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Computing the key rate in quantum key distribution (QKD) protocols is a long
standing challenge. Analytical methods are limited to a handful of protocols with highly
symmetric measurement bases. Numerical methods can handle arbitrary measurement
bases, but either use the min-entropy, which gives a loose lower bound to the von
Neumann entropy, or rely on cumbersome dedicated algorithms. Based on a recently
discovered semidefinite programming (SDP) hierarchy converging to the conditional
von Neumann entropy, used for computing the asymptotic key rates in the device
independent case, we introduce an SDP hierarchy that converges to the asymptotic
secret key rate in the case of characterised devices. The resulting algorithm is efficient,
easy to implement and easy to use. We illustrate its performance by recovering known
bounds on the key rate and extending high-dimensional QKD protocols to previously
intractable cases. We also use it to reanalyse experimental data to demonstrate how
higher key rates can be achieved when the full statistics are taken into account.

1 Introduction
In the long history of QKD (see [1–4] for reviews), secret key rates have mostly been calculated
analytically. Consequently, we only know their values for protocols with highly symmetric meas-
urement bases, such as BB84 [5], the six-state protocol [6], or their generalisations to mutually
unbiased bases (MUBs) in higher dimensions [7, 8]. In order to tackle arbitrary measurement
bases, for a long time the only approach available was to use the min-entropy to lower bound the
von Neumann entropy [9]. This trick has been applied successfully to device independent QKD
[10, 11] and QKD with characterised devices [12]. It leads to a simple SDP, at the cost of delivering
suboptimal key rates. Numerical methods that go beyond the min-entropy approximation have
been developed to tackle this issue [13, 14]; unfortunately, none of them output optimal key rates.
In Refs. [15, 16] numerical methods that do provide optimal key rates are proposed. We’ll compare
them with our method in the Conclusion.

Recently, Brown et al. [17] presented a new approach for the accurate computation of asymp-
totic secret key rates in device independent QKD. It is based on a converging SDP hierarchy of
lower bounds on the conditional von Neumann entropy. This hierarchy relies, in turn, on the
NPA hierarchy [18] for characterising quantum correlations. As a consequence, the Brown et al.
hierarchy has a very high complexity, being capable of handling only cases with few measurement
settings.

In this work we adapt the SDP hierarchy proposed in Ref. [17] to the case of QKD with
characterised devices, enabling likewise the computation of a sequence of lower bounds converging
to the asymptotic key rate. In contrast with the device independent case, we don’t need to use the
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NPA hierarchy, which makes the method much more efficient. Remarkably, the complexity of this
new method is essentially independent of the number of measurement settings. Instead, the most
relevant parameter is the quantum state dimension, and we can handle cases up to local dimension
8.

We illustrate the power of the technique on two families of protocols. First, for protocols that
use d+1 mutually-unbiased bases (MUB protocols), we recover the analytical key rate in the known
cases, and extend the protocol to use the full experimental data in any dimension (including dimen-
sions that are not primes or prime powers, in which we use d+1 bases that are only approximately
unbiased). Second, we propose and analyse a new protocol that is tailored to situations where one
can produce high-dimensional entanglement, but can only measure superpositions of consecutive
basis elements.

In order to handle real experimental data, we show how to modify the algorithm to minimise the
conditional entropy over a confidence region in parameter space, and propose a new Monte Carlo
method to compute such a confidence region via Bayesian parameter estimation. We illustrate the
method by reanalysing data from two experiments.

The paper is organised as follows. In Section 2 we recap necessary results from Ref. [17]. In
Section 3 we present and prove the main result, the SDP hierarchy for bounding QKD rates. In
Section 4 we apply it to recover known bounds on the key rate and compute new ones. In Section
5 we show how to modify the SDP to handle experimental data, and use that to bound key rates
from two previous experiments.

2 Variational lower bounds for the conditional entropy
In this section, we review necessary results from Ref. [17] and establish the notation to be used
from now on.

In quantum key distribution, the asymptotic key rate is lowerbounded by the Devetak-Winter
rate1 [20]

K ≥ H(A|E)−H(A|B), (1)

where H(·|·) is the quantum conditional entropy. H(A|B) only depends on the statistics measured
by Alice and Bob in the key basis, and as such is straightforward to compute. The interesting
problem is H(A|E), as we have to minimise it over all states ρABE share by Alice, Bob, and Eve
compatible with the statistics measured by Alice and Bob. To do that, we express the conditional
entropy in terms of the (unnormalized) relative entropy:

H(A|E) = −D(ρÃE ||1A ⊗ ρE), (2)

where D(ρ||σ) = tr(ρ(log2 ρ− log2 σ)) and ρÃE is the classical-quantum state given by
∑
a|a〉〈a| ⊗

ρE(a), where ρE(a) = trAB [(Aa0 ⊗ 1BE)ρABE ] and {Aa0}n−1
a=0 is the basis used by Alice to generate

the secret key.
As shown in Ref. [17], one can get a convergent sequence of SDPs for the relative entropy by

using a Gauss-Radau quadrature [21]. The Gauss-Radau quadrature is defined for every positive
integer m as a vector of m coordinates t and a vector of m weights w such that for all polynomials
g of degree 2m− 2 it holds that ∫ 1

0
dt g(t) =

m∑
i=1

wig(ti). (3)

In addition we have that wi > 0,
∑
i wi = 1, wm = 1/m2, ti ∈ (0, 1], and tm = 1. A simple

algorithm for computing w and t is described in [21].
As shown in Ref. [17], applying the Gauss-Radau quadrature to an integral representation

of the logarithm yields a variational upper bound for the quantum relative entropy, valid when

1This expression gives the rate per key round. In order to get the rate per round one needs in addition to multiply
it by the sifting factor, or notice that the sifting factor can be made arbitrarily close to one in the asymptotic limit
by choosing the key basis with probability arbitrarily close to one [19].
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supp(ρ) ∩ ker(σ) = ∅:

D(ρ||σ) ≤ −
m∑
i=1

wi
ti log 2 inf

Zi

(
1 + tr

[
ρ(Zi + Z†i + (1− ti)Z†i Zi)

]
+ ti tr

(
σZiZ

†
i

))
, (4)

where the Zi are arbitrary complex matrices. This translates into a variational lower bound on
the quantum conditional entropy for a fixed state ρABE :

H(A|E)ρABE ≥

cm+
m∑
i=1

wi
ti log 2 inf

{Za
i
}a

n−1∑
a=0

tr
[
ρABE

(
Aa0 ⊗ 1B ⊗ (Zai + Zai

† + (1− ti)Zai
†Zai ) + ti1AB ⊗ Zai Zai

†
)]
,

(5)

where cm =
∑m
i=1

wi
ti log 2 .

In the case of device independent QKD, one needs to minimise H(A|E) over all states and
measurement bases of Alice and Bob compatible with the measured statistics; here, though, we
are interested in QKD with characterised devices. We take the measurement bases of Alice and
Bob to be fixed, and do the minimisation over the ρABE that are compatible with the measured
statistics. That is, we want to solve the following problem:

inf
ρABE ,{Zai }a,i

cm +
m∑
i=1

n−1∑
a=0

wi
ti log 2 tr

[
ρABE

(
Aa0 ⊗ 1B ⊗ (Zai + Zai

† + (1− ti)Zai
†Zai ) + ti1AB ⊗ Zai Zai

†
)]

s.t. ρABE ≥ 0, tr(ρABE) = 1 (6)
∀k tr[ρABE(Ek ⊗ 1E)] = fk,

for some POVM elements Ek and probabilities fk. In the next section we’ll show how to do this
with a SDP.

3 SDP
To turn problem (6) into a SDP, two ideas are involved: first is the familiar technique of absorbing
the variables Zai into ρABE by defining new variables ζai = trE

[
ρABE(1AB ⊗ Zai

T )
]
. This still

leaves the objective nonlinear, as it contains the products ζai
†ζai and ζai ζ

a
i
†. The usual way to

handle those is by building a moment matrix, but the difficulty here is that these must be d2 × d2

matrices, and the usual moment matrix technique cannot handle these dimensional constraints.
What we do instead is to build a block moment matrix, representing each element of ζai

†ζai and
ζai ζ

a
i
† by a moment, as done in Section 3 of Ref. [22].
More formally, we have

Theorem 1. The problem (6) defined in the previous section is equivalent to the following SDP:

min
σ,{ζa

i
,ηa
i
,θa
i
}a,i

cm +
m∑
i=1

n−1∑
a=0

wi
ti log 2 tr

[
(Aa0 ⊗ 1B)

(
ζai + ζai

† + (1− ti)ηai
)

+ tiθ
a
i

]
s.t. tr(σ) = 1, ∀k tr(Ekσ) = fk

∀a, i Γ1
a,i :=

(
σ ζai
ζai
† ηai

)
≥ 0, Γ2

a,i :=
(
σ ζai

†

ζai θai

)
≥ 0.

(7)

Proof. First notice that if we define2

Ξ(M) := trE
[
ρABE(1AB ⊗MT

E )
]

(8)

2We could also define it without the transpose, which would make it a completely copositive map, but this would
result in a less convenient SDP.
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then Ξ(M†) = Ξ(M)† and

tr
[
ρABE

(
KAB ⊗MT

E

)]
= tr(KABΞ(ME)), (9)

so if we define

σ := Ξ(1) (10a)
ζai := Ξ(Zai ) (10b)

ηai := Ξ(Zai
†Zai ) (10c)

θai := Ξ(Zai Zai
†) (10d)

then the objectives and equality constraints of (6) and (7) match, modulo a complex conjugation
on the Zai that we can freely do, since they are unconstrained.

It remains to show that the existence of a state ρABE and complex matrices Zai is equivalent
to the existence of positive semidefinite matrices Γ1

a,i and Γ2
a,i related via Equations (10). To see

the forward direction, first note that the map Ξ is completely positive: its Choi matrix is given by

C(Ξ) =
∑
ij

|i〉〈j| ⊗ Ξ(|i〉〈j|) (11)

=
∑
ij

|i〉〈j| ⊗ [(1⊗ 〈i|)ρ(1⊗ |j〉)] (12)

=
(∑

i

|i〉 ⊗ 1⊗ 〈i|
)
ρ

(∑
j

|j〉 ⊗ 1⊗ 〈j|
)†
, (13)

which is manifestly positive semidefinite.
Let then

γga,i :=
1∑

k,l=0
|k〉〈l| ⊗ sgk

†
sgl (14)

for s1
0 = s2

0 = 1 and s1
1 = s2

1
† = Zai . The matrices γga,i are positive semidefinite, as

γga,i =
( 1∑
k=0
〈k| ⊗ sgk

)†( 1∑
l=0
〈l| ⊗ sgl

)
, (15)

and so are Γ1
a,i and Γ2

a,i, as
Γga,i = (1⊗ Ξ)(γga,i) (16)

and Ξ is completely positive. This completes the proof of the forward direction.
To see the converse direction, let the eigendecomposition of σ be

∑d2−1
i=0 λi|vi〉〈vi|, and consider

its purification |ψ〉 :=
∑d2−1
i=0

√
λi|vi〉|i〉E . In the following, we assume that Eve’s Hilbert space

is HE := span{|i〉}2d2−1
i=0 , and regard the state shared by Alice, Bob and Eve as ρABE = |ψ〉〈ψ|.

Eve’s reduced density matrix has therefore support on the space spanned by just the first d2 basis
states of HE . The “extra space” given by span{|i〉}2d2−1

i=d2−1 will be needed by the end of the proof.
Now, define the matrix

W :=
d2−1∑
i=0

√
λi|vi〉〈i|. (17)

With the state ρABE defined above, the identity Ξ(M) = WMW † can be seen to hold.
Define then (

1̃ Rζa
i

R†ζa
i

Rηa
i

)
:=
(
W+ 0

0 W+

)
Γ1
a,i

(
W+† 0

0 W+†

)
, (18)

and (
1̃ R†ζa

i

Rζa
i

Rθa
i

)
:=
(
W+ 0

0 W+

)
Γ2
a,i

(
W+† 0

0 W+†

)
. (19)
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Here W+ denotes the pseudo-inverse of W ; and 1̃, the projector corresponding to the support of
σ.

The matrices on the left-hand side of Equations (18) and (19) are positive semidefinite, which
implies that Rηa

i
−R†ζa

i
Rζa

i
≥ 0 and that Rθa

i
−Rζa

i
R†ζa

i
≥ 0. We are ready to build Eve’s operators

Zai ∈ B(HE):

Zai :=

 Rζa
i

√
Rθa

i
−Rζa

i
R†ζa

i√
Rηa

i
−R†ζa

i
Rζa

i
0

, (20)

where
√
· denotes the unique positive semidefinite square root. In the expression above, the matrix

block decomposition reflects the division of Eve’s Hilbert space HE into the orthogonal subspaces
span{|i〉}d

2−1
i=0 and span{|i〉}2d2−1

i=d2 . With the definition above, it is easy to see that Equations (10)
are satisfied. This completes the proof of the converse direction.

Unlike the case for device independent QKD, for fixedm this is not a hierarchy, but a single SDP.
We thus have a converging hierarchy for the conditional entropy depending on a single parameter
m.

In order to obtain a reliable solution for an SDP numerically, it is crucial that it satisfies strict
feasibility, that is, that there exists a feasible solution for which all eigenvalues in the positive
semidefiniteness constraints are strictly positive. For SDP (7) this is the case iff there exists a
full rank state σ compatible with the measurement results. If this is not the case then one must
reformulate the SDP with facial reduction to make it strictly feasible [23]. This is of little relevance
in practice, as in any real experiment the state will be full rank. For completeness, however, we
give a proof of this characterisation of strict feasibility and show how to perform facial reduction
in Appendix A.

The SDP (7) takes a long time to run in higher dimensions, so it is important to look for
techniques to optimise it. We have explored the use of symmetrisation [24]: if the objective of an
SDP is invariant under some transformation applied to its variables and this transformation doesn’t
affect whether the constraints are satisfied, then this transformation is a symmetry of the SDP and
can be used to eliminate redundant variables, which can dramatically improve the running time.

A simple and powerful symmetrisation applies when Aa0 and Ek are real matrices for all a, k:
in this case we can choose all our variables to be real, which has a dramatic impact on perform-
ance, mainly due to the poor support current solvers have for complex variables3. Another useful
symmetrisation applies when the Ek satisfy a certain permutation symmetry, which allows us to
reduce the number of variables ζai , ηai , θai by at most a factor of d, which again can dramatically
improve performance. This is proven and explored in detail in Appendix B. The focus of our paper,
however, is using SDP (7) to calculate key rates using the full experimental data available, in which
case the symmetrisation seldom applies.

4 Numerical results
In order to illustrate the performance of our technique, we ran the SDP (7) for various QKD
protocols. We solved the SDP with MOSEK [27] via YALMIP4 [28] on MATLAB5. In order to
model the effect of noise, we assume that Alice and Bob share an isotropic state:

ρiso(v) = v
∣∣φ+〉〈φ+∣∣+ (1− v)1/d2, (21)

where |φ+〉 = 1√
d

∑d−1
i=0 |ii〉 and v ∈ [0, 1] is the visibility.

3To the best of our knowledge, the only solvers that support complex numbers natively are SeDuMi 1.3.7 [25]
and Hypatia 0.7.2 [26].

4It is necessary to use the current development release.
5The code also works on Octave, provided we change the solver to SeDuMi [25].
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4.1 MUB protocol
The first protocol we consider is the d + 1 MUBs protocol from Ref. [8], where Alice and Bob
measure a complete set of MUBs for some prime d, with Bob’s MUBs being the transpose of
Alice’s. They estimate the probabilities of their outcomes being equal or differing by some integer,
and use only this data to compute the key rate.

Both these limitations, that the dimension must be prime and the full data not being used,
came from the proof technique and do not apply here. Therefore we extend the protocol to use
all available data, and furthermore allow the dimension d to be any integer. When d is equal to
a prime power we one can use the well-known Wootters-Fields construction [29] to generate the
MUBs. For other dimensions it is widely believed that no set of d + 1 MUBs exists [30], so we
generate numerically bases that are only approximately unbiased via a simple gradient descent. A
set of n approximate MUBs is obtained from numerically minimising [31]

min
{U(r)}r

1
(d− 1)

(
n
2
) ∑
k<l

d−1∑
i,j=0

(∣∣∣(U (k)†U (l))i,j
∣∣∣2 − 1

d

)2
, (22)

where {U (r)}nr=1 is a collection of unitary matrices. Note that the value is zero for a set of MUBs.
The key basis is the computational basis, that is, Aa0 = |a〉〈a|, and the POVM elements used

in the SDP are given by
Ek,i,j := Πi

k ⊗Πj
k

T
, (23)

where Πi
k is the projector onto the ith vector of the kth MUB, with k going from 0 to d and i, j

going from 0 to d− 1.
In order to obtain an analytical formula to compare against our numerical results, note that

when we actually have d+1 MUBs, that is, when d is a prime or a prime power, these measurements
are tomographically complete for the isotropic state6 [32], so the key rate must be equal to the
tomographic rate. That is the rate one obtains when Alice and Bob make a tomographically
complete set of measurements, and as such is the best possible rate for a given quantum state.
When our d+1 bases are not exactly mutually unbiased this no longer holds, so for other dimensions
the tomographic rate is only an upper bound for the key rate.

For the isotropic state the tomographic rate is given by [33, 34]

Kiso(v, d) = log2(d)− (1− 1/d2)(1− v) log2(d2 − 1)− h(v + (1− v)/d2), (24)

where h(·) is the binary entropy. Note that Equation (24) coincides with the key rate computed
in Ref. [8] for the isotropic state when d is prime.

We did the calculation for d = 2, 4, 6, 8, setting m = 8. As we can see in Figure 1, our
technique closely matches the exact key rate for d = 2, 4, 8, whereas for d = 6 it is slightly below
the upper bound. This indicates that the problem of existence of MUBs, although mathematically
fascinating, is irrelevant for the practical implementation of this QKD protocol.

4.2 Subspaces protocol
When the experimental setup suffers from a high amount of noise, it is advantageous to do a
filtration step before running the QKD protocol. That’s the idea behind the subspace protocol
proposed in Ref. [12]. In it the Hilbert space of dimension d is partitioned in d/k subspaces of
dimension7 k. Alice and Bob first check whether they obtained an outcome belonging to the same
subspace of the Hilbert space; if they haven’t, they discard the round. Otherwise, they proceed
with the protocol, with the state conditioned on belonging to the subspace they are in, which is in
general less noisy than the state they started with.

6More precisely, if Alice and Bob measure the probability of getting the same outcome in all d + 1 MUBs, and
all probabilities turn out to be equal to v + (1 − v)/d, then the only quantum state compatible with these results is
the isotropic state with visibility v. Note that this implies that using the full data does not make any difference for
the isotropic state when d is a prime or a prime power. Nevertheless it does make a difference for general states in
general dimensions, so it is still useful to define the protocol to use the full data.

7The use of equal-sized subspaces is only for simplicity, any partition of d can be used.
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Figure 1: Asymptotic key rate in bits per round versus isotropic state visibility v, using the MUB protocol from
Section 4.1. For d = 6 we used a set of bases that is only approximately unbiased. Note that for d = 2, 4, 8
our technique closely matches the exact result, while for d = 6 it is slightly below the upper bound (24).
Calculations performed with m = 8.

The main weakness of the original security analysis is that it approximates the von Neumann
entropy by the min-entropy, which leads to a loose lower bound on the secret key rate. Here we
can fix this problem. We further note that the subspace technique is very flexible with respect to
which protocol is used in the subspaces. Here we use the d+ 1 MUBs protocol from section 4.1.

For the isotropic state and when k is a prime or prime power the key rate is given by

Kiso,sub(v, k, d) = pKiso(v/p, k), (25)

where p = v+ k
d (1−v) is the probability that Alice and Bob obtain outcomes in the same subspace,

and Kiso is given by Equation (24).
We ran that SDP (7) for d = 8 and k = 2, 4, 8. Note that the MUB protocol is ran in each

subspace, so Aa0 and Ek are simply those of the MUB protocol, but with the size of the subspace
k playing the role of the dimension d. The measurement that is implemented physically is the
direct sum of the measurements in the subspaces, but that does not appear explicitly in the key
rate calculation. The results are shown in Figure 2. One can see that the numerical results closely
match the analytical formula. For the sake of comparison we also showed the much inferior key
rates that are obtained when using the min-entropy technique.

4.3 Overlapping bases protocol
For some experimental setups it is not feasible to measure high-dimensional MUBs, so we consider
a simpler protocol where only superpositions of nearest neighbours have to be measured. Alice and
Bob use the computational basis as the key basis, Aa0 = |a〉〈a|, and measure the POVM elements

Ek,i,j =
∣∣vik〉〈vik∣∣⊗ |vjk〉〈vjk|T , (26)
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Figure 2: Asymptotic key rate in bits per round versus isotropic state visibility v, using the subspace protocol
from Section 4.2. Dashed lines show the much inferior key rates that are obtained with the min-entropy
technique. Calculations performed with m = 8.

where d must be even, k goes from 0 to 4, i, j go from 0 to d − 1, and the vectors
∣∣vik〉 are given

by

{
∣∣vl0〉}d−1

l=0 = {|0〉, . . . , |d− 1〉} (27a)

{
∣∣vl1〉}d−1

l=0 =
{
|0〉+ |1〉√

2
,
|0〉 − |1〉√

2
, . . . ,

|d− 2〉+ |d− 1〉√
2

,
|d− 2〉 − |d− 1〉√

2

}
(27b)

{
∣∣vl2〉}d−1

l=0 =
{
|0〉+ i|1〉√

2
,
|0〉 − i|1〉√

2
, . . . ,

|d− 2〉+ i|d− 1〉√
2

,
|d− 2〉 − i|d− 1〉√

2

}
(27c)

{
∣∣vl3〉}d−1

l=0 =
{
|0〉, |1〉+ |2〉√

2
,
|1〉 − |2〉√

2
, . . . ,

|d− 3〉+ |d− 2〉√
2

,
|d− 3〉 − |d− 2〉√

2
, |d− 1〉

}
(27d)

{
∣∣vl4〉}d−1

l=0 =
{
|0〉, |1〉+ i|2〉√

2
,
|1〉 − i|2〉√

2
, . . . ,

|d− 3〉+ i|d− 2〉√
2

,
|d− 3〉 − i|d− 2〉√

2
, |d− 1〉

}
. (27e)

Note that here we are not measuring only the probabilities that the outcomes are equal or differ
by some constant, but instead are taking into account the full experimental data. Several of the
projectors we are measuring are linearly dependent, however, so one should be careful to select a
linearly independent subset for the data analysis.

This protocol is specially appropriate for energy-time entanglement setups, in which the time
of arrival of photons are collected into time-bins. In such setups it is infeasible to measure MUBs,
but the superposition of neighbouring bins is accessible with the use of Franson interferometer (see
Refs. [35–37] for experiments using such setups).

We ran the SDP (7) for d = 4, 6, 8. The results are shown in Figure 3. We compare them with
key rates obtained with the subspace protocol from Section 4.2, as that protocol also needs only
superpositions between nearest neighbours. We see that for low to moderate amounts of noise the
overlap protocol outperforms it.

5 Dealing with experimental data
In order to calculate the conditional entropy with SDP (7), we need the exact probabilities of
each measurement outcome. Those are not available in real experiments, as it’s fundamentally
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Figure 3: Asymptotic key rate in bits per round versus isotropic state visibility v, using the overlap protocol
from Section 4.3. Dashed line shows the key rate obtained with the subspace protocol from Section 4.2 for the
sake of comparison, as that protocol also needs only superpositions between nearest neighbours. We see that
for low to moderate amounts of noise the overlap protocol outperforms it. Calculations performed with m = 8.

impossible to measure probabilities, even in the absence of error. Instead, one measures relative
frequencies, from which one deduces that the probabilities are within some region with some level
of confidence. Note that a naïve identification of relative frequencies with probabilities typically
leads to probabilities that are not compatible with any quantum state (commonly referred to as
quantum state with negative eigenvalues). Computing instead the confidence region compatible
with your relative frequencies automatically deals with this issue8. Accordingly, we need to modify
SDP (7) to not use exact probabilities, but instead minimise the conditional entropy over the
confidence region.

This leads us to the thorny issue of how to compute the confidence region in the first place. The
method we choose is Bayesian parameter estimation [39–41], as it naturally provides a confidence
region in the form of the high-density posterior. An exact computation is only feasible for small
amounts of data in small dimensions [42, 43], and provides a confidence region with a very complex
description, so we have to use approximate methods. The only method we found in the literature
is based on using particle filters [44, 45]. Its complexity scales exponentially with the dimension
and is therefore unsuitable for our purposes. We propose thus a new method.

The method we use is based on approximating the likelihood function by a Gaussian. This
will be a good approximation whenever the trials are independent and the amount of data is
large. It results in a confidence region consisting of the intersection of an ellipsoid with the set of
probabilities that can be produced by quantum states. The crucial advantage of this confidence
region is that it can be described by semidefinite constraints, and as such be incorporated in our
SDP. More formally, the confidence region is given by

C = {p |
〈
p− f ,Σ−1(p− f)

〉
≤ χ2, ∃σ tr(Eσ) = p, tr(σ) = 1, σ ≥ 0}, (28)

where f are the measured frequencies, p are the probabilities, Σ is the covariance matrix of
the Gaussian, χ is a parameter that determines the size of the ellipsoid, and E is a vector whose
components are the POVM elements. The algorithm to determine Σ and χ is described in Appendix
C.

8Maximum likelihood estimation [38] always produces valid quantum states, but it doesn’t provide confidence
regions, and as such it is unsuitable for our purposes.
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The modified SDP is then given by

min
σ,p,{ζa

i
,ηa
i
,θa
i
}a,i

cm +
m∑
i=1

n−1∑
a=0

wi
ti log 2 tr

[
(Aa0 ⊗ 1B)

(
ζai + ζai

† + (1− ti)ηai
)

+ tiθ
a
i

]
s.t. tr(σ) = 1, tr(Eσ) = p,

〈
p− f ,Σ−1(p− f)

〉
≤ χ2

∀a, i Γ1
a,i :=

(
σ ζai
ζai
† ηai

)
≥ 0, Γ2

a,i :=
(
σ ζai

†

ζai θai

)
≥ 0.

(29)

5.1 Examples
As an example, we calculated the key rate for the overlap protocol with the data obtained in an
experiment reported in Refs. [37, 46]. In this experiment time-bin entanglement is produced and
distributed over a 10.2km free-space channel over Vienna. The discretisation used here for the
key rate calculation was used in Ref. [46] to certify genuinely high-dimensional entanglement. We
used the data for d = 4, and obtained 0.4038. The measurements used were a linearly independent
subset of the real projectors E0,i,j , E1,i,j , E3,i,j . For comparison, we also computed the key rate
with the overlap protocol with d = 4 and k = 2, also using only the real projectors, and obtained
0.3868.

As another example, we calculated the key rate for the MUB protocol with the data obtained by
measuring the transverse position-momentum degree-of-freedom of photons using tailored macro-
pixel bases, for dimension d = 3. This data was originally presented in Ref. [47] in the context
of entanglement certification. Using the full data we got the key rate 1.3310. For comparison, we
also computed the key rate with the original MUB protocol from Ref. [8], that doesn’t use the full
data, and got 1.3553.

Surprisingly, the key rate was lower when using the full data. This is because in both cases
we are using a flat prior over the parameter space, but the parameter space is much larger when
using the full data, which dilutes the effect of Bayesian conditioning. The number of counts in the
data set was roughly 600 per setting, which is too small to overcome this effect. If we artificially
multiply the number of counts by 10 (which doesn’t change the relative frequencies), we get the
expected result: key rate 1.4303 with the full data, and 1.4021 with the original protocol. This
shows that when using the full data we need to make sure we have enough counts to have a good
estimate of all the parameters.

6 Conclusion
We have developed an SDP hierarchy for calculating asymptotic key rates in quantum key distribu-
tion with characterised devices. The algorithm is efficient, easy to implement, and straightforward
to use for different protocols. We have also shown how to adapt it to minimise the key rate over
the confidence region compatible with the measured statistics, which is necessary to handle real
experimental data. Our numerical results show that it closely recovers the known analytical key
rates.

We would like to highlight the main advantages of our approach to that of [15, 16]. First, our
method formulates the problem as an SDP, and thus can use standard solvers, while in [15, 16] the
problem of calculating the key rate is cast as a general convex optimization problem, which requires
custom-programmed algorithms. Also, we believe our method is easier to set up and modify for
an arbitrary protocol – the user only needs to be able to formulate the measurements used for the
key generation and the conditional entropy estimation. On the other hand, the methods of [15, 16]
require deeper understanding of the underlying method, including the definitions of certain linear
maps needed to properly define the cost function of each considered protocol.

The fact our method casts the problem as an SDP allows one to obtain an analytical lower bound
to the key rate, if desired. One solves the dual problem, approximates the numerical solution by
rational numbers, and perturbs the rational solution to make it satisfy the SDP constraints exactly.
This is done for example in Appendix C of [48]. In this way one gets around the finite tolerances
of numerical SDP solvers and possible floating-point errors.
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Directions for future research include adapting it to protocols that use different security assump-
tions, that were developed to overcome limitations of standard QKD. Examples are measurement-
device-independent QKD [49], twin-field QKD [50], and using decoy-states [51].

Another important step is to compute the rate for finite keys, which is necessary for real
implementations. This can be done using the Entropy Accumulation Theorem [52] as done in [53].

7 Code availability
All the code and data necessary to reproduce the results of this paper are available in https:
//github.com/araujoms/qkd.
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A Strict feasibility and facial reduction
Theorem 2. The SDP (7) is strictly feasible if and only if there exists a full rank state σ such
that tr(Fkσ) = fk for all k.

Proof. To see the if direction, assume that such a state exists. Then let ζai = 0, and ηai = θai = 1.
The eigenvalues of Γ1

a,i and Γ2
a,i are then the eigenvalues of σ, which are by assumption strictly

positive, together with the eigenvalues of 1.
To see the converse direction, let |v〉 be a eigenvector of σ with eigenvalue 0. Then since

Γ1
a,i = |0〉〈0| ⊗ σ + |0〉〈1| ⊗ ζai + |1〉〈0| ⊗ ζai

† + |1〉〈1| ⊗ ηai we have that 〈0|〈v|Γ1
a,i|0〉|v〉 = 0. Now

if Γ1
a,i ≥ 0, it can be written as G†G for some matrix G. Since 〈0|〈v|G†G|0〉|v〉 = ‖G|0〉|v〉‖2

2, we
have that G|0〉|v〉 = 0, and therefore Γ1

a,i|0〉|v〉 = 0.

In order to find out whether a full rank σ compatible with the measurement results exist it is
enough to maximise the minimum eigenvalue of σ, which is a simple SDP:

max
λ,σ

λ

s.t. tr(σ) = 1, ∀k tr(Fkσ) = fk, σ − λ1 ≥ 0.
(30)

Note that this SDP is always strictly feasible (if a σ compatible with the measurement results
exists in the first place), because one can set λ = −1 and then all eigenvalues will be at least 1.

Suppose that σ cannot be made full rank. Note that because of the constraints Γ1
a,i ≥ 0 and

Γ2
a,i ≥ 0 the matrices ζai must have the same support as σ. Furthermore, the matrices θai and ηai

can be chosen to have the same support, as non-zero elements outside it can never decrease the
value of the objective. Therefore, to make the SDP strictly feasible we can simply reformulate it
explicitly inside the support of σ.

Let then {|vi〉}k−1
i=0 be an orthonormal basis for the support of σ, and V = (|v0〉, . . . , |vk−1〉) an

isometry. We have that σ = V ωV † for a k × k quantum state ω, and similarly ζai = V ξai V
†, ηai =

V µai V
†, and θai = V νai V

† for k × k complex matrices ξai , µai , νai . Writing then SDP (7) in terms of
the new variables, we have

min
ω,{ξa

i
,µa
i
,νa
i
}a,i

cm +
m∑
i=1

n−1∑
a=0

wi
ti log 2 tr

[
V †(Aa0 ⊗ 1B)V

(
ξai + ξai

† + (1− ti)µai
)

+ tiν
a
i

]
s.t. tr(ω) = 1, ∀k tr(V †FkV ω) = fk

∀a, i Γ1
a,i :=

(
ω ξai
ξai
† µai

)
≥ 0, Γ2

a,i :=
(
ω ξai

†

ξai νai

)
≥ 0.

(31)

A.1 Example
Suppose Alice and Bob share a state of local dimension 2, and are estimating the probability of
getting equal outcomes in the Z and X bases. That is

F0 = |0〉〈0|+ |1〉〈1| (32)
F1 = |+〉〈+|+ |−〉〈−|. (33)
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Suppose then that the probabilities they estimate9 are f0 = 1 and f1 = x, for some x ∈ (0, 1).
Then necessarily we have that σ|01〉 = σ|10〉 = 0, so σ is supported in the 2-dimensional subspace
spanned by |φ+〉 and |φ−〉. The isometry is then V = (|φ+〉, |φ−〉), and with it we can solve the
reduced SDP (31). It turns out that in this case facial reduction made no practical difference: the
numerical solver could also handle this problem without the reduction, the only difference was that
the reduced problem was much faster.

Suppose now that x = 1, so the only possible solution is σ = |φ+〉〈φ+|, and the isometry is
V = |φ+〉. In this case the solver cannot handle the original problem, it suffers from numerical
instabilities and gives out an incorrect answer. The reduced problem was solved correctly without
difficulties.

B Symmetrisation
In this appendix we explore in more detail the symmetrisation techniques mentioned in Section 3.

B.1 Complex conjugation
The simplest symmetrisation applies when Aa0 and Ek are real matrices for all a, k. Then the
transformation

σ 7→ σ∗, (34a)
ζai 7→ ζai

∗, (34b)
ηai 7→ ηai

∗, (34c)
θai 7→ θai

∗, (34d)

will leave the objective invariant, as

cm +
m∑
i=1

n−1∑
a=0

wi
ti log 2 tr

[
(Aa0 ⊗ 1B)

(
ζai
∗ + ζai

∗† + (1− ti)ηai
∗
)

+ tiθ
a
i
∗
]

= cm +
m∑
i=1

n−1∑
a=0

wi
ti log 2 tr

[
(Aa0

T ⊗ 1B)
(
ζai + ζai

† + (1− ti)ηai
)

+ tiθ
a
i

]
, (35)

and map satisfied constraints to satisfied constraints, as tr(σ∗) = tr(σ), tr(Ekσ∗) = tr(ETk σ), and
Γga,i

∗ ≥ 0 iff Γga,i ≥ 0.
This implies that whenever σ, {ζai , ηai , θai }a,i is feasible solution to the SDP, σ∗, {ζai

∗, ηai
∗, θai

∗}a,i
will also be a feasible solution with the same value, and the same will be true for any convex
combination of these two sets. Using then equally weighted convex combination, we see that we
can choose all of them to be real.

Even if the Ek are not real, this symmetrisation also applies if for all k there exists a k′ such
that ETk = Ek′ and fk = fk′ . This holds for example for the MUB protocol from Section 4.1 with
the probabilities of the isotropic state. It will certainly not hold for real experimental data (or
even simulated data), so we refrained from using this in our calculations.

B.2 Permutation
Assume now that Aa0 = |a〉〈a|, that is, we are using the computational basis as the key basis. Then
for any permutation π and any unitary V the objective will be invariant under the mapping

ζai 7→ (U†π ⊗ V †)ζ
π(a)
i (Uπ ⊗ V ), (36a)

ηai 7→ (U†π ⊗ V †)η
π(a)
i (Uπ ⊗ V ), (36b)

θai 7→ (U†π ⊗ V †)θ
π(a)
i (Uπ ⊗ V ), (36c)

σ 7→ (U†π ⊗ V †)σ(Uπ ⊗ V ), (36d)

9This is of course not a realistic scenario. Even in the very unlikely case where they always get equal outcomes
in the Z basis, they would be fools to estimate the probability to be 1.
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where Uπ is the permutation matrix such that Uπ|a〉 = |π(a)〉 for all a.
This mapping also doesn’t affect the satisfiability of the constraints of the SDP, except for the

constraint tr(Ekσ) = fk, which is mapped onto tr
[
Ek(U†π ⊗ V †)σ(Uπ ⊗ V )

]
= fk. Therefore, the

mapping (36) is a symmetry of the SDP if

Ek = (Uπ ⊗ V )Ek(U†π ⊗ V †) ∀k. (37)

On the flip side, whenever our measurement bases satisfy such a permutation symmetry, we can
use that symmetry to simplify the SDP.

Assuming that this holds for some π and V , let Sπ be a set of representatives for the orbits of π,
andKπ(a) the size of the orbit of representative a. For example, if π is such that π(0) = 2, π(1) = 1,
and π(2) = 0, then Sπ = {0, 1},Kπ(0) = 2, and Kπ(1) = 1. Then SDP (7) simplifies to

min
σ,{ζa

i
,ηa
i
,θa
i
}a,i

cm +
m∑
i=1

∑
a∈Sπ

Kπ(a) wi
ti log 2 tr

[
(Aa0 ⊗ 1B)

(
ζai + ζai

† + (1− ti)ηai
)

+ tiθ
a
i

]
s.t. tr(σ) = 1, σ = (U†π ⊗ V †)σ(Uπ ⊗ V ), ∀k tr(Ekσ) = fk

∀a ∈ Sπ,∀i Γ1
a,i :=

(
σ ζai
ζai
† ηai

)
≥ 0, Γ2

a,i :=
(
σ ζai

†

ζai θai

)
≥ 0.

(38)

This symmetrisation applies for example to the original MUB protocol from Ref. [8], without
generalisations we introduced in Section 4.1. In the original protocol they measure only the pro-
jectors

Ek,l :=
d−1∑
i=0

Πi
k ⊗Πi⊕l

k

T (39)

for prime d, with l going from 0 to d− 2.
In this case the MUBs are given by the eigenvectors of the Weyl operators, and it is easy to

see that Equation (37) is satisfied with V = Uπ for the cyclic permutation π(a) = a ⊕ 1, where
addition is modulo d. Then Sπ = {0}, which has an orbit of size d. This provides a dramatic
increase in performance, cutting running time and memory usage by roughly a factor of d.

This symmetrisation also applies for the overlap protocol from Section 4.1 if we modify it to
measure only the probabilities that the outcomes are equal. Then Equation (37) is satisfied with
V = Uπ for the permutation π(a) = d− 1− a. Then Sπ = {0, . . . , d/2− 1}, and all orbits have size
two.

B.3 Lower bound
This is not a symmetrisation technique, but it is worth noting that one can reduce the memory
usage of SDP (7) by using the following lower bound, analogous to the one used in Ref. [17]:

min
σ,{ζa

i
,ηa
i
,θa
i
}a,i

cm +
m∑
i=1

n−1∑
a=0

wi
ti log 2 tr

[
(Aa0 ⊗ 1B)

(
ζai + ζai

† + (1− ti)ηai
)

+ tiθ
a
i

]
≥ cm +

m∑
i=1

wi
ti log 2 min

σ,{ζa
i
,ηa
i
,θa
i
}a

n−1∑
a=0

tr
[
(Aa0 ⊗ 1B)

(
ζai + ζai

† + (1− ti)ηai
)

+ tiθ
a
i

]
. (40)

While the original SDP requires mn variables {ζai , ηai , θai }a,i, the lower bound breaks it down into
m different SDPs with only n variables {ζai , ηai , θai }a each. The lower bound is in general not tight,
and the running time of the m SDPs is often longer than the running time of the original SDP, so
it should only be used on systems with insufficient memory. We haven’t used this lower bound in
any of the calculations in this paper.

C Determining the confidence region
The idea behind Bayesian parameter estimation is simple: we wish to estimate some parameters
θ based on some data D, given a prior distribution over the parameters p(θ). The posterior
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distribution of the parameters is therefore given by

p(θ|D) = p(D|θ)p(θ)∫
dθ′p(D|θ′)p(θ′)

,

the resulting estimate for the parameters is the expected value

θ̂ :=
∫

dθp(θ|D)θ, (41)

and the 1−α credible region (Bayesian version of confidence region) is defined as the high density
posterior, that is, the set

Sγ := {θ ; p(θ|D) ≥ γ}, (42)

where γ is defined as the supremum of γ′ such that∫
Sγ′

dθp(θ|D) ≥ 1− α. (43)

The required integrals are in general very difficult to compute. We propose here to compute them
by approximating the likelihood function p(D|θ) by a Gaussian, restricting the prior p(θ) to be
either flat or Gaussian, and then applying Monte Carlo methods.

The reason for doing so is that the product of two Gaussians is again a Gaussian, and so the
posterior distribution will be the intersection of a Gaussian with the space of valid θ, call it Θ
(in our case the set of probabilities that can be produced by a quantum state). This makes the
credible region easy to describe; if the Gaussian of the posterior has mean µ and covariance matrix
Σ, that is, if

G(θ) = 1√
det(2πΣ)

exp
(
−1

2
〈
θ − µ,Σ−1(θ − µ)

〉)
, (44)

then the credible region will be the set of θ such that θ ∈ Θ and〈
θ − µ,Σ−1(θ − µ)

〉
≤ χ2 (45)

for some χ. The main advantage of doing so is that inequality (45) is an SDP constraint, so if the
condition θ ∈ Θ also is, we can bound quantities of interest maximising or minimising them over
the credible region.

To compute the credible region we then start with a initial guess χ0 = Q−1(κ/2, 0, 1 − α),
where Q is the regularised incomplete gamma function and κ the number of parameters we are
estimating. We then compute integral (43) via Monte Carlo: we sample n times a θ from p(θ|D)
and count how many times k it respects inequality (45). Our estimate of the integral is then k/n.
We then increase or decrease χ0 until we our estimate is close enough to 1− α, via binary search.

To sample θ from p(θ|D), there are two methods: the easiest one is rejection sampling: sample
θ from G(θ), which is very easy to do, and check whether θ ∈ Θ. If yes, accept the sample,
otherwise reject. It might be the case that the probability of getting a sample θ ∈ Θ is too low
for this method to be viable, usually when µ 6∈ Θ. In this case we need to sample θ with the
Metropolis algorithm.

Up to this point, the discussion of Bayesian parameter estimation has been quite generic. In
order to apply it to our problem we need to specify the likelihood function and the Gaussian that
approximates it.

If one assumes the random variables are independent and identically distributed (i.i.d.), the
likelihood function is given simply by the multinomial distribution. Let’s say one performed a set
of n measurements with ki outcomes each, obtaining counts N := {Nw

i }
ki−1,n−1
w=0,i=0 with probabilities

p := {p(w|i)}ki−1,n−1
w=0,i=0 . The likelihood function is then

L(p) := exp〈N, log(p)〉, (46)

where 〈·, ·〉 denotes the inner product. We approximate it by the Gaussian with multinomial mean
and covariances.
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The mean µ := {µ(w|i)}ki−2,n−1
w=0,i=0 is given by

µ(w|i) = Nw
i

Ni
, (47)

where we are omitting the relative frequency of the last outcome in order to avoid degeneracy, and
Ni :=

∑ki−1
w′=0 N

w′

i .
The covariance matrix Σ is given by

Σ =
n−1⊕
i=0

(diag(µi)− µiµTi )/Ni, (48)

where µi := {µ(w|i)}ki−2
w=0 . If any of the counts Nw

i is equal to zero, this will lead to a singular
covariance matrix, which can not be used in the Gaussian. A simple trick to get around this is
to change this count to one for the calculation of the covariance matrix. This makes it no longer
singular, and still provides a decent approximation to the multinomial distribution, provided the
number of counts is high enough for the Gaussian to be a sensible approximation.

Without the i.i.d. assumption, the covariance matrix is no longer a simple function of the mean,
but needs to be estimated separately.
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