Unifying different notions of quantum incompatibility into a strict hierarchy of resource theories of communication

Francesco Buscemi1, Kodai Kobayashi1, Shintaro Minagawa1, Paolo Perinotti2,3, and Alessandro Tosini2,3

1Department of Mathematical Informatics, Nagoya University, Furo-cho, Chikusa-ku, 464-8601 Nagoya, Japan
2QUIT Group, Department of Physics, University of Pavia, via Bassi 6, 27100 Pavia, Italy
3INFN Sezione di Pavia, via Bassi 6, 27100 Pavia, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


While there is general consensus on the definition of incompatible POVMs, moving up to the level of instruments one finds a much less clear situation, with mathematically different and logically independent definitions of incompatibility. Here we close this gap by introducing the notion of $q-compatibility$, which unifies different notions of POVMs, channels, and instruments incompatibility into one hierarchy of resource theories of communication between separated parties. The resource theories that we obtain are $complete$, in the sense that they contain complete families of free operations and monotones providing necessary and sufficient conditions for the existence of a transformation. Furthermore, our framework is fully $operational$, in the sense that free transformations are characterized explicitly, in terms of local operations aided by causally-constrained directed classical communication, and all monotones possess a game-theoretic interpretation making them experimentally measurable in principle. We are thus able to pinpoint exactly what each notion of incompatibility consists of, in terms of information-theoretic resources.

► BibTeX data

► References

[1] Iwo Białynicki-Birula and Jerzy Mycielski. Uncertainty relations for information entropy in wave mechanics. Communications in Mathematical Physics, 44(2):129–132, 1975. URL: https:/​/​link.springer.com/​article/​10.1007/​BF01608825, doi:10.1007/​BF01608825.

[2] Mario Berta, Matthias Christandl, Roger Colbeck, Joseph M Renes, and Renato Renner. The uncertainty principle in the presence of quantum memory. Nature Physics, 6(9):659–662, 2010. URL: https:/​/​www.nature.com/​articles/​nphys1734, doi:10.1038/​nphys1734.

[3] Howard Barnum, Carlton M. Caves, Christopher A. Fuchs, Richard Jozsa, and Benjamin Schumacher. Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett., 76:2818–2821, Apr 1996. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.76.2818, doi:10.1103/​PhysRevLett.76.2818.

[4] Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and Stephanie Wehner. Bell nonlocality. Rev. Mod. Phys., 86:419–478, Apr 2014. URL: https:/​/​doi.org/​10.1103/​RevModPhys.86.419, doi:10.1103/​RevModPhys.86.419.

[5] Francesco Buscemi, Eric Chitambar, and Wenbin Zhou. Complete resource theory of quantum incompatibility as quantum programmability. Phys. Rev. Lett., 124:120401, Mar 2020. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.124.120401, doi:10.1103/​PhysRevLett.124.120401.

[6] Francesco Buscemi and Nilanjana Datta. Equivalence between divisibility and monotonic decrease of information in classical and quantum stochastic processes. Phys. Rev. A, 93:012101, Jan 2016. URL: https:/​/​doi.org/​10.1103/​PhysRevA.93.012101, doi:10.1103/​PhysRevA.93.012101.

[7] Francesco Buscemi, Nilanjana Datta, and Sergii Strelchuk. Game-theoretic characterization of antidegradable channels. Journal of Mathematical Physics, 55(9):092202, 2014. arXiv:https:/​/​doi.org/​10.1063/​1.4895918, doi:10.1063/​1.4895918.

[8] Francesco Buscemi and Gilad Gour. Quantum relative lorenz curves. Phys. Rev. A, 95:012110, Jan 2017. URL: https:/​/​doi.org/​10.1103/​PhysRevA.95.012110, doi:10.1103/​PhysRevA.95.012110.

[9] Francesco Buscemi, Masahito Hayashi, and Michał Horodecki. Global information balance in quantum measurements. Physical Review Letters, 100(21):210504, 2008. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.100.210504, doi:10.1103/​PhysRevLett.100.210504.

[10] Francesco Buscemi, Michael J. W. Hall, Masanao Ozawa, and Mark M. Wilde. Noise and disturbance in quantum measurements: an information-theoretic approach. Physical Review Letters, 112(5):050401, 2014. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.112.050401, doi:10.1103/​PhysRevLett.112.050401.

[11] Francesco Buscemi, Kodai Kobayashi, and Shintaro Minagawa. A complete and operational resource theory of measurement sharpness, 2023. arXiv:2303.07737.

[12] David Blackwell. Equivalent Comparisons of Experiments. The Annals of Mathematical Statistics, 24(2):265–272, 1953. URL: http:/​/​www.jstor.org/​stable/​2236332, doi:10.1214/​aoms/​1177729032.

[13] Paul Busch, Pekka J. Lahti, and Peter Mittelstaedt. The Quantum Theory of Measurement. Springer Berlin Heidelberg, 1996. doi:10.1007/​978-3-540-37205-9.

[14] Paul Busch, Pekka Lahti, and Reinhard F. Werner. Colloquium: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys., 86:1261–1281, Dec 2014. URL: https:/​/​doi.org/​10.1103/​RevModPhys.86.1261, doi:10.1103/​RevModPhys.86.1261.

[15] Francesco Buscemi, David Sutter, and Marco Tomamichel. An information-theoretic treatment of quantum dichotomies. Quantum, 3:209, December 2019. doi:10.22331/​q-2019-12-09-209.

[16] Francesco Buscemi. All entangled quantum states are nonlocal. Phys. Rev. Lett., 108:200401, May 2012. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.108.200401, doi:10.1103/​PhysRevLett.108.200401.

[17] Francesco Buscemi. Comparison of quantum statistical models: Equivalent conditions for sufficiency. Communications in Mathematical Physics, 310(3):625–647, 2012. doi:10.1007/​s00220-012-1421-3.

[18] Francesco Buscemi. Fully quantum second-law–like statements from the theory of statistical comparisons, 2015. URL: https:/​/​arxiv.org/​abs/​1505.00535, doi:10.48550/​ARXIV.1505.00535.

[19] Francesco Buscemi. Degradable channels, less noisy channels, and quantum statistical morphisms: An equivalence relation. Probl Inf Transm, 52:201–213, 2016. doi:10.1134/​S0032946016030017.

[20] Francesco Buscemi. Reverse data-processing theorems and computational second laws. In Masanao Ozawa, Jeremy Butterfield, Hans Halvorson, Miklós Rédei, Yuichiro Kitajima, and Francesco Buscemi, editors, Reality and Measurement in Algebraic Quantum Theory, pages 135–159, Singapore, 2018. Springer Singapore. doi:10.1007/​978-981-13-2487-1.

[21] Giulio Chiribella, G Mauro D'Ariano, and Paolo Perinotti. Transforming quantum operations: Quantum supermaps. EPL (Europhysics Letters), 83(3):30004, 2008. URL: https:/​/​iopscience.iop.org/​article/​10.1209/​0295-5075/​83/​30004, doi:10.1209/​0295-5075/​83/​30004.

[22] Eric Chitambar and Gilad Gour. Quantum resource theories. Rev. Mod. Phys., 91:025001, Apr 2019. URL: https:/​/​doi.org/​10.1103/​RevModPhys.91.025001, doi:10.1103/​RevModPhys.91.025001.

[23] Giacomo Mauro D’Ariano, Paolo Perinotti, and Alessandro Tosini. Incompatibility of observables, channels and instruments in information theories. Journal of Physics A: Mathematical and Theoretical, 55(39):394006, 2022. URL: https:/​/​iopscience.iop.org/​article/​10.1088/​1751-8121/​ac88a7/​meta, doi:10.1088/​1751-8121/​ac88a7.

[24] Gilad Gour, David Jennings, Francesco Buscemi, Runyao Duan, and Iman Marvian. Quantum majorization and a complete set of entropic conditions for quantum thermodynamics. Nature Communications, 9(1), dec 2018. URL: https:/​/​doi.org/​10.1038/​s41467-018-06261-7 https:/​/​doi.org/​10.1038/​s41467-018-06261-7 doi:10.1038/​s41467-018-06261-7.

[25] Werner Karl Heisenberg. Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik. Zeitschrift für Physik, 43:172–198, 1927. URL: https:/​/​link.springer.com/​article/​10.1007 doi:10.1007/​BF01397280.

[26] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Rev. Mod. Phys., 81:865–942, Jun 2009. URL: https:/​/​doi.org/​10.1103/​RevModPhys.81.865, doi:10.1103/​RevModPhys.81.865.

[27] Chung-Yun Hsieh, Matteo Lostaglio, and Antonio Acín. Quantum channel marginal problem. Phys. Rev. Res., 4:013249, Mar 2022. URL: https:/​/​doi.org/​10.1103/​PhysRevResearch.4.013249, doi:10.1103/​PhysRevResearch.4.013249.

[28] Godfrey Harold Hardy, John Edensor Littlewood, and George Polya. Inequalities. Cambridge university press, 1952. URL: https:/​/​books.google.it/​books?id=t1RCSP8YKt8C.

[29] Teiko Heinosaari, Takayuki Miyadera, and Daniel Reitzner. Strongly incompatible quantum devices. Foundations of Physics, 44(1):34–57, 2014. doi:10.1007/​s10701-013-9761-1.

[30] Teiko Heinosaari, Takayuki Miyadera, and Mário Ziman. An invitation to quantum incompatibility. Journal of Physics A: Mathematical and Theoretical, 49(12):123001, feb 2016. doi:10.1088/​1751-8113/​49/​12/​123001.

[31] Teiko Heinosaari, Daniel Reitzner, and Peter Stano. Notes on joint measurability of quantum observables. Foundations of Physics, 38(12):1133–1147, 2008. URL: https:/​/​link.springer.com/​article/​10.1007/​s10701-008-9256-7, doi:10.1007/​s10701-008-9256-7.

[32] Kaiyuan Ji and Eric Chitambar. Incompatibility as a resource for programmable quantum instruments. arXiv:2112.03717, 2021. URL: https:/​/​arxiv.org/​abs/​2112.03717.

[33] Anna Jencova. Comparison of quantum channels and statistical experiments, 2015. URL: https:/​/​arxiv.org/​abs/​1512.07016, doi:10.48550/​ARXIV.1512.07016.

[34] Anna Jencova. A general theory of comparison of quantum channels (and beyond). IEEE Transactions on Information Theory, 67(6):3945–3964, 2021. doi:10.1109/​TIT.2021.3070120.

[35] Eneet Kaur, Siddhartha Das, Mark M. Wilde, and Andreas Winter. Extendibility limits the performance of quantum processors. Phys. Rev. Lett., 123:070502, Aug 2019. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.123.070502, doi:10.1103/​PhysRevLett.123.070502.

[36] Eneet Kaur, Siddhartha Das, Mark M. Wilde, and Andreas Winter. Resource theory of unextendibility and nonasymptotic quantum capacity. Phys. Rev. A, 104:022401, Aug 2021. URL: https:/​/​doi.org/​10.1103/​PhysRevA.104.022401, doi:10.1103/​PhysRevA.104.022401.

[37] Arindam Mitra and Máté Farkas. Compatibility of quantum instruments. Phys. Rev. A, 105:052202, May 2022. URL: https:/​/​doi.org/​10.1103/​PhysRevA.105.052202, doi:10.1103/​PhysRevA.105.052202.

[38] Albert W. Marshall, Ingram Olkin, and Barry C. Arnold. Inequalities: theory of majorization and its applications. Springer, 2010. doi:10.1007/​978-0-387-68276-1.

[39] Hans Maassen and J. B. M. Uffink. Generalized entropic uncertainty relations. Phys. Rev. Lett., 60:1103–1106, Mar 1988. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.60.1103, doi:10.1103/​PhysRevLett.60.1103.

[40] Masanao Ozawa. Quantum measuring processes of continuous observables. Journal of Mathematical Physics, 25:79–87, 1984. URL: https:/​/​aip.scitation.org/​doi/​10.1063/​1.526000, doi:10.1063/​1.526000.

[41] Masanao Ozawa. Universally valid reformulation of the heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A, 67:042105, Apr 2003. URL: https:/​/​doi.org/​10.1103/​PhysRevA.67.042105, doi:10.1103/​PhysRevA.67.042105.

[42] Masanao Ozawa. Uncertainty relations for noise and disturbance in generalized quantum measurements. Annals of Physics, 311(2):350–416, 2004. URL: https:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491604000089, doi:10.1016/​j.aop.2003.12.012.

[43] Masanao Ozawa. Heisenberg's original derivation of the uncertainty principle and its universally valid reformulations. Current Science, 109(11):2006–2016, 2015. URL: http:/​/​www.jstor.org/​stable/​24906690.

[44] Masanao Ozawa. Soundness and completeness of quantum root-mean-square errors. npj Quantum Inf, 5(1), 2019. doi:10.1038/​s41534-018-0113-z.

[45] Martin Plávala. Private communication.

[46] Denis Rosset, Francesco Buscemi, and Yeong-Cherng Liang. Resource theory of quantum memories and their faithful verification with minimal assumptions. Phys. Rev. X, 8:021033, May 2018. URL: https:/​/​doi.org/​10.1103/​PhysRevX.8.021033, doi:10.1103/​PhysRevX.8.021033.

[47] Bartosz Regula, Varun Narasimhachar, Francesco Buscemi, and Mile Gu. Coherence manipulation with dephasing-covariant operations. Phys. Rev. Research, 2:013109, Jan 2020. URL: https:/​/​doi.org/​10.1103/​PhysRevResearch.2.013109, doi:10.1103/​PhysRevResearch.2.013109.

[48] H. P. Robertson. The uncertainty principle. Phys. Rev., 34:163–164, Jul 1929. URL: https:/​/​doi.org/​10.1103/​PhysRev.34.163, doi:10.1103/​PhysRev.34.163.

[49] Denis Rosset, David Schmid, and Francesco Buscemi. Type-independent characterization of spacelike separated resources. Phys. Rev. Lett., 125:210402, Nov 2020. URL: https:/​/​doi.org/​10.1103/​PhysRevLett.125.210402, doi:10.1103/​PhysRevLett.125.210402.

[50] David Schmid, Thomas C. Fraser, Ravi Kunjwal, Ana Belen Sainz, Elie Wolfe, and Robert W. Spekkens. Understanding the interplay of entanglement and nonlocality: motivating and developing a new branch of entanglement theory, 2020. URL: https:/​/​arxiv.org/​abs/​2004.09194, doi:10.48550/​ARXIV.2004.09194.

[51] Paul Skrzypczyk and Noah Linden. Robustness of measurement, discrimination games, and accessible information. Phys. Rev. Lett., 122:140403, Apr 2019. doi:10.1103/​PhysRevLett.122.140403.

[52] David Schmid, Denis Rosset, and Francesco Buscemi. The type-independent resource theory of local operations and shared randomness. Quantum, 4:262, April 2020. doi:10.22331/​q-2020-04-30-262.

[53] Wenbin Zhou and Francesco Buscemi. General state transitions with exact resource morphisms: a unified resource-theoretic approach. Journal of Physics A: Mathematical and Theoretical, 53(44):445303, oct 2020. URL: https:/​/​dx.doi.org/​10.1088/​1751-8121/​abafe5, doi:10.1088/​1751-8121/​abafe5.

Cited by

[1] Leevi Leppäjärvi and Michal Sedlák, "Incompatibility of quantum instruments", Quantum 8, 1246 (2024).

[2] Francesco Buscemi, Kodai Kobayashi, and Shintaro Minagawa, "A complete and operational resource theory of measurement sharpness", Quantum 8, 1235 (2024).

[3] Ning Gao, Dantong Li, Anchit Mishra, Junchen Yan, Kyrylo Simonov, and Giulio Chiribella, "Measuring Incompatibility and Clustering Quantum Observables with a Quantum Switch", Physical Review Letters 130 17, 170201 (2023).

[4] Michele Dall'Arno and Francesco Buscemi, "Tight conic approximation of testing regions for quantum statistical models and measurements", arXiv:2309.16153, (2023).

[5] Stan Gudder, "Multi-Observables and Multi-Instruments", arXiv:2307.11223, (2023).

[6] Stanley Gudder, "A Theory of Quantum Instruments", arXiv:2305.17584, (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-02-26 08:05:33) and SAO/NASA ADS (last updated successfully 2024-02-26 08:05:34). The list may be incomplete as not all publishers provide suitable and complete citation data.