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In this work, we compute the number
of [[n, k]]d stabilizer codes made up of d-
dimensional qudits, for arbitrary positive
integers d. In a seminal work by Gross
(Ref. [23]) the number of [[n, k]]d stabilizer
codes was computed for the case when d
is a prime (or the power of a prime, i.e.,
d = pm, but when the qudits are Galois-
qudits). The proof in Ref. [23] is inappli-
cable to the non-prime case. For our proof,
we introduce a group structure to [[n, k]]d
codes, and use this in conjunction with the
Chinese remainder theorem to count the
number of [[n, k]]d codes. Our work over-
laps with Ref. [23] when d is a prime and
in this case our results match exactly, but
the results differ for the more generic case.
Despite that, the overall order of mag-
nitude of the number of stabilizer codes
scales agnostic of whether the dimension
is prime or non-prime. This is surprising
since the method employed to count the
number of stabilizer states (or more gener-
ally stabilizer codes) depends on whether
d is prime or not. The cardinality of
stabilizer states, which was so far known
only for the prime-dimensional case (and
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the Galois qudit prime-power dimensional
case) plays an important role as a quanti-
fier in many topics in quantum computing.
Salient among these are the resource the-
ory of magic, design theory, de Finetti the-
orem for stabilizer states, the study and
optimisation of the classical simulability
of Clifford circuits, the study of quantum
contextuality of small-dimensional systems
and the study of Wigner-functions. Our
work makes available this quantifier for the
generic case, and thus is an important step
needed to place results for quantum com-
puting with non-prime dimensional quan-
tum systems on the same pedestal as
prime-dimensional systems.

1 Introduction
The stabilizer formalism (which will be explained
in detail in Section 2) has become an indispens-
able part of the study of quantum computing.
Some of its salient applications are as follows:
it forms the bedrock for the vast field of quan-
tum error correcting codes (QECC)[30]. Ran-
domising over stabilizer states or Clifford uni-
taries (see Eq. (18) for the definition of a Clif-
ford unitary) serves as an important application,
for instance, for computing capacities of quan-
tum channels[1], data hiding [2] and the study
of noise-compounding in quantum circuits (ran-
domized benchmarking) [3, 4]. It also demarcates
a boundary between the classical simulability of
quantum computations via the Gottesmann-Knill
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theorem [5], and the onset of quantum complex-
ity for which some non-stabilizerness is neces-
sary. The non-universal nature of stabilizer oper-
ations [6] and the need to compensate this defi-
ciency with non-stabilizer operations manifests in
a resource theory of “non-stabilizerness", a.k.a.,
magic (see Ref. [45, 46, 47]), where stabilizer op-
erations are the free resource (see Subsection 1.1
for an explanation of stabilizer operations and
the resource theory with respect to which it is
defined). While the basic mathematical prelimi-
naries which support all the above have been de-
veloped in many works (for e.g. see Ref. [9],
[23]), there remain some gaps, particularly for
quantum computing with multiqudit systems for
arbitrary d. And while qubit systems are en-
visaged as the paradigmatic building blocks of
quantum computing, qudits of larger dimensions
may offer their own benefits (for e.g. see Ref.
[10, 11, 12, 13, 14, 15]), owing to which it is im-
perative to study them. Among these, it is eas-
ier to study multiqudit systems when the dimen-
sion d is a prime number, or when d is the power
of a prime, i.e., d = pm, while, simultaneously,
the configuration space of the qudit system is the
Galois field Fpm . We call such a qudit a Galois-
qudit [17]. Many important results which were
obtained for qubits may be easily generalised to
such qudit systems (this has been noted in many
places, for e.g. in the introduction in Ref. [62]).
This contrasts with qudit systems, whose configu-
ration space is Zd, when d is not a prime number.
We refer to such qudit systems simply as qudits
since this work is about such qudits, but wherever
disambiguation is required, we may instead refer
to them as modular qudits[18]. While there has
been a lot of seminal work on such modular qu-
dit systems[19, 20, 21, 22, 23, 24, 25, 26, 27, 28],
some significant gaps remain. For instance, one
of those gaps is the computation of the number of
[[n, k]]d stabilizer codes of such qudits (stabilizer
codes are defined in Subsection 2.4). We will la-
bel this number as C[[n, k]]d (see Remark 1 for
disambiguation on the usage of the symbol d).
C[[n, k]]2 was computed in a seminal paper Ref.
[6] (a recent proof also appeared in Ref. [8]), and
for Galois-qudit systems, C[[n, k]]Fpm was com-
puted in another seminal paper, Ref. [23]. In this
work we compute C[[n, k]]d for arbitrary d ≥ 2.
Our work overlaps with earlier works[6, 23, 8] for
the case when d is a prime number, and in that

case our results match exactly. Typically one is
interested in the order of magnitude of C[[n, k]]d
since it may act as an important quantifier. For
such a reader, we present here the main result.

Corollary 1 (Corollary 4). Let c = 2.17. Then
the number of [[n, k]]d stabilizer codes scales as

d
(n−k)(n+3k+1)

2 ≤ C[[n, k]]d < d
(n−k)(n+3k+1)

2 +c,
(1)

the number of [[n, k]]d stabilizer code spaces scale
as

d
(n−k)(n+3k+3)

2 ≤ Cspace[[n, k]]d < d
(n−k)(n+3k+3)

2 +c,
(2)

and thus the number of stabilizer states scale as

d
n(n+3)

2 ≤ Cstate[[n]]d < d
n(n+3)

2 +c. (3)

Here we make a distinction between an [[n, k]]d
stabilizer code, and the corresponding stabilizer
code spaces, which is one of the dn−k subspaces
associated with such a stabilizer code.

Remark 1. One often encounters the phrase
[[n, k, d]] code, wherein parameter d stands for the
distance of the code. In our usage, d refer to the
dimension of the Hilbert space of a single qudit,
and not the distance of the code.

The number of stabilizer states, i.e., Cstate[[n]]d,
plays the role of an important quantifier in quan-
tum computing. Before this work, Cstate[[n]]d was
known only for prime d (and for Fpm number sys-
tems), and, thus, its application as a quantifier
was limited to these cases. We list below the
salient topics where it has been used as a quanti-
fier before.

1.1 Resource theory of magic
To initiate the interested reader into the re-
source theory of stabilizer-operations we refer
them to a short summary in Appendix A. For
more comprehensive treatments on the topic, see
Ref. [46, 47, 49]. For some recent interesting
developments in the topic, we further refer the
reader to Ref. [63]. The most significant appli-
cation of Cstate[[n]]d is that stabilizer states are
the extremal points of the stabilizer polytope,
and many measures of magic are defined as op-
timizations over this polytope. Since Cstate[[n]]d
scales super-exponentially for prime-dimensional
systems (and Galois-qudit systems), computing
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these measures of magic is an intractable prob-
lem for such systems. The earliest known mea-
sure in this category is the relative entropy of
magic1 [46], after which the robustness of magic
was defined in Ref. [47]. The robustness of magic
has an operational interpretation: it gives an up-
per bound on the classical simulation complexity
of the quantum Clifford+π/8 circuits (see also
Ref. [48]), and scales exponentially in the num-
ber of π/8 gates. It may also be used for the op-
timality of π/8-gate counts in the gate-synthesis
problem. In Ref. [49] the regularised robustness
of magic was introduced, and its computation,
while superpolynomially faster, still suffers from
an exponential run-time. We also refer the reader
to a recent work Ref. [51] which tries to op-
timize the classical simulability of Clifford+π/8
circuits, in the manner introduced by Ref. [48].
The intractability of these measures has also en-
couraged the search for new quantifiers of magic,
for instance, see Ref. [50]. Before our work, it
wasn’t known how Cstate[[n]]d scales with n for ar-
bitrary d. Since Corollary 1 states that Cstate[[n]]d
scales super-exponentially in n for all d, we now
know that the problem of computing the afore-
mentioned measures of magic is intractable for
arbitrary dimension.

1.2 Classical simulation of stabilizer-only oper-
ations

The resource theoretic perspective of Subsection
1.1 deems stabilizer operations to be a free re-
source. The freeness of this resource comes into
question if the classical simulation of stabilizer
operations has appreciable costs. It is with the
aim of minimizing this simulation cost that a
qubit stabilizer simulator such as STIM (see Ref.
[52]) was developed. Any such simulation re-
quires as a pre-requisite adequate memory to
store the stabilizer state. Ref. [6, 23] inform us
that this is O

(
n2) bits for qubit systems. Our

work supplies this knowledge for qudit systems
for general d.

1In Ref. [46], a computable measure of magic called
mana was also introduced. This measure, while efficiently
computable, is computable for only odd-dimensional
quantum systems. That being said it has a more signif-
icant operational interpretation compared to the relative
entropy of magic.

1.3 Frame potentials for stabilizer states

In Ref. [53], Kueng and Gross established that a
uniform ensemble of multiqubit stabilizer states
are complex projective 3-designs. To prove this,
they computed explicitly the frame-potential as-
sociated with this ensemble of states. And this
frame potential was computed using Cstate[[n]]2,
which was borrowed from Ref. [6] and Ref. [23].
While for d ≥ 3, it is known that multi-qudit sta-
bilizer states aren’t projective 3-designs, one may
nevertheless still be interested in the projective-
design which this ensemble gives rise to. While
the result in Ref. [23] may be employed for this
purpose for only prime values of d, our results al-
lows one to obtain the result for arbitrary values
of d.

1.4 de Finetti theorem for stabilizer states

In Ref. [54] a de Finetti theorem for stabilizer
states was established for quantum states on t-
copes of n-qudit systems, where d is prime. To
summarize it, let us consider the action of the
t-th tensor power of the n-qudit Clifford group
on t-copies of an n-qudit system, i.e., U⊗t, where
U ∈ C(d)

n , and let L be the commutant of this tth
tensor power of the Clifford group, i.e., L ∈ L
implies that U⊗tL

(
U †
)⊗t

= L. Let a quantum
state ρ commute with all L in L. Then ρ has the
following property. Define ρs = Tri1,i2,···it−sρ be
the reduced state, which is obtained by tracing
out t − s subsystems from ρ. The subsystems
which are traced out are arbitrary. Then there
exists some probability distribution pσS on the
n-qudit stabilizer states σS such that

1
2

∣∣∣∣∣
∣∣∣∣∣ ρs −

∑
σS

pσS σ⊗s
S

∣∣∣∣∣
∣∣∣∣∣
1

≤ CdO(n2) d− 1
2 (t−s),

(4)
where C is some constant, σS is a stabilizer state
of an n-qudit systems and pσS is a probability dis-
tribution on these states. The exponential scal-
ing in the number of traced out subsystems, i.e.,
t − s contrasts with the ordinary de Finetti re-
sult, whose scaling is of the form O (s/t) (see Ref.
[55]). The exponential scaling of the stabilizer
version of the de Finetti theorem is proved using
Cstate[[n]]d, which was computed in Ref. [23] for
prime d (and Galois qudits). We anticipate it to
be possible for Corollary 1 to provide a similar
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exponential scaling for the case when d is non-
prime.

1.5 Others
We mention some other topics where Cstate[[n]]d
for prime d was employed. We hope that our re-
sult could find similar applications for non-prime
d.

(i) Quantum contextuality: In Ref. [60],
Howard and collaborators study quantum
stabilizer states, to see if these states ex-
hibit any quantum contextual correlations.
For odd prime d, the set of Cstate[[n]]d two-
qudit stabilizer states is partitioned into
two classes: separable states and entangled
states. Each class is separately studied to
see if it exhibits state dependent contextual-
ity, and the number of elements within each
class plays an important role in this.

(ii) Disambiguation of Wigner functions for odd
dimensional qudit systems: While Hudson’s
theorem for finite dimensional quantum sys-
tems was proved in Ref. [23], the choice
of the Wigner function with which it was
proved wasn’t disambiguated. In Ref. [61],
Howard establishes that there is a unique
choice of the Wigner function which supports
Hudson’s theorem. The proof of this result
employs the explicit formula for Cstate[[n]]d.

Our work readily generalises results for the re-
source theory of magic and for the classical simu-
lability of stabilizer-only circuits. For other top-
ics mentioned above, we anticipate that our com-
putation of Cstate[[n]]d will facilitate comparable
results for arbitrary d-dimensional systems.

Remark 2. In contrast to Cstate[[n]]d, it is dif-
ficult to find applications for Cspace[[n, k]]d (for
k ≥ 1). We believe that this does not exclude
it altogether from being a quantity of interest for
the quantum computing and information commu-
nity. For instance see the discussion in Ref. [7]:
the question posed there is whether there is a
known way to sample efficiently from the set of
all [[n, k]]2 stabilizer groups for arbitrary k. Ref.
[23] may be used to give a sampling algorithm for
this purpose.

The challenge in computing C[[n, k]]d, for non-
prime d, is that Zd is not a field. In particular,

only elements which are co-prime with d will
have multiplicative inverses. The phase space
of an n-modular qudit system is the 2n−fold
Cartesian product of Zd, i.e., Z2n

d . We need to
treat it like a vector space which is defined over
a field. Towards this end, we will borrow some
basics terms and definitions from the theory
of vector spaces wherever this is appropriate.
We stress though, that the jargon we borrow
from linear algebra is actually superfluous, and
all the necessary concepts can be phrased in
terms of more primitive concepts in the theory of
abelian groups and its subgroups. Nevertheless,
a rigorous justification of viewing Z2n

d as a vector
space and applying concepts and definitions from
the theory of vector spaces will be justified in the
appendix. C[[n, k]]d is computed in two steps.
(i) We introduce a group theoretic structure of
[[n, k]]d stabilizer codes constructed in the follow-
ing way: we take a 2n× (n−k) check-matrix of a
given code, and extend it to a 2n×2n symplectic
matrix. This extension isn’t unique, and the
set of all such symplectic extensions realizable
for a given [[n, k]]d code forms a unique coset
of Sp(2n,Zd)/T(2n, k,Zd), where T(2n, k,Zd)
is a subgroup of matrices in Sp(2n,Zd) which
forms the coset corresponding to the [[n, k]]d
trivial code. Conversely, to each coset of
Sp(2n,Zd)/T(2n, k,Zd) one can attribute a
unique [[n, k]]d stabilizer code, and thus a bijec-
tion between [[n, k]]d stabilizer codes and cosets of
Sp(2n,Zd)/T(2n, k,Zd) is established. This tells
us that C[[n, k]]d = |Sp(2n,Zd)| / |T(2n, k,Zd)|.
(ii) To compute |T(2n, k,Zd)|, we find a way to
decompose each element of T(2n, k,Zd) into an
ordered product of four matrices, each of which
belongs to a distinct subgroup of T(2n, k,Zd).
These subgroups overlaps only over the identity
element. Thus |T(2n, k,Zd)| is the product
of the orders of these subgroups. The orders
of these subgroups and of |Sp(2n,Zd)| are
computed, first for the case when d = pm, i.e.,
the power of a prime. This corresponds to the
case when the configuration space of the qudit
is Zpm (and not Fpm). Some of the details of
this computation, which employ standard tricks
for such computations, are relegated to Section
E.1 in the Appendix. This gives us C[[n, k]]pm .
To obtain C[[n, k]]d, we invoke the Chinese
remainder theorem, which is a ring isomorphism,
as follows: Zd ≃ Zm1

p1 × Zm2
p2 × · · · × Zmr

pr
, where
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d = pm1
1 pm2

2 · · · pmr
r is the prime factorisation of

d. While the proof method depends on whether
d is prime or non-prime, the number of stabilizer
codes C[[n, k]]d, the stabilizer code subspaces
Cspace[[n, k]]d and the stabilizer states Cstate[[n]]d
scale agnostic of d being prime or non-prime,
which is surprising.
The above strategy to compute C[[n, k]]d was
also used in [58], but for the case when Zd is a
field2. And in this case, we already know simpler
methods to compute C[[n, k]]d, for e.g. [6, 23].

The paper is organised as follows. In Sec-
tion 2 we give the necessary preliminaries of
the stabilizer formalism: we will introduce the
n-qudit Weyl-Heisenberg group (also known as
the generalised Pauli group), we define stabilizer
codes along with their check matrices and related
concepts. In Section 3, we explain the group
theoretical structure of [[n, k]]d stabilizer codes,
and in Section 4 we show how an arbitrary
element of T(2n, k,Zd) may be decomposed
into a product of elements from four different
subgroups. In Section 5 we count C[[n, k]]d. We
conclude in Section 6.

2 Preliminaries
Various preliminaries are introduced in this sec-
tion, along with the notations and explanations
of their usage.

2.1 The ring Zd

Let Z denote the set of all integers. Let d be an
arbitrary positive integer such that d ≥ 2. Zd

then denotes the set of integers modulo d: Zd =
{0, 1, · · · , d− 1}. All arithmetic operations in Zd

are carried out modulo d. This means that for
any a, b ∈ Zd,

a ⊕d b = (a+ b) mod d

a ×d b = (a · b) mod d, (5)

where, on the left hand side of Eq. (5), ⊕d and
×d represent addition and multiplication opera-
tions in Zd, and on the right hand side, + and ·
represent addition and multiplication in Z. From
here onward, we will use the standard notations

2 Zd is denoted by Fq in [58]. Eq. (7) in [58] equals the
result in Theorem (20) in [23]. See also [59].

of addition and multiplication, even in Zd, and
let the context determine where these operations
are meant to be performed. Zd is a cyclic group
under addition, with 0 as the additive identity.
When d is a composite number, for a ∈ Zd to
have a multiplicative inverse in Zd, a and d in
Z need to be co-prime. The set of all non-zero
coprime elements form the multiplicative group
Z×

d . Hence, Zd is a field if and only if d is a prime
number. When d is a prime, we will denote it by
p and denote the corresponding field by Fp.

2.2 Using Zn
d as a vector space

Let n be a positive integer. The n-fold Cartesian
product of Zd with itself, Zd × Zd × · · ·Zd con-
tains all ordered n-tuples (a1, a2, · · · , an) where
aj ∈ Zd. Addition in Zn

d is defined point-wise:
for arbitrary a, b ∈ Zn

d , (a + b)i = ai + bi, where
(a+b)i denotes the i-th component of a+b. Sim-
ilarly, scalar multiplication of a in Zn

d with some
λ ∈ Zd means λa = (λa1, λa2, · · · , λan). Zn

d sat-
isfies all the axioms which a usual vector space
will satisfy. Thus, any a = (a1, · · · , an) ∈ Zn

d

will be called a vector. That being said, since
Zd is not necessarily a field, Zn

d doesn’t form a
vector space. Technically, Zn

d is called a module
over a commutative ring [29]. The algebra in Zn

d

is richer than that for vector spaces defined over
fields, and one may not blindly generalise results
from vector spaces over fields to Zn

d . But we will
be able to borrow the following concepts from lin-
ear algebra.

Definition 1 (Linear independence). Let
a1,a2, · · · ,am ∈ Zn

d be m vectors. Then they
are linearly independent in Zn

d if and only if
the only solution for the unknowns x1, x2, · · · ,
xm ∈ Zd in the following equation

x1a1 + x2a2 + · · · + xmam = 0 (6)

is that x1, x2, · · · , xm = 0.

We now list some corollaries which follow from
Definition 1.

Corollary 2. (i) Any set of n LI vectors forms
a basis for Zn

d .

(ii) If {a1,a2, · · · ,am} are LI, then their linear
span generates a subspace of dimension m.

(iii) For any m < n, any set of m LI vectors may
be extended to form a basis for Zn

d .
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(iv) If the columns of an n × m matrix are LI,
then viewed as a linear map from Zn

d → Zm
d ,

its range is of dimension m and kernel is of
dimension n−m.

Despite the fact that Zn
d is not necessarily a

vector space, the following terms in Corollary 2:
basis, linear span, subspace, dimension, matrix,
linear map, range and kernel can be applied and
used in the same manner as done when working
with a vector space over fields. The reader is
further directed to the Appendix B for a rigorous
justification of these terms.

2.3 Generalised Pauli group on n qudits
We introduce the single qudit Pauli group P (d)

using its defining representation, which acts on
Cd, where d is an arbitrary positive integer
greater than or equal to 2. The construction
of the defining representation of P (d) for arbi-
trary d has been done earlier in many works
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. Among
these, we choose [22]. First, let us introduce an
orthonormal basis for Cd: {|j⟩}d−1

j=0 , where the la-
bel j is taken from Zd. With respect to this basis,
define the linear operators X and Z as follows.

X|j⟩ = |j + 1⟩,
Z|j⟩ = ωj |j⟩, ∀ j ∈ Zd,

(7)

where ω := exp 2πi/d, (d-th root of unity). Since
j ∈ Zd, it is understood that the operation of
addition in j + 1 is performed in Zd. The com-
mutation relations between X and Z are given
by

ZX = ωXZ. (8)

When d = 2, X = ( 0 1
1 0 ), and Z =

( 1 0
0 −1

)
,

that is, we get the well-known Pauli matrices for
the qubit case. When d is odd, P (d) := ⟨X,Z⟩.
It is easily seen that an arbitrary element takes
the form ωjXaZb, where j, a, b = 0, 1, · · · , d− 1.
Group composition is given by(
ωjXaZb

)
.
(
ωj′

Xa′
Zb′) = ωj+j′+a′bXa+a′

Zb+b′
,

(9)
which is the just the composition rule of the
Heisenberg-Weyl group [23]. The order of each
element is at most d. For the case when d is even,
often it is convenient3 to introduce an additional

3For even d, the group ⟨X, Z⟩ has some undesirable
properties: while Xd = Zd = 1, (ωaXZ)d = −1 for all

phase factor ζ = ω
1
2 , and P (d) := ⟨ζ1, X, Z⟩.

Then an arbitrary element in P (d) is ζjXaZb,
where j ∈ Z2d, a, b ∈ Zd. The group composi-
tion law of two arbitrary elements is given by(
ζjXaZb

)
.
(
ζj′
Xa′

Zb′) = ζj+j′+2a′bXa+a′
Zb+b′

.

(10)
While the order of all group elements is at most
2d in the even d case, one may suitably multiply
with ζ to generate another group element with
order at most d. The n-qudit Pauli group P(d)

n is
simply the n-fold tensor product of the single qu-
dit Pauli group. The Hilbert space it acts on will
be denoted by H ≃

(
Cd
)⊗n

. For the odd d case,

P(d)
n := ⟨Xj , Zj⟩n

j=1, whereas for the even d case,

we have that P(d)
n = ⟨ ζ1, Xj , Zj⟩n

j=1, where Xj

represents the operator with X on the j-th qudit
and 1 on all the remaining qudits. Neglecting the
phase factors of ωj and ζj , we may represent an
arbitrary element of the n-qudit Pauli group as

g(a) = Xu1Zv1 · · ·XunZvn , (11)

where a := (u, v)T ∈ Z2n
d is a 2n-ordered tuple

with entries in Zd. It is easily seen that group
composition law is given by [22]

g(a)g(b) = ωaT Ubg(a + b), (12)

where

U =
[

0 0
In 0

]
, (13)

and In is the n × n identity matrix. From Eq.
(12), the commutation relation for the Pauli op-
erators is

g(a)g(b) = ω−aT Λbg(b)g(a), (14)

where

Λ :=
[

0 In

−In 0

]
. (15)

a = 0, 1, · · · , d − 1, the order of ωaXZ is 2d. It is cum-
bersome to keep track of which operator has order d and
which has order 2d. By adding ζ to the group, we can ob-
tain another group element ζXZ whose order is d. This
is preferable to us because, while ωaXZ ∈ ⟨ζ1, XZ⟩ con-
tinues to have order 2d, we can always multiply this with
ζ to get an order d element. The important point is that
elements like X and ζXZ are put on the same footing.
See [64] for a treatment of the even d case without the
redundancy ζ phase factor.
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Eq. (14) implies that

aT Λb = 0 (16)

if and only if the two Pauli operators g(a) and
g(b) commute with each other. The centre of the
Pauli group P(d)

n , which is the subgroup of P(d)
n

which commutes with all elements of P(d)
n , is

Z
(
P(d)

n

)
=
{

⟨ω1⟩ , when d is odd,
⟨ζ1⟩ , when d is even.

(17)

Thus the factor group P(d)
n /Z

(
P(d)

n

)
≃ Z2n

d .
This is also seen from Eq. (12), since g(a)g(b) ∝
g(a + b). Thus P(d)

n is homomorphic to Z2n
d , and

one possible homomorphism takes Pauli g(a) ∈
P(d)

n to a ∈ Z2n
d . This homomorphism plays a

very important role in the formalism of the sta-
bilizer codes.
The Clifford group C(d)

n for an n-qudit system is
defined as the normaliser of the Weyl-Heisenberg
group in the unitary group over the n-qudit sys-
tem.

U ∈ C(d)
n ⇔ UgU † ∈ P(d)

n , ∀ g ∈ P(d)
n . (18)

The Clifford group is homomorphic to the group
of 2n × 2n symplectic matrices Sp(2n,Zd) over
Zd.

M ∈ Sp(2n,Zd) ⇔ MT ΛM = Λ, (19)

where Λ is given in Eq. (15).

2.4 Stabilizer codes on n qudits
The general framework of stabilizer codes was
introduced in [30]. Among the many references
available in the literature, we refer the reader to
[37], for a beginner friendly introduction to quan-
tum error correction.
To define an [[n, k]]d stabilizer code space, we
will need to first define a stabilizer group S.
Let g1, g2, · · · , gn−k be n − k elements in P(d)

n ,
with the following properties. (i) they com-
mute with each other, (ii) the order of S :=
⟨g1, g2, · · · , gn−k⟩ is |S| = dn−k. The final con-
dition ensures that any non-trivial product of
the gj ’s, i.e., gx1

1 gx2
2 · · · gxn−k

n−k = 1 if and only if
x1, x2, · · · , xn−k = 0. Often, one includes an-
other condition, i.e., spectrum of each gj always
contains +1. If any gj doesn’t satisfy this condi-
tion, one may replace gj with ωagj (or ζagj , as

appropriate), so that ωagj (or ζagj) has eigen-
values +1. One may associate to S, a subspace
of the Hilbert space C(S), which is defined as

C(S) :=
{

|ψ⟩ ∈
(
Cd
)⊗n

| g|ψ⟩ = |ψ⟩ for all g ∈ S

}
.

(20)
dim C(S) = dk (see Theorem 1, in [27]). It is eas-
ily seen that C(S) is the unique subspace stabi-
lized by S, and is hence called the stabilizer code
space corresponding to S. Since dim C(S) = dk,
C(S) encodes k qudits within itself, and thus C(S)
is said to be an [[n, k]]d stabilizer code space,
where the subscript denotes the dimension d of
a single qudit (see Remark 1).

Remark 3. When k = 0, dim C(S) = 1. Since
C(S) is spanned by a single vector, we refer to
that vector as a stabilizer state.

Remark 4. The case when k = n covers the
scenario when we’re encoding the whole Hilbert
space into itself. We are not interested in this
scenario.

Note that gj = g(aj) for some aj ∈ Z2n
d . Given

aj ’s instead of gj ’s, one may construct the gj ’s
upto an overall phase factor, from the aj ’s using
Eq. (11). For now, we ignore the loss of this phase
factor in going from gj to aj , and identify the
subgroup S in terms of the aj ’s instead of the gj ’s
[37]. This is done by arranging the aj ’s in a 2n×
(n − k) matrix, which is called the check matrix
of S. The role played by these phase factors in
constructing S from {aj}n−k

j=1 is explained after
Eq. (25) below.

H =
[

a1 a2 · · · an−k

]
. (21)

The aforementioned two conditions on gj ’s may
be phrased in terms of equivalent conditions on
aj ’s.

gigj = gjgi ⇔ aj
T Λai = 0. (22)

|S| = dn−k ⇔
∣∣∣span {aj}n−k

j=1

∣∣∣ = dn−k. (23)

Condition Eq. (22) follows from Eq. (14), and
Condition Eq. (23) is equivalent to the fact that
aj ’s are linearly independent and span an (n−k)-
dimensional subspace.

The 2n × (n − k) matrix H can be extended
to a full 2n× 2n symplectic matrix S. A partial
construction of this full 2n × 2n matrix can
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be found in Ref. [37]. We refer the reader to
Appendix C for such a construction.

S =
[
E LX H LZ

]
, (24)

where E is a 2n × (n − k) matrix, and LX and
LZ are 2n× k matrices. The columns of LX and
LZ correspond to the logical X and the logical Z
operators respectively, whereas the columns of E
may be interpreted as the correctable Pauli errors.
An explanation of this may be found in Section
4 in conjunction with Section E of the Appendix.
When k = 0, H is a 2n× n matrix, and M takes
the following form.

S =
[
E H ,

]
(25)

where E is also a 2n× n matrix.
When we alter the generators gj of S as gj →

ωajgj , for aj ∈ Zd, then if aj ̸= 0 for some j, ωajgj

are the generators of another stabilizer group S′.
By replacing S with S′ in Eq. (20), one can as-
sociate to S′ a unique corresponding [[n, k]]d sta-
bilizer code space C (S′). C(S) and C (S′) are
orthogonal because the +1 eigenspaces of gj and
ωajgj are orthogonal when aj ̸= 0. There are
dn−k possible choices for aj (including the choice
aj = 0 for all j), thus we get dn−k orthogonal
code spaces. Since each of these code spaces is
of dimension dk, the direct sum of all these code
spaces is the full Hilbert space. Since aj do not
encode the overall phase factor of the Paulis, the
entries in the check-matrix don’t change when the
phase factors ωaj are changed in the generators.
So the check matrix H and its symplectic exten-
sion S for all the above codes spaces are the
same. We will refer to a code as the aforemen-
tioned collection of code spaces without meaning
to distinguish among them. Thus a code is asso-
ciated to a check matrix without any ambiguity.
We will refer to a code space C(S) as the subspace
of the Hilbert space Cd⊗n associated to a unique
stabilizer group S. This is as per Eq. (20).

3 Group structure of [[n, k]]d stabilizer
codes

In this section, we will obtain a group theo-
retic structure underpinning all [[n, k]]d stabilizer
codes. Let H1 be the check matrix of some

[[n, k]]d stabilizer code, and A be an (n − k) ×
(n−k) invertible matrix. Then H1A is the check-
matrix of the same stabilizer code. This is be-
cause the columns of H1A are merely (invertible)
linear combinations of the columns of H1, i.e.,
the generators corresponding to the column vec-
tors of H1 may be recovered from the generators
corresponding to the column vectors of H2. De-
fine H2 = H1A. Let S1 and S2 be a 2n × 2n
symplectic matrix obtained by extending H1 and
H2 respectively (see Section C of the Appendix).
Since S1, S2 ∈ Sp(2n,Zd), there exists a matrix
M such that

S2 = S1 M. (26)

We first assume that k ≥ 1. Then it is clear
that M needs to have the following form so that
H2 = H1A.

M =


M11 M12 0 M14
M21 M22 0 M24
M31 M32 A M34
M41 M42 0 M44

 (27)

Here M11, M31, A are (n− k) × (n− k) matrices,
M22, M24, M42 and M44 are k×k sized matrices,
M12, M14, M32, M34 are (n−k)×k and M21, M41
are k × (n− k) matrices. Additionally M is nec-
essarily a symplectic matrix, since M = S−1

1 S2,
and S1, S2 are symplectic. Thus M satisfies the
symplectic condition Eq. (19). Substituting M
in Eq. (27) into Eq. (19), we get the conditions
for M to be symplectic:

M11 = (AT )−1, (28)
M12 = M14 = 0(n−k)×k, (29)[
M22 M24
M42 M44

]
∈ Sp(2k,Zd), (30)

M31A
T −AMT

31 = A
(
MT

41M21 − MT
21M41

)
AT ,

(31)

M32 = A
(
MT

41M22 −MT
21M42

)
, (32)

M34 = A
(
MT

41M24 −MT
21M44

)
, (33)

where Sp(2k,Zd) denotes the group of 2k × 2k
symplectic matrices over Zd. Using Eq. (28) and
Eq. (29), M takes the following form

M =


(AT )−1 0 0 0
M21 M22 0 M24
M31 M32 A M34
M41 M42 0 M44

 . (34)
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The derivation of Eq. (30)-(33) is not essential for
this work, and is hence shifted to the Appendix
D.
Note that when k = 0, M in Eq. (34) takes the
form

M =

(AT
)−1

0
M31 A

 . (35)

Theorem 1. The set of all 2n × 2n symplectic
matrices of the form given in Eq. (34) form a
subgroup of Sp(2n,Zd).

Proof. We use the following subgroup test: if
G is a group, H a subset of G, then H is a sub-

group if for all h, g ∈ H, h−1g ∈ H too.
First note that the inverse of a symplectic ma-
trix M is given by ΛTMT Λ, since ΛTMT ΛM =
ΛT Λ = I. This gives us

M−1 =


AT 0 0 0
MT

34 MT
44 0 −MT

24
−MT

31 −MT
41 A−1 MT

21
−MT

32 −MT
42 0 MT

22

 . (36)

Thus we see that M−1 has the form given by Eq.
(34). Next, consider the composition of two sym-
plectic matrices of the form Eq. (34).


(AT )−1 0 0 0
M21 M22 0 M24
M31 M32 A M34
M41 M42 0 M44




(BT )−1 0 0 0
N21 N22 0 N24
N31 N32 B N34
N41 N42 0 M44

 =


(
(AB)T

)−1
0 0 0

L21 L22 0 L24
L31 L32 AB L34
L41 L42 0 L44

 . (37)

Note that the matrix on the RHS of Eq. (37) is
symplectic, since it is a product of two symplectic
matrices. Also it is of the form given in Eq. (34).

The subgroup given in Theorem 1 will be de-
noted by T(2n, k,Zd). It encapsulates the degree
of freedom with which one may extend the check
matrix of the [[n, k]]d trivial code to a symplectic
matrix.

Remark 5. The subgroup T(2n, k,Zd) has ap-
peared in the quantum computing literature ear-
lier. For instance, in [56], T(2n, 0, 2) (referred
to as the Borel subgroup of Sp(2n,Zd), denoted
as Bn) is employed to construct the Bruhat de-
composition for Sp(2n,Z2). This decomposition
is used to give an asymptotically tight parame-
terization of arbitrary stabilizer circuits. More
recently, it appears in [57], as the subgroup of the
Clifford group, whose action does not change the
figures of merit of distillation protocols, which are
studied in [57]. See also Remark 7.

The trivial code is the code corresponding to
the stabilizer group S = ⟨Z1, Z2, · · · , Zn−k⟩. At
the same time, right multiplying the symplectic
matrix of any [[n, k]]d stabilizer code by an ele-
ment of T(2n, k,Zd) yields another another sym-

plectic matrix of the same stabilizer code. We
saw this in Eq. (26). In the next section we
show that T(2n, k,Zd) decomposes as a product
of three subgroups, and highlight the roles played
by these three subgroups in quantum error cor-
rection for stabilizer codes.

4 Decomposition of T(2n, k,Zd)

The matrix M given in Eq. (34) can be decom-
posed as a product of four matrices.

M = MT ME MS ML, (38)
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where

MT :=


Ik 0 0 0
0 In−k 0 0
KS 0 Ik 0
0 0 0 In−k

 ,
(39)

ME :=


Ik 0 0 0
N In−k 0 0
KA LT Ik −NT

L 0 0 In−k

 ,
(40)

ML :=


Ik 0 0 0
0 M22 0 M24
0 0 Ik 0
0 M42 0 M44

 (41)

and MS :=


(AT )−1 0 0 0

0 In−k 0 0
0 0 A 0
0 0 0 In−k

 ,
(42)

where

N = M21A
T ,

KS = M31A
T +AMT

31,

KA = M31A
T −AMT

31,

and L = M41A
T . (43)

Furthermore, we have the following.

Corollary 3. For any M ∈ T(2n, k,Zd), the de-
composition in Eq. (38) is unique, i.e., there are
unique matrices MS, ML, ME and MT such that
Eq. (38) holds.

Proof. Since MS and ML are constructed from
some of the blocks of M , there is a unique way of
obtaining them. Having obtained MS and ML,
MTME = M (MLMS)−1. Since N and L are
matrix blocks within M (MLMS)−1, and KA is
entirely determined by N and L), a unique ME

is obtained from M (MLMS)−1, which also gives
us a unique MT . Hence proved.

We next note that four subsets of matrices
of MS , ML, ME and MT form four distinct
subgroups, and the intersection of any pair of
these subgroups is {1}.

The GL(n− k,Zd) subgroup: The set of ma-
trices of the formMS , with A invertible, is readily
seen to be a subgroup of T(2n, k,Zd) (by setting
all matrix elements in M21, M24, M31, M32, M34,
M41 and M42 as 0, and setting M22 = M44 =
In−k). Moreover, this subgroup is isomorphic to
GL(n−k,Zd), the group of (n−k)× (n−k) gen-
eral linear matrices over Zd, and hence we refer
to it as the GL(n− k,Zd) subgroup.

The Sp(2k,Zd) subgroup: All matrices of
the form ML which satisfy Eq. (30) form a
subgroup of T(2n, k,Zd), and this subgroup is
isomorphic to Sp(2k,Zd). Thus we call it the
Sp(2k,Zd) subgroup.
Note that the GL(n − k,Zd) subgroup and the
Sp(2k,Zd) subgroup commute with each other.

The symmetric and antisymmetric abelian
subgroups BS(n, k, d) and BA(n, k, d): Ma-
trices of the form MT and ME , which satisfy
Eq. (31) (see Eq. (43)), are also subgroups of
T(2n, k,Zd). For MT to satisfy Eq. (31), KS has
to be symmetric but is otherwise unconstrained,
while for ME to satisfy Eq. (31), KA has to be
anti-symmetric and moreover satisfies the equa-
tionKA = NTL−LTN (see Eq. (43)). It is easily
verified that both are abelian subgroups, and also
commute with each other. We refer to them as
the symmetric and anti-symmetric abelian sub-
groups BS(n, k, d), BA(n, k, d),

BS(n, k, d) = { all MT ∈ T(2n, k,Zd)} . (44)
BA(n, k, d) = { all ME ∈ T(2n, k,Zd)} . (45)

Remark 6. When k = 0, the BA(n, k, d) and
Sp(2k,Zd) subgroups shrink to the trivial group
which contains only the identity. The decomposi-
tion of T(2n, k,Zd) then takes the following form.

M = MT MS . (46)

The uniqueness of the decomposition (i.e., Corol-
lary 3) holds for this case well.

Remark 7. The group T(2n, k,Zd) is often re-
ferred to in the mathematics literature as the
parabolic subgroup associated to a k-dimensional
isotropic subspace of Z2n

d [58]. Furthermore,
there is more structure to it than we mentioned
in its decomposition above (see Remark 8).
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Remark 8. We borrow this observation from
[58]. Let us denote by B the group generated
by the union of BS(n, k, d) and BA(n, k, d), i.e.,
N := ⟨BS(n, k, d) ∪BA(n, k, d)⟩. Then it is
easily verified that N is a normal subgroup of
T(2n, k,Zd), and that T(2n, k,Zd)/N ≃ GL(n −
k,Zd) × Sp(2k,Zd).

In the Appendix Section E, we elaborate on
the significance of these subgroups in quantum
error correction. While the roles played by
GL(n− k,Zd) and Sp(2k,ZZd

) is easily surmised
to those familiar with QEC with stabilizer codes,
there has been less spotlight on the roles played
by BA(n, k, d) and BS(n, k, d), i.e., the fact that
the choice of selecting correctable errors for the
code is encapsulated by the group actions of
BS(n, k, d) and BA(n, k, d).

5 Counting [[n, k]]d stabilizer codes
One may employ Lagrange’s theorem in theory
of finite groups to compute the total number
of [[n, k]]d stabilizer codes, which we denote as
C[[n, k]]d.

Lemma 1. The number of [[n, k]]d stabilizer
codes is

C[[n, k]]d = |Sp(2n,Zd)| / |T(2n, k,Zd)| , (47)

where |Sp(2n,Zd)| is the order of Sp(2n,Zd) and
|T(2n, k,Zd)| is the order of T(2n, k,Zd).

Remark 9. For the case when d is a prime, i.e.,
d = p, the number of [[n, k]]d stabilizer codes was
explicitly computed in Ref. [23] (see Theorem 20
and Corollary 21 therein). The results we ob-
tain below agree with the results in Ref. [23] in
this case. There is a discrepancy in the language
and notation employed: an [[n, k]]d stabilizer code
in our work corresponds to an m-dimensional
isotropic subspace in Theorem 20 in Ref. [23],
each [[n, k]]d code space in our work is a counted
as a distinct code in Corollary 21 in Ref. [23],
and finally, we use the notation C[[n, k]]d to count
the number of [[n, k]]d stabilizer codes, whereas it
is used to count the total number of code spaces
in Ref. [23].

Proof. For a given [[n, k]]d stabilizer code, let’s
choose a representative code space C(S) with the
stabilizer group S = ⟨gj⟩n−k

j=1 . From S one can

construct a check matrix H, which may be ex-
tended to a symplectic matrix M . In Sec. 3 we
noted that this construction of M from S has
a redundancy, and that the degree of freedom
within the redundancy is captured by the right
action on M by the subgroup T(2n, k,Zd). In
other words, each symplectic matrix in any coset
of Sp(2n,Zd)/T(2n, k,Zd) is a possible symplec-
tic construction for the same [[n, k]]d stabilizer
code. This tells us that the number of [[n, k]]d
codes is lesser than or equal to the number of
left cosets, i.e., |Sp(2n,Zd)/T(2n, k,Zd)|. Con-
versely, let us start from some left coset in
Sp(2n,Zd)/T(2n, k,Zd), i.e., M × T(2n, k,Zd),
where we designate M as the coset representa-
tive. One can associate to this coset any one
of dn−k mutually orthogonal [[n, k]]d stabilizer
codes in the following way: extract from M a
2n×(n−k) submatrix by extracting the columns
with numbers n + 1 to 2n − k from the left
(see Eq. (24)). Call this submatrix H. Since
M ∈ Sp(2n,Zd) and satisfies MT ΛM = Λ, H
satisfies HT ΛH = 0. Let the j-th column in H
be the homomorphic image of some Pauli ωajgj

(see Eq. (11)), where gj ’s are such that each has
a +1 eigenspace, and the aj ’s are in Zd and ar-
bitrary. Generate the group S = ⟨ωajgj⟩. Note
that the construction branches out into dn−k dif-
ferent choices of S, depending on the values of
the aj ’s. That HT ΛH = 0 is equivalent to the
fact that the gj ’s commute between themselves.
Also, the columns of H are linearly independent
sinceM is an invertible matrix. This ensures that
any subset of the ωajgj ’s will generate a strictly
smaller subgroup of S. Construct the coding
space C(S) from S, and note that dim C(S) = 2k

(see Eq. (20) and the description below it). Thus
C(S) is a code space corresponding to an [[n, k]]d
stabilizer code. The dn−k distinct choices of S
and C(S) correspond to the dn−k different choices
within the same stabilizer code. This tells us that
the number of cosets is lesser than or equal to the
number of [[n, k]]d stabilizer codes.
Note that when the code to coset construction
is reversed, one retrieves the original code which
one started with. This is true for all codes. This
proves the theorem.

Using the decomposition of T(2n, k,Zd) from
Sec. 4 we obtain the following theorem.
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Lemma 2. Let d be a prime power, i.e., d = pm, where p is a prime number and m a positive integer.
The total number of [[n, k]]pm stabilizer codes, C[[n, k]]pm is

C[[n, k]]pm =
(
pm−1

) (n−k)(n+3k+1)
2

[
n

n− k

]
p

n−k−1∏
j=0

(
(p)n−j + 1

)
(48)

where the Gaussian coefficient
[

n
n− k

]
pi

is defined as

[
n

n− k

]
p

:=
n−k−1∏

j=0

pn−j − 1
pn−k−j − 1 . (49)

Proof. Using Lemma 1, the decomposition in Sec. 4 and Lemma 3,

C[[n, k]]pm =



|Sp(2n,Zpm)|
|BS (n, k, pm)| |BA (n, k, pm)| |GL(n− k,Zpm)| |Sp(2k,Zpm)| , when k ≥ 1 and

|Sp(2n,Zd)|
|BS (n, 0, pm)| |GL(n,Zpm)| , when k = 0.

(50)

It is straightforward to compute that
|BA (n, k, pm)| = (pm)2k(n−k), since in ME

from Eq. (40), N and L are left completely un-
constrained by Eq. (43), whereas simultaneously
KA is completely determined by N and L. Also
note, |BS (n, k, pm)| = pm 1

2 (n−k)(n−k+1), since in
MT from Eq. (39), the only constraint which
Eq. (43) imposes on KS is that it be symmetric.
|GL (n− k,Zpm)| is computed in Corollary 2.8 in
Ref. [32] (see also Ref. [40] for a more accessible
arguments):

|GL (n− k,Zpm)|

= p(m−1)(n−k)2
n−k−1∏

j=0

(
pn−k − pj

)
. (51)

|Sp(2n,Zpm)| and
∣∣∣Sp(2k,Zp

mi
i

)
∣∣∣ (needed for the

case k ≥ 1) are explicitly computed in the Ap-
pendix Sec. E.1 (which is based on Ref. [39]),
which gives us

|Sp(2n,Zpm)| = p(2m−1)n2+(m−1)n
n∏

j=1

(
p2j − 1

)
.

(52)

Then putting everything together in Eq. (50)
gives us Eq. (48)

Remark 10. In a seminal paper on Wigner dis-
tributions on finite dimensional phase-space Ref.
[23], Gross computed the number of [[n, k]]d codes
when d = pm, but the phase-space is identi-
fied with F2

pm, not Z2
pm. That the Pauli groups

for both phase spaces are different is observed
from the following fact. Set n = 1. Then
P(pm) is homomorphic to the additive abelian
group of Z2

pm (i.e., when only looking at Z2
pm

as an abelian group), whereas P(Fpm ) is homo-
morphic to the additive abelian group of F2

pm.
Note that the abelian group of Z2

pm decomposes
as the product of two cyclic groups:

(
Z2

pm ,+
)

≃
(Zpm ,+) × (Zpm ,+) , whereas that of F2

pm de-
composes as a product of 2m cyclic groups, i.e.,(
F2

pm ,+)
)

≃ (Zp,+)×2m. Furthermore these de-
compositions are unique by the structure theorem
of finite abelian groups. When m = 1, i.e., d = p,
the formula in Theorem 20 in Ref. [23] matches
that with Eq. (48), but for larger m, the formula
differs on account of the fact that while Fpm is a
field, Zpm isn’t. For completeness, in Appendix
H we explain why this renders the proof for The-
orem 20 in Ref. [23] inapplicable to our case.

Theorem 2. When d is an arbitrary positive
integer with prime factorisation d =

∏r
i=1 p

mi
i ,
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where pi are distinct primes, mi are positive inte-
gers and r, which is the number of distinct prime
factors, is also a positive integer. Then total
number of [[n, k]]d stabilizer codes is

C[[n, k]]d =
r∏

i=1
C[[n, k]]pmi

i
. (53)

Thus we get

C[[n, k]]d = d
(n−k)(n+3k+1)

2

r∏
i=1

ζi, (54)

where

ζi :=
n−k−1∏

j=0

(
1 − pi

−2(n−j)

1 − pi
−(n−k−j)

)
. (55)

Proof. We invoke the Chinese remainder theorem
[33], which tells us that

Zd ≃ Zm1
p1 × Zm2

p2 × · · ·Zmr
pr
, (56)

is a ring isomorphism. A simple corollary of this
ring isomorphism is the following two group iso-
morphisms.

Sp(2n,Zd) ≃ Sp(2n,Zp
m1
1

) × Sp(2n,Zp
m2
2

) × · · · × Sp(2n,Zpmr
r

)

T(2n, k,Zd) ≃ T(2n, k,Zp
m1
1

) × T(2n, k,Zp
m2
2

) × · · · × T(2n, k,Zpmr
r

), (57)

where the × symbol on the RHS denotes the di-
rect product of groups. To explain Eq. (57),
we refer the interested reader to Section F of the
Appendix. Invoking Eq. (57) into Lemma 1 thus
proves Eq. (53). For Eq. (54), we first simplify
the RHS of Eq. (48) using the following.[

n
n− k

]
pi

n−k−1∏
j=0

(
(pi)n−j + 1

)

= p
(n−k)(n+3k+1)

2
i

n−k−1∏
j=0

(
1 − pi

−2(n−j)

1 − pi
−(n−k−j)

)
. (58)

Using Eq. (58) in Eq. (48) gives us

C[[n, k]]pmi
i

= pmi
i

(n−k)(n+3k+1)
2 ζi, (59)

which is then invoked into Eq. (53).

It is often important to simply get an order of
magnitude of C[[n, k]]d. Towards that result, we
obtain the following corollary as a result of The-
orem 2.

Corollary 4. Let c = 2.17. Then the number
of [[n, k]]d stabilizer codes scales as

d
(n−k)(n+3k+1)

2 ≤ C[[n, k]]d < d
(n−k)(n+3k+1)

2 +c,
(60)

the number of [[n, k]]d stabilizer code spaces scale
as

d
(n−k)(n+3k+3)

2 ≤ Cspace[[n, k]]d < d
(n−k)(n+3k+3)

2 +c,
(61)

and thus the number of stabilizer states scale as

d
n(n+3)

2 ≤ Cstate[[n]]d < d
n(n+3)

2 +c. (62)

Proof. It is not difficult to upper bound ζi by a
constant which is independent of pi, n and k. For
instance, in Appendix Sec. G we show that

ζi < e1.57, ∀ n, k, and primes p. (63)

Thus we now use Eq. (58) and Eq. (63) in Eq.
(48)

C[[n, k]]pmi
i

< ec1 (pmi
i )

(n−k)(n+3k+1)
2 , (64)

where c1 = 1.57. Let the number of distinct
prime factors of d be denoted by r(d). Then Eq.
(53) and (64) tell us

C[[n, k]]d < ec1r(d) d
(n−k)(n+3k+1)

2 . (65)

It is known that r(d) may be upper bounded as
follows (see Theorem 11, p. 369 in Ref. [43]):

r(d) ≤ c2
log d

log log d, for d ≥ 3. (66)
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where c2 = 1.38. Thus we get that ec1r(d) ≤ dc,
where c = c1c2 ≈ 2.17. Thus we get

C[[n, k]]d < d
(n−k)(n+3k+1)

2 +c. (67)

Note that for d = 2, Eq. (64) is already satis-
fied, and hence, d = 2 also satisfies Eq. (67).
The number of [[n, k]]d stabilizer code spaces
is dn−k C[[n, k]]d, and the number of stabilizer
states is obtained by setting k = 0 in the number
of stabilizer code spaces.

6 Conclusions
In this work we count the number of [[n, k]]d
stabilizer codes, C[[n, k]]d for arbitrary d-level
systems, where the configuration space of such
systems is Zd. Since Zd is not a field when d is
non-prime, the method we used for this has to
differ from earlier works in Ref. [6] for qubits
and Ref. [23] for prime-dimensional qudits and
Galois-qudits, which relied on d being prime.
Our method is broadly broken up into two parts:
(i) proving a bijection between distinct [[n, k]]d
QECC and cosets of Sp(2n,ZZd

)/T(2n, k,Zd),
where T(2n, k,Zd) is a subgroup, which corre-
sponds to the [[n, k]]d trivial code, with stabilizer
group S = ⟨Zj⟩n−k

j=1 , and (ii) computing
|Sp(2n,Zd)| / |T(2n, k,Zd)|, for which we make
use of the Chinese remainder theorem. We
find that the number of [[n, k]]d stabilizer codes
C[[n, k]]d, the number of [[n, k]]d stabilizer code
subspaces Cspace[[n, k]]d and the number of stabi-
lizer states Cstate[[n]]d scale agnostic of whether
d is prime or non-prime. This is surprising since
the prime or non-prime nature of d played an
important role in our computation. In Section
1 we listed salient topics where Cstate[[n]]d
plays the role as an important quantifier: the
resource theory of magic, the classical simulation
of stabilizer-only circuits, projective-designs of
stabilizer states, a de Finetti theorem customized
for stabilizer operations, the study of quantum
contextuality for small systems and the study
of Wigner functions. Since Cstate[[n]]d was so far
known only for prime d (and Galois-qudits), the
results were limited to such cases. For resource
theory of magic, our work allows one to make
statements for arbitrary d. For the remaining
topics, we believe that our computation of
Cstate[[n]]d will prove useful for generalising the
corresponding results to arbitrary d. Thus our

work also contributes towards the important goal
of placing results for arbitrary d qudit systems
on the same pedestal as for prime qudit systems
or Galois qudit systems.
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A A short summary of the resource theory of magic

An operationally significant resource theory of magic has been studied and developed over the past
decade. In this theory stabilizer operations are considered a free resource. By stabilizer operations
we mean the following. (i) Initiating the starting state of a quantum computation as an eigenstate of
some multi-qudit Pauli operator. Often this is the state |0, 0, · · · , 0⟩, which spans the [[n, 0]]d trivial
code for the n-qudit system with stabilizer group S = ⟨Zj⟩n

j=1. (ii) Performing Clifford operations
during the computation. (iii) The only observables which are subjected to quantum measurements are
multiqudit Pauli operators. It is known that stabilizer operations are not universal [6], and universality
demands the inclusion of some non-stabilizer operations, such as the π/8 gate via magic state injection.
From the perspective of fault-tolerant quantum computing, performing non-stabilizer operations at
the logical level of the quantum code, is a high-cost incurring operation (see for e.g. [16]), which
justifies the differentiation between the ‘free’ resources of stabilizer operations (the aforementioned
three operations) and the costly resources of non-stabilizer operations (magic state injection).

B Proof of Corollary 2

Zn
d is a free-Zd module. This means that one may simply view Zn

d as an abelian group with vector
addition as the corresponding group operation. Furthermore, Zn

d is then simply seen to be a direct
product group of Zd with itself n times.

B.1 Any set of n LI vectors is a basis for Zn
d

By basis for Zn
d , we mean a minimal generating set for Zn

d as a group. Any set of n LI vectors is
a minimal generating set since there are precisely dn distinct linear combinations of these n vectors,
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and the LI property guarantees that each distinct linear combination results in a distinct vector in Zn
d .

Since there are dn vectors in Zn
d , each vector must be one of the dn possible linear combinations.

B.2 If aj’s are LI, then their linear span generates a subspace of dimension m

By the linear span of the aj ’s, we mean the subgroup of Zn
d , which the aj ’s generate. Since the aj ’s are

LI and since they are m in number, they generate a subgroup of size dm. However, not all subspaces
of size dm are isomorphic. It remains to justify the concept of an m dimensional subspace. We use the
term m-dimensional subspace to mean a subgroup of Zn

d , which is isomorphic to Zm
d . One may easily

construct such an isomorphism from span {aj}m
j=1 to Zm

d as follows: define T : span {aj}m
j=1 → Zm

d as
follows:

T (x1a1 + x2a2 + · · · + xmam) = (x1, x2, · · · , xm), ∀ xj ∈ Zd. (68)
T is readily seen to be an isomorphism (in the group theoretic sense).

B.3 For any m < n, any set of m LI vectors may be extended to form a basis for Zn
d .

We prove this by finding an invertible matrix A whose first m columns are given by the LI vectors
a1, a2, · · · , am. Then we may simply add the remaining n−m columns to obtain a set of n linearly
independent columns. We prove this inductively.

When m = 1. We adapt the arguments given in Ref. [65]4 to our purpose. To say the a1 = a is linearly
independent means that there is no non-zero x ∈ Zd such that xa = 0. In other words, a is of order
d. This implies that if a = (a1, a2, · · · , an)T , then as integers in Z, g.c.d. {a1, a2, · · · , an, d} = 1 ∈ Z.
We can thus apply Bézout’s identity (see Ref. [44]), in the same way that it is applied in Ref. [65].
For completeness, we give the whole proof here.
Proceeding inductively, suppose that n = 2 first. Bézout’s identity tells us that there exist b1, b2 and
d′ in Z such that a1b2 − a2b1 + d′d = 1 in Z. Thus we also get that (a1b2 − a2b1) mod d = 1 ∈ Zd.
With A =

(
a1 b1
a2 b2

)
mod d, the result is proved for n = 2. Next, suppose that the result is true for

n − 1. We need to then prove the result for n. As before g.c.d {a1, a2, · · · , an, d} = 1 ∈ Z. There
exists some integer g which is a common factor of a1, a2, · · · and an−1 such that if bi = ai/g, then
g.c.d {b1, b2, · · · , bn−1, d} = 1. It isn’t necessary that g equals g′ := g.c.d {a1, a2, · · · , an−1, d}, because
g.c.d {a1/g

′, a2/g
′, · · · , an−1/g

′, d} need not be 1. Writing d = g′h′, we see that ai/g
′ have no common

factors with h′ (otherwise g′ would have been larger). Thus the only factors which a1/g
′, a2/g

′, · · · ,
an−1/g

′ have in common with d will occur in g′. Writing g.c.d {a1/g
′, a2/g

′, · · · , an−1/g
′, g′} =: g̃′,

and defining g′′ = g̃′g′, we examine whether a1/g
′′, a2/g

′′, · · · , an−1/g
′′ and d have any common

factors. If not, we may choose g = g′′, otherwise we iterate recursively. These iterations have to
stop at some point since the numbers a1, a2, · · · , an−1 are finite. Note that g/g′ is necessarily a
factor of g′ itself. Since the hypothesis is assumed true for n − 1, corresponding to b ∈ Zn−1, where
b = (b1, b2, · · · , bn−1)T , we can construct an (n − 1) × (n − 1) matrix B whose first column is b and
such that detB + d′d = 1 ∈ Z. Construct an n× n matrix A in the same fashion as in Ref. [65].

AT =


gb1 gb2 · · · gbn−1 an1
b21 b22 · · · b2,n−1 0
...

...
. . .

...
...

bn−1,1 bn−1,2 · · · bn−1,n−1 0
rb1 rb2 · · · rbn−1 s

 , (69)

which gives us detA = (sg − an1r) detB, and since detB = 1 − d′d, we get detA =
(sg − an1r) (1 − d′d). Note that g.c.d {g′, an1, d} = 1, which tells us that g′ and an1 are co-
prime. Since g/g′ is also a factor of g′, we get that g.c.d {g, an1, d} = 1 as well. Hence Bézout’s

4The proof in Ref. [65] is itself taken from Ref. [31] (Corollary II.I). We can’t rely on the proofs in Ref. [65, 31]
directly, since these results are valid only for commutative rings with no zero divisors. In our case, when d is non-prime,
Zd has zero divisors.
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identity informs us that there will exist some integers s, r and d′′ in Z so that sg − an1r + d′′d = 1.
Hence we get that detA = (1 − d′d)(1 − d′′d). In Zd, detA = 1, which implies that A mod d is
invertible. This proves our result for m = 1.

Assumed true for m. To prove for m + 1. a1, a2, · · · , am, am+1 ∈ Zn
d , such that they are

LI. Our hypothesis is assumed true for m vectors, so a1, a2, · · · , am can be placed as the
(left-most) columns of an n × n matrix A, which is invertible. Consider the isomorphism on
Zn

d : a → A−1a. This maps aj = ej for j = 1 to m, where ej are the standard basis vectors
whose only non-zero component is the j-th component, and this component is equal to 1. Let
A−1am+1 = (c1, c2, · · · , cm, cm+1, cm+2, · · · , cn)T =: c. Since A−1 is an isomorphism on Zn

d , we get
that e1, e2, · · · , em and c are LI. Consider the following.(

1m 0
0 A′

)(
1m

0 c

)
, (70)

where the matrix on the left is an n × n matrix. The upper right 0 denotes a block matrix of size
m× n−m whose entries are all 0. The lower left 0 denotes another block matrix of size (n−m) ×m
and whose entries are all 0. A′ is an (n−m) × (n−m) matrix, as yet unspecified. The matrix on the
right is of size n × (m + 1), whose first m columns are the vectors ej ordered from 1 to m, and the
(m + 1)-th column is c. Denote c′ := (cm+1, cm+2, · · · , cn)T . Our hypothesis allows us to choose A′

to be invertible and such that A′c′ = (1, 0, · · · , 0)T , which is a column vector of size n−m. Defining
c′′ := (c1, c2, · · · , cm)T , so that cT = (c′′T , c′T ), define an n× n matrix T

T =

1k −c′′ 0
0 1 0
0 0 1n−k−1

 . (71)

The diagonal blocks 1k, 1 and 1n−k−1 are of sizes k, 1 and n−k− 1 respectively. These determine the
sizes of the remaining blocks of T . When T is multiplied on the left of Eq. (70), we get an n× (m+ 1)
sized matrix whose columns are e1, e2 · · · , em and em+1. Denoting the left matrix in Eq. (70) by
A′′, and defining Q := TA′′A−1, we see that Q is an invertible matrix, and the action of Q on aj is to
produce ej for j = 1 to m+ 1. This tells us that aj is the j-th column of the matrix Q−1. Thus given
aj for j = 1 to m+ 1, we may extend it to a set of n LI vectors by adding the remaining columns as
vectors to this set. This proves our result.

C Extension of a check matrix to a symplectic matrix
Remark 11. For the case when d is a prime (or more generally, when Zd is a field), this section
reduces to a proof of Witt’s extension theorem. A proof of Witt’s extension theorem for the general
case is hard to find. Thus we include a proof here for the interested reader.

Consider the stabilizer group S for an [[n, k]]d stabilizer code. For a choice of independent generators
gj of S and an ordering, one may readily construct the check matrix H using these generators (see
Eq. (21)). The columns of H are linearly independent and satisfy the commutation relations given by
Eq. (22). Our goal in this section of the Appendix is to prove that the 2n× (n− k) matrix H may be
extended to a 2n× 2n symplectic matrix S.

Proposition 1. Proposition 10.4, [37] For each i = 1, 2 · · · , n − k, there exists some g ∈ P(d)
n , such

that gig = ωggi, and gjg = ggj when j ̸= i.

Proof. Our proof will be based on the proof in [37], which works perfectly well for the case when
d = p is a prime, and Zd = Fp is a field. In that case, one simply seeks the solution to the following
equation: HT Λx = ei, where x ∈ F2n

p is a column vector whose solution is sought, and ei ∈ Fn−k
p , is
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the vector whose only non-zero element is the i-th component, and this component is equal to 1. The
existence of the solution the aforementioned equation is based on the fact that dimFn−k

p = rankHT Λ,
thus the transformation x → HT Λx is surjective in Fn−k

p . To establish that the same result holds true
when d is a composite number, we use the following arguments: since a1, a2, · · · , an−k are LI, one
may extend this to a basis of 2n columns vectors in Z2n

d (see Subsection B.3). Construct a 2n × 2n
matrix Hext, by adding to HT the additional n + k basis vectors, by transposing them and placing
the corresponding rows below HT . Since the rows of Hext are linearly independent and since they are
2n in number, by arguments in Subsection B.1 they form a basis. Hence solutions to the equations
xTHext = ej

T may be found for all j = 1, 2, · · · , 2n, which implies that Hext has a left-inverse. Since
the left-inverse of Hext is also its right inverse, that implies that the columns of Hext are also linearly
independent, and since these columns are 2n in number, they also form a basis using the arguments
in Subsec. B.1. Thus one may then find the solution to the equation:

Hext x′ = e′
i, (72)

where x′, e′
i ∈ Z2n

d . Here e′
i is the vector whose only non-zero entry is the i-th entry, and this entry

is equal to 1, whereas x′ is a vector whose solution is sought. That Hext is invertible tells us that
x′ = H−1

exte
′
i. Define x := Λ−1x′. Then x satisfies the equation: HextΛx = e′

i. One may neglect the
n+ k bottom most rows of Hext and of e′

i (not of Λ, or of x - their rows must be maintained intact),
which then gives us the equation HT Λx = ei. Let g be the Pauli element whose Z2n

d representative is
x. The commutation relations between g and the gj ’s is then determined by the equation HT Λx = ei:
we get that g and gj commute when j ̸= i and gig = ωggi. Hence proved.

Let us obtain the solutions for x for all i = 1, 2, · · · , n − k, and call the corresponding solutions
w′

i. We want w′
i
T Λwj = 0 for all i, j = 1, 2, · · · , n − k. To that end, we perform a Gram-Schmidth

orthogonalization procedure in the following way, starting with w1 := w′
1, and starting with i = 2 to

i = n− k,

wi := w′
i −

i−1∑
j=1

(
wj

T Λw′
i

)
aj . (73)

If k = 0, our job is done: to extend H to a 2n× 2n symplectic matrix, we need to add the columns wi

to the left (or right) of H, and this will give us our symplectic matrix S. Suppose k = 1, we need to
find pairs of vectors an,wn so that

an
T Λaj = 0, ∀ j = 1, 2, · · · , n,

wn
T Λwj = 0, ∀ j = 1, 2, · · · , n,

wn
T Λaj = δj,n, ∀ j = 1, 2, · · · , n. (74)

At the moment, we have 2(n− 1) linearly independent vectors aj and wj . Let a′ be some other vector
so that the a′, aj and wj form a set of 2n−1 LI vectors in Z2n

d . Define an := a′−
∑n−1

j=1

(
wj

T Λa′
)

aj −∑n−1
j=1

(
aj

T Λa′
)

wj . Since the linear independence of a′, aj and wj ensures that an is non-zero. We
have also ensured that an satisfies the conditions aj

T Λan = wj
T Λan = 0 for all j = 1, 2, · · · , n − 1.

It remains to find wn with the properties as desired by Eq. (74). Such a wn may be found by using
Proposition 10.3 again for an extended check matrix which is obtained by adding an to the original
check matrix H. Thus we have obtained all the column vectors as desired, and the newly obtained
column vectors may be arranged suitably to produce a 2n× 2n symplectic matrix S.
If k > 1, we may apply the same procedure as above iteratively, to obtain the symplectic matrix S.
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D Symplectic conditions for M

In this section of the Appendix, we derive the symplectic conditions Eq. (30)-(33) for the matrix M
in Eq. (24), which has the form:

M =


M11 M12 0 M14
M21 M22 0 M24
M31 M32 A M34
M41 M42 0 M44

 . (75)

Here M11, M31, M13 (which is 0) and A are of dimensions (n− k) × (n− k), M22, M24, M42 and M44
are of dimensions 2k × 2k, M21, M41, M23 and M43 (which are both 0) are of dimensions k × (n− k),
and finally, M12, M14, M32 and M34 are of dimensions (n−k)×k. M satisfies the following symplectic
condition.

MT ΛM = Λ. (76)

It will be convenient to label the LHS of Eq. (76) as follows.

MT ΛM =


Q11 Q12 Q13 Q14
Q21 Q22 Q23 Q24
Q31 Q32 Q33 Q34
Q41 Q42 Q43 Q44

 . (77)

Here we only consider blocks Q13, Q23 and Q43. That is the conditions given in Eq. (28) and (29):

Q13 = MT
11A = Ik =⇒ M11 = (A−1)T ,

Q23 = MT
12A = 0 =⇒ M12 = 0,

Q43 = MT
14A = 0 =⇒ M14 = 0.

(78)

Substituting Eq. (78) into Eq. (24) gives us Eq. (34). Now, Eq. (31), Eq.(32) and Eq. (33) are
merely the equations for the blocks Q11, Q12 and Q14 respectively, whereas Eq. (30) is the collective
condition on

(
Q22 Q24
Q42 Q44

)
.

E Significance of the subgroups of T(2n, k,Zd): Sp(2k,Zd), GL(n − k,Zd),
BA(n, k, d) and BS(n, k, d)
We now explain the significance of each of these subgroups. For an [[n, k]]d stabilizer code, let H be the
corresponding check matrix and let a symplectic extension of H be given by M as in Eq.(24). One may
obtain another symplectic matrix of the same stabilizer code by right-multiplying M with a matrix in
T(2n, k,Zd) with a decomposition MEMSML. Suppose that ME = ML = I2n. Right-multiplying M
with MS transforms the check matrix H to another check-matrix HA (of the same code). Thus the
GL(n− k,Zd) subgroup realises the freedom of making different choices of the independent generators
of said stabilizer group. Right-multiplying M with ML transforms the columns in LX and LZ , while
leaving E and H invariant. Thus the Sp(n− k,Zd) subgroup realises the freedom of making different
choices of the generators of the purely logical Pauli group, which we denote by L(d)

n . Each element
of this subgroup (except the identity) will act non-trivially on the stabilizer code, i.e., codewords are
mapped to other codewords under the action of these elements. Thus the purely logical Pauli group
is a subgroup of the logical Pauli group N(S), which contains the stabilizer group S. One anticipates
that the choice of generators for S (which is realised by the GL(n− k,Zd) subgroup) is independent of
the choice of generators of the purely logical Pauli group (which is realised by the Sp(k,Zd) subgroup).
This agrees with the fact that both subgroups commute with each other.
We next explain the significance ofME . Let gE be a Pauli which anti-commutes with some generators of
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S. Consider gEL(d)
n which is a left coset of L(d)

n . Each element gEgL rotates C(S) to the same orthogonal
coding space C(S)⊥. But for different choices of gL, gEgL performs a distinct internal rotation within
C(S)⊥. The error correction procedure is unable to distinguish between different internal rotations due
to different gL. Thus it can correct only one element in the coset gEL(d)

n . This is true for all gE ’s which
anticommute with elements in S. Which element within gEL(d)

n is chosen to be the correctable error
depends on the error correction model. We next prove the following.

Theorem 3. The columns E in M in Eq. (24) represent correctable errors. Right multiplying M with
different ME ∈ BA(n, k, d) realises the freedom in making different choices of such correctable errors.
The action of MT ∈ BS(n, k, d) doesn’t affect this choice.

Proof. That the columns of E fix the choice of the correctable errors of the stabilizer code is well-
known in the stabilizer formalism for quantum error correction (see Chapter 10 in [37] for instance
or see the beginning in Section III in [38]). What we need to prove is that for each distinct choice
of correctable errors, there is a choice of ME ∈ BA(n, k, d) such that right multiplying M with ME

produces the corresponding column block of correctable errors in MME . To this end, suppose that
the columns in E are homomorphic images of g1, g2 · · · , gk ∈ P(d)

n (see Eq. (11)). Suppose that
we wish for g1h1, g2h2, · · · , gkhk to be correctable errors instead, where h1, h2 · · · , hk ∈ L(d)

n . These
errors may be represented in Z2n

d by the 2n× k matrix

E′ = E + LXN
′ + LZL

′, (79)

where the j-th columns of N ′ and L′ are determined by how hj decomposes into the generators of L(d)
n .

Thus N ′ and L′ are determined entirely by hj ’s. Equation (79) may be realised by right multiplying
M with a matrix of the form ME with N ′ = N and L′ = L, and KA determined entirely by N and
L as follows: KA = LTN − NTL. This is just Eq. (31). Additionally, right multiplying M by any
MT ∈ BS(n, k, d) changes the columns in E to E′ = E + HKS . If gE′ and gE represent the j-th
columns in E′ and E, then gE′ = gEgS , where gS ∈ S is some element of the stabilizer group. gS is
determined by the j-th column of KS and the choice of generators in H. Note that the error operators
gE′ and gE are both simultaneously correctable since the stabilizer element gS acts trivially on the
code. Hence proved.

E.1 Order of Sp(2n,Zpm)
A computation of the order of Sp(2n,Zpm) is given in Ref. [39]. For the interested reader, we reproduce
that computation here, while elaborating on some of the definitions and computations to make them
clearer. Define a ring homomorphism ψ1 : Zpm → Zpm−1 as

ψ1(x) = x mod pm−1, (80)

where x ∈ Zpm . The following remark explains Eq. (80).

Remark 12. The ideal generated by pm−1 within Zpm is isomorphic to Zp. We label this ideal as
pm−1Zpm. The factor ring of Zpm/pm−1Zpm is isomorphic to Zpm−1. ψ1 is the map from Zpm →
Zpm/pm−1Zpm. ψ1 is a ring homomorphism, and kerψ1 = pm−1Zpm.

We define a group homomorphism from Sp(2n,Zpm) → Sp(2n,Zpm−1) as follows. Let M be a
2n × 2n symplectic matrix. Define Ξ1 : Sp(2n,Zpm) → Sp(2m,Zpm−1) as follows: the ij-th matrix
element of Ξ1(M) is ψ1 (Mij). Since M ∈ Sp(2n,Zpm), it satisfies the equation MT ΛM = Λ (where
Λ ∈ Sp(2n,Zpm)), then

(Ξ1(M))T Λ Ξ1(M) = Λ, where Λ ∈ Sp(2n,Zpm−1), (81)

which implies that Ξ1(M) ∈ Sp(2n,Zpm−1). That ψ1 is a ring homomorphism immediately implies that
Ξ1 is group homomorphism from Sp(2n,Zpm) to Sp(2n,Zpm−1). ker Ξ1 is the subgroup in Sp(2n,Zpm)
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which Ξ1 maps to I2n ∈ Sp(2n,Zpm−1). Note that I2n (in Sp(2n,Zpm)) lies in ker Ξ1. Thus any
M ∈ ker Ξ1 can be written in the form I2n +K, where K is a 2n× 2n matrix with matrix elements in
pm−1Zpm , and satisfies the symplectic equation

(I2n +K)T Λ (I2n +K) = Λ,
⇒ KT Λ + ΛK + KT ΛK = 0. (82)

Note that KT ΛK = 0 since K can be written as K = pm−1K ′, with K ′ ∈ {0, 1, · · · , p− 1} ⊂ Zpm ,
which gives us KT ΛK = pm pm−2K ′T ΛK ′ which is 0 since pm = 0 in Zpm . Thus K has to satisfy the
equation ΛK = −KT Λ. Decomposing K into n× n blocks as follows:

K =
[
X Y
Z W

]
, (83)

we see that the symplectic condition becomes X = −W T , Y = Y T and Z = ZT . Thus K has
2n2 + n unconstrained matrix elements which take values in pm−1Zpm , which has p elements. Thus
| ker Ξ1 | = p2n2+n and we get

| Sp(2n,Zpm) | = p2n2+n
∣∣∣ Sp(2n,Zpm−1)

∣∣∣ . (84)

Similarly one may define ψj : Zpm−j+1 → Zpm−j and Ξj : Sp(2n,Zpm−j+1) → Sp(2n,Zpm−j ), with
| ker Ξ2 | = p2n2+n for j = 2, 3, · · · ,m− 1, and∣∣∣ Sp(2n,Zpm−j+1)

∣∣∣ = p2n2+n
∣∣∣ Sp(2n,Zpm−j )

∣∣∣ , (85)

which finally gives us
| Sp(2n,Zpm) | = p(m−1)(2n2+n) | Sp(2n,Zp) | . (86)

It is known (see Ref. [36]) that |Sp(2n,Zp)| = pn2 ∏n
j=1

(
p2j − 1

)
, which tells us that

| Sp(2n,Zpm) | = p(2m−1)n2+(m−1)n
n∏

j=1

(
p2j − 1

)
. (87)

F Proof that the Chinese remainder theorem implies Eq. (57)

F.1 What is the Chinese remainder theorem?
For a reader, who may be unfamiliar with the Chinese remainder theorem (CRT), we briefly explain
it in this subsection.

We use the following abbreviation for Zm1
p1 × Zm2

p2 × · · · × Zmr
pr

.

K ≡ Zm1
p1 × Zm2

p2 × · · · × Zmr
pr
. (88)

Since K is a direct product of rings Zp
mi
i

, addition and multiplication are defined component-wise. Let
xi, yi ∈ Zp

mi
i

for all i = 1, 2, · · · , r.

(x1, x2, · · · , xr) + (y1, y2, · · · , yr) = (x1 + y1, x2 + y2, · · · , xr + yr), and (89)
(x1, x2, · · · , xr) . (y1, y2, · · · , yr) = (x1.y1, x2.y2, · · · , xr.yr ). (90)

CRT, as expressed by Eq. (56), establishes a ring isomorphism, which we call Γ. Γ(x) for any x ∈ Zd

is computed as follows.

Γ : Zd → K,

Γ(x) = (x mod pm1
1 , x mod pm2

2 , · · · , x mod pmr
r ) , (91)

which we abbreviate as Γ(x) = (xi)i, where xi ≡ x mod pmi
i . CRT states the following.
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1. Γ, as defined in Eq. (91), is a bijection from Zd to K.

2. Arithmetic of pre-images (in Zd) is isomorphic under Γ, to arithmetic of the images (in K). That
is, for x, y ∈ Zd, and Γ(x) = (xi)i and Γ(y) = (yi)i, we have

Γ(x+ y) = (xi + yi)i, and (92)
Γ(x.y) = (xi.yi)i, (93)

where xi + yi and xiyi are the addition and multiplication operations, carried out in Zp
mi
i

.

F.2 Extending CRT to matrices

Next, consider the following direct product of matrix rings M2n

(
Zp

mi
i

)
for i = 1 to i = r.

L ≡ M2n

(
Zp

m1
1

)
× M2n

(
Zp

m2
2

)
× · · · × M2n

(
Zpmr

r

)
. (94)

Addition and multiplication in L are performed component-wise.

(S1, S2, · · · , Sr) + (T1, T2, · · · , Tr) = (S1 + T1, S2 + T2, · · · , Sr + Tr), and (95)
(S1, S2, · · · , Sr).(T1, T2, · · · , Tr) = (S1.T1, S2.T2, · · · , Sr.Tr), (96)

where Si, Ti ∈ M2n

(
Zp

mi
i

)
.

We may extend CRT to derive a ring isomorphism Γ̃ : M2n (Zd) → L as follows. Let S ∈ M2n (Zd).
Then

Γ̃(S) = (S mod pm1
1 , S mod pm2

2 , · · · , S mod pmr
r ) , (97)

where by S mod pmi
i we mean that matrix in M2n

(
Zp

mi
i

)
whose jk-th matrix element is Sjk mod pmi

i .
We will use the abbreviation (S mod pm1

1 , S mod pm2
2 , · · · , S mod pmr

r ) = (S mod pmi
i )i or simply

as (Si)i whenever convenient. That Γ̃ is a ring isomorphism, is seen from the following.

1. Γ̃ is a bijection because, firstly, |M2n (Zd)| = Πr
i=1 (pmi

i )2n = |L|, since d = Πr
i=1p

mi
i . Secondly,

every element in L has a pre-image in M2n (Zd).

2. Matrix addition and multiplication in M2n (Zd) is homomorphic, under Γ̃, to addition and multi-
plication defined in Eq. (95) and Eq. (96) respectively. Let S, T ∈ M2n (Zd). For addition:

Γ̃(S + T ) = ((S + T ) mod pmi
i )i = (S mod pmi

i + T mod pmi
i )i = Γ̃(S) + Γ̃(T ), (98)

where we used Eq. (95) to obtain the right-most expression from the previous expression. For
multiplication:

Γ̃(S.T ) = ((S.T ) mod pmi
i )i = ((S mod pmi

i ) . (T mod pmi
i ) )i = Γ̃(S).Γ̃(T ), (99)

where we used Eq. (96) to obtain the right-most expression from the previous expression.

F.3 Restricting Γ̃ to Sp(2n,Zd)

Consider the following scenario.

• We restrict Γ̃ to acting on elements in Sp(2n,Zd).

• Additionally, we restrict matrix operations to multiplication only. We dispense with addition.
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Sp(2n,Zd) is a group. That Γ̃ is a bijection from Sp(2n,Zd) to Γ̃(Sp(2n,Zd)), and that Γ̃ satisfies Eq.
(99) implies that Γ̃(Sp(2n,Zd)) must also be a group, and moreover that Sp(2n,Zd) and Γ̃(Sp(2n,Zd))
are isomorphic. We now prove that for any S ∈ Sp(2n,Zd), Γ̃(S) ∈ G, where

G ≡ Sp(2n,Zp
m1
1

) × Sp(2n,Zp
m2
2

) × · · · × Sp(2n,Zpmr
r

). (100)

Since S ∈ Sp(2n,Zd) it satisfies the symplectic equation: ST ΛS = Λ. Apply Γ̃ to both sides of the
symplectic equation: Γ̃

(
ST ΛS

)
= Γ̃(Λ). Since Γ̃(Λ) = (Λi)i, we get that((
ST ΛS

)
i

)
i

=
(
ST

i ΛiSi

)
i

= (Λi)i . (101)

Note that Λi takes the same form as Λ from Eq. (15), but the 1’s and 0’s in Λi play the role of the
multiplicative and additive identities in Zp

mi
i

. Eq. (101) implies that Si ∈ Sp(2n,Zp
mi
i

), which proves
that Γ̃(S) ∈ G. This proves the first isomorphism in Eq. (57).

F.4 Restricting Γ̃ to T(2n, k,Zd)

Further restricting the action of Γ̃ to only T(2n, k,Zd), similar arguments as above inform us that
Γ̃(T(2n, k,Zd)) is a group, and moreover, Γ̃(T(2n, k,Zd)) is isomorphic to T(2n, k,Zd). We prove now
that for any S ∈ T(2n, k,Zd), Γ̃(S) ∈ H, where

H := T(2n, k,Zp
m1
1

) × T(2n, k,Zp
m2
2

) × . . .× T(2n, k,Zpmr
r

). (102)

That S ∈ T(2n, k,Zd) entails two things (see Thm. 1): (i) S ∈ Sp(2n,Zd) and (ii) S has the form of
Eq. (27), i.e., the matrix blocks S13 = 0n−k, S23 = S43 = 0k×(n−k). From Subsection F.3 we learn
that when S ∈ Sp(2n,Zd), then Γ̃(S) ∈ G. And from Eq. (97) we see that S mod pmi

i will also have
the form Eq. (27), i.e., the matrix blocks (Si)13 = 0n−k, (Si)23 = (Si)43 = 0k×(n−k). This proves
that Si ∈ T(2n, k,Zp

mi
i

) for all i = 1, 2, · · · , r, which further proves that Γ̃(S) ∈ H. Hence the second
isomorphism in Eq. (57) is proved.

G Proof of Eq. (63)
We start by noting that

1 ≤ 1 − pi
−2(n−j)

1 − pi
−(n−k−j) , (103)

we get (pmi
i )

(n−k)(n+3k+1)
2 ≤ C[[n, k]]pmi

i
and using Eq. (53) we immediately get d

(n−k)(n+3k+1)
2 ≤

C[[n, k]]d. For the inequality on the right, we note that
1 − p−2(n−j)

1 − p−(n−k−j) ≤ 1
1 − p−(n−k−j) ≤

1
1 − 2−(n−k−j) , since p ≥ 2. Thus

n−k−1∏
j=0

1 − p−2(n−j)

1 − p−(n−k−j) ≤
n−k−1∏

j=0

(
1 + 2−(n−k−j)

1 − 2−(n−k−j)

)
≤

n−k−1∏
j=0

(
1 + 2−j

)
, (104)

where we used the fact that 2−(n−k−j)

1−2−(n−k−j) ≤ 2−(n−k−1−j), and re-label j → n− k − 1 − j. and using

n−k−1∏
j=0

(
1 + 2−j

)
≤

∞∏
j=0

(
1 + 2−j

)
= ϕ

(1
2

)
, (105)

where ϕ(.) is the Euler function5 [41], which is a special case of the q-Pochhammer function [42]. Using
Mathematica, this evaluates to 4.768 or e1.56.

5Not the Euler totient function
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H Why the proof of Theorem 20. of Ref. [23] fails for counting [[n, k]]d modular
stabilizer codes
We first give the context of Theorem 20 in Ref. [23]: d = pm, for some positive prime integer p, and
some positive integer m, and the vector space in question is F2n

pm , which is defined over the field Fpm .
Here Fpm is the Galois field extension of the base field Fp ≃ Zp. Thus this overlaps with our scenario
only when d = p. The proof counts the number of isotropic subspaces of F2n

pm . An isotropic subspace
is spanned by n − k linearly independent vectors a1, a2, · · · , an−k, with the additional property
that the symplectic inner products between any pair of these vectors is zero, i.e., aT

i Λaj = 0, for all
i, j = 1, 2, · · · , n − k. The proof in Ref. [23] begins by counting the number of possible values that
a1 can take in F2n

pm . Since any non-zero vector in F2n
pm is a potential candidate, the count is d2n − 1.

Subsequently it counts the possible values which a2 can be in F2n
pm \ span {a1}. Note that a2 has to

satisfy the additional condition that aT
1 Λa2 = 0. Viewing the transformation a2 → aT

1 Λa2 as a linear
map on F2n

pm , one notes that the symplectic condition simply demands that a2 belongs to the kernel of
this linear map. The rank-nullity theorem is then used to tell us that a2 belongs to a 2n−1 dimensional
subspace of F2n

pm . But since a1 also belongs to the kernel, and since a2 and a1 need to be linearly
independent, we need to rule out the possibility that a2 = xa1 for all x ∈ Fpm . This gives us the count
for a2. The same technique is applied iteratively to give us counts for all aj for j = 3, · · · , n − k.
The product of these counts gives the number of distinct ordered sets of n−k “symplectic" orthogonal
vectors. To obtain the number of isotropic subspaces, one needs to divide the aforementioned product
by the redundancy with which each subspace is counted. It is easily seen that this redundancy is equal
to the number of distinct ordered “symplectic” orthogonal basis any isotropic subspace has.
Coming to our scenario, we note that the first step of the proof of Theorem 20 in Ref. [23] itself is
incompatible with our context, since in our case we need to rule out all the non-zero linearly dependent
vectors for a1, i.e., non-zero vectors a1 which satisfy the equation xa1 = 0, for a non-zero x. When d
is not prime, such vectors exist. For example consider the vector a = (2, 0, 0, 0, 0, 0)T for d = 4, n = 3
and k = 2. 2a = (4, 0, 0, 0, 0, 0)T = 0 in Z4. If one still manages to weed out those non-zero vectors
for a1, one still encounters similar issues for counting aj for j ≥ 2. According to Lemma 1 the total
number of ordered linear independent vectors aj whose symplectic inner products are zero should be

|Sp(2n,Zd)|
|BS (n, k, d)| |BA (n, k, d)| |Sp(2k,Zd)| , when k ≥ 1

|Sp(2n,Zd)|
|BS (n, 0, d)| , when k = 0. (106)

This is because the redundancy, which is equal to the number of choices for ordered bases, is
|GL(n− k,Zd)|. Thus one may relate our method with the method used by Gross in Theorem 20
in Ref. [23] in this way. It is possible that one may compute the expression in Eq. (106) by suitably
modifying the counting technique in Ref. [23], but our method has the advantage of being conceptually
richer.
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