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Rapidly improving gate fidelities for coherent operations mean that errors

in state preparation and measurement (SPAM) may become a dominant source

of error for fault-tolerant operation of quantum computers. This is particu-

larly acute in superconducting systems, where tradeoffs in measurement fidelity

and qubit lifetimes have limited overall performance. Fortunately, the essen-

tially classical nature of preparation and measurement enables a wide variety

of techniques for improving quality using auxiliary qubits combined with clas-

sical control and post-selection. In practice, however, post-selection greatly

complicates the scheduling of processes such as syndrome extraction. Here

we present a family of quantum circuits that prepare high-quality |0〉 states

without post-selection, instead using CNOT and Toffoli gates to non-linearly

permute the computational basis. We find meaningful performance enhance-

ments when two-qubit gate fidelities errors go below 0.2%, and even better

performance when native Toffoli gates are available.

Key physical implementations of quantum computers now reliably achieve two-qubit gate

fidelities approaching 99.8% [23], with multiple systems reporting fidelities ranging from

99.2% to 99.6% [1, 10, 19, 26]. This leaves SPAM (state preparation and measurement)

errors as a dominant source of error in many, particularly superconducting, machines.

Google’s Sycamore processor experienced measurement error rates greater than 3% [1], and

IBM report similar levels of measurement error [16] in their devices. Recent improvements

to standard superconducting measurement error rates have not yet reduced them below

1% [20], although more is possible using multilevel qubit encodings [8]. In contrast, for

ions, neutral atoms, and spins in silicon measurement error rates can be much lower (cf.

IonQ’s 99.3% [27] and HRL’s 99.75% [2]), though achieving low rates in dense arrays

remain a substantial challenge [28].

There are three broad approaches to reducing the impact of SPAM errors. The first is

to improve the physical processes of preparation and measurement. In most architectures

there are tradeoffs between SPAM errors and speed, as longer integration or preparation

times can improve performance but take longer; see for example [8] for the benefits of

measuring slowly up to T1 limits. The second is error mitigation techniques which calibrate
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Figure 1: Two approaches to |0〉 state production.

and compensate for errors by running the circuit many times and reconstructing the

expected outputs post-facto. This is helpful for NISQ applications [13, 25] but does little

to improve the entropy extraction critical for quantum error correction, and the extension

of error mitigation into the early fault-tolerant regime [24] requires SPAM errors with

similar performance to two-qubit gate fidelities. Here we examine the third approach:

algorithmically improving the quality of preparation and measurement using quantum

logic gates.

Algorithmic improvement for measurement is straightforward. The simplest example

is used in, e.g., the double species ion clock (see [15, 17], and [5] for a recent example),

where one readout qubit is used multiple times to estimate the clock qubit—a simple

type of repetition code. More generally, CNOT gates can encode a set of measurement

outcomes in a classical error correcting code on auxiliary measurement qubits, allowing

recovery from sufficiently few measurement errors [14]. As these codes have very good

performance and efficient decoders, we recommend their use but do not elaborate on them

further here.

A conventional approach to improving preparation using post-selection is the circuit

in Figure 1a. We prepare two qubits in state |0〉, apply a CNOT from the first to the

second, then measure the second in the computational basis. If the measurement result is

0, we output the first qubit as a high-quality |0〉. If not, we reject and begin the process

again.

Suppose for now that gates are perfect, but that each preparation incorrectly produces

|1〉 with probability p0, and that the measurement outcome is also incorrect with probabil-

ity p0, with all errors independent. Then the measurement result is 0 precisely when there

are an even number of errors across the two preparations and one measurement. We will

correctly output |0〉 if there are no errors, or two errors which occur on the second prepa-

ration and the measurement. Otherwise we will either output |1〉 or reject. Conditional

on acceptance, this circuit produces post-selected |0〉 states with an error rate 2p2
0 +O(p3

0).
Post-selection is an acceptable method for production of complex logical states such as

T -magic states, where the scheduling difficulties it presents are the price we pay for imple-

menting a logical non-Clifford gate fault-tolerantly. However, it is much less satisfactory

for the large number of simple physical |0〉 states required for every round of syndrome

extraction. Specific challenges induced by post-selection include

• the need to schedule multiple attempts in case the first attempt fails;

• the need to wait for measurement results and classical processing, which in some

systems can take appreciable time;

• the risk of measurement inducing cross-talk errors on adjacent qubits;

• limited advantage when measurement errors are substantially worse than preparation

errors.
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result

total errors post-selection purification

0 |0〉 |0〉
1 reject |0〉

2

|0〉 with probability 1/3
|1〉 with probability 2/3

|1〉

3 reject |1〉

Table 1: Comparison of two approaches to |0〉 state production.

We propose an alternative approach avoiding post-selection, with the simplest example

shown in Figure 1b. This circuit fixes |000〉, |010〉 and |001〉, and takes |100〉 to |011〉, so

outputs |0〉 on the first wire precisely when there is at most one error on the input. Thus

it produces |0〉 states with slightly higher error rate 3p2
0 +O(p3

0), but does so without the

use of post-selection.

The outcomes for each circuit are summarised in Table 1. Our post-selection-free

approach has a higher yield of |0〉 states, correctly processing all cases with 1 error rather

than one of the cases with 2 errors. It greatly simplifies scheduling of |0〉 production, and

avoids delays on architectures where measurement is significantly slower than applying

gates. On the other hand it has higher resource requirements, requiring one additional

qubit and more gates, including a physical Toffoli.1

We call the circuit in Figure 1b a (3, 1, 1) purification circuit because it uses three

qubits to prepare one high-quality |0〉 and can tolerate one error; we define the notation

formally at the beginning of Section 1. For the (3, 1, 1) circuit and a selection of other

circuits described in more detail later, Figure 2 shows the output error rate as a function

of the input error rate, assuming that gates depolarise qubits with probability 0.003 and

idle qubits depolarise with probability 0.001 in each round. The (3, 1, 1) circuit improves

a 2% preparation error rate to a 0.5% error rate and a 1% preparation error rate to a 0.4%

error rate.

Figure 3 shows the thresholds a gate set must meet in order for the circuit of Figure 1b

to improve preparation quality at fixed idle depolarisation rate 0.001. Contours correspond

to preparation error rates. If your CNOT and Toffoli depolarisation rates place you to the

left of a contour then you obtain an improvement from the (3, 1, 1) circuit.

In the rest of this paper we propose and assess the performance of a range of circuits

analogous to that of Figure 1b, and quantify the trade-off in which more complicated cir-

cuits provide greater protection against preparation errors but are more vulnerable to gate

errors. In Section 1 we define and describe the general properties of purification circuits,

explain how to find small examples computationally, and consider ways to combine these

small examples to form larger circuits. In Section 2 we describe a particular construction

based on graphs inspired by examples discovered in Section 1. The simplest versions of

1A variety of constructions could instead be used to approximate a Toffoli gate up to relative phases.

For example, the circuit
q0

q1

q2

H H

q1-conditionally conjugates the q2-conditional Z gate to an X, resulting
in an operation differing from the Toffoli with target q0 by −1 precisely on the basis state |101〉. In our
model (see Section 1.1) the state is a mixture of computational basis states so these relative phases are
unobservable.
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Figure 2: Output error rate as a function of input error rate when gates depolarise with
probability 0.003 and idle qubits depolarise with probability 0.001. The curve labelled (3, 1, 1)

corresponds to the circuit of Figure 1b.
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Figure 2: Output error rate as a function of input error rate when gates depolarise with probability
0.003 and idle qubits depolarise with probability 0.001. The curve labelled (3, 1, 1) corresponds to the
circuit of Figure 1b.
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Figure 3: Gate thresholds for the (3, 1, 1) circuit.

Section 3 we present data on the performance of these circuits.
Various schemes making repeated applications of the idea behind Figure 1a have been

studied under the name ‘algorithmic cooling’ [SV99, BMR+02, FLMR04, EMW11, BEMW14,
LLM22]. Their analysis is typically in terms of entropy, tracking which qubits are ‘hot’ or
‘cold’. Our approach is combinatorial, instead tracking what happens to individual error
patterns as the circuit permutes the computational basis.

1 Purification circuits
We define an (n, k, e) purification circuit (or (n, k, e) circuit) to be a CNOT and Toffoli
circuit mapping the n-long bitstrings of weight at most e into the space of n-long bitstrings
that are zero in k nominated positions. If each value in the input is intended to be 0, but
experiences an independent error probability p0 of being flipped to a 1, then each of the k

outputs of an (n, k, e) purification circuit experiences a reduced error rate O(pe+1
0 ).

The parameter e is defined in terms of protection against adversarial errors and, as with
the distance of a (quantum or classical) error correcting code, does not necessarily give a
complete picture of the degree of protection against random errors. The worst case output
error rate of an (n, k, e) purification circuit is

(
n

e+1

)
pe+1
0 + O(pe+2

0 ). In many cases only a
small fraction of the sets of e + 1 preparation errors lead to an error on the output, so the
coefficient of pe+1

0 will be much smaller.

1.1 Error model

An (n, k, e) purification circuit can be viewed as a purely classical object operating on classical
bitstrings. To interpret it as a quantum circuit running on noisy hardware we adopt the

5

Figure 3: Gate thresholds for the (3, 1, 1) circuit.
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these circuits have favourable performance and resource requirements and have a natural

planar layout. In Section 3 we present data on the performance of these circuits.

Various schemes making repeated applications of the idea behind Figure 1a have been

studied under the name ‘algorithmic cooling’ [3, 4, 9, 11, 18, 22]. Their analysis is typically

in terms of entropy, tracking which qubits are ‘hot’ or ‘cold’. Our approach is combina-

torial, instead tracking what happens to individual error patterns as the circuit permutes

the computational basis.

1 Purification circuits

We define an (n, k, e) purification circuit (or (n, k, e) circuit) to be a CNOT and Toffoli

circuit mapping the n-long bitstrings of weight at most e into the space of n-long bitstrings

that are zero in k nominated positions. If each value in the input is intended to be 0, but

experiences an independent error probability p0 of being flipped to a 1, then each of the

k outputs of an (n, k, e) purification circuit experiences a reduced error rate O(pe+1
0 ).

The parameter e is defined in terms of protection against adversarial errors and, as

with the distance of a (quantum or classical) error correcting code, does not necessarily

give a complete picture of the degree of protection against random errors. The worst case

output error rate of an (n, k, e) purification circuit is
( n

e+1
)
pe+1

0 +O(pe+2
0 ). In many cases

only a small fraction of the sets of e+ 1 preparation errors lead to an error on the output,

so the coefficient of pe+1
0 will be much smaller. This applies, for example, to the family of

circuits that we consider in Section 2.

1.1 Error model

An (n, k, e) purification circuit can be viewed as a purely classical object operating on

classical bitstrings. To interpret it as a quantum circuit running on noisy hardware we

adopt the following error model for preparation, idle and gate errors.

The basic error events are:

• a qubit is incorrectly prepared as |1〉 rather than |0〉 with probability p0;

• a qubit not involved in the current round of gates depolarises with probability pI ;

• a CNOT gate depolarises the set of qubits it acts on with probability pC ;

• a Toffoli gate depolarises the set of qubits it acts on with probability pT .

All of these events are independent.

By ‘a set Q of qubits depolarises’ we mean any of the following equivalent things.

• the qubits in Q are replaced by a uniform mixture of the computational basis;

• each qubit in Q experiences a Pauli I, X, Y or Z error chosen uniformly and inde-

pendently at random;

• each qubit in Q experiences a Pauli X error with probability 1/2 and a Pauli Z error

with probability 1/2, with all choices made independently.
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Note that the parameterisation for preparation errors differs from that for idle and gate

errors; preparing |1〉 rather than |0〉 with probability p0 < 1/2 corresponds to correctly

preparing |0〉 then depolarising with probability 2p0.

Since failures in either preparation or application of a gate in this model replace qubits

by mixtures of computational basis states, the state of the system at any point is fully

described by a probability distribution over the computational basis. Each probability is

a polynomial in p0, pI , pC , pT , which can be computed precisely for circuits of moderate

size. See Appendix E for more details.

This simple model has the significant advantage of being easy to compute with. The

disadvantage is that it does not capture all possible error processes within a quantum

computer. To give just one example, suppose that your CNOT gate is composed of CZ

and Hadamard gates, and that a more accurate error model is that each component gate

has an independent probability of depolarising the qubits it acts on. This is not the same

as the combined CNOT gate having some probability of depolarising the qubits it acts on;

it doesn’t even have the property that a system with this noise model can be described as

a mixture of computational basis states. Fully realistic noise models are of course more

complicated again.

1.2 Existence

We can view an (n, k, e) purification circuit as a permutation of Fn
2 which maps the set of

vectors of weight at most e into the set of vectors that vanish in k nominated positions.

This places a size constraint on n, k, e. The necessary condition is also sufficient.

Proposition 1. Let n ≥ 1 and k, e ∈ {1, . . . , n}. If(
n

0

)
+
(
n

1

)
+ · · ·+

(
n

e

)
≤ 2n−k, (1)

then there is an (n, k, e) purification circuit consisting of CNOT and Toffoli gates.

Note that this is false if we restrict to circuits containing only CNOTs (which act

linearly on Fn
2 ) or to circuits containing only Toffolis (which fix the set of states of weight

at most 1). Any purification circuit for which (1) is equality is optimal in the sense that,

for p0 < 1/2, it maps the most likely 2n−k basis states to the most useful 2n−k states.

We prove Proposition 1 in Appendix A. The argument is group-theoretic, and does

not provide an efficient procedure to construct purification circuits with given parameters.

For the special case of (2m+1 − 1, 1, 2m − 1) circuits we describe an explicit if impractical

construction in Appendix B.

1.3 Finding small circuits

An (n, 1, 1) purification circuit must have n ≥ 3. It is straightforward to check that no one

or two gate circuit is a (3, 1, 1) circuit, so the (3, 1, 1) circuit in Figure 1b is the smallest

example that can defend against a single preparation error. (There is one other family

of examples, obtained by replacing the second CNOT gate by a Toffoli.) Similarly, an

(n, 1, 2) circuit must have n ≥ 5. An exhaustive search reveals that the smallest (5, 1, 2)
circuits have 9 gates; two examples are shown in Figure 4. Equivalent circuits can be

obtained by permuting the bottom four wires, or by interchanging consecutive commuting
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Figure 4: Examples of the two classes of (5, 1, 2) purification circuits of length 9.

q0
q1
q2
q3
q4
q5
q6
q7
q8

Figure 5: Composing (3, 1, 1) circuits to obtain a (9, 1, 3) circuit.

gates. All 384 (5, 1, 2) circuits of length 9 which output on the top wire can be obtained

from these examples in this way: 288 variations of the first type and 96 variations of the

second.

There are 25 = 32 basis states of 5 qubits, so a set of states (such as the low weight

states, or the states that are |0〉 on the first qubit) can be represented by a string of 32

bits. By working forward from the initial set of states, backward from the target set of

states and meeting in the middle, we can find (5, 1, 2) circuits very quickly, in around√
232 = 216 time and space; see Appendix D for more details.

To find a (7, 1, 3) circuit in this way the comparable figure is
√

227 = 264 time and space,

so we are already at the limit of what can be achieved without special insight into the

problem. In the next section we present techniques for combining purification circuits. The

results do not have optimal parameters (n, k, e), but do have relatively simple structures

and avoid the requirement to do large amounts of work upfront to discover them.

1.4 New purification circuits from old

In this section we describe two techniques for constructing new purification circuits from

existing ones.

1.4.1 Composition

The simplest and most general technique is to compose circuits, of similar or different

types, to obtain larger ones. Figure 5 shows three (3, 1, 1) circuits feeding their outputs

into a fourth (3, 1, 1) circuit. An error on the output requires errors on at least two of

the inputs of the fourth circuit, which requires at least two errors on at least two of the

first three circuits, so the composed circuit has parameters (9, 1, 3). By Proposition 1, a

(9, 1, e) purification circuit could in principle have e = 4, so we have given up something

on the achievable protection in exchange for a concrete circuit with a simple structure.

By the same argument we obtain the following.

Accepted in Quantum 2023-04-04, click title to verify. Published under CC-BY 4.0. 7
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(a) (5, 1, 1)
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q5
q6

(b) (7, 1, 2)

Figure 6: Interpolating between (3, 1, 1) and (9, 1, 3).

q0
q1
q2
q3
q4
q5
q6
q7

Figure 7: An (8, 2, 2) circuit obtained by overlapping two (5, 1, 2) circuits. Output is on the first and
last wires.

Proposition 2. Feeding the outputs of n2 copies of an (n1, 1, e1) purification circuit with
g1 gates into an (n2, 1, e2) purification circuit with g2 gates produces an (n1n2, 1, (e1 +
1)(e2 + 1)− 1) circuit with n2g1 + g2 gates.

Observe that feeding (5, 1, 2) circuits into a (3, 1, 1) circuit or feeding (3, 1, 1) circuits

into a (5, 1, 2) both result in (15, 1, 5) circuits, but 5-into-3 uses 30 gates and 3-into-5 uses

20 gates, so there is typically an incentive to use simpler circuits closer to the raw input.

There is no requirement that the circuits in the first stage are identical. For example,

we might replace some of the first round (3, 1, 1) circuits in the (9, 1, 3) circuit by naive

preparations. Changing only some of the inputs in this way, as shown in Figure 6, allows

us to interpolate between the performance and resource requirements of the (3, 1, 1) circuit

and the (9, 1, 3) circuit.

1.4.2 Juxtaposition and overlapping

So far all of our circuits have produced a single output. The simplest way to get multiple

outputs is to use multiple circuits; m copies of an (n, k, e) circuit can be viewed as a single

(mn,mk, e) circuit. This is very far from optimal, as we are over-protected against sets

of e errors split between the m circuits. In favourable situations we can exploit this fact

by overlapping circuits to re-use qubits. For example, the circuit in Figure 7 comprises

two copies of the (5, 1, 2) circuit from Figure 4a sharing qubits q3 and q4. We can check

that this circuit retains the full protection of both original copies, for an overall parameter

set (8, 2, 2). This circuit has been drawn to highlight its symmetry, but its depth can be

reduced by 1 to 13 by performing the first four gates over two rounds.

1.5 Relation to classical codes

A (2e+ 1, 1, e) purification circuit can be viewed as a decoder for the (2e+ 1)-bit classical

repetition code. The output bit contains the majority vote of the input bits, and the other

Accepted in Quantum 2023-04-04, click title to verify. Published under CC-BY 4.0. 8
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(a) A legible ordering of the gates.
q0
q1
q2
q3
q4
q5
q6

(b) A logically equivalent circuit that can be scheduled over
8 rounds.

Figure 8: (7, 4, 1) purification circuits based on the Hamming code.

bits contain the syndrome information required to reconstruct the input. Any CNOT and

Toffoli circuit for decoding a classical [n, k, 2e + 1] code can be viewed as an (n, k, e)
purification circuit in the same way.

This is generally more than we need; we only require that strings close to the zero

codeword are correctly decoded. Take for example the [7, 4, 3] Hamming code. By Propo-

sition 1, there is a CNOT and Toffoli circuit bijecting the ball of radius 1 about 0 with

the space of vectors that vanish in 4 nominated positions. Since there are only
(128

8
)
≈ 240

sets of 8 basis states on 7 qubits, searching for these circuits is feasible, unlike the sit-

uation for (7, 1, 3) circuits described in Section 1.3. There are 508 022 784 such circuits.

By inspecting a small number of these and rearranging gates by hand we arrive at the

circuit presented in Figure 8a. We emphasise that this is not a full decoding circuit for

the Hamming code.

We can interpret this circuit as four consecutive (3, 1, 1) circuits on sets of wires

{0, 3, 6}, {1, 4, 6}, {2, 5, 6}, {3, 4, 5}. The first three circuits share the auxiliary qubit

q6. The final circuit re-uses the remaining auxiliary qubits from the first three circuits.

Figure 8b shows a logically equivalent circuit obtained by commuting gates past each other

greedily that can be scheduled over 8 rounds. This is the form of the circuit that we use

in simulations.

In the next section we present a very general construction inspired by circuits like that

in Figure 8a.

2 Purification circuits from graphs

With perfect gates, an (n, k, e) purification circuit improves a preparation error rate p0
to O(pe+1

0 ). In practice purification circuits will themselves be subject to error, meaning

that the dominant term in the output error probability is likely to be due to gate failures,

for example of the final Toffoli. There is therefore limited advantage to increasing e. In

this section we focus on increasing the rate k/n, presenting a general construction, based

on graphs, which allows us to tune the rate against other parameters like circuit depth.
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Figure 9: In the graph construction, each edge becomes a (3, 1, 1) circuit. In the first stage, CNOTs
copy an error on any edge to its endpoints. In the second stage, Toffolis correct the error on any edge
which marked its endpoints in this way. The gates within each stage commute and can be applied in
any order.

2.1 Reinterpreting the (3, 1, 1) circuit

We can interpret the operation of the (3, 1, 1) circuit as follows. Think of the first wire as

a data qubit, and the other two wires as auxiliary qubits. When the single allowed error

is on the data, the two CNOTs mark the auxiliary qubits. This double mark is detected

by the Toffoli, which clears the data error. When the error is on an auxiliary qubit, it

can’t spread back through the CNOTs, and it isn’t able to activate both controls of the

Toffoli, so the data remains unchanged. If instead we have a auxiliary qubits then we have(a
2
)

pairs available for marking in this way, which can be used to protect up to
(a

2
)

data

qubits against a single preparation error. This construction is naturally expressed in the

language of graphs.

2.2 The general construction

Given a graph G with r vertices and s edges, we can obtain an (r + s, s, 1) purification

circuit as follows. Associate one data qubit quv to each edge uv, and one auxiliary qubit

qv to each vertex v.

(detect stage) For each edge uv, apply CNOTs controlled on quv and targeting qu, qv.

(correct stage) For each edge uv, apply Toffolis controlled on qu, qv and targeting quv.

The gates within each stage commute, so can be performed in any order. The circuit has

2s CNOTs and s Toffolis, and can be scheduled over at most 3χe(G) rounds, where χe(G)
is the edge-chromatic number of G. See Figure 9 for the result of applying this process to

a path of length 5.

There is a superficial resemblance between these circuits and those implementing a

surface code (or repetition code, in the case where G is a path or cycle). Data qubits are

associated with each edge, and ‘syndrome extraction’ consists of CNOTs implementing a

boundary operator, revealing those vertices incident to an odd number of edges with data

errors. The two processes then diverge, as a true surface code makes corrections based on

considering a global syndrome; we instead make local corrections to edges both of whose

endpoints are marked in the syndrome. This works well for isolated errors, but not for

more complicated error configurations.
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Figure 10: Correct operation of the (3, 1, 1) circuit viewed as a graph and the two different ways in
which it fails to handle two errors.

(a)

(b)

Figure 11: Failure of the complete graph construction with data errors on two different edges.
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(a) Output on q3.
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(b) Output on q5.

Figure 12: Small and large light cones over a long even cycle. When viewed as parts of the same circuit
over a path or cycle, there is a further idle step following the short light cone.

Figure 10 shows the correct operation of the (3, 1, 1) circuit when there is a single

error on the data edge, and the two ways it can fail when there are two errors spread

across the data edge and auxiliary vertices. In larger graphs there are other modes of

failure. Errors on two incident edges cancel out part of their boundary, leading to neither

error being cleared and inducing an error on any edge spanning their other two endpoints

(Figure 11a). Errors on two disjoint edges are successfully cleared by the circuit, but cause

errors on any other edges induced by these vertices (Figure 11b).

Taking G to be the complete graph Kr produces an (r+
(r

2
)
,
(r

2
)
, 1) purification circuit.

If we write k =
(r

2
)
, then the parameters become (k+O(

√
k), k, 1); that is, we can protect a

set of k qubits against a single preparation error with only O(
√
k) overhead. The optimal

overhead is at least log2 k (as we must be able to map every single qubit error to an error

pattern supported on the auxiliary qubits), so this is not too far from best possible.

2.3 Paths and cycles

In addition to failing for many sets of two preparation errors (Figure 11), the circuit for

Kr has the disadvantage that it requires Ω(r) rounds of gates. These disadvantages can be

addressed by choosing a sparser graph, such a long cycle. If G is a cycle Ck on k vertices,

then the circuit can be scheduled over 4 (if k is even) or 5 (if k is odd) rounds, and has a

natural planar layout (cf. Figure 9). It also significantly outperforms its parameters.

A (2k, k, 1) circuit defined over a cycle protects completely against any single error.

Two or more errors on the input might lead to an error on the output, but only if those

errors are sufficiently close. By the light cone of an output qubit we mean the subset

of the gates and input qubits that can causally affect it. The state of the output qubit

depends only on the preparation and gate errors on this part of the circuit. Over a long

even cycle there are only two types of output qubit up to isomorphism (those in the first

round of Toffolis and those in the second round) and so two possible light cones, shown in

Figure 12. This allows us to analyse the output quality of the circuit over any sufficiently

long even cycle by examining only two light cones. Since the larger light cone only reaches

10 qubits, ‘sufficiently long’ means k ≥ 10.

With preparation error rate p0 and perfect gates, each output qubit experiences errors

with probability O(p2
0). Errors on output qubits are independent if they are sufficiently

separated that their light cones are disjoint, but errors on nearby output qubits are corre-

lated. This might lead to the following situation. Suppose that some set of a errors on the

input leads to b > a errors on the output. Then an event which should have probability
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Figure 13: Smallest non-fault tolerant error pattern on a path or long cycle.

qu quv qv qvw qw qwx qx qxy qy qyz qz

u v w x y z

Figure 14: Graph circuits arising from paths or cycles can be made fully fault-tolerant by adding
additional Toffolis to ensure that the shared vertex is set to |1〉 when there are errors on consecutive
edges.

O(pb
0) in fact occurs with probability Ω(pa

0). Depending on the intended use of the output

qubits, this might be problematic.

We call a purification circuit combinatorially fault-tolerant up to b preparation errors if,

for any a ≤ b, any set of a errors on the input leads to at most a errors on the output. For

example, one can check that the circuits corresponding to long cycles are combinatorially

fault-tolerant up to 3 preparation errors and that there is exactly one pattern of 4 errors

on the input leading to more than 4 errors on the output (Figure 13). This pattern works

as follows. Input errors on two adjacent edges are frozen in place as their shared auxiliary

qubit is first set to |1〉 then reset to |0〉, so does not activate the Toffolis. Two of these

frozen patterns placed one edge apart preserve the original errors but also causes a new

error on the separating edge.

One way to stop this behaviour is to prevent errors on adjacent pairs of edges from

being frozen in place. We can do this by adding an extra round of Toffolis to the detect

stage.

(detect stage) For each edge uv, apply CNOTs controlled on quv and targeting qu, qv.

(detect′ stage) For each pair of consecutive edges uv, vw, apply Toffolis controlled on

quv, qvw and targeting qv.

(correct stage) For each edge uv, apply Toffolis controlled on qu, qv and targeting quv.
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(a) Output on q5.
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(b) Output on q7.

Figure 15: Small and large light cones for the fault-tolerant circuit over a long even cycle. When viewed
as parts of the same circuit over a path or cycle, there is a further idle step following the short light
cone.

The gates in both detect stages all commute with each other, so can be performed in

any order. One choice of circuit is shown in Figure 14, with corresponding light cones in

Figure 15.

The idea behind this extended circuit is that, if there are no input errors on the vertices,

then the detect stage marks all of the endpoints of each edge with an input error, with no

cancellation arising from errors on consecutive edges. Then an input error on an edge is

successfully cleared unless there is also an input error on one of its endpoints; and an edge

with no input error experiences an error on the output only if, for both of its endpoints,

there is an input error on either that vertex or the next edge.

Theorem 3. The extended purification circuit defined over a path or cycle is combinato-
rially fault-tolerant for any number of preparation errors.

We give the elementary proof in Appendix C.

We have now described all of our constructions. In the next section we present data

on their performance.

3 Performance of purification circuits

For each circuit or light cone discussed in Sections 1 and 2 we computed the distribution

of the output qubits. The 2k probabilities in this output distribution are polynomials in

p0, pI , pC , pT . Rather than perform Monte Carlo experiments we calculated enough terms

of these polynomials to obtain the desired accuracy across the parameter range of interest;

we give more details in Appendix E.

The circuits we simulate are listed in Table 2 along with some basic parameters. To

simulate a circuit with idle errors we need to decide how to schedule the gates into rounds.

For the cycle-based constructions the gates were scheduled manually as described in Fig-

ures 12 and 15. For the other constructions the gates were scheduled greedily, commuting

gates past each other when necessary. The circuit diagrams in this paper were program-

matically generated from the scheduled circuits as simulated, and typeset using yquant [6].

The typeset circuits respect the scheduled gate order, but to avoid visual clutter we have
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name leading order error probability n/k gates/k depth figure

bare p0 1 0 0
(3, 1, 1) 3p2

0 + 4p0(pI/2) + (pI/2)2 + 3(pC/4) + 4(pT /8) 3 3 3 1b
(5, 1, 1) p2

0 + 8p0(pI/2) + 16(pI/2)2 + 3(pC/4) + 4(pT /8) 5 6 6 6a
(7, 1, 2) 6p3

0 + p0(pI/2) + 4(pI/2)2 + 3(pC/4) + 4(pT /8) 7 9 6 6b
(9, 1, 3) 27p4

0 + 12p2
0(pI/2) + (pI/2)2 + 3(pC/4) + 4(pT /8) 9 12 6 5

(5, 1, 2)a 10p3
0 + 5p0(pI/2) + 9(pI/2)2 + 3(pC/4) + 21(pT /8) 5 9 9 4a

(5, 1, 2)b 10p3
0 + (pI/2) + 3(pC/4) + 15(pT /8) 5 9 9 4b

(8, 2, 2) (29p3
0 + 8(pI/2) + 6(pC/4) + 42(pT /8))/2 4 9 13 7

(7, 4, 1) (2p0 + 18(pI/2) + 14(pC/4) + 20(pT /8))/4 7/4 3 8 8b
cycle (small light

cone)
8p2

0 + (pI/2) + 3(pC/4) + 4(pT /8) 2 3 4 12a

cycle (large light
cone)

8p2
0 + (pI/2) + 3(pC/4) + 4(pT /8) 2 3 4 12b

fault-tolerant cycle
(small light cone)

6p2
0 + (pI/2) + 3(pC/4) + 12(pT /8) 2 4 6 15a

fault-tolerant cycle
(large light cone)

6p2
0 + (pI/2) + 3(pC/4) + 12(pT /8) 2 4 6 15b

Table 2: Leading order error probability on each output qubit. When k > 1, this is interpreted as the
expected number of errors on the output divided by k.

not forced them to respect the scheduling of gates into rounds. The exact sequence of idle,

CNOT and Toffoli gates simulated can be generated from the published source code [21].

For example, the (3, 1, 1) circuit simulated is

Circuit {outputBits = [0],
gatesOf = [CNOT 0 1,Idle 2,CNOT 0 2,Idle 1,Toffoli 1 2 0]}.

For a circuit or light cone we write pout(p0, pI , pC , pT ) for the expected number of errors

on the output, divided by the number of outputs. When there is a single output this is the

probability of an error on that qubit; when there are multiple outputs this is the average

probability of an error on each qubit.

Let g1, g2, g3 be the number of idle, CNOT and Toffoli gates in a circuit. The polyno-

mial pout(p0, pI , pC , pT ) is a sum of terms of the form

pf0
0 (1− p0)n−f0(pI/2)f1(1− pI)g1−f1(pC/4)f2(1− pC)g2−f2(pT /8)f3(1− pT )g3−f3 ,

each corresponding to a run of the circuit in which there were f0 preparation errors, f1
idle errors, f2 CNOT errors and f3 Toffoli errors. In particular,

pout(p0, 0, 0, 0) =
n∑

i=1
aip

i
0(1− p0)n−i (2)

for some ai ≥ 0, where the i = 0 term is 0 as there are no errors on the output if there are

no errors on the input. We plot these polynomials for each circuit in Figure 16. Note that

the small and large light cones of each cycle construction, and the two (5, 1, 2) circuits,

are equivalent in the absence of idle and gate errors, so only one representative of each

type is plotted in Figure 16.

As expected, near 0 the performance of the circuits is determined by the leading order

term of their error probability. We include the plot for the full range of preparation errors

to point out some general features.
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• All curves pass through (0, 0), as the zero state is fixed by CNOT and Toffoli gates.

• All curves pass through (0.5, 0.5), as a uniform mixture of the basis states after

preparation is preserved by every gate. For the majority vote-based (2e + 1, 1, e)
circuits, the curves are symmetric about this point.

• At p0 = 1 the output is deterministic. For most circuits, such as the majority vote

(2e + 1, 1, e) circuits, the output is |1〉, an error. For the cycle construction, an all

|1〉 input happens to produce an all |0〉 output. (For p0 < 0.5 the error rate at 1−p0
is greater than the error rate at p0, so this isn’t an argument in favour of preparing

|1〉 states deliberately.) The (7, 4, 1) circuit passes through (1, 0.75), meaning that

an all |1〉 input produces one |0〉 and three |1〉 states on the output.

3.1 Noisy gates

Throughout this section we fix an idle error rate pI = 0.001.

Figure 17 shows the performance of the various circuits with representative gate noise

parameters pC = pT = 0.003. The main difference from Figure 16 is that there can now

be errors on the output even without errors on the input. This limits the performance

of circuits, moving the y-intercepts in the plot away from 0. For p0 close to 0 we have

pout > p0, as high quality qubits are damaged by noisy gates. Then for each circuit there

is an interval of p0 for which the circuit reduces the output error rate below p0. This

interval might extend as far as p0 = 0.5 (at which no purification circuit can lead to an

improvement) or, as in the case of the (7, 4, 1) circuit in Figure 17, end much earlier.

These intervals are sections through the region of parameter space on which using

each circuit leads to an improvement in average qubit quality. Figure 18 illustrates this

region for the (7, 4, 1) circuit. Figure 19 illustrates this region for the (3, 1, 1) circuit. Note

that these regions are genuinely different in form. For example, immediately below the

plane p0 = 0.5 there is no improvement from running the (7, 4, 1) circuit, but there is an

improvement from running the (3, 1, 1) circuit.

Let θ(pI , pC , pT ) = inf{p0 : pout(p0, pI , pC , pT ) = p0} be the lower threshold prepa-

ration error rate for obtaining an improvement. In the setting of Figures 18a and 19, θ

corresponds to the lowest intersection point of each vertical line with the boundary surface.

In particular, θ is not necessarily continuous.

Figure 3 shows the threshold θ(0.001, pC , pT ) for the (3, 1, 1) circuit. The x-axis shows

pC , the y-axis shows the ratio pT /pC of Toffoli to CNOT error rate and the z-axis, rep-

resented by colour, shows θ. We include contour lines for p0 ∈ {0.003, 0.01, 0.03, 0.1}. If

your CNOT and Toffoli error rates place you on a contour, running the (3, 1, 1) circuit

produces output of the same quality as the input at that value of p0. If your CNOT and

Toffoli error rates place you below-left of a contour, you expect to obtain an improvement

from running a circuit at that value of p0. Examination of plots like Figures 18a and 19

for each circuit show that this holds in practice. It would be interesting to find general

conditions under which output error rate is an increasing function of gate error rate. We

return to this question in Section 3.2.

Figure 3 shows that the (3, 1, 1) circuit can improve output qubit quality even for high

gate failure rates; for example, a CNOT failure rate of 1% and a Toffoli failure rate of

3% suffices to improve a preparation error rate of 3% (although in practice you would like

lower gate errors to obtain a meaningful improvement). The (5, 1, 1), (7, 1, 2) and (9, 1, 3)
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Figure 16: Circuit performance with perfect gates. When k > 1, output error rate is inter-
preted as expected number of errors divided by k.

17

Figure 16: Circuit performance with perfect gates. When k > 1, output error rate is interpreted as
expected number of errors divided by k.
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Figure 17: Circuit performance with noisy gates (pI = 0.001, pC = pT = 0.003). When k > 1, output
error rate is interpreted as expected number of errors divided by k.
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(a) The region of parameter space (0 ≤ p0 ≤ 0.5, pI = 0.001, 0 ≤ pC ≤ 0.05,
1 ≤ pT /pC ≤ 3) in which using the (7, 4, 1) circuit leads to an improvement in average
qubit quality. Each data point represents a set of parameters for which pout = p0.
The plane at p0 = 0.5 corresponds to the maximum entropy state in which every
computational basis state is equally likely. The curved surface bounds the region to
its left in which running the circuit provides an advantage over naive preparation.
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(b) Each vertical line through Figure 18a intersects the surface exactly where the
corresponding curve pout(p0) = pout(p0, 0.001, pC , pT ) crosses the line y = x. The
marked points a ≈ (0.019, 0.019), b ≈ (0.080, 0.080) and c = (0.5, 0.5) correspond to
the identically marked points in Figure 18a.

Figure 18
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(a) The region of parameter space (0 ≤ p0 ≤ 0.5, pI = 0.001, 0 ≤ pC ≤ 0.05, 1 ≤
pT /pC ≤ 3) in which using the (7, 4, 1) circuit leads to an improvement in average qubit
quality. Each data point represents a set of parameters for which pout = p0. The plane at
p0 = 0.5 corresponds to the maximum entropy state in which every computational basis
state is equally likely. The curved surface bounds the region to its left in which running
the circuit provides an advantage over naive preparation.
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its left in which running the circuit provides an advantage over naive preparation.
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(b) Each vertical line through Figure 18a intersects the surface exactly
where the corresponding curve pout(p0) = pout(p0, 0.001, pC , pT ) crosses
the line y = x. The marked points a ≈ (0.019, 0.019), b ≈ (0.080, 0.080)
and c = (0.5, 0.5) correspond to the identically marked points in Fig-
ure 18a.

Figure 18
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Figure 19: Parameter sets between these two surfaces lead to improvements when running
the (3, 1, 1) circuit.

holds in practice. It would be interesting to find general conditions under which output error
rate is an increasing function of gate error rate. We return to this question in Section 3.2.

Figure 3 shows that the (3, 1, 1) circuit can improve output qubit quality even for high
gate failure rates; for example, a CNOT failure rate of 1% and a Toffoli failure rate of 3%
suffices to improve a preparation error rate of 3% (although in practice you would like lower
gate errors to obtain a meaningful improvement). The (5, 1, 1), (7, 1, 2) and (9, 1, 3) circuits
have the same thresholds as the (3, 1, 1) circuit: if applying the (3, 1, 1) circuit reduces error
rates, then applying it multiple times also reduces error rates.

Thresholds for the remaining eight circuits are plotted in Figure 20. Note that many of
the thresholds exhibit the discontinuity—a sharp step up to 0.5—that we should expect from
Figure 18a. Figures 17 and 20 suggest that the basic path/cycle construction of Figure 9
provides very good performance at a modest factor of two overhead in number of qubits.

3.2 Monotonicity

We might expect that running a purification circuit with lower gate and preparation error
rates produces a higher quality output, but Figure 16 shows that this is false for preparation
errors and the circuit defined over a cycle.

It is, however, true near 0. It follows from (2) that pout(p0, 0, 0, 0) is increasing for
p0 < 1/n. A similar argument shows that pout(0, pI , 0, 0), pout(0, 0, pC , 0) and pout(0, 0, 0, pT )

are increasing when each failure probability is less than one over the corresponding number
of gates. Since pout is a polynomial, continuity of the partial derivatives shows that it is
increasing in some neighbourhood of 0.

As remarked earlier, when
∣∣(n

0

)
+ · · · +

(
n
e

)∣∣ = 2n−k (so that inequality (1) is tight) and

20

Figure 19: Parameter sets between these two surfaces lead to improvements when running the (3, 1, 1)
circuit.

circuits have the same thresholds as the (3, 1, 1) circuit: if applying the (3, 1, 1) circuit

reduces error rates, then applying it multiple times also reduces error rates.

Thresholds for the remaining eight circuits are plotted in Figure 20. Note that many

of the thresholds exhibit the discontinuity—a sharp step up to 0.5—that we should expect

from Figure 18a. Figures 17 and 20 suggest that the basic path/cycle construction of

Figure 9 provides very good performance at a modest factor of two overhead in number

of qubits.

3.2 Monotonicity

We might expect that running a purification circuit with lower gate and preparation error

rates always produces a higher quality output, but Figure 16 shows that this is false for

preparation errors and the circuit defined over a cycle.

It is, however, true near 0. It follows from (2) that pout(p0, 0, 0, 0) is increasing for p0 <

1/n. A similar argument shows that pout(0, pI , 0, 0), pout(0, 0, pC , 0) and pout(0, 0, 0, pT )
are increasing when each failure probability is less than one over the corresponding number

of gates. Since pout is a polynomial, continuity of the partial derivatives shows that it is

increasing in some neighbourhood of 0.

As remarked earlier, when
∣∣(n

0
)

+ · · ·+
(n

e

)∣∣ = 2n−k (so that inequality (1) is tight) and

p0 < 0.5, every acceptable input state (pattern of preparation errors that leads to clean

output) has higher probability than every unacceptable input state. This means that any

averaging process, for example an arbitrary sequence of depolarisations, is bad for the

output error rate. Again, this is not enough to show that pout is increasing in each error

rate, as successive depolarisations do not necessarily make things progressively worse.

We conjecture that it should be possible to prove monotonicity under some reasonable

set of conditions. For instance, suppose that
∣∣(n

0
)

+ · · · +
(n

e

)∣∣ = 2n−k and p0 < 0.5. Is

pout(p0, pI , pC , pT ) an increasing function of p0, pI , pC and pT ? We leave this as an open

question.
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Figure 20: Gate thresholds for the eight circuits not obtained by composing (3, 1, 1) circuits.
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Figure 20: Thresholds for the eight circuits not obtained by composing (3, 1, 1) circuits. Each subplot
shows, for each value of pC and pT /pC , the least p0 beyond which running the corresponding circuit
can produce output of higher quality than the input. If your gate errors places you down and to the left
of a contour, then you expect an improvement from running the corresponding circuit. See Section 3.1
for a complete description.
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4 Outlook

We have described a variety of relatively convenient low depth circuits compatible with

1D arrays of qubits which substantially improve |0〉 preparation when two-qubit errors are

well below preparation errors. We believe non-Clifford circuits are also worth exploring

for pre- and post-processing of the measurement subsystems that will be used in syndrome

extraction and elsewhere in quantum computers.

The practical use of these circuits remains an open question, as tradeoffs in qubit cost

and connectivity, as well as the cost in time and energy for physical resets of unused qubits,

depend substantially upon the physical architecture. We would very much like to see data

on the practical effect of running our circuits on real quantum computing hardware.
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Figure 21: A (7, 1, 3) purification circuit presented using multiply controlled Toffoli gates.

A Existence of purification circuits

In this section we prove Proposition 1 on the existence of purification circuits with given

parameters. We use the following algebraic fact.

Lemma 4. Let Gn be the group generated by CNOT and Toffoli gates on n qubits. For
n ≥ 4, Gn acts as the alternating group on Fn

2 \ {0}. For n ≤ 3, Gn acts as the symmetric
group on Fn

2 \ {0}.

Proof of Proposition 1. By (1), 1 + n ≤ 2n−k, so we may assume that n > 1. Then
3 ≤ 2n−k, and so k ≤ n− 2.

Let σ be any permutation of Fn
2 \ {0} which maps the vectors of weight at most e into

the vectors that vanish in the first k positions. Let τ the transposition that swaps the
standard basis vectors en and en−1. Since k ≤ n − 2, τσ also maps the vectors of weight
at most e into the vectors that vanish in the first k positions. One of these permutations
is even, so by Lemma 4 can be expressed in terms of CNOTs and Toffolis.

Proof of Lemma 4. For n = 1, all the groups in question are trivial.
For n ≥ 2, let Cn be the group generated by CNOTs on n qubits. Cn is isomorphic

to GL(n, 2) acting naturally on Fn
2 \ {0}. For n = 2, this achieves the action of the full

symmetric group on F2
2 \ {0}.

For n ≥ 3, let Tn be the group generated by Toffolis on n qubits. Tn acts on the vectors
of weight at least 2. For n = 3, it acts as the symmetric group Sym(4); for n ≥ 4 it acts
as the alternating group Alt(2n − n− 1) [12, Theorem 1.1.4].

Now consider the group Gn = 〈Cn, Tn〉.

• The action of Gn on Fn
2 \ {0} is 2-transitive (because GL(n, 2) is 2-transitive) and

therefore primitive.

• The action of Gn on Fn
2 \ {0} contains a 3-cycle (2-cycle) if n ≥ 4 (n = 3), since Tn

does.

As Gn acts primitively on Fn
2 \ {0} and contains a 3-cycle (2-cycle) if n ≥ 4 (n = 3),

it contains the alternating group (symmetric group) on F2
2 \ {0} [7, Theorem 3.3A]. A

CNOT or Toffoli gate on at least 4 qubits is an even permutation of the basis states, so
this containment is equality.

B An explicit construction

In this section we give an explicit construction of purification circuits with parameters

(2m+1 − 1, 1, 2m − 1).
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Let n = 2m+1 − 1 and e = 2m − 1. Let q0 be an output qubit and q1, . . . , qn−1 be

auxiliary qubits. Form a circuit in two stages.

• In the first stage, perform n − 1 CNOTs controlled on q0 and targeting each other

qi.

• In the second stage, perform
(n−1

e+1
)

Toffolis targeting q0 and controlled on each set

of e+ 1 qubits from {q1, . . . , qn−1}.

For m = 1 this is the (3, 1, 1) circuit in Figure 1b. For m = 2 it is the (7, 1, 3) circuit

shown in Figure 21; recall from Section 1.3 that searching for a shortest (7, 1, 3) circuit by

brute force was out of reach.

As presented, this circuit already has a large number of gates. If the multi-controlled

Toffolis are expanded to conventional Toffolis, this number will increase further, the exact

increase depending on how the expansion is performed and the original order of the multi-

controlled Toffolis.

Proposition 5. This circuit is an (n, 1, e) purification circuit.

Proof. Let 0 ≤ r ≤ e and let v be a vector of weight r. We must show that the circuit
maps v to a vector which is 0 in the first position.

If v0 = 0, then every gate of the circuit fixes v, so the output 0 is preserved.
If v0 = 1, then all of the CNOTs activate, mapping v to a vector w with w0 = 1 and

(n− 1)− (r − 1) = 2e+ 1− r ≥ e+ 1 of bits 1, . . . , n− 1 set. This will activate(
2e+ 1− r
e+ 1

)
=
(

2e+ 1− r
e− r

)
=
(

2m + s

s

)
of the Toffolis, where 0 ≤ s = e − r ≤ e < 2m. We claim that this number is odd, from
which the result follows.

We use induction on s. For s = 0 the number is 1, so odd. For s > 0, we have(
2m + s

s

)
= 2m + s

s

(
2m + s− 1
s− 1

)
,

where by induction the binomial coefficient on the right-hand side is odd. Since s < 2m,
the number of powers of 2 dividing the numerator and denominator of the fraction agree,
so it has the form a/b where both a and b are odd. Hence the left-hand side is odd, as
required.

C Fault-tolerance of the enhanced cycle construction

In this section we prove Theorem 3, that the enhanced cycle construction is fully fault-

tolerant.

Proof of Theorem 3. A path on two vertices only has one output, so is automatically fault-
tolerant. Otherwise a path behaves like a cycle on the same number of vertices where one
nominated edge never has an error on the input, so we prove the result for cycles.

Let V be the set of vertices with an error on the input, E the set of edges with an
error on the input and F the set of edges with an error on the output. We must show that
|F | ≤ |V |+ |E|, or equivalently that

|F \ E| ≤ |V |+ |E \ F |. (3)
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Fix an orientation of the cycle. We will show that, starting from any element of F \E
and walking round the cycle clockwise, we encounter an element of V ∪ (E \ F ) before
another element of F \ E. This suffices to prove (3).

Let xyz be a sequence of three consecutive vertices moving clockwise around the cycle.
Suppose that xy ∈ F \ E but y /∈ V . For xy to have an error on the output but not the
input, y must be in state |1〉 after the detect′ stage. Since y and xy have no errors on the
input, yz must have an error on the input. If yz ∈ E \ F then we are done, so assume
that yz ∈ E ∩ F . But now, by construction, an input error on an edge cannot persist in
the output if there are no input errors on its endpoints. There is no input error on y, so
we must have z ∈ V .

D Searching for circuits

As described in Section 1.2 and Appendix A, CNOT and Toffoli gates on a set of n qubits

act as permutations on the computational basis, which we identify with Fn
2 . Let Πn be

the set of these CNOT and Toffoli permutations. An (n, k, e) purification circuit is a

composition of elements of Πn which maps the Hamming ball B(0, e) of radius e about 0
into the codimension k subspace Vn−k of Fn

2 comprising the vectors which vanish in the

first k positions. By Proposition 1, such a composition exists provided |B(0, e)| ≤ |Vn−k|.
We can find such compositions as follows. Let P(Fn

2 ) be the power set of Fn
2 and, for

a set S, let
(S

m

)
be the set of subsets of S of size m. For sets of states S ∈ P(Fn

2 ), sets of

sets of states S ⊆ P(Fn
2 ) and permutations π ∈ Πn, let

• π(S) = {π(s) : s ∈ S}

• Πn(S) = {π(S) : π ∈ Πn, S ∈ S}.

If Πt1
n ({B(0, e)}) intersects Πt2

n

(( Vn−k

|B(0,e)|
))

then, for some πi, ρi ∈ Πn and some S ⊆ Vn−k

of size |B(0, e)|,
π1 · · ·πt1(B(0, e)) = ρ1 · · · ρt2(S)

whence, using the fact that every element of Πn is self-inverse,

ρt2 · · · ρ1π1 · · ·πt1(B(0, e)) = S ⊆ Vn−k.

That is, there is an (n, k, e) purification circuit of length t1 + t2.

We expect to find such an intersection point once∣∣Πt1
n ({B(0, e)})

∣∣× ∣∣Πt2
n

(( Vn−k

|B(0,e)|
))∣∣ ≈ ( 2n

|B(0,e)|
)
,

so time and memory requirements scale roughly as the square root of
( 2n

|B(0,e)|
)
. This

contrasts with a naive search over circuits of length t1 + t2, which requires at least an

expected
( 2n

|B(0,e)|
)

time but constant memory.

The first method has an additional advantage over a naive search. There are typically

multiple circuits taking one set of states to another set of states. This is in part due

to the existence of multiple circuits implementing the same permutation (obtained, for

example, by commuting gates past each other), and in part due to the fact that distinct

permutations of states can have the same action on sets of states (for example, the two

inequivalent circuits in Figure 4 which both act as (5, 1, 2) purification circuits). By
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tracking reachable sets of states rather than circuits, the first method experiences a limited

overhead from this phenomenon. A brute force search by contrast might be able to avoid

the most obvious cases of repetition (for example, by not applying a pair of commuting

gates in both orders), but greater care would be required to avoid duplicated effort.

In [21], Search.hs implements this method by applying generic pathfinding functions

from Pathfinding.hs to the gate set described in Circuits.hs.

E Assessing circuits

We want to assess the performance of a purification circuit with n qubits, g1 idle gates,

g2 CNOTs and g3 Toffolis. With the error model described in Section 1.1, at every point

during the operation of the circuit the quantum state can be described by a probability

distribution π over the computational basis states, which we identify with Fn
2 . Immediately

after preparing all n qubits this distribution is

µ0(x) = p
‖x‖
0 (1− p0)n−‖x‖, (4)

where ‖x‖ is the Hamming weight of x, the number of coordinates in which it takes the

value 1.

Suppose that we have applied m gates, achieving a distribution µm over Fn
2 , and are

about to apply a gate G acting on the set of qubits Q. Let pG be the probability that G

depolarises the qubits in Q. Then

µm(x) = (1− pG)µm(G−1(x)) + pG

2|Q|
∑

v∈FQ
2

µm(x+ v). (5)

Performing this iteration computes the distribution over the computational basis at the

end of the circuit in O(2n(g1+g2+g3)) polynomial arithmetic operations. The polynomials

in question have up to (g1 +1)(g2 +1)(g3 +1) terms, so in practice the additional overhead

from polynomial arithmetic can be significant.

To reduce the overhead we make two choices. From (4) and (5) it follows that µm is a

sum of terms of the form

pf0
0 (1− p0)n−f0(pI/2)f1(1− pI)g′1−f1(pC/4)f2(1− pC)g′2−f2(pT /8)f3(1− pT )g′3−f3 ,

where g′1, g′2 and g′3 are the number of idle, CNOT and Toffoli gates applied so far (thus

m = g′1 + g′2 + g′3). Using this basis rather than the standard monomial basis means that

the first polynomial multiplication in (5) is implicit, and the second is an increment of f1,

f2 or f3.

The second choice is to observe that large values of fi correspond to events that are

unlikely, depending on the values of n, g1, g2, g3, p0, pI , pC , pT and our desired accuracy. So

we need only record terms where each fi is in some restricted range.

In [21], Simulate.hs implements this method over the description of circuits in Circuits.hs.
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