Unifying and benchmarking state-of-the-art quantum error mitigation techniques

Daniel Bultrini1,2, Max Hunter Gordon3, Piotr Czarnik1,4, Andrew Arrasmith1,5, M. Cerezo6,5, Patrick J. Coles1,5, and Lukasz Cincio1,5

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
3Instituto de Física Teórica, UAM/CSIC, Universidad Autónoma de Madrid, Madrid, Spain
4Institute of Theoretical Physics, Jagiellonian University, Krakow, Poland.
5Quantum Science Center, Oak Ridge, TN 37931, USA
6Information Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Error mitigation is an essential component of achieving a practical quantum advantage in the near term, and a number of different approaches have been proposed. In this work, we recognize that many state-of-the-art error mitigation methods share a common feature: they are data-driven, employing classical data obtained from runs of different quantum circuits. For example, Zero-noise extrapolation (ZNE) uses variable noise data and Clifford-data regression (CDR) uses data from near-Clifford circuits. We show that Virtual Distillation (VD) can be viewed in a similar manner by considering classical data produced from different numbers of state preparations. Observing this fact allows us to unify these three methods under a general data-driven error mitigation framework that we call UNIfied Technique for Error mitigation with Data (UNITED). In certain situations, we find that our UNITED method can outperform the individual methods (i.e., the whole is better than the individual parts). Specifically, we employ a realistic noise model obtained from a trapped ion quantum computer to benchmark UNITED, as well as other state-of-the-art methods, in mitigating observables produced from random quantum circuits and the Quantum Alternating Operator Ansatz (QAOA) applied to Max-Cut problems with various numbers of qubits, circuit depths and total numbers of shots. We find that the performance of different techniques depends strongly on shot budgets, with more powerful methods requiring more shots for optimal performance. For our largest considered shot budget ($10^{10}$), we find that UNITED gives the most accurate mitigation. Hence, our work represents a benchmarking of current error mitigation methods and provides a guide for the regimes when certain methods are most useful.

Current quantum computers face errors that pose challenges in surpassing the performance of the best classical computers. To fully harness the potential of quantum devices, it is crucial to correct these detrimental effects. Error mitigation methods are employed to address this issue. Among these methods, data-driven error mitigation stands out as a promising approach, involving classical post-processing of quantum measurement outcomes to rectify noise-induced effects. Various types of data have been utilized in this context, including noise strength scaling through Zero Noise Extrapolation (ZNE), data from near-Clifford circuits utilized by Clifford-data regression (CDR), and data obtained through Virtual Distillation (VD) by preparing multiple copies of a quantum state. To unify these approaches, we propose the UNIfied Technique for Error Mitigation with Data (UNITED), which integrates all these data types. Furthermore, we demonstrate that the unified method surpasses the individual components when sufficient quantum resources are available, employing a realistic noise model of a trapped ion quantum computer and two different types of quantum circuits with varying qubit counts and depths. Finally, we identify the most favorable conditions for different data-driven error mitigation methods.

► BibTeX data

► References

[1] Xavi Bonet-Monroig, Ramiro Sagastizabal, M Singh, and TE O'Brien. Low-cost error mitigation by symmetry verification. Physical Review A, 98 (6): 062339, 2018. https:/​/​doi.org/​10.1103/​PhysRevA.98.062339.

[2] Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C Mckay, and Jay M Gambetta. Mitigating measurement errors in multiqubit experiments. Physical Review A, 103 (4): 042605, 2021. https:/​/​doi.org/​10.1103/​PhysRevA.103.042605.

[3] Zhenyu Cai. Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications. npj Quantum Information, 7 (1): 1–12, 2021a. https:/​/​doi.org/​10.1038/​s41534-021-00404-3.

[4] Zhenyu Cai. Quantum error mitigation using symmetry expansion. Quantum, 5: 548, 2021b. https:/​/​doi.org/​10.22331/​q-2021-09-21-548.

[5] Zhenyu Cai. Resource-efficient purification-based quantum error mitigation. arXiv preprint arXiv:2107.07279, 2021c. URL https:/​/​arxiv.org/​abs/​2107.07279.

[6] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3 (1): 625–644, 2021. https:/​/​doi.org/​10.1038/​s42254-021-00348-9.

[7] Lukasz Cincio, Yiğit Subaşı, Andrew T Sornborger, and Patrick J Coles. Learning the quantum algorithm for state overlap. New Journal of Physics, 20 (11): 113022, nov 2018. https:/​/​doi.org/​10.1088/​1367-2630/​aae94a.

[8] Lukasz Cincio, Kenneth Rudinger, Mohan Sarovar, and Patrick J. Coles. Machine learning of noise-resilient quantum circuits. PRX Quantum, 2: 010324, Feb 2021. https:/​/​doi.org/​10.1103/​PRXQuantum.2.010324.

[9] Piotr Czarnik, Andrew Arrasmith, Lukasz Cincio, and Patrick J Coles. Qubit-efficient exponential suppression of errors. arXiv preprint arXiv:2102.06056, 2021a. URL https:/​/​arxiv.org/​abs/​2102.06056.

[10] Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio. Error mitigation with Clifford quantum-circuit data. Quantum, 5: 592, November 2021b. ISSN 2521-327X. https:/​/​doi.org/​10.22331/​q-2021-11-26-592.

[11] Piotr Czarnik, Michael McKerns, Andrew T Sornborger, and Lukasz Cincio. Improving the efficiency of learning-based error mitigation. arXiv preprint arXiv:2204.07109, 2022. URL https:/​/​arxiv.org/​abs/​2204.07109.

[12] Eugene F Dumitrescu, Alex J McCaskey, Gaute Hagen, Gustav R Jansen, Titus D Morris, T Papenbrock, Raphael C Pooser, David Jarvis Dean, and Pavel Lougovski. Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett., 120 (21): 210501, 2018. https:/​/​doi.org/​10.1103/​PhysRevLett.120.210501.

[13] Suguru Endo, Simon C Benjamin, and Ying Li. Practical quantum error mitigation for near-future applications. Physical Review X, 8 (3): 031027, 2018. https:/​/​doi.org/​10.1103/​PhysRevX.8.031027.

[14] Suguru Endo, Zhenyu Cai, Simon C Benjamin, and Xiao Yuan. Hybrid quantum-classical algorithms and quantum error mitigation. Journal of the Physical Society of Japan, 90 (3): 032001, 2021. https:/​/​doi.org/​10.7566/​JPSJ.90.032001.

[15] P Erdös and A Rényi. On random graphs i. Publ. math. debrecen, 6 (290-297): 18, 1959. URL http:/​/​snap.stanford.edu/​class/​cs224w-readings/​erdos59random.pdf.

[16] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014. URL https:/​/​arxiv.org/​abs/​1411.4028.

[17] Tudor Giurgica-Tiron, Yousef Hindy, Ryan LaRose, Andrea Mari, and William J Zeng. Digital zero noise extrapolation for quantum error mitigation. 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 306–316, 2020. https:/​/​doi.org/​10.1109/​QCE49297.2020.00045.

[18] Daniel Gottesman. The heisenberg representation of quantum computers, talk at. In International Conference on Group Theoretic Methods in Physics. Citeseer, 1998. URL http:/​/​citeseerx.ist.psu.edu/​viewdoc/​summary?doi=

[19] Stuart Hadfield, Zhihui Wang, Bryan O'Gorman, Eleanor G Rieffel, Davide Venturelli, and Rupak Biswas. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms, 12 (2): 34, 2019. https:/​/​doi.org/​10.3390/​a12020034.

[20] Kathleen E Hamilton, Tyler Kharazi, Titus Morris, Alexander J McCaskey, Ryan S Bennink, and Raphael C Pooser. Scalable quantum processor noise characterization. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 430–440. IEEE, 2020. https:/​/​doi.org/​10.1109/​QCE49297.2020.00060.

[21] Andre He, Benjamin Nachman, Wibe A. de Jong, and Christian W. Bauer. Zero-noise extrapolation for quantum-gate error mitigation with identity insertions. Physical Review A, 102: 012426, Jul 2020. https:/​/​doi.org/​10.1103/​PhysRevA.102.012426.

[22] William J Huggins, Sam McArdle, Thomas E O’Brien, Joonho Lee, Nicholas C Rubin, Sergio Boixo, K Birgitta Whaley, Ryan Babbush, and Jarrod R McClean. Virtual distillation for quantum error mitigation. Physical Review X, 11 (4): 041036, 2021. https:/​/​doi.org/​10.1103/​PhysRevX.11.041036.

[23] Mingxia Huo and Ying Li. Dual-state purification for practical quantum error mitigation. Physical Review A, 105 (2): 022427, 2022. https:/​/​doi.org/​10.1103/​PhysRevA.105.022427.

[24] Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta. Error mitigation extends the computational reach of a noisy quantum processor. Nature, 567 (7749): 491–495, Mar 2019. ISSN 1476-4687. https:/​/​doi.org/​10.1038/​s41586-019-1040-7.

[25] Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T Sornborger, and Patrick J Coles. Quantum-assisted quantum compiling. Quantum, 3: 140, 2019. https:/​/​doi.org/​10.22331/​q-2019-05-13-140.

[26] Bálint Koczor. Exponential error suppression for near-term quantum devices. Physical Review X, 11 (3): 031057, 2021a. https:/​/​doi.org/​10.1103/​PhysRevX.11.031057.

[27] Bálint Koczor. The dominant eigenvector of a noisy quantum state. New Journal of Physics, 23 (12): 123047, 2021b. https:/​/​doi.org/​10.1088/​1367-2630/​ac37ae.

[28] Angus Lowe, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio. Unified approach to data-driven quantum error mitigation. Phys. Rev. Research, 3: 033098, Jul 2021. https:/​/​doi.org/​10.1103/​PhysRevResearch.3.033098.

[29] Andrea Mari, Nathan Shammah, and William J Zeng. Extending quantum probabilistic error cancellation by noise scaling. Physical Review A, 104 (5): 052607, 2021. https:/​/​doi.org/​10.1103/​PhysRevA.104.052607.

[30] Dmitri Maslov. Basic circuit compilation techniques for an ion-trap quantum machine. New Journal of Physics, 19 (2): 023035, 2017. https:/​/​doi.org/​10.1088/​1367-2630/​aa5e47.

[31] Sam McArdle, Xiao Yuan, and Simon Benjamin. Error-mitigated digital quantum simulation. Phys. Rev. Lett., 122: 180501, May 2019. https:/​/​doi.org/​10.1103/​PhysRevLett.122.180501.

[32] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. Nature Communications, 9 (1): 1–6, 2018. https:/​/​doi.org/​10.1038/​s41467-018-07090-4.

[33] Ashley Montanaro and Stasja Stanisic. Error mitigation by training with fermionic linear optics. arXiv preprint arXiv:2102.02120, 2021. URL https:/​/​arxiv.org/​abs/​2102.02120.

[34] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi. Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers. ASPLOS '19, page 1015–1029, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362405. https:/​/​doi.org/​10.1145/​3297858.3304075.

[35] Thomas E. O'Brien, Stefano Polla, Nicholas C. Rubin, William J. Huggins, Sam McArdle, Sergio Boixo, Jarrod R. McClean, and Ryan Babbush. Error mitigation via verified phase estimation. PRX Quantum, 2: 020317, May 2021. https:/​/​doi.org/​10.1103/​PRXQuantum.2.020317.

[36] Matthew Otten and Stephen K Gray. Recovering noise-free quantum observables. Physical Review A, 99 (1): 012338, 2019. https:/​/​doi.org/​10.1103/​PhysRevA.99.012338.

[37] Matthew Otten, Cristian L Cortes, and Stephen K Gray. Noise-resilient quantum dynamics using symmetry-preserving ansatzes. arXiv preprint arXiv:1910.06284, 2019. URL https:/​/​arxiv.org/​abs/​1910.06284.

[38] Lewis Fry Richardson and J. Arthur Gaunt. VIII. the deferred approach to the limit. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 226 (636-646): 299–361, January 1927. https:/​/​doi.org/​10.1098/​rsta.1927.0008.

[39] Kunal Sharma, Sumeet Khatri, M. Cerezo, and Patrick J Coles. Noise resilience of variational quantum compiling. New Journal of Physics, 22 (4): 043006, 2020. https:/​/​doi.org/​10.1088/​1367-2630/​ab784c.

[40] John A. Smolin and David P. DiVincenzo. Five two-bit quantum gates are sufficient to implement the quantum fredkin gate. Physical Review A, 53: 2855–2856, 1996. https:/​/​doi.org/​10.1103/​PhysRevA.53.2855.

[41] Alejandro Sopena, Max Hunter Gordon, German Sierra, and Esperanza López. Simulating quench dynamics on a digital quantum computer with data-driven error mitigation. Quantum Science and Technology, 2021. https:/​/​doi.org/​10.1088/​2058-9565/​ac0e7a.

[42] Daniel Stilck França and Raul Garcia-Patron. Limitations of optimization algorithms on noisy quantum devices. Nature Physics, 17 (11): 1221–1227, 2021. https:/​/​doi.org/​10.1038/​s41567-021-01356-3.

[43] Armands Strikis, Dayue Qin, Yanzhu Chen, Simon C Benjamin, and Ying Li. Learning-based quantum error mitigation. PRX Quantum, 2 (4): 040330, 2021. https:/​/​doi.org/​10.1103/​PRXQuantum.2.040330.

[44] Ryuji Takagi. Optimal resource cost for error mitigation. Phys. Rev. Res., 3: 033178, Aug 2021. https:/​/​doi.org/​10.1103/​PhysRevResearch.3.033178.

[45] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 119: 180509, Nov 2017. https:/​/​doi.org/​10.1103/​PhysRevLett.119.180509.

[46] Colin J Trout, Muyuan Li, Mauricio Gutiérrez, Yukai Wu, Sheng-Tao Wang, Luming Duan, and Kenneth R Brown. Simulating the performance of a distance-3 surface code in a linear ion trap. New Journal of Physics, 20 (4): 043038, 2018. https:/​/​doi.org/​10.1088/​1367-2630/​aab341.

[47] Miroslav Urbanek, Benjamin Nachman, Vincent R Pascuzzi, Andre He, Christian W Bauer, and Wibe A de Jong. Mitigating depolarizing noise on quantum computers with noise-estimation circuits. Phys. Rev. Lett., 127 (27): 270502, 2021. https:/​/​doi.org/​10.1103/​PhysRevLett.127.270502.

[48] Joseph Vovrosh, Kiran E Khosla, Sean Greenaway, Christopher Self, Myungshik S Kim, and Johannes Knolle. Simple mitigation of global depolarizing errors in quantum simulations. Physical Review E, 104 (3): 035309, 2021. 10.1103/​PhysRevE.104.035309.

[49] Kun Wang, Yu-Ao Chen, and Xin Wang. Mitigating quantum errors via truncated neumann series. arXiv preprint arXiv:2111.00691, 2021a. URL https:/​/​arxiv.org/​abs/​2111.00691.

[50] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J Coles. Noise-induced barren plateaus in variational quantum algorithms. Nature Communications, 12 (1): 1–11, 2021b. https:/​/​doi.org/​10.1038/​s41467-021-27045-6.

[51] Yifeng Xiong, Soon Xin Ng, and Lajos Hanzo. Quantum error mitigation relying on permutation filtering. IEEE Transactions on Communications, 70 (3): 1927–1942, 2022. https:/​/​doi.org/​10.1109/​TCOMM.2021.3132914.

[52] Nobuyuki Yoshioka, Hideaki Hakoshima, Yuichiro Matsuzaki, Yuuki Tokunaga, Yasunari Suzuki, and Suguru Endo. Generalized quantum subspace expansion. Phys. Rev. Lett., 129: 020502, Jul 2022. https:/​/​doi.org/​10.1103/​PhysRevLett.129.020502.

Cited by

[1] Andrey Zhukov and Walter Pogosov, "Quantum error mitigation in the regime of high noise using deep neural network: Trotterized dynamics", Quantum Information Processing 23 3, 80 (2024).

[2] Mårten Skogh, Werner Dobrautz, Phalgun Lolur, Christopher Warren, Janka Biznárová, Amr Osman, Giovanna Tancredi, Jonas Bylander, and Martin Rahm, "The electron density: a fidelity witness for quantum computation", Chemical Science 15 6, 2257 (2024).

[3] Maria-Andreea Filip, "Fighting Noise with Noise: A Stochastic Projective Quantum Eigensolver", Journal of Chemical Theory and Computation acs.jctc.4c00295 (2024).

[4] Cristina Cirstoiu, Silas Dilkes, Daniel Mills, Seyon Sivarajah, and Ross Duncan, "Volumetric Benchmarking of Error Mitigation with Qermit", Quantum 7, 1059 (2023).

[5] Samson Wang, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Lukasz Cincio, and Patrick J. Coles, "Can Error Mitigation Improve Trainability of Noisy Variational Quantum Algorithms?", Quantum 8, 1287 (2024).

[6] Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J. Huggins, Ying Li, Jarrod R. McClean, and Thomas E. O’Brien, "Quantum error mitigation", Reviews of Modern Physics 95 4, 045005 (2023).

[7] I. A. Dmitriev, Yu. I. Bogdanov, B. I. Bantysh, N. A. Bogdanova, and V. F. Lukichev, "Correction of Quantum State Readout Statistics Using the Fuzzy Measurements Model", Russian Microelectronics 52 S1, S357 (2023).

[8] Ritajit Majumdar, Pedro Rivero, Friedrike Metz, Areeq Hasan, and Derek S. Wang, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 881 (2023) ISBN:979-8-3503-4323-6.

[9] Ryuji Takagi, Hiroyasu Tajima, and Mile Gu, "Universal Sampling Lower Bounds for Quantum Error Mitigation", Physical Review Letters 131 21, 210602 (2023).

[10] F. Cosco and N. Lo Gullo, "Enhancing qubit readout with Bayesian learning", Physical Review A 108 6, L060402 (2023).

[11] He-Liang Huang, Xiao-Yue Xu, Chu Guo, Guojing Tian, Shi-Jie Wei, Xiaoming Sun, Wan-Su Bao, and Gui-Lu Long, "Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation", Science China Physics, Mechanics, and Astronomy 66 5, 250302 (2023).

[12] C. Huerta Alderete, Alaina M. Green, Nhung H. Nguyen, Yingyue Zhu, Norbert M. Linke, and B. M. Rodríguez-Lara, "Para-particle oscillator simulations on a trapped ion quantum computer", arXiv:2207.02430, (2022).

[13] Andrea Mari, Nathan Shammah, and William J. Zeng, "Extending quantum probabilistic error cancellation by noise scaling", Physical Review A 104 5, 052607 (2021).

[14] Joris Kattemölle and Jasper van Wezel, "Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice", Physical Review B 106 21, 214429 (2022).

[15] Michael Krebsbach, Björn Trauzettel, and Alessio Calzona, "Optimization of Richardson extrapolation for quantum error mitigation", Physical Review A 106 6, 062436 (2022).

[16] Thomas Ayral, Pauline Besserve, Denis Lacroix, and Edgar Andres Ruiz Guzman, "Quantum computing with and for many-body physics", European Physical Journal A 59 10, 227 (2023).

[17] Alessio Calzona and Matteo Carrega, "Multi-mode architectures for noise-resilient superconducting qubits", Superconductor Science Technology 36 2, 023001 (2023).

[18] Dayue Qin, Xiaosi Xu, and Ying Li, "An overview of quantum error mitigation formulas", Chinese Physics B 31 9, 090306 (2022).

[19] Abdullah Ash Saki, Amara Katabarwa, Salonik Resch, and George Umbrarescu, "Hypothesis Testing for Error Mitigation: How to Evaluate Error Mitigation", arXiv:2301.02690, (2023).

[20] Alejandro Sopena, Max Hunter Gordon, Diego García-Martín, Germán Sierra, and Esperanza López, "Algebraic Bethe Circuits", Quantum 6, 796 (2022).

[21] Zhenyu Cai, "A Practical Framework for Quantum Error Mitigation", arXiv:2110.05389, (2021).

[22] Ryan LaRose, Andrea Mari, Vincent Russo, Dan Strano, and William J. Zeng, "Error mitigation increases the effective quantum volume of quantum computers", arXiv:2203.05489, (2022).

[23] Noah F. Berthusen, Thaís V. Trevisan, Thomas Iadecola, and Peter P. Orth, "Quantum dynamics simulations beyond the coherence time on noisy intermediate-scale quantum hardware by variational Trotter compression", Physical Review Research 4 2, 023097 (2022).

[24] Benjamin A. Cordier, Nicolas P. D. Sawaya, Gian G. Guerreschi, and Shannon K. McWeeney, "Biology and medicine in the landscape of quantum advantages", arXiv:2112.00760, (2021).

[25] Xuanqiang Zhao, Benchi Zhao, Zihan Xia, and Xin Wang, "Information recoverability of noisy quantum states", Quantum 7, 978 (2023).

[26] Piotr Czarnik, Michael McKerns, Andrew T. Sornborger, and Lukasz Cincio, "Improving the efficiency of learning-based error mitigation", arXiv:2204.07109, (2022).

[27] Shi-Xin Zhang, Zhou-Quan Wan, Chang-Yu Hsieh, Hong Yao, and Shengyu Zhang, "Variational Quantum-Neural Hybrid Error Mitigation", arXiv:2112.10380, (2021).

[28] Piotr Czarnik, Michael McKerns, Andrew T. Sornborger, and Lukasz Cincio, "Robust design under uncertainty in quantum error mitigation", arXiv:2307.05302, (2023).

[29] Andrew Arrasmith, Andrew Patterson, Alice Boughton, and Marco Paini, "Development and Demonstration of an Efficient Readout Error Mitigation Technique for use in NISQ Algorithms", arXiv:2303.17741, (2023).

[30] Yifeng Xiong, Soon Xin Ng, and Lajos Hanzo, "Quantum Error Mitigation Relying on Permutation Filtering", arXiv:2107.01458, (2021).

[31] Max Gordon, "Unifying and benchmarking state-of-the-art quantum error mitigation techniques", APS March Meeting Abstracts 2022, S40.012 (2022).

[32] Jin-Min Liang, Qiao-Qiao Lv, Zhi-Xi Wang, and Shao-Ming Fei, "Unified multivariate trace estimation and quantum error mitigation", Physical Review A 107 1, 012606 (2023).

[33] Vasily Sazonov and Mohamed Tamaazousti, "Quantum error mitigation for parametric circuits", Physical Review A 105 4, 042408 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-07-15 20:23:50) and SAO/NASA ADS (last updated successfully 2024-07-15 20:23:51). The list may be incomplete as not all publishers provide suitable and complete citation data.