Universal equilibration dynamics of the Sachdev-Ye-Kitaev model

Soumik Bandyopadhyay1, Philipp Uhrich1, Alessio Paviglianiti1,2, and Philipp Hauke1

1Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, Via Sommarive 14, Trento, I-38123, Italy
2International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Equilibrium quantum many-body systems in the vicinity of phase transitions generically manifest universality. In contrast, limited knowledge has been gained on possible universal characteristics in the non-equilibrium evolution of systems in quantum critical phases. In this context, universality is generically attributed to the insensitivity of observables to the microscopic system parameters and initial conditions. Here, we present such a universal feature in the equilibration dynamics of the Sachdev-Ye-Kitaev (SYK) Hamiltonian – a paradigmatic system of disordered, all-to-all interacting fermions that has been designed as a phenomenological description of quantum critical regions. We drive the system far away from equilibrium by performing a global quench, and track how its ensemble average relaxes to a steady state. Employing state-of-the-art numerical simulations for the exact evolution, we reveal that the disorder-averaged evolution of few-body observables, including the quantum Fisher information and low-order moments of local operators, exhibit within numerical resolution a universal equilibration process. Under a straightforward rescaling, data that correspond to different initial states collapse onto a universal curve, which can be well approximated by a Gaussian throughout large parts of the evolution. To reveal the physics behind this process, we formulate a general theoretical framework based on the Novikov–Furutsu theorem. This framework extracts the disorder-averaged dynamics of a many-body system as an effective dissipative evolution, and can have applications beyond this work. The exact non-Markovian evolution of the SYK ensemble is very well captured by Bourret–Markov approximations, which contrary to common lore become justified thanks to the extreme chaoticity of the system, and universality is revealed in a spectral analysis of the corresponding Liouvillian.

The modern description of matter hinges on the concept of universality. According to this principle, a system’s microscopic details become unimportant, allowing one to describe the behavior of vastly different systems by just a few parameters. For equilibrium matter, this has a rigorous theoretical basis in the form of the minimization of the free energy. Yet, despite decade-long efforts, the situation is much less firm for quantum systems out of equilibrium. Here, we provide a piece to the puzzle of out-of-equilibrium universality. Our focus is on a paradigm model for a particularly fascinating type of quantum matter called "holographic." Such matter is currently attracting great interest because it draws deep connections to well-known theories of gravity and because it is among the most chaotic systems possible in nature.

We find numerically that the dynamics of relevant physical observables becomes fully independent of microscopic details that define the initial conditions. To explain this unexpected universal behavior, we develop a theoretical framework that describes the isolated quantum model under study through methods that are typical of open systems that interact with an environment. This framework elucidates connections between the extreme chaotic behavior of the holographic quantum model and dissipative quantum systems.

This study opens an array of follow-up questions: In which other systems can we expect similar universal behavior? Can we extend the dissipative framework to other models? And is it possible to observe these effects in a real system in Nature or in the laboratory?

► BibTeX data

► References

[1] J. von Neumann. Proof of the ergodic theorem and the H-theorem in quantum mechanics. Z. Phys., 57: 30–70, 1929. English translation by R. Tumulka, Eur. Phys. J. H 35, 201 (2010) DOI: 10.1140/​epjh/​e2010-00008-5.
https:/​/​doi.org/​10.1140/​epjh/​e2010-00008-5

[2] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys., 83: 863–883, 2011. 10.1103/​RevModPhys.83.863.
https:/​/​doi.org/​10.1103/​RevModPhys.83.863

[3] J. Eisert, M. Friesdorf, and C. Gogolin. Quantum many-body systems out of equilibrium. Nat. Phys., 11 (2): 124–130, 2015. 10.1038/​nphys3215.
https:/​/​doi.org/​10.1038/​nphys3215

[4] C. Gogolin and J. Eisert. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys., 79 (5): 056001, 2016. 10.1088/​0034-4885/​79/​5/​056001.
https:/​/​doi.org/​10.1088/​0034-4885/​79/​5/​056001

[5] M. Lewenstein, A. Sanpera, and V. Ahufinger. Ultracold atoms in optical lattices: simulating Quantum Many-Body systems. Oxford University Press, 2012. 10.1093/​acprof:oso/​9780199573127.001.0001.
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199573127.001.0001

[6] I. Bloch, J. Dalibard, and S. Nascimbène. Quantum simulations with ultracold quantum gases. Nat. Phys., 8 (4): 267–276, 2012. 10.1038/​nphys2259.
https:/​/​doi.org/​10.1038/​nphys2259

[7] R. Blatt and C. F. Roos. Quantum simulations with trapped ions. Nat. Phys., 8 (4): 277–284, 2012. 10.1038/​nphys2252.
https:/​/​doi.org/​10.1038/​nphys2252

[8] P. Hauke, F. M. Cucchietti, L. Tagliacozzo, I. Deutsch, and M. Lewenstein. Can one trust quantum simulators? Rep. Prog. Phys., 75 (8): 082401, 2012. 10.1088/​0034-4885/​75/​8/​082401.
https:/​/​doi.org/​10.1088/​0034-4885/​75/​8/​082401

[9] I. M. Georgescu, S. Ashhab, and F. Nori. Quantum simulation. Rev. Mod. Phys., 86: 153–185, 2014. 10.1103/​RevModPhys.86.153.
https:/​/​doi.org/​10.1103/​RevModPhys.86.153

[10] C. Gross and I. Bloch. Quantum simulations with ultracold atoms in optical lattices. Science, 357 (6355): 995, 2017. 10.1126/​science.aal3837.
https:/​/​doi.org/​10.1126/​science.aal3837

[11] E. Altman et al. Quantum Simulators: Architectures and Opportunities. PRX Quantum, 2: 017003, 2021. 10.1103/​PRXQuantum.2.017003.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.017003

[12] N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, R. Sensarma, D. Pekker, E. Altman, and E. Demler. Observation of Elastic Doublon Decay in the Fermi–Hubbard Model. Phys. Rev. Lett., 104: 080401, 2010. 10.1103/​PhysRevLett.104.080401.
https:/​/​doi.org/​10.1103/​PhysRevLett.104.080401

[13] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys., 8 (4): 325–330, 2012. 10.1038/​nphys2232.
https:/​/​doi.org/​10.1038/​nphys2232

[14] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D. Adu Smith, E. Demler, and J. Schmiedmayer. Relaxation and Prethermalization in an Isolated Quantum System. Science, 337 (6100): 1318–1322, 2012. 10.1126/​science.1224953.
https:/​/​doi.org/​10.1126/​science.1224953

[15] T. Langen, R. Geiger, M. Kuhnert, B. Rauer, and J. Schmiedmayer. Local emergence of thermal correlations in an isolated quantum many-body system. Nat. Phys., 9 (10): 640–643, 2013. 10.1038/​nphys2739.
https:/​/​doi.org/​10.1038/​nphys2739

[16] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature, 511 (7508): 202–205, 2014. 10.1038/​nature13461.
https:/​/​doi.org/​10.1038/​nature13461

[17] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P. Hauke, M. Heyl, D. A. Huse, and C. Monroe. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys., 12 (10): 907–911, 2016. 10.1038/​nphys3783.
https:/​/​doi.org/​10.1038/​nphys3783

[18] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner. Quantum thermalization through entanglement in an isolated many-body system. Science, 353: 794–800, 2016. 10.1126/​science.aaf6725.
https:/​/​doi.org/​10.1126/​science.aaf6725

[19] C. Neill et al. Ergodic dynamics and thermalization in an isolated quantum system. Nat. Phys., 12 (11): 1037–1041, 2016. 10.1038/​nphys3830.
https:/​/​doi.org/​10.1038/​nphys3830

[20] G. Clos, D. Porras, U. Warring, and T. Schaetz. Time-Resolved Observation of Thermalization in an Isolated Quantum System. Phys. Rev. Lett., 117: 170401, 2016. 10.1103/​PhysRevLett.117.170401.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.170401

[21] B. Neyenhuis, J. Zhang, P. W. Hess, J. Smith, A. C. Lee, P. Richerme, Z.-X. Gong, A. V. Gorshkov, and C. Monroe. Observation of prethermalization in long-range interacting spin chains. Sci. Adv., 3 (8): e1700672, 2017. 10.1126/​sciadv.1700672.
https:/​/​doi.org/​10.1126/​sciadv.1700672

[22] I.-K. Liu, S. Donadello, G. Lamporesi, G. Ferrari, S.-C. Gou, F. Dalfovo, and N. P. Proukakis. Dynamical equilibration across a quenched phase transition in a trapped quantum gas. Commun. Phys., 1 (1): 24, 2018. 10.1038/​s42005-018-0023-6.
https:/​/​doi.org/​10.1038/​s42005-018-0023-6

[23] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol, S. Gopalakrishnan, and B. L. Lev. Thermalization near Integrability in a Dipolar Quantum Newton's Cradle. Phys. Rev. X, 8: 021030, 2018. 10.1103/​PhysRevX.8.021030.
https:/​/​doi.org/​10.1103/​PhysRevX.8.021030

[24] H. Kim, Y. Park, K. Kim, H.-S. Sim, and J. Ahn. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators. Phys. Rev. Lett., 120: 180502, 2018. 10.1103/​PhysRevLett.120.180502.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.180502

[25] M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Linnemann, C.-M. Schmied, J. Berges, T. Gasenzer, and M. K. Oberthaler. Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature, 563 (7730): 217–220, 2018. 10.1038/​s41586-018-0659-0.
https:/​/​doi.org/​10.1038/​s41586-018-0659-0

[26] Z.-Y. Zhou, G.-X. Su, J. C. Halimeh, R. Ott, H. Sun, P. Hauke, B. Yang, Z.-S. Yuan, J. Berges, and J.-W. Pan. Thermalization dynamics of a gauge theory on a quantum simulator. Science, 377 (6603): 311–314, 2022. 10.1126/​science.abl6277.
https:/​/​doi.org/​10.1126/​science.abl6277

[27] H. Nishimori and G. Ortiz. Elements of Phase Transitions and Critical Phenomena. Oxford University Press, 2010. 10.1093/​acprof:oso/​9780199577224.001.0001.
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199577224.001.0001

[28] S. Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edition, 2011. 10.1017/​CBO9780511973765.
https:/​/​doi.org/​10.1017/​CBO9780511973765

[29] J. M. Deutsch. Quantum statistical mechanics in a closed system. Phys. Rev. A, 43: 2046–2049, 1991. 10.1103/​PhysRevA.43.2046.
https:/​/​doi.org/​10.1103/​PhysRevA.43.2046

[30] M. Srednicki. Chaos and quantum thermalization. Phys. Rev. E, 50: 888–901, 1994. 10.1103/​PhysRevE.50.888.
https:/​/​doi.org/​10.1103/​PhysRevE.50.888

[31] M. Rigol, V. Dunjko, and M. Olshanii. Thermalization and its mechanism for generic isolated quantum systems. Nature, 452 (7189): 854–858, 2008. 10.1038/​nature06838.
https:/​/​doi.org/​10.1038/​nature06838

[32] L. D'Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys., 65 (3): 239–362, 2016. 10.1080/​00018732.2016.1198134.
https:/​/​doi.org/​10.1080/​00018732.2016.1198134

[33] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P. Hayden. Towards the fast scrambling conjecture. J. High Energ. Phys., 2013 (4): 22, 2013. 10.1007/​JHEP04(2013)022.
https:/​/​doi.org/​10.1007/​JHEP04(2013)022

[34] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida. Chaos in quantum channels. J. High Energ. Phys., 2016 (2): 4, 2016. 10.1007/​JHEP02(2016)004.
https:/​/​doi.org/​10.1007/​JHEP02(2016)004

[35] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap. Scrambling and thermalization in a diffusive quantum many-body system. New J. Phys., 19 (6): 063001, 2017. 10.1088/​1367-2630/​aa719b.
https:/​/​doi.org/​10.1088/​1367-2630/​aa719b

[36] E. Iyoda and T. Sagawa. Scrambling of quantum information in quantum many-body systems. Phys. Rev. A, 97: 042330, 2018. 10.1103/​PhysRevA.97.042330.
https:/​/​doi.org/​10.1103/​PhysRevA.97.042330

[37] G. Bentsen, T. Hashizume, A. S. Buyskikh, E. J. Davis, A. J. Daley, S. S. Gubser, and M. Schleier-Smith. Treelike Interactions and Fast Scrambling with Cold Atoms. Phys. Rev. Lett., 123: 130601, 2019a. 10.1103/​PhysRevLett.123.130601.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.130601

[38] D. A. Roberts and D. Stanford. Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory. Phys. Rev. Lett., 115: 131603, 2015. 10.1103/​PhysRevLett.115.131603.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.131603

[39] P. Hayden and J. Preskill. Black holes as mirrors: quantum information in random subsystems. J. High Energ. Phys., 2007 (09): 120–120, 2007. 10.1088/​1126-6708/​2007/​09/​120.
https:/​/​doi.org/​10.1088/​1126-6708/​2007/​09/​120

[40] Y. Sekino and L. Susskind. Fast scramblers. J. High Energ. Phys., 2008 (10): 065–065, 2008. 10.1088/​1126-6708/​2008/​10/​065.
https:/​/​doi.org/​10.1088/​1126-6708/​2008/​10/​065

[41] M. K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier, P. Zoller, R. Blatt, and C. F. Roos. Quantum Information Scrambling in a Trapped-Ion Quantum Simulator with Tunable Range Interactions. Phys. Rev. Lett., 124: 240505, 2020. 10.1103/​PhysRevLett.124.240505.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.240505

[42] M. S. Blok, V. V. Ramasesh, T. Schuster, K. O'Brien, J. M. Kreikebaum, D. Dahlen, A. Morvan, B. Yoshida, N. Y. Yao, and I. Siddiqi. Quantum information scrambling on a superconducting qutrit processor. Phys. Rev. X, 11: 021010, 2021. 10.1103/​PhysRevX.11.021010.
https:/​/​doi.org/​10.1103/​PhysRevX.11.021010

[43] Q. Zhu et al. Observation of Thermalization and Information Scrambling in a Superconducting Quantum Processor. Phys. Rev. Lett., 128: 160502, 2022. 10.1103/​PhysRevLett.128.160502.
https:/​/​doi.org/​10.1103/​PhysRevLett.128.160502

[44] S. Sachdev and J. Ye. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett., 70: 3339–3342, 1993. 10.1103/​PhysRevLett.70.3339.
https:/​/​doi.org/​10.1103/​PhysRevLett.70.3339

[45] S. Sachdev. Bekenstein–Hawking Entropy and Strange Metals. Phys. Rev. X, 5: 041025, 2015. 10.1103/​PhysRevX.5.041025.
https:/​/​doi.org/​10.1103/​PhysRevX.5.041025

[46] A. Kitaev. A simple model of quantum holography. Talks given at ``Entanglement in Strongly-Correlated Quantum Matter,'' (Part 1, Part 2), KITP (2015).
https:/​/​online.kitp.ucsb.edu/​online/​entangled15/​kitaev/​

[47] J. Maldacena and D. Stanford. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D, 94: 106002, 2016. 10.1103/​PhysRevD.94.106002.
https:/​/​doi.org/​10.1103/​PhysRevD.94.106002

[48] Y. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky. Notes on the complex Sachdev-Ye-Kitaev model. J. High Energ. Phys., 2020 (2): 157, 2020. 10.1007/​JHEP02(2020)157.
https:/​/​doi.org/​10.1007/​JHEP02(2020)157

[49] S. Sachdev. Strange metals and the AdS/​CFT correspondence. J. Stat. Mech., 2010 (11): P11022, 2010a. 10.1088/​1742-5468/​2010/​11/​p11022.
https:/​/​doi.org/​10.1088/​1742-5468/​2010/​11/​p11022

[50] X.-Y. Song, C.-M. Jian, and L. Balents. Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models. Phys. Rev. Lett., 119: 216601, 2017. 10.1103/​PhysRevLett.119.216601.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.216601

[51] S. Sachdev. Holographic Metals and the Fractionalized Fermi Liquid. Phys. Rev. Lett., 105: 151602, 2010b. 10.1103/​PhysRevLett.105.151602.
https:/​/​doi.org/​10.1103/​PhysRevLett.105.151602

[52] R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev. Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography. Phys. Rev. B, 95: 155131, 2017. 10.1103/​PhysRevB.95.155131.
https:/​/​doi.org/​10.1103/​PhysRevB.95.155131

[53] A. Kitaev and S. J. Suh. The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual. J. High Energ. Phys., 2018 (5): 183, 2018. 10.1007/​JHEP05(2018)183.
https:/​/​doi.org/​10.1007/​JHEP05(2018)183

[54] S. Sachdev. Universal low temperature theory of charged black holes with AdS2 horizons. J. Math. Phys., 60 (5): 052303, 2019. 10.1063/​1.5092726.
https:/​/​doi.org/​10.1063/​1.5092726

[55] J. Maldacena, S. H. Shenker, and D. Stanford. A bound on chaos. J. High Energ. Phys., 2016 (8): 106, 2016. 10.1007/​JHEP08(2016)106.
https:/​/​doi.org/​10.1007/​JHEP08(2016)106

[56] A. M. García-García and J. J. M. Verbaarschot. Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model. Phys. Rev. D, 94: 126010, 2016. 10.1103/​PhysRevD.94.126010.
https:/​/​doi.org/​10.1103/​PhysRevD.94.126010

[57] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka. Black holes and random matrices. J. High Energ. Phys., 2017 (5): 118, 2017. 10.1007/​JHEP05(2017)118.
https:/​/​doi.org/​10.1007/​JHEP05(2017)118

[58] A. M. García-García, B. Loureiro, A. Romero-Bermúdez, and M. Tezuka. Chaotic-Integrable Transition in the Sachdev-Ye-Kitaev Model. Phys. Rev. Lett., 120: 241603, 2018. 10.1103/​PhysRevLett.120.241603.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.241603

[59] T. Numasawa. Late time quantum chaos of pure states in random matrices and in the Sachdev-Ye-Kitaev model. Phys. Rev. D, 100: 126017, 2019. 10.1103/​PhysRevD.100.126017.
https:/​/​doi.org/​10.1103/​PhysRevD.100.126017

[60] M. Winer, S.-K. Jian, and B. Swingle. Exponential Ramp in the Quadratic Sachdev-Ye-Kitaev Model. Phys. Rev. Lett., 125: 250602, 2020. 10.1103/​PhysRevLett.125.250602.
https:/​/​doi.org/​10.1103/​PhysRevLett.125.250602

[61] B. Kobrin, Z. Yang, G. D. Kahanamoku-Meyer, C. T. Olund, J. E. Moore, D. Stanford, and N. Y. Yao. Many-Body Chaos in the Sachdev-Ye-Kitaev Model. Phys. Rev. Lett., 126: 030602, 2021. 10.1103/​PhysRevLett.126.030602.
https:/​/​doi.org/​10.1103/​PhysRevLett.126.030602

[62] J. M. Magán. Black holes as random particles: entanglement dynamics in infinite range and matrix models. J. High Energ. Phys., 2016 (8): 81, 2016. 10.1007/​JHEP08(2016)081.
https:/​/​doi.org/​10.1007/​JHEP08(2016)081

[63] J. Sonner and M. Vielma. Eigenstate thermalization in the Sachdev-Ye-Kitaev model. J. High Energ. Phys., 2017 (11): 149, 2017. 10.1007/​JHEP11(2017)149.
https:/​/​doi.org/​10.1007/​JHEP11(2017)149

[64] A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg. Quantum quench of the Sachdev-Ye-Kitaev model. Phys. Rev. B, 96: 205123, 2017. 10.1103/​PhysRevB.96.205123.
https:/​/​doi.org/​10.1103/​PhysRevB.96.205123

[65] J. C. Louw and S. Kehrein. Thermalization of many many-body interacting Sachdev-Ye-Kitaev models. Phys. Rev. B, 105: 075117, 2022. 10.1103/​PhysRevB.105.075117.
https:/​/​doi.org/​10.1103/​PhysRevB.105.075117

[66] S. M. Davidson, D. Sels, and A. Polkovnikov. Semiclassical approach to dynamics of interacting fermions. Ann. Phys., 384: 128–141, 2017. 10.1016/​j.aop.2017.07.003.
https:/​/​doi.org/​10.1016/​j.aop.2017.07.003.

[67] A. Haldar, P. Haldar, S. Bera, I. Mandal, and S. Banerjee. Quench, thermalization, and residual entropy across a non-Fermi liquid to Fermi liquid transition. Phys. Rev. Res., 2: 013307, 2020. 10.1103/​PhysRevResearch.2.013307.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.013307

[68] T. Samui and N. Sorokhaibam. Thermalization in different phases of charged SYK model. J. High Energ. Phys., 2021 (4): 157, 2021. 10.1007/​JHEP04(2021)157.
https:/​/​doi.org/​10.1007/​JHEP04(2021)157

[69] Matteo Carrega, Joonho Kim, and Dario Rosa. Unveiling operator growth using spin correlation functions. Entropy, 23 (5): 587, 2021. 10.3390/​e23050587.
https:/​/​doi.org/​10.3390/​e23050587

[70] A. Larzul and M. Schiró. Quenches and (pre)thermalization in a mixed Sachdev-Ye-Kitaev model. Phys. Rev. B, 105: 045105, 2022. 10.1103/​PhysRevB.105.045105.
https:/​/​doi.org/​10.1103/​PhysRevB.105.045105

[71] L. García-Álvarez, I. L. Egusquiza, L. Lamata, A. del Campo, J. Sonner, and E. Solano. Digital Quantum Simulation of Minimal $\mathrm{AdS}/​\mathrm{CFT}$. Phys. Rev. Lett., 119: 040501, 2017. 10.1103/​PhysRevLett.119.040501.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.040501

[72] D. I. Pikulin and M. Franz. Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System. Phys. Rev. X, 7: 031006, 2017. 10.1103/​PhysRevX.7.031006.
https:/​/​doi.org/​10.1103/​PhysRevX.7.031006

[73] A. Chew, A. Essin, and J. Alicea. Approximating the Sachdev-Ye-Kitaev model with Majorana wires. Phys. Rev. B, 96: 121119, 2017. 10.1103/​PhysRevB.96.121119.
https:/​/​doi.org/​10.1103/​PhysRevB.96.121119

[74] A. Chen, R. Ilan, F. de Juan, D. I. Pikulin, and M. Franz. Quantum Holography in a Graphene Flake with an Irregular Boundary. Phys. Rev. Lett., 121: 036403, 2018. 10.1103/​PhysRevLett.121.036403.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.036403

[75] I. Danshita, M. Hanada, and M. Tezuka. Creating and probing the Sachdev–Ye–Kitaev model with ultracold gases: Towards experimental studies of quantum gravity. Progr. Theor. Exp. Phys., 2017, 2017. 10.1093/​ptep/​ptx108.
https:/​/​doi.org/​10.1093/​ptep/​ptx108

[76] C. Wei and T. A. Sedrakyan. Optical lattice platform for the Sachdev-Ye-Kitaev model. Phys. Rev. A, 103: 013323, 2021. 10.1103/​PhysRevA.103.013323.
https:/​/​doi.org/​10.1103/​PhysRevA.103.013323

[77] M. Marcuzzi, E. Levi, S. Diehl, J. P. Garrahan, and I. Lesanovsky. Universal Nonequilibrium Properties of Dissipative Rydberg Gases. Phys. Rev. Lett., 113: 210401, 2014. 10.1103/​PhysRevLett.113.210401.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.210401

[78] M. Marcuzzi, E. Levi, W. Li, J. P. Garrahan, B. Olmos, and I. Lesanovsky. Non-equilibrium universality in the dynamics of dissipative cold atomic gases. New J. Phys., 17 (7): 072003, 2015. 10.1088/​1367-2630/​17/​7/​072003.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​7/​072003

[79] D. Trapin and M. Heyl. Constructing effective free energies for dynamical quantum phase transitions in the transverse-field Ising chain. Phys. Rev. B, 97: 174303, 2018. 10.1103/​PhysRevB.97.174303.
https:/​/​doi.org/​10.1103/​PhysRevB.97.174303

[80] M. Heyl. Dynamical quantum phase transitions: a review. Rep. Prog. Phys., 81 (5): 054001, 2018. 10.1088/​1361-6633/​aaaf9a.
https:/​/​doi.org/​10.1088/​1361-6633/​aaaf9a

[81] Erne, S. and Bücker, R. and Gasenzer, T. and Berges, J. and Schmiedmayer, J. Universal dynamics in an isolated one-dimensional bose gas far from equilibrium. Nature, 563 (7730): 225–229, 2018. 10.1038/​s41586-018-0667-0.
https:/​/​doi.org/​10.1038/​s41586-018-0667-0

[82] J. Surace, L. Tagliacozzo, and E. Tonni. Operator content of entanglement spectra in the transverse field Ising chain after global quenches. Phys. Rev. B, 101: 241107, 2020. 10.1103/​PhysRevB.101.241107.
https:/​/​doi.org/​10.1103/​PhysRevB.101.241107

[83] R. Prakash and A. Lakshminarayan. Scrambling in strongly chaotic weakly coupled bipartite systems: Universality beyond the Ehrenfest timescale. Phys. Rev. B, 101: 121108, 2020. 10.1103/​PhysRevB.101.121108.
https:/​/​doi.org/​10.1103/​PhysRevB.101.121108

[84] W. V. Berdanier. Universality in Non-Equilibrium Quantum Systems. PhD thesis, University of California, Berkeley, 2020. arXiv:2009.05706 [cond-mat.str-el], 2020. DOI: 10.48550/​arXiv.2009.05706.
https:/​/​doi.org/​10.48550/​arXiv.2009.05706
arXiv:2009.05706

[85] T. W. B. Kibble. Topology of cosmic domains and strings. J. Phys. A, 9 (8): 1387–1398, 1976. 10.1088/​0305-4470/​9/​8/​029.
https:/​/​doi.org/​10.1088/​0305-4470/​9/​8/​029

[86] W. H. Zurek. Cosmological experiments in superfluid helium? Nature, 317 (6037): 505–508, 1985. 10.1038/​317505a0.
https:/​/​doi.org/​10.1038/​317505a0

[87] A. del Campo and W. H. Zurek. Universality of phase transition dynamics: Topological defects from symmetry breaking. Int. J. Mod. Phys. A, 29 (08): 1430018, 2014. 10.1142/​S0217751X1430018X.
https:/​/​doi.org/​10.1142/​S0217751X1430018X

[88] J. Berges, A. Rothkopf, and J. Schmidt. Nonthermal Fixed Points: Effective Weak Coupling for Strongly Correlated Systems Far from Equilibrium. Phys. Rev. Lett., 101: 041603, 2008. 10.1103/​PhysRevLett.101.041603.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.041603

[89] A. Piñeiro Orioli, K. Boguslavski, and J. Berges. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D, 92: 025041, 2015. 10.1103/​PhysRevD.92.025041.
https:/​/​doi.org/​10.1103/​PhysRevD.92.025041

[90] J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan. Universality Far from Equilibrium: From Superfluid Bose Gases to Heavy-Ion Collisions. Phys. Rev. Lett., 114: 061601, 2015. 10.1103/​PhysRevLett.114.061601.
https:/​/​doi.org/​10.1103/​PhysRevLett.114.061601

[91] M. Karl and T. Gasenzer. Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas. New J. Phys., 19 (9): 093014, 2017. 10.1088/​1367-2630/​aa7eeb.
https:/​/​doi.org/​10.1088/​1367-2630/​aa7eeb

[92] A. Chatrchyan, K. T. Geier, M. K. Oberthaler, J. Berges, and P. Hauke. Analog cosmological reheating in an ultracold Bose gas. Phys. Rev. A, 104: 023302, 2021. 10.1103/​PhysRevA.104.023302.
https:/​/​doi.org/​10.1103/​PhysRevA.104.023302

[93] L. Gresista, T. V. Zache, and J. Berges. Dimensional crossover for universal scaling far from equilibrium. Phys. Rev. A, 105: 013320, 2022. 10.1103/​PhysRevA.105.013320.
https:/​/​doi.org/​10.1103/​PhysRevA.105.013320

[94] E. Andersson, J. D. Cresser, and M. J. W. Hall. Finding the Kraus decomposition from a master equation and vice versa. J. Mod. Opt., 54 (12): 1695–1716, 2007. 10.1080/​09500340701352581.
https:/​/​doi.org/​10.1080/​09500340701352581

[95] M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson. Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A, 89: 042120, 2014. 10.1103/​PhysRevA.89.042120.
https:/​/​doi.org/​10.1103/​PhysRevA.89.042120

[96] C. M. Kropf, C. Gneiting, and A. Buchleitner. Effective Dynamics of Disordered Quantum Systems. Phys. Rev. X, 6: 031023, 2016. 10.1103/​PhysRevX.6.031023.
https:/​/​doi.org/​10.1103/​PhysRevX.6.031023

[97] R. de J. León-Montiel, V. Méndez, M. A. Quiroz-Juárez, A. Ortega, L. Benet, A. Perez-Leija, and K. Busch. Two-particle quantum correlations in stochastically-coupled networks. New J. Phys., 21 (5): 053041, 2019. 10.1088/​1367-2630/​ab1c79.
https:/​/​doi.org/​10.1088/​1367-2630/​ab1c79

[98] R. Román-Ancheyta, B. Çakmak, R. de J. León-Montiel, and A. Perez-Leija. Quantum transport in non-Markovian dynamically disordered photonic lattices. Phys. Rev. A, 103: 033520, 2021. 10.1103/​PhysRevA.103.033520.
https:/​/​doi.org/​10.1103/​PhysRevA.103.033520

[99] F. Benatti, R. Floreanini, and S. Olivares. Non-divisibility and non-Markovianity in a Gaussian dissipative dynamics. Phys. Lett. A, 376: 2951–2954, 2012. 10.1016/​j.physleta.2012.08.044.
https:/​/​doi.org/​10.1016/​j.physleta.2012.08.044

[100] A. Chenu, M. Beau, J. Cao, and A. del Campo. Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical Noise. Phys. Rev. Lett., 118: 140403, 2017. 10.1103/​PhysRevLett.118.140403.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.140403

[101] A. A. Budini. Non-Markovian Gaussian dissipative stochastic wave vector. Phys. Rev. A, 63: 012106, 2000. 10.1103/​PhysRevA.63.012106.
https:/​/​doi.org/​10.1103/​PhysRevA.63.012106

[102] A. A. Budini. Quantum systems subject to the action of classical stochastic fields. Phys. Rev. A, 64: 052110, 2001. 10.1103/​PhysRevA.64.052110.
https:/​/​doi.org/​10.1103/​PhysRevA.64.052110

[103] J. Mildenberger. Trapped-ion quantum simulations of spin systems at non-vanishing temperature. Master's thesis, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany, 2019.

[104] W. M. Visscher. Transport processes in solids and linear-response theory. Phys. Rev. A, 10: 2461–2472, 1974. 10.1103/​PhysRevA.10.2461.
https:/​/​doi.org/​10.1103/​PhysRevA.10.2461

[105] A. Schekochihin and R. Kulsrud. Finite-correlation-time effects in the kinematic dynamo problem. Phys. Plasmas, 8: 4937, 2001. 10.1063/​1.1404383.
https:/​/​doi.org/​10.1063/​1.1404383

[106] R. Kubo. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn., 12: 570–586, 1957. 10.1143/​JPSJ.12.570.
https:/​/​doi.org/​10.1143/​JPSJ.12.570

[107] J. F. C. van Velsen. On linear response theory and area preserving mappings. Phys. Rep., 41: 135–190, 1978. 10.1016/​0370-1573(78)90136-9.
https:/​/​doi.org/​10.1016/​0370-1573(78)90136-9

[108] R. Kubo, M. Toda, and N. Hashitsume. Statistical Physics II, volume 31 of Springer Series in Solid-State Sciences. Springer-Verlag Berlin Heidelberg, 1 edition, 1985. 10.1007/​978-3-642-96701-6.
https:/​/​doi.org/​10.1007/​978-3-642-96701-6

[109] C. M. van Vliet. On van Kampen's objections against linear response theory. J. Stat. Phys., 53: 49–60, 1988. 10.1007/​BF01011544.
https:/​/​doi.org/​10.1007/​BF01011544

[110] D. Goderis, A. Verbeure, and P. Vets. About the Exactness of the Linear Response Theory. Commun. Math. Phys., 136: 265–283, 1991. 10.1007/​BF02100025.
https:/​/​doi.org/​10.1007/​BF02100025

[111] S. Bandyopadhyay et al. in preparation.

[112] C. L. Baldwin and B. Swingle. Quenched vs Annealed: Glassiness from SK to SYK. Phys. Rev. X, 10: 031026, 2020. 10.1103/​PhysRevX.10.031026.
https:/​/​doi.org/​10.1103/​PhysRevX.10.031026

[113] J. Hubbard. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A, 276: 238–257, 1963. 10.1098/​rspa.1963.0204.
https:/​/​doi.org/​10.1098/​rspa.1963.0204

[114] E. Fradkin. The Hubbard model, page 8–26. Cambridge University Press, 2 edition, 2013. 10.1017/​CBO9781139015509.004.
https:/​/​doi.org/​10.1017/​CBO9781139015509.004

[115] L. Pezzè and A. Smerzi. Quantum theory of phase estimation. In G. M. Tino and M. A. Kasevich, editors, Atom Interferometry, volume 188 of Proceedings of the International School of Physics ``Enrico Fermi'', pages 691 – 741. IOS Press, 2014. 10.3254/​978-1-61499-448-0-691.
https:/​/​doi.org/​10.3254/​978-1-61499-448-0-691

[116] C. L. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 89: 035002, 2017. 10.1103/​RevModPhys.89.035002.
https:/​/​doi.org/​10.1103/​RevModPhys.89.035002

[117] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 90: 035005, 2018. 10.1103/​RevModPhys.90.035005.
https:/​/​doi.org/​10.1103/​RevModPhys.90.035005

[118] G. Tóth. Multipartite entanglement and high-precision metrology. Phys. Rev. A, 85: 022322, 2012. 10.1103/​PhysRevA.85.022322.
https:/​/​doi.org/​10.1103/​PhysRevA.85.022322

[119] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi. Fisher information and multiparticle entanglement. Phys. Rev. A, 85: 022321, 2012. 10.1103/​PhysRevA.85.022321.
https:/​/​doi.org/​10.1103/​PhysRevA.85.022321

[120] P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller. Measuring multipartite entanglement through dynamic susceptibilities. Nat. Phys., 12: 778–782, 2016. 10.1038/​nphys3700.
https:/​/​doi.org/​10.1038/​nphys3700

[121] M. Gabbrielli, A. Smerzi, and L. Pezzè. Multipartite Entanglement at Finite Temperature. Sci. Rep., 8 (1): 15663, 2018. 10.1038/​s41598-018-31761-3.
https:/​/​doi.org/​10.1038/​s41598-018-31761-3

[122] R. Costa de Almeida and P. Hauke. From entanglement certification with quench dynamics to multipartite entanglement of interacting fermions. Phys. Rev. Res., 3: L032051, 2021. 10.1103/​PhysRevResearch.3.L032051.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.L032051

[123] L. Foini and J. Kurchan. Eigenstate thermalization hypothesis and out of time order correlators. Phys. Rev. E, 99: 042139, 2019. 10.1103/​PhysRevE.99.042139.
https:/​/​doi.org/​10.1103/​PhysRevE.99.042139

[124] A. Chan, A. De Luca, and J. T. Chalker. Eigenstate Correlations, Thermalization, and the Butterfly Effect. Phys. Rev. Lett., 122: 220601, 2019. 10.1103/​PhysRevLett.122.220601.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.220601

[125] M. Brenes, S. Pappalardi, J. Goold, and A. Silva. Multipartite Entanglement Structure in the Eigenstate Thermalization Hypothesis. Phys. Rev. Lett., 124: 040605, 2020. 10.1103/​PhysRevLett.124.040605.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.040605

[126] P. Reimann. Typical fast thermalization processes in closed many-body systems. Nat. Commun., 7: 10821, 2016. 10.1038/​ncomms10821.
https:/​/​doi.org/​10.1038/​ncomms10821

[127] V. V. Flambaum and F. M. Izrailev. Unconventional decay law for excited states in closed many-body systems. Phys. Rev. E, 64: 026124, 2001. 10.1103/​PhysRevE.64.026124.
https:/​/​doi.org/​10.1103/​PhysRevE.64.026124

[128] F. Borgonovi, F.M. Izrailev, L.F. Santos, and V.G. Zelevinsky. Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep., 626: 1–58, 2016. 10.1016/​j.physrep.2016.02.005.
https:/​/​doi.org/​10.1016/​j.physrep.2016.02.005

[129] M. Vyas. Non-equilibrium many-body dynamics following a quantum quench. AIP Conf. Proc., 1912 (1): 020020, 2017. 10.1063/​1.5016145.
https:/​/​doi.org/​10.1063/​1.5016145

[130] M. Távora, E. J. Torres-Herrera, and L. F. Santos. Inevitable power-law behavior of isolated many-body quantum systems and how it anticipates thermalization. Phys. Rev. A, 94: 041603, 2016. 10.1103/​PhysRevA.94.041603.
https:/​/​doi.org/​10.1103/​PhysRevA.94.041603

[131] E. A. Novikov. Functionals and the random-force method in turbulence theory. Sov. Phys. - JETP, 20 (5): 1290, 1965.

[132] K. Furutsu. On the Statistical Theory of Electromagnetic Waves in a Fluctuating Medium (I). J. Res. Natl. Bur. Stand., D-67 (3): 303–323, 1963. 10.6028/​JRES.067D.034.
https:/​/​doi.org/​10.6028/​JRES.067D.034

[133] K. Furutsu. Statistical Theory of Wave Propagation in a Random Medium and the Irradiance Distribution Function. J. Opt. Soc. Am., 62 (2): 240–254, 1972. 10.1364/​JOSA.62.000240.
https:/​/​doi.org/​10.1364/​JOSA.62.000240

[134] V. I. Klyatskin and V. I. Tatarskii. Statistical averages in dynamical systems. Theor. Math. Phys., 17: 1143–1149, 1973. 10.1007/​BF01037265.
https:/​/​doi.org/​10.1007/​BF01037265

[135] A. Paviglianiti, S. Bandyopadhyay, P. Uhrich, and P. Hauke. Absence of operator growth for average equal-time observables in charge-conserved sectors of the Sachdev-Ye-Kitaev model. J. High Energ. Phys., 2023 (3): 126, 2023. 10.1007/​jhep03(2023)126.
https:/​/​doi.org/​10.1007/​jhep03(2023)126

[136] C. Gardiner and P. Zoller. The Quantum World of Ultra-Cold Atoms and Light I. Imperial College Press, 2014. 10.1142/​p941.
https:/​/​doi.org/​10.1142/​p941

[137] N. G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier, 1 edition, 1992.

[138] R. C. Bourret. Propagation of randomly perturbed fields. Can. J. Phys., 40 (6): 782–790, 1962. 10.1139/​p62-084.
https:/​/​doi.org/​10.1139/​p62-084

[139] A. Dubkov and O. Muzychuk. Analysis of higher approximations of Dyson's equation for the mean value of the Green function. Radiophys. Quantum Electron., 20: 623–627, 1977. 10.1007/​BF01033768.
https:/​/​doi.org/​10.1007/​BF01033768

[140] N. G. Van Kampen. A cumulant expansion for stochastic linear differential equations. I and II. Physica, 74 (2): 215–238 and 239–247, 1974. 10.1016/​0031-8914(74)90121-9.
https:/​/​doi.org/​10.1016/​0031-8914(74)90121-9

[141] H. P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 2007. 10.1093/​acprof:oso/​9780199213900.001.0001.
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199213900.001.0001

[142] D. Manzano. A short introduction to the Lindblad master equation. AIP Adv., 10 (2): 025106, 2020. 10.1063/​1.5115323.
https:/​/​doi.org/​10.1063/​1.5115323

[143] D. A. Lidar, A. Shabani, and R. Alicki. Conditions for strictly purity-decreasing quantum Markovian dynamics. Chem. Phys., 322: 82–86, 2020. 10.1016/​j.chemphys.2005.06.038.
https:/​/​doi.org/​10.1016/​j.chemphys.2005.06.038

[144] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller. Preparation of entangled states by quantum Markov processes. Phys. Rev. A, 78: 042307, 2008. 10.1103/​PhysRevA.78.042307.
https:/​/​doi.org/​10.1103/​PhysRevA.78.042307

[145] F. Minganti, A. Biella, N. Bartolo, and C. Ciuti. Spectral theory of Liouvillians for dissipative phase transitions. Phys. Rev. A, 98: 042118, 2018. 10.1103/​PhysRevA.98.042118.
https:/​/​doi.org/​10.1103/​PhysRevA.98.042118

[146] J. Tindall, B. Buča, J. R. Coulthard, and D. Jaksch. Heating-induced long-range ${\eta}$ pairing in the hubbard model. Phys. Rev. Lett., 123: 030603, 2019. 10.1103/​PhysRevLett.123.030603.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.030603

[147] A. Ghoshal, S. Das, A. Sen(De), and U. Sen. Population inversion and entanglement in single and double glassy Jaynes–Cummings models. Phys. Rev. A, 101: 053805, 2020. 10.1103/​PhysRevA.101.053805.
https:/​/​doi.org/​10.1103/​PhysRevA.101.053805

[148] P. Hänggi. Correlation functions and masterequations of generalized (non-Markovian) Langevin equations. Z. Physik B, 31 (4): 407–416, 1978. 10.1007/​BF01351552.
https:/​/​doi.org/​10.1007/​BF01351552

[149] M. Schiulaz, E. J. Torres-Herrera, F. Pérez-Bernal, and L. F. Santos. Self-averaging in many-body quantum systems out of equilibrium: Chaotic systems. Phys. Rev. B, 101: 174312, 2020. 10.1103/​PhysRevB.101.174312.
https:/​/​doi.org/​10.1103/​PhysRevB.101.174312

[150] E. J. Torres-Herrera and L. F. Santos. Signatures of chaos and thermalization in the dynamics of many-body quantum systems. Eur. Phys. J. Spec. Top., 227 (15): 1897–1910, 2019. 10.1140/​epjst/​e2019-800057-8.
https:/​/​doi.org/​10.1140/​epjst/​e2019-800057-8

[151] E. J. Torres-Herrera, I. Vallejo-Fabila, A. J. Martínez-Mendoza, and L. F. Santos. Self-averaging in many-body quantum systems out of equilibrium: Time dependence of distributions. Phys. Rev. E, 102: 062126, 2020. 10.1103/​PhysRevE.102.062126.
https:/​/​doi.org/​10.1103/​PhysRevE.102.062126

[152] A. Chenu, J. Molina-Vilaplana, and A. del Campo. Work Statistics, Loschmidt Echo and Information Scrambling in Chaotic Quantum Systems. Quantum, 3: 127, 2019. 10.22331/​q-2019-03-04-127.
https:/​/​doi.org/​10.22331/​q-2019-03-04-127

[153] T. L. M. Lezama, E. J. Torres-Herrera, F. Pérez-Bernal, Y. Bar Lev, and L. F. Santos. Equilibration time in many-body quantum systems. Phys. Rev. B, 104: 085117, 2021. 10.1103/​PhysRevB.104.085117.
https:/​/​doi.org/​10.1103/​PhysRevB.104.085117

[154] Daniel A. Lidar. Lecture notes on the theory of open quantum systems. arXiv:1902.00967 [quant-ph], 2020. 10.48550/​arXiv.1902.00967.
https:/​/​doi.org/​10.48550/​arXiv.1902.00967
arXiv:1902.00967

[155] Á. Rivas and S. F. Huelga. Open Quantum Systems: An Introduction. Springer Briefs in Physics. Springer, 2011. 10.1007/​978-3-642-23354-8.
https:/​/​doi.org/​10.1007/​978-3-642-23354-8

[156] D. Nigro. On the uniqueness of the steady-state solution of the Lindblad–Gorini–Kossakowski–Sudarshan equation. J. Stat. Mech., 2019 (4): 043202, 2019. 10.1088/​1742-5468/​ab0c1c.
https:/​/​doi.org/​10.1088/​1742-5468/​ab0c1c

[157] G. Bentsen, I.-D. Potirniche, V. B. Bulchandani, T. Scaffidi, X. Cao, X.-L. Qi, M. Schleier-Smith, and E. Altman. Integrable and Chaotic Dynamics of Spins Coupled to an Optical Cavity. Phys. Rev. X, 9: 041011, 2019b. 10.1103/​PhysRevX.9.041011.
https:/​/​doi.org/​10.1103/​PhysRevX.9.041011

[158] R. Nandkishore and D. A. Huse. Many-Body Localization and Thermalization in Quantum Statistical Mechanics. Annu. Rev. of Condens. Matter Phys., 6 (1): 15–38, 2015. 10.1146/​annurev-conmatphys-031214-014726.
https:/​/​doi.org/​10.1146/​annurev-conmatphys-031214-014726

[159] P. Sierant, D. Delande, and J. Zakrzewski. Many-body localization due to random interactions. Phys. Rev. A, 95: 021601, 2017. 10.1103/​PhysRevA.95.021601.
https:/​/​doi.org/​10.1103/​PhysRevA.95.021601

[160] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 91: 021001, 2019. 10.1103/​RevModPhys.91.021001.
https:/​/​doi.org/​10.1103/​RevModPhys.91.021001

[161] P. Sierant and J. Zakrzewski. Challenges to observation of many-body localization. Phys. Rev. B, 105: 224203, 2022. 10.1103/​PhysRevB.105.224203.
https:/​/​doi.org/​10.1103/​PhysRevB.105.224203

[162] M. B. Plenio and S. F. Huelga. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys., 10 (11): 113019, 2008. 10.1088/​1367-2630/​10/​11/​113019.
https:/​/​doi.org/​10.1088/​1367-2630/​10/​11/​113019

[163] P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik. Environment-assisted quantum transport. New J. Phys., 11 (3): 033003, 2009. 10.1088/​1367-2630/​11/​3/​033003.
https:/​/​doi.org/​10.1088/​1367-2630/​11/​3/​033003

[164] R. de J. León-Montiel, M. A. Quiroz-Juárez, R. Quintero-Torres, J. L. Domínguez-Juárez, H. M. Moya-Cessa, J. P. Torres, and J. L. Aragón. Noise-assisted energy transport in electrical oscillator networks with off-diagonal dynamical disorder. Sci. Rep., 5: 17339, 2015. 10.1038/​srep17339.
https:/​/​doi.org/​10.1038/​srep17339

[165] C. Maier, T. Brydges, P. Jurcevic, N. Trautmann, C. Hempel, B. P. Lanyon, P. Hauke, R. Blatt, and C. F. Roos. Environment-Assisted Quantum Transport in a 10-qubit Network. Phys. Rev. Lett., 122: 050501, 2019. 10.1103/​PhysRevLett.122.050501.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.050501

[166] J. S. Liu. Siegel's formula via Stein's identities. Stat. Probabil. Lett., 21 (3): 247–251, 1994. 10.1016/​0167-7152(94)90121-X.
https:/​/​doi.org/​10.1016/​0167-7152(94)90121-X

[167] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide. Society for Industrial and Applied Mathematics, 3 edition, 1999. 10.1137/​1.9780898719604.
https:/​/​doi.org/​10.1137/​1.9780898719604

[168] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 4.0, 2021.

Cited by

[1] Chenan Wei and Tigran A. Sedrakyan, "Strange metal phase of disordered magic-angle twisted bilayer graphene at low temperatures: From flat bands to weakly coupled Sachdev-Ye-Kitaev bundles", Physical Review B 108 6, 064202 (2023).

[2] Debanjan Chowdhury, Antoine Georges, Olivier Parcollet, and Subir Sachdev, "Sachdev-Ye-Kitaev models and beyond: Window into non-Fermi liquids", Reviews of Modern Physics 94 3, 035004 (2022).

[3] Ceren B. Daǧ, Philipp Uhrich, Yidan Wang, Ian P. McCulloch, and Jad C. Halimeh, "Detecting quantum phase transitions in the quasistationary regime of Ising chains", Physical Review B 107 9, 094432 (2023).

[4] Philipp Uhrich, Soumik Bandyopadhyay, Nick Sauerwein, Julian Sonner, Jean-Philippe Brantut, and Philipp Hauke, "A cavity quantum electrodynamics implementation of the Sachdev--Ye--Kitaev model", arXiv:2303.11343, (2023).

[5] Jan C. Louw and Stefan Kehrein, "Thermalization of many many-body interacting Sachdev-Ye-Kitaev models", Physical Review B 105 7, 075117 (2022).

[6] Alessio Paviglianiti, Soumik Bandyopadhyay, Philipp Uhrich, and Philipp Hauke, "Absence of operator growth for average equal-time observables in charge-conserved sectors of the Sachdev-Ye-Kitaev model", Journal of High Energy Physics 2023 3, 126 (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-21 21:50:41) and SAO/NASA ADS (last updated successfully 2024-06-21 21:50:42). The list may be incomplete as not all publishers provide suitable and complete citation data.