)a ⊗ 1|ψ⟩ + ⟨ψ|1 ⊗ F 2

(y1,x2)a|ψ⟩
− 2⟨ψ|E(x1,x2)a ⊗ F(y1,x2)a|ψ⟩

≤ ⟨ψ|E(x1,x2)a ⊗ 1|ψ⟩ + ⟨ψ|1 ⊗ F(y1,x2)a|ψ⟩
− 2⟨ψ|E(x1,x2)a ⊗ F(y1,x2)a|ψ⟩

= 0.

This yields (E(x1,x2)a ⊗ 1)|ψ⟩ = (1 ⊗ F(y1,x2)a)|ψ⟩ and thus proves part (i). Since this
equation holds for every x1 ∈ IA,1, we get (E(x1,x2)a ⊗ 1)|ψ⟩ = (E(x3,x2)a ⊗ 1)|ψ⟩, x1, x3 ∈
IA,1 and similarly (1 ⊗ F(y1,x2)a)|ψ⟩ = (1 ⊗ F(y3,x2)a)|ψ⟩ for y1, y3 ∈ IB,1 which yields (ii).
Part (iii) follows from (ii) since |ψ⟩⟨ψ| is invertible if |ψ⟩ has full Schmidt rank.

We can now present the non-robust self-test.

Theorem 5.2. Let G1 be a nonlocal game that has no perfect quantum strategy, but there
exists a sequence of quantum strategies whose winning probabilities converge to 1. Let
G2 be a synchronous pseudo-telepathy game that self-tests a strategy S2 = ( ˜|ψ⟩ ∈ H̃A ⊗
H̃B, {Êx2a}x2 , {F̂y2b}y2). In this case the (G1 ∨ G2)-game is a non-robust self-test for the
strategy S̃2 = ( ˜|ψ⟩, {Ẽ(x1,x2)a}(x1,x2), {F̃(y1,y2)b}(y1,y2)), where

Ẽ(x1,x2)a =
{
Êx2a for a ∈ OA,2,

0 otherwise,
F̃(y1,y2)b =

{
F̂y2b for b ∈ OB,2,

0 otherwise.

Proof. Let S′ = (|ψ′⟩, {E′
(x1,x2)a}(x1,x2), {F ′

(y1,y2)b}(y1,y2)) be a perfect quantum strategy
for the (G1 ∨ G2)-game. To show that the (G1 ∨ G2)-game is a self-test for the strategy S̃2,
we have to prove that S̃2 is a local dilation of S′.

By assumption, the game G1 has no perfect quantum strategy, thus we get ⟨ψ′|E′
(x1,x2)a⊗

F ′
(y1,y2)b|ψ

′⟩ = 0 for all a ∈ OA,1, b ∈ OB,1 by Lemma 4.3. Summing over all b ∈ OB,1∪̇OB,2
and a ∈ OA,1∪̇OA,2, respectively, yields ⟨ψ′|E′

(x1,x2)a ⊗ 1|ψ′⟩ = 0, ⟨ψ′|1 ⊗ F ′
(y1,y2)b|ψ

′⟩ = 0
for a ∈ OA,1, b ∈ OB,1. Therefore, using (E′

(x1,x2)a)2 ≤ E′
(x1,x2)a, we have

∥(E′
(x1,x2)a ⊗ 1)|ψ′⟩∥2 = ⟨ψ′|(E′

(x1,x2)a)2 ⊗ 1)|ψ′⟩
≤ ⟨ψ′|E′

(x1,x2)a ⊗ 1)|ψ′⟩
= 0.

We conclude (E′
(x1,x2)a ⊗1)|ψ′⟩ = 0 for all a ∈ OA,1. We similarly get (1⊗F ′

(y1,y2)b)|ψ
′⟩ = 0

for all b ∈ OB,1. This especially yields that suppA(|ψ′⟩) and suppB(|ψ′⟩) are invariant
under those E′

(x1,x2)a and F ′
(y1,y2)b, respectively. By Lemma 5.1 (i), we know (E′

(x1,x2)a ⊗
1)|ψ′⟩ = (1 ⊗ F ′

(y1,x2)a)|ψ′⟩ for all x1 ∈ IA,1, y1 ∈ IB,1, x2 ∈ I2 and a ∈ O2. Therefore,
Lemma 3.6 yields that suppA(ψ′) is invariant under E′

(x1,x2)a and suppB(ψ′) is invariant
under F ′

(y1,y2)b in those cases. We conclude that suppA(|ψ′⟩) and suppB(|ψ′⟩) are invariant
under all E′

(x1,x2)a and F ′
(y1,y2)b, respectively. Lemma 3.7 now yields that there exists a
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perfect quantum strategy S = (|ψ⟩, {E(x1,x2)a}(x1,x2), {F(y1,y2)b}(y1,y2)) such that S is a
local dilation of S′ and |ψ⟩ has full Schmidt rank, i.e. |ψ⟩ =

∑d
i=1 λiei ⊗ ei with λi > 0

for all i ∈ [d].
Let φ = diag(λi), where λi are the Schmidt coefficients of |ψ⟩. Once again, by Lemma

4.3, we have ⟨ψ|E(x1,x2)a ⊗ F(y1,y2)b|ψ⟩ = 0 for all a ∈ OA,1, b ∈ OB,1. Summing over all
b ∈ OB,1∪̇OB,2 and a ∈ OA,1∪̇OA,2, respectively, yields

Tr(E(x1,x2)aφ
2) = ⟨ψ|E(x1,x2)a ⊗ 1|ψ⟩ = 0,

Tr((φ∗)2(F(y1,y2)b)
T) = ⟨ψ|1 ⊗ F(y1,y2)b|ψ⟩ = 0

for a ∈ OA,1, b ∈ OB,1. Since |ψ⟩ has full Schmidt rank, we obtain E(x1,x2)a = 0 and
F(y1,y2)b = 0 for all a ∈ OA,1, b ∈ OB,1. Therefore, {E(x1,x2)a | a ∈ OA,2} and {F(y1,y2)b | b ∈
OB,2} are POVMs. For fixed x1 ∈ IA,1, y1 ∈ IB,1, we get that (|ψ⟩, {E(x1,x2)a}(x1,x2),
{F(y1,y2)b}(y1,y2)) is a perfect quantum strategy for G2. Because G2 is a self-test for S2, we
know that for fixed x1, y1 there exists Hilbert spaces HA,aux and HB,aux, a state |aux⟩ ∈
HA,aux ⊗ HB,aux and isometries UA : HA → H̃A ⊗ HA,aux, UB : HB → H̃B ⊗ HB,aux such
that with U := UA ⊗ UB it holds

U |ψ⟩ = |ψ̃⟩ ⊗ |aux⟩,
U(E(x1,x2)a ⊗ 1)|ψ⟩ = [(Êx2a ⊗ 1) ˜|ψ⟩] ⊗ |aux⟩,
U(1 ⊗ F(y1,y2)b)|ψ⟩ = [(1 ⊗ F̂(y1,y2)b) ˜|ψ⟩] ⊗ |aux⟩.

Note that from Lemma 5.1 (iii), we have E(x1,x2)a = E(x3,x2)a for x1, x3 ∈ IA,1, x2 ∈ I2,
a ∈ O2 and F(y1,y2)b = F(y3,y2)b for y1, y3 ∈ IB,1, y2 ∈ I2, b ∈ O2. Thus, we get

U(E(x3,x2)a ⊗ 1)|ψ⟩ = U(E(x1,x2)a ⊗ 1)|ψ⟩
= [(Êx2a ⊗ 1) ˜|ψ⟩] ⊗ |aux⟩
= [(Ẽ(x3,x2)a ⊗ 1) ˜|ψ⟩] ⊗ |aux⟩

for all (x3, x2) ∈ IA,1 × IA,2, a ∈ O2. We similarly get U(1 ⊗ F(y3,y2)b)|ψ⟩ = [(1 ⊗
F̃(y3,y2)b) ˜|ψ⟩] ⊗ |aux⟩ for all (y3, y2) ∈ IB,1 × IB,2, a ∈ O2. Since we know E(x3,x2)a = 0
and F(y3,y2)b = 0 for all a ∈ O1, b ∈ O1, we deduce that S̃2 is a local dilation of S.
Summarizing, we have that S̃2 is a local dilation of S and S is a local dilation of S′. By
Lemma 3.9, we get that S̃2 is a local dilation of S′, thus the (G1 ∨ G2)-game is a self-test
for S̃2.

It remains to show that this self-test is not robust. Since there exists a sequence of
quantum strategies for G1 whose winning probability converges to 1, for every δ > 0 there
is a quantum strategy Ŝδ = (|ψ(δ)⟩, {Ê(δ)

x1a}x1 , {F̂
(δ)
y1b}y1)) with winning probability at least

1 − δ. By defining

E
(δ)
(x1,x2)a :=

{
Ê

(δ)
x1a for a ∈ OA,1,

0 otherwise,
F

(δ)
(y1,y2)b :=

{
F̂

(δ)
y1b for b ∈ OB,1,

0 otherwise,

we obtain a strategy Sδ = (|ψ(δ)⟩, {E(δ)
(x1,x2)a}(x1,x2), {F

(δ)
(y1,y2)b}(y1,y2))) for the (G1 ∨ G2)-

game with the same winning probability as Ŝ(δ) (i.e. at least 1 − δ). Since we have
E

(δ)
(x1,x2)a = 0 for all a ∈ OA,2 and all δ > 0, we see that

∥U(E(δ)
(x1,x2)a ⊗ 1)|ψ(δ)⟩ − [(Ẽ(x1,x2)a ⊗ 1) ˜|ψ⟩] ⊗ |aux′⟩∥ = ∥[(Ẽ(x1,x2)a ⊗ 1) ˜|ψ⟩] ⊗ |aux′⟩∥
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for all a ∈ OA,2, all δ > 0, all suitable isometries U and all auxiliary states |aux′⟩. Since we
have Ẽ(x1,x2)a = 0 for all a ∈ OA,1, we know that there is a0 ∈ OA,2 such that Ẽ(x1,x2)a0 ̸= 0
and thus

∥[(Ẽ(x1,x2)a0 ⊗ 1) ˜|ψ⟩] ⊗ |aux′⟩∥ > ε′

for some ε′ > 0. Summarizing, we found an ε′ > 0 such that for all δ > 0, we have a
δ-optimal strategy S(δ) such that

∥U(E(δ)
(x1,x2)a0

⊗ 1)|ψ(δ)⟩ − [(Ẽ(x1,x2)a0 ⊗ 1) ˜|ψ⟩] ⊗ |aux′⟩∥ > ε′

for all isometries U . This shows that the (G1∨G2)-game is a non-robust self-test for S̃2.

Example 5.3. By [28], there exists a linear constraint system game that has no perfect
quantum strategy, but a sequence of strategies whose winning probabilities converge to
1. The proof is constructive, the linear system has 184 equations and 235 variables.
Let G1 be this linear constraint system game. We have |IA,1| = 184, |IB,1| = 235 and
|OA,1| = 8, |OB,1| = 2. We let G2 be the synchronous version of the magic square game
(see Subsection 3.1), for which we know that it is synchronous pseudo-telepathy game.
We have |IA,2| = |IB,2| = 6 and |OA,2| = |OB,2| = 8. By Corollary 3.12, we know that it
self-tests the perfect quantum strategy S2. Theorem 5.2 shows that the (G1 ∨ G2)-game is
a non-robust self-test for the strategy S̃2. For this game, we have |IA| = 1104, |IB| = 1410
and |OA| = 16, |OB| = 10.

6 Games that do not self-test states

We will now construct games that do not self-test any state. We will once more use the
(G1 ∨G2)-game. We first show that a game does not self-test any state if it has two optimal
strategies using states of coprime Schmidt rank.

Lemma 6.1. Let G be a nonlocal game such that ω∗(G) > ω(G). Let

S1 =
(
|ψ1⟩ ∈ H(1)

A ⊗ H(1)
B , {E(1)

xa }x, {F (1)
yb }y

)
, S2 =

(
|ψ2⟩ ∈ H(2)

A ⊗ H(2)
B , {E(2)

xa }x, {F (2)
yb }y

)
be two optimal quantum strategies. If the Schmidt ranks of |ψ1⟩ and |ψ2⟩ are coprime (i.e.
gcd(n1, n2) = 1 for Schmidt ranks n1, n2), then G does not self-test any state |ψ̃⟩ of an
optimal quantum strategy.

Proof. We prove this lemma by contradiction. Assume that G self-tests the state |ψ̃⟩ ∈
H̃A ⊗ H̃B. The state |ψ̃⟩ has Schmidt rank d > 1 as otherwise the classical value and
the quantum value of G coincide. Let n1, n2 be the Schmidt ranks of the states |ψ1⟩ ∈
H(1)

A ⊗ H(1)
B and |ψ2⟩ ∈ H(2)

A ⊗ H(2)
B . Since G self-tests |ψ̃⟩, we get isometries U (i)

A : H(i)
A →

H̃A ⊗ H(i)
A,aux, UB : H(i)

B → H̃B ⊗ H(i)
B,aux and states |auxi⟩ ∈ H(i)

A,aux ⊗ H(i)
B,aux, i = 1, 2,

such that with Ui = U
(i)
A ⊗ U

(i)
B it holds that

U1|ψ1⟩ = |ψ̃⟩ ⊗ |aux1⟩

and

U2|ψ2⟩ = |ψ̃⟩ ⊗ |aux2⟩.
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Note that since we have Ui = U
(i)
A ⊗ U

(i)
B , the states Ui|ψi⟩ have the same the Schmidt

rank with respect to the bipartition H̃A ⊗ H(i)
A,aux, H̃B ⊗ H(i)

B,aux as |ψi⟩ with respect to
H(i)

A , H(i)
B . Furthermore, the Schmidt rank of |ψ̃⟩ ⊗ |auxi⟩ with respect to the bipartition

H̃A ⊗ H(i)
A,aux, H̃B ⊗ H(i)

B,aux is equal to dci for ci being the Schmidt rank of |auxi⟩. Thus,
comparing the Schmidt ranks with respect to H̃A ⊗ H(i)

A,aux, H̃B ⊗ H(i)
B,aux in the equations

above yields n1 = dc1 and n2 = dc2. This shows that d > 1 is a common divisor of n1 and
n2 which contradicts our assumption that n1 and n2 are coprime.

The next theorem shows that the (G1 ∨ G2)-game has two perfect quantum strate-
gies using states with coprime Schmidt rank if the games G1 and G2 have perfect quan-
tum strategies with states of coprime Schmidt rank. Thus we are just left with finding
two nonlocal games whose perfect quantum strategies have states with coprime Schmidt
rank.

Theorem 6.2. Let G1 and G2 be pseudo-telepathy games with perfect quantum strategies

S1 =
(
|ψ1⟩ ∈ H(1)

A ⊗ H(1)
B , {E(1)

xa }x, {F (1)
yb }y

)
, S2 =

(
|ψ2⟩ ∈ H(2)

A ⊗ H(2)
B , {E(2)

xa }x, {F (2)
yb }y

)
,

respectively. Assume that |ψ1⟩ and |ψ2⟩ have coprime Schmidt ranks. Then the (G1 ∨ G2)-
game does not self-test any state.

Proof. We get perfect quantum strategies S̃1 = (|ψ1⟩, {Ẽ(1)
(x1,x2)a}(x1,x2), {F̃

(1)
(y1,y2)b}(y1,y2))

and S̃2 = (|ψ2⟩, {Ẽ(2)
(x1,x2)a}(x1,x2), {F̃

(2)
(y1,y2)b}(y1,y2)) for the (G1 ∨ G2)-game by defining

Ẽ
(i)
(x1,x2)a :=

{
Exia for a ∈ OA,i,

0 otherwise,
F̃

(i)
(y1,y2)b :=

{
Fyia for a ∈ OB,i,

0 otherwise,

for i = 1, 2. Since |ψ1⟩ and |ψ2⟩ have coprime Schmidt rank, Lemma 6.1 shows that the
(G1 ∨ G2)-game does not self-test any state.

In the following, we will construct an explicit game fulfilling the conditions of Theo-
rem 6.2. Note that if we look at strategies involving maximally entangled states on Cdi×di ,
then it suffices to find two such strategies with coprime d1 and d2. In our case, we will
have d1 = 3, d2 = 4. We can get a perfect quantum strategy with d2 = 4 from the magic
square game (see Subsection 3.1). For d1 = 3, we will use an independent set game with
a graph coming from a 3-dimensional weak Kochen-Specker set. This will be explained
in the next subsections.

6.1 Independent set game

In this subsection we discuss the independent set game, which was introduced in [17]. We
will see the connection between quantum independent sets and perfect quantum strate-
gies for the game. For us, a graph G is always finite, simple and undirected. Thus, it
consists of a finite vertex set V (G) and an edge set E(G) which is a set of unordered pairs
of vertices.

Definition 6.3. Let G be a graph. An independent set of size t in the graph G is a set
of vertices {v1, . . . , vt} ∈ V (G) such that (vi, vj) /∈ E(G) for all i ̸= j. The independence
number α(G) denotes the size of the largest independent set in G.
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For a natural number t ∈ N and a graph G, the (G, t)-independent set game is played
with two players Alice and Bob, and a referee. Alice and Bob try to convince the referee
that they know an independent set of size t of the graphG. The game is played as follows.
The referee sends the players natural numbers xA, xB ∈ [t] and the players answer with
vertices vA, vB ∈ V (G). In order to win the (G, t)-independent set game, the following
conditions must be met:

(1) If xA = xB , then vA = vB ,

(2) If xA ̸= xB , then vA ̸= vB and (vA, vB) /∈ E(G).

The players can agree on a strategy beforehand, but cannot communicate during the
game.

Note that the (G, t)-independent set game can be thought of as the (Kt, Ḡ) - homo-
morphism game, see [17].

Definition 6.4. Let G be a graph. A quantum independent set of size t in G is a collection
P = {Pxu}x∈[t],u∈V (G) of projections Pxu ∈ Cd×d such that

(i)
∑

u∈V (G) Pxu = 1Cd×d for all x ∈ [t],

(ii) PxuPyv = 0 for (u, v) ∈ E(G) and all x, y ∈ [t],

(iii) PxuPyu = 0 for all x ̸= y, u ∈ V (G).

The quantum independence number αq(G) denotes the maximum number t such that
there exists a quantum independent set of size t in G.

The following lemma follows from [17, Section 2.1& 2.2].

Lemma 6.5. Let G be a graph and let P = {Pxu}x∈[t],u∈V (G) be a quantum independent set
of size t in G of projections Pxu ∈ Cd×d.

(i) The strategy ( 1√
d

∑d
i=1 ei ⊗ei, {Pxu}x, {(Pyv)T}y) is a perfect quantum strategy of the

(G, t)-independent set game.

(ii) If t > α(G), then the (G, t)-independent set game is a pseudo-telepathy game.

By the previous lemma, we see that quantum independent sets yield perfect quantum
strategies with maximally entangled state for the independent set game. Thus, our goal is
to construct a graph that has quantum independent sets with projections in odd dimen-
sion. This will be done in the next subsection using odd-dimensional Kochen-Specker
sets.

6.2 Kochen-Specker sets

To get a counterexample for state self-testing, we use Kochen-Specker sets to construct an
explicit independent set game having a perfect quantum strategy with a state of Schmidt
rank 3. Kochen-Specker sets are sets of vectors that provide proofs of the (Bell-)Kochen-
Specker theorem [3, 15]. Let S ⊆ Cn be a set of vectors. A function f : S → {0, 1} is a
marking function for S if for all orthonormal bases B ⊆ S, we have

∑
v∈B f(v) = 1.

Definition 6.6. Let S ⊆ Cn be a set of unit vectors.

(i) The set S is a Kochen-Specker set if there is no marking function for S.
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(ii) The set S is a weak Kochen-Specker set [25] if for all marking functions f for S there
exist orthogonal vectors u, v ∈ S such that f(u) = f(v) = 1.

The above notions were generalized in [18] to sets of projections. Let Qn ⊆ Cn×n be
the set of all n × n projections. A marking function f for S ⊊ Qn is a function f : S →
{0, 1} such that for all M ⊆ S with

∑
p∈M p = 1Cn×n , we have

∑
p∈M f(p) = 1.

Definition 6.7. [18] A set S ⊊ Qn is a projective Kochen-Specker set if for all marking
functions f for S, there exists p, p′ ∈ S for which pp′ = 0 and f(p) = f(p′) = 1.

Let {v1, . . . , vk} ⊆ Cn be a weak Kochen-Specker set. Then we get a projective Kochen-
Specker set by considering the rank one projections {v1v

†
1, . . . , vkv

†
k} ⊆ Cn×n.

Definition 6.8. Let S be a projective Kochen-Specker set. Let S1 = {p11, . . . , p1i1}, . . . ,
Sk = {pk1, . . . , pkik

} be all subsets of S such that
∑

b∈[ia] pab = 1. We define the graph
GS as follows: Let V (GS) = {(a, b) | a ∈ [k], b ∈ [ia]}, where ((a, b), (c, d)) ∈ E(GS) if and
only pabpcd = 0. Note that GS is the orthogonality graph of the multiset S1∪̇ . . . ∪̇Sk.

Remark 6.9. Note that we may have pab = pcd for some a, b, c, d in the above definition.

The next lemma shows that given a projective Kochen-Specker set S we can construct
a quantum independent set in the orthogonality graph GS .

Lemma 6.10. Let S ⊊ Qn be a projective Kochen-Specker set. Let S1 = {p11, . . . , p1i1}, . . . ,
Sk = {pk1, . . . , pkik

} be all subsets of S such that
∑

b∈[ia] pab = 1 and GS as in Definition
6.8. Then the collection Q = {Qj(a,b)}j∈[k],(a,b)∈V (GS) with Qj(a,b) := δajpab is a quantum
independent set of size k of GS.

Proof. We check conditions (i)-(iii) of Definition 6.4. For (i), we compute∑
(a,b)∈V (GS)

Qj(a,b) =
∑

b∈[ij ]
pjb = 1

by definition of Q and choice of Sj . Condition (ii) is fulfilled since for ((a, b), (c, d)) ∈
E(GS), we know Qj(a,b)Ql(c,d) = δajδclpabpcd = 0, since pabpcd = 0 by definition of GS . For
(iii), we have Qj(a,b)Ql(a,b) = δajδalpab = 0 for j ̸= l, since δajδal = 0 for j ̸= l.

From previous work it is already known that the size of the quantum independent set
Q from Lemma 6.10 is larger than the independence number of the orthogonality graph.

Theorem 6.11. [26, Theorem 3.4.4] Let S be a projective Kochen-Specker set and let S1,
. . . , Sk and GS be as in Definition 6.8. Then k > α(GS).

Combining Lemma 6.5, Lemma 6.10 and Theorem 6.11, we have the following corol-
lary.

Corollary 6.12. Let S ⊊ Qn be a projective Kochen-Specker set and GS as in Definition
6.8. Then the (GS , k)-independent set game is a pseudo-telepathy game with a perfect
quantum strategy using the maximally entangled state |ψn⟩ = 1√

n

∑n
i=1 ei ⊗ ei.

We will now give an example of a (G1 ∨ G2)-game that does not self-test any state.
Note that a 3-dimensional weak Kochen-Specker set yields a projective Kochen-Specker
set S ⊊ Q3 and thus the (GS , k)-independent set game has a quantum strategy using the
state |ψ3⟩.
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Example 6.13. Consider Peres’ 3-dimensional weak Kochen-Specker set S1 with 33 vectors
forming 16 bases [24]. We get a projective Kochen-Specker set by considering the associ-
ated rank-1 projections. The orthogonality graph GS1 has 48 vertices. Furthermore, we
get α(GS1) = 15, αq(GS1) ≥ 16 by using Sage [32] to compute α(GSi) and Lemma 6.10 for
a lower bound on αq(GSi). By Corollary 6.12, we know that the (GS1 , 16)-independent
set game has a perfect quantum strategy with a state of Schmidt rank 3. We let G1 be
the (GS1 , 16)-independent set game and let G2 be the magic square game considered in
Subsection 3.1. We know that G2 has a perfect quantum strategy with a state of Schmidt
rank 4 from Theorem 3.11. Therefore, the (G1 ∨ G2)-game does not self-test any state by
Theorem 6.2. In this case, we have |IA| = |IB| = 48, |OA| = |OB| = 52.
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