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We consider the problem of the variational
quantum circuit synthesis into a gate set con-
sisting of the CNOT gate and arbitrary single-
qubit (1q) gates, with the primary objective
being the minimization of the CNOT count.
First, we note that along with the discrete
architecture search, suffering from the combi-
natorial explosion of complexity, optimization
over 1q gates can also be a crucial roadblock
due to the omnipresence of local minimums
(well known in the context of variational quan-
tum algorithms but apparently underappreci-
ated in the context of the variational compil-
ing). Taking the issue seriously, we make an
extensive search over the initial conditions an
essential part of our approach. Another key
idea we propose is to use parametrized two-
qubit (2q) controlled phase gates, which can
interpolate between the identity gate and the
CNOT gate, and allow a continuous relaxation
of the discrete architecture search, which can
be executed jointly with the optimization over
1q gates. This coherent optimization of the
architecture together with 1q gates appears to
work surprisingly well in practice, sometimes
even outperforming optimization over 1q gates
alone (for fixed optimal architectures). As il-
lustrative examples and applications we derive
8 CNOT and T depth 3 decomposition of the
3q Toffoli gate on the nearest-neighbor topol-
ogy, rediscover best known decompositions of
the 4q Toffoli gate on all 4q topologies in-
cluding a 1 CNOT gate improvement on the
star-shaped topology, and propose decompo-
sition of the 5q Toffoli gate on the nearest-
neighbor topology with 48 CNOT gates. We
also benchmark the performance of our ap-
proach on a number of 5q quantum circuits
from the ibm_qx_mapping database, showing
that it is highly competitive with the exist-
ing software. The algorithm developed in this
work is available as a Python package CPFlow
.
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1 Introduction
While many quantum algorithms, such as integer fac-
toring [1], unstructured search [2], or linear equation
solvers [3], promise game-changing speedups over clas-
sical, the current state of the quantum computing
technology does not yet allow for a decisive demon-
stration with useful applications, although it might be
on the verge (see e.g. a recent review [4]). There are
plenty of factors limiting the performance of the cur-
rent generation of quantum devices, such as initializa-
tion and readout errors, loss of coherence over time,
and errors in gate operations. In the current NISQ
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CNOT =
•

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ =
•

•
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , CP(a) =
•

P (a)
•

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiπa


Rσ (a) = e−iσa/2, σ ∈ {X,Y, Z}, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)

Figure 1: Diagrammatic notation and matrix representation for gates used in this work. When drawing large circuits we will
often abbreviate rotation gates Rσ(a) by σ(a) to lighten the notation.

era [5], most gate-based quantum protocols are con-
structed out of single-qubit (1q) and two-qubit (2q)
gates with the latter being significantly more error-
prone across all leading platforms (at the same time,
the problem of realizing multi-qubit gates is also un-
der active study, see e.g. Ref. [6]). Hence, minimiza-
tion of the 2q gate count is one of the key objectives
that can improve performance of the near-term al-
gorithms. On the other hand, in the fault-tolerant
future a different type of resource, e.g. the T gate
count, is likely to be the most expensive.

At the high level, quantum algorithms are usu-
ally described using primitives, such as large multi-
controlled gates or quantum Fourier transform, that
are not directly accessible on the current devices. The
standard compiling routines [7, 8] include decompos-
ing algorithmic primitives into native gates (which is
always possible [9]), routing stage to comply with the
possible connectivity restrictions of the target chip,
and local simplifications of the resulting circuits (see
e.g. here for a benchmark comparison of different
frameworks [10]). Using special data structures such
as graphs, tensor networks, ZX diagrams, decision di-
agrams and others, allows carrying out the compila-
tion process without the need to simulate any part of
the circuit. This makes these techniques extremely
scalable, allowing to compile and optimize circuits
with hundreds of qubits. The downside is that the
resulting decompositions may be significantly less ef-
ficient than possible. A complementary strategy is to
work directly with the unitary matrix of the circuit,
thus eliminating any potential redundancies or ineffi-
ciencies in the original gate-based description. This
is only feasible for small scale circuits, as the size of
the state space and the corresponding unitary matri-
ces scales exponentially with the number of qubits. In
fact, even for a few-qubit circuits there may be other
limiting factors such as circuit complexity, as we em-
phasize in this work. Although there could be appli-
cations of direct unitary synthesis to enhancing the
performance of the NISQ algorithms, we expect the
use of highly optimized small scale circuits as build-
ing blocks of large scale algorithms to be the most
promising possibility.

The unitary synthesis problem amounts to finding
the most efficient circuits optimizing a given objective

function. Typical applications include maximizing fi-
delity with respect to the target unitary (compilation)
or maximizing the overlap with the target state (state
preparation), but more general problems can be con-
sidered. We study the problem of the variational syn-
thesis into the gate set consisting of a single 2q gate
(CZ or CNOT ) and arbitrary 1q gates. The primary
optimization objective is the amount of CNOT gates,
although indirectly we also address CNOT depth and
even T count and T depth. It is natural to divide the
problem into two parts:
(i) Discrete optimization or architecture search,

looking for best placements of 2q gates.
(ii) Continuous optimization of 1q gate parameters

for a given architecture.
The difficulty associated with the architecture search
has combinatorial origin and is manifest. The diffi-
culty of the continuous optimization is however also
essential, as is known in the context of variational
quantum algorithms, but apparently underappreci-
ated in the context of the variational compiling.

After fixing our notation and giving a brief intro-
duction in Sec. 2, we zoom in the issue of the contin-
uous optimization in Sec. 3. Results of this analysis
may be of independent interest. Another central in-
gredient in our approach is to use parametrized 2q
gates as a means to relax the discrete architecture
search to another continuous optimization, that can
be performed simultaneously and coherently with the
optimization over 1q gates. We introduce the CPFlow
algorithm in Sec. 4. In Sec. 5 we first illustrate all cen-
tral features of CPFlow using the 3q Toffoli gate as
an example, and then go beyond this toy case to syn-
thesize efficient (and likely novel) decompositions of
the 4q and 5q Toffoli gates on constrained topologies.
In Sec. 6, we provide further benchmarks showcasing
that CPFlow is very efficient in compilation of small
scale circuits with moderate complexity, but also out-
line its limitations. Sec. 7 concludes with the sum-
mary and outlook.

There are three main contributions we present in
this study.
(i) Exposing the problem of local minimums in the

loss landscapes of variational compiling problems
as a crucial yet underappreciated challenge.

(ii) Developing a new heuristic algorithm for a simul-
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taneous search over the architectures and single-
qubit angles and demonstrating that for small-
scale quantum circuits of intermediate complex-
ity it can produce optimal or nearly optimal de-
compositions.

(iii) Proposing a simple post-processing step, that of-
ten allows refining approximate decompositions
into exact.

Observation (i) and technique (iii) are not specific to
our core algorithm and are likely to be of wider inter-
est.

Optimization of quantum circuits implementing
various tasks, from simulation to combinatorial opti-
mization, is critical for successful applications. Some
approaches are informed by the structure of the prob-
lem, e.g. the symmetry of the dynamics to be sim-
ulated [11, 12, 13, 14]. Others seek for compilation
layouts robust to noise [15, 16, 17, 18] or even at-
tempt to redefine the basis gate set based on the chip
design [19]. Our work is better characterized as nu-
merical circuit synthesis.

The idea to use computer assisted search and nu-
merical optimization for circuit synthesis goes back
a long way [20] and continues to the present day
with advances due to both algorithm design and
growth of raw computational power. Possible frame-
works include purely discrete search over a finite gate
set [21, 22], a natural separation into discrete archi-
tecture search and continuous optimization [23, 24],
adaptive circuit synthesis [25, 26, 27, 28], techniques
such as genetic algorithms [29, 30] and machine learn-
ing [31, 32], and a hybrid approach with part of the
architecture search outsourced to a version of con-
tinuous optimization [33, 34]. The scheme developed
in Ref. [34] is in many respects similar to the one
proposed in this paper, and similarly to our work,
was originally motivated by the impressive success of
variational compiling of random unitaries [35, 36, 37].
Random unitaries can be thought of as the circuits
with maximal complexity. In this work, we address
circuits of intermediate complexity, which are a much
more challenging target.

2 Background and notation
2.1 Quantum circuits and quantum gates
Quantum circuits are usually drawn as diagrams sim-
ilar to Fig. 4. Horizontal wires correspond to qubits,
boxes and vertical connections to quantum gates.
Each quantum gate can be though of as a unitary
matrix. The ones we use in this paper are summa-
rized in Fig. 1. An important detail is that CZ and
CNOT gates are equivalent up to a conjugation by the
1q Hadamard gate, and hence completely equivalent
for the purpose of the variational compiling that we
consider. We often mention CNOT gates in more gen-
eral discussions, as is more standard, but refer to CZ

CZ block

• RX(a0) RY (a2) RZ (a4)

• RX(a1) RY(a3) RZ(a5)

CP block

•
P(a5)

RX(a0) RY(a2) RZ(a4)

• RX(a1) RY(a3) RZ(a5)

Figure 2: Building blocks for variational templates.

(a) Connected layer (b) Chain layer

• • •
• • •

• • •
• • •

•
• •

• •
•

Figure 3: Possible layers for connected and chain (nearest
neighbor or line) topologies. Here CZ gates are only meant to
schematically specify locations of 2q blocks, not their actual
content.

gates when the technical details are important. The
state space associated to n qubits has dimension 2n,
the unitary matrices acting on this space have dimen-
sion 2n ×2n. The unitary matrix of a quantum circuit
can be constructed by an appropriate tensor product
of all the gates involved. The overall complex phase
of the unitary matrix is inconsequential and can be
fixed in any convenient way. The space of quantum
circuits on n qubits is hence equivalent to the special
unitary group SU(2n). A natural measure of fidelity
between two unitary matrices is the distance induced
from the Hilbert-Schmidt norm

D(U, V ) = 1 − | TrU†V |2

4n
. (1)

It is normalized to take values between 0 and 1 with
the minimum being reached iff U and V differ by a
global phase.

2.2 Template circuits
The prevalent approach to the variational compiling
in the literature [24, 36, 37, 38, 34] that we will follow
is to construct the template (or ansatz) circuits by re-
peated application of two-qubit blocks. The two types
of entangling blocks we will use are CZ and CP blocks
depicted in Fig. 2. They only differ by the type of
the entangling gate used. We will explain the choice
of 1q gates shortly. The blocks are further arranged
in sequences we refer to as layers. In principle, layers
can be arbitrary, but we will usually identify layers
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Z (a0) X (a1) Z (a2) • X (a9) Y (a11) Z (a13) • X (a15) Y (a17) Z (a19) • X (a27) Y (a29) Z (a31)

Z (a3) X (a4) Z (a5) • X (a10) Y (a12) Z (a14) • X (a21) Y (a23) Z (a25) • X (a28) Y (a30) Z (a32)

Z (a6) X (a7) Z (a8) • X (a16) Y (a18) Z (a20) • X (a22) Y (a24) Z (a26)

Figure 4: Template circuit U4
CZ on a connected 3q topology with 4 entangling CZ -blocks. The complete connected layer is

boxed, the incomplete layer is dash-boxed.

with coupling maps of the target topology (ordered
in an arbitrary way). For example, see Fig. 3 showing
layers corresponding to the fully connected and chain
(or nearest-neighbor) topology. Finally, to fully spec-
ify the template, one must provide the total number of
2q gates. Layers are repeated until the specified num-
ber of 2q gates is reached, the last layer is truncated
if needed. We will write Uk

CZ or Uk
CP for templates

with k entangling gates of type CZ or CP respectively
(layer specification is assumed but left implicit in the
notation). For illustration, Fig. 4 depicts U4

CZ on a
connected topology (here and in the following con-
nected topology means fully connected; connectivity
restrictions will always be specified explicitly).

2.3 Theoretical lower bound
There is a provable minimum amount of CZ gates
required to decompose any n-qubit unitary [39], that
we will refer to as the theoretical lower bound

TLB(n) = 1
4 (4n − 3n− 1) . (2)

It essentially follows from a simple parameter count-
ing argument. We will sketch the argument, which is
not only instructive, but also helps to motivate the
structure of our template circuits.

A unitary matrix of an n-qubit circuit has in gen-
eral 4n real parameters. Generic 1q gate on the other
hand has 3 real parameters, e.g. angles in the Euler
decomposition. Thus, without 2q gates, a quantum
circuit with n qubits can have no more than 3n real
parameters. Our template circuits start with a round
of 1q gates on each qubit wire, cf Fig. 4. Adding a
single CZ gate allows appending two more 1q gates
that do not immediately combine with the existing
ones. Superficially, this permits adding 6 real param-
eters per CZ gate. However, one parameter in each 1q
gate is redundant, as illustrated in Fig. 5. Using ZXZ
decomposition of an arbitrary single-qubit block U
and the fact that RZ commutes with the CZ gate, the
leftmost RZ blocks on each qubit can be pulled to the
left and joined with the existing 1q blocks. Therefore,
adding a single entangling CZ block allows increas-
ing the real dimension by four. Requiring that the
amount of 2q gates is at least sufficient to cover the
dimension of the SU(2n) manifold leads to the equa-
tion 4TLB(n) + 3n ≥ 4n − 1, equivalent to (2) (ad-
ditional unit subtracted is the irrelevant global phase
parameter).

• U
• U

=
• RZ RX RZ

• RZ RX RZ

=
RZ • RX RZ

RZ • RX RZ

Figure 5: Entangling CZ -block only allows adding four real
parameters to the circuit. Explicit gate angles are not de-
picted.

While expression (2) is a simple theoretical bound,
a strong evidence for its tightness exists. First,
there is an constructive analytic procedure, known
as the quantum Shannon decomposition [40], which
synthesizes an arbitrary n-qubit unitary using only
23
12TLB(n) CNOT gates (roughly twice as much as the
theoretical lower bound requires). Second, recent nu-
merical studies [36, 37] suggest that the overhead of
the quantum Shannon decomposition is not necessary
and that CNOT count given by Eq. (2) is sufficient to
compile random unitaries with a great numerical ac-
curacy.

So far, our discussion and the bound (2) addressed
generic or random unitaries. However, the unitary
matrices of the central importance to quantum com-
putation are highly structured and typically require
much less 2q gates. The quantum Shannon decom-
position does not appear to be particularly useful in
this case. Its extension to restricted topologies is also
difficult, often leading to a large multiplicative over-
head [40]. Note that being able to find truly optimal
decompositions of arbitrary unitaries would amount
to determining their gate complexities, which is an
NP-complete problem [41]. It is therefore natural to
use numeric optimization and heuristic methods in
the search for efficient decompositions.

3 Variational synthesis and its chal-
lenges
As mentioned in the introduction, it is natural to
split the variational compiling into the discrete ar-
chitecture search and the continuous optimization of
1q gates. The difficulty of the architecture search
caused by the combinatorial explosion of complexity
is manifest. At the same time, the difficulty of con-
tinuous optimization also can not be ignored. It is a
non-convex problem and thus can not be solved with
guaranties. In practice, it may suffer from a range
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(a) (b)

(c)

Figure 6: Empirical success ratio as a function of circuit complexity for (a) 3q and (b) 4q templates. Data points for random
unitaries are advanced by a half unit along x axis for clarity. (c): Distribution of final loss values for self-instances of 4q
templates with depths k = 21, 33, 45. Dotted curves are heuristic fits by distribution (4). Expressivity parameters of the
empiric fits γ∗ and computed from the number of parameters in the circuits γ are indicated in the legend.

of problems including local minimums, plateaus, and
saddle points. Mathematically, the problem of the
variational synthesis is very similar to the classi-
cal optimization loop in quantum variational algo-
rithms [42], especially their hardware-efficient [43] and
adaptive [26] forms. Here, the two key obstacles are
the barren plateaus and local minimums. The bar-
ren plateaus [44] manifest as negligible gradients in
large areas of the loss landscape and are usually as-
sociated with a large number of qubits or parame-
ters. In our experiments with small-scale quantum
circuits, we did not find them to be relevant. On the
other hand, the problem of local minimums alone is
sufficient to render training of the variational algo-
rithms NP-hard [45]. As our numerical experiments
suggest, local minimums constitute a real hindrance
to the variational compiling.

We will quantify the challenges associated with lo-
cal minimums by the empirical success ratio

SR = M

N
, (3)

where N is the total number of times the optimization
procedure is performed starting with random initial
conditions and M is the number of times the global
minimum is reached.

For example, let U(a) be the unitary matrix of the
template circuit from Fig. 4 and a∗ be some particular
choice of angles. It is clear that the global minimum of

the Hilbert-Schmidt distance D(U(a), U(a∗)) is zero
(attained at a = a∗), but gradient-based optimization
does not always reach it (as a cutoff value we takeD ≤
10−4). With some particular random choice of a∗ and
random uniform initialization of the template angles,
our default optimization (detailed in Sec. 4.3) yields
success ratio SR ≈ 0.3, which implies that roughly
two thirds of the times the optimization gets stuck in
a local minimum.

We now extend this simple numerical experiment
more systematically. Fig. 6 charts the success ratios
for 3q and 4q circuits as a function of the number
of gates. The basic procedure is the same as above,
with several additions. For each gate count k, we
construct a CZ template with connected layer Uk

CZ

and find the success ratio of this template learning its
random instance Uk

CZ(a) → Uk
CZ(a∗). We consider

the optimization successful if the Hilbert-Schmidt dis-
tance (1) drops below 10−4. This quite permissive nu-
merical cutoff is enough to reveal the local minimums
without worrying about the optimization details such
as convergence rate.1 Independent evidence that un-
successful attempts are indeed due to local minimums
will be presented at the end of the section.

More precisely, we take 10 different template in-

1In later sections, when compiling unitaries of interest, we
will typically impose a stricter cutoff D < 10−6, which ap-
proaches the machine precision of our setup.
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stances for each gate count Uk
CZ(a∗

1−10) and compute
the success ratio for each of them using 1000 ini-
tial conditions, generated uniformly at random. Blue
markers represent mean success ratios averaged over
10 target circuits, while error bars quantify the stan-
dard deviations. Absence of blue markers implies
that the empirical success ratio turned out vanish-
ing, i.e. that the global minimum was not reached.
For 4q circuits data points were only collected for
k = 3n, n ∈ N, k ≤ 63.

There are several remarkable features of these plots.
First, the success ratio drops very quickly as the 2q
gate count increases, reaching values below 10−3 at
10 CZ gates for 3q circuits and 15 CZ gates for 4q
circuits. Next, perhaps surprisingly, the success ra-
tio rises back to values of order 1 as the number of
CZ gates approaches the theoretical lower bound (2).
In fact, this is in agreement with the empirical ev-
idence found in the literature [36, 37, 35] that near
the theoretical lower bound numerical compilation ap-
pears to be very efficient as if the problem was con-
vex. That over-parameterized quantum circuits can
often be trained efficiently have also been motivated
theoretically [46, 47]. Finally, although there is a cer-
tain spread of success ratios across different template
instances, dependence on the 2q gate count sets the
dominating trend.

This suggests that the success ratio is mostly de-
termined by the template, not by the target. To con-
firm this intuition, we carried out additional experi-
ments using random unitaries V instead of template
instances as targets. The difficulty here is that the
true value of the global minimum of D(Uk

CZ(a), V ) is
not known, yet the presence of local minimums is still
manifest, because different optimization runs tend to
end up with significantly different loss values. We
modify the definition of the success ratio in this case,
by counting as successful all optimization runs that
approached sufficiently closely the lowest value across
all runs for a given target unitary (using the same cut-
off as before D −Dmin ≤ 10−4). Note that with this
modified definition, the success ratio can never be zero
(because there is always at least a single run with the
lowest value). We see that in the regime when success
ratios for random instances are sufficiently high, suc-
cess ratios for random unitaries closely parallel them,
both in mean and in deviation. In the regions where
success ratios for random instances are very small or
vanishing, success ratios for random unitaries are non-
zero (they can not be by construction) but are close to
zero. We expect them to drop further if more samples
are accounted for. Overall, our experiments strongly
suggest that local minimums are mostly determined
by the templates and not by the targets.

It is also instructive to inspect not just the suc-
cess ratios, but the distribution of loss values for dif-
ferent templates. The histograms at Fig.6(c) depict
distributions of final loss values achieved by the opti-

mization starting from random initial conditions for
connected 4q templates Uk

CZ (a) with three different
depths k. The first observation here is that most loss
values are clustered near a mean value away from the
global minimum (by construction, the global mini-
mum has zero loss). Next, the quality of the local
minimums increases as the depth (and hence expres-
sivity) of the template grows, and the spread shrinks.

This is in a remarkable agreement with recent an-
alytic results [48, 49], where the following asymptotic
distribution of the density of critical points E0 for
Hamiltonian-agnostic variational loss functions was
derived

E0 ∼ e−mE/2El/2−m(1 − E)l . (4)

Here E is the variational loss function normalized to
satisfy 0 ≤ E ≤ 1, m the dimension of the Hilbert
space, and l the number of independent parameters.
Ratio

γ = l

2m (5)

quantifies the expressivity of the circuit and crucially
affects the distribution of critical points. For γ ≪ 1
most local minimums are far away from the global
minimum and the loss function is hard to train. For
γ > 1 the local minimums cluster exponentially close
to the global minimum and the model is easy to train
(yet it is of exponential depth).

In Fig.6(c) we fit the loss histograms with the dis-
tribution (4). Using the Hilbert-Schmidt test (see e.g.
[24]), the compilation problem on n qubits can be re-
formulated as the state preparation problem on 2n
qubits. Hence we choose the dimension of the Hilbert
space m = 28. The expressivity parameters γ∗ are
fitted in an ad hoc way, to visually match the his-
tograms. The expressivity parameters γ (5) are also
indicated in the plot, but distributions correspond-
ing to γ do not align well with the histograms and
are not shown. Of course, one should not expect a
precise quantitative agreement between the distribu-
tion (4) and our empiric histograms. For one, (4) is
an asymptotic statement valid for large system sizes.
There are other assumptions going in the derivation
of (4) that our setup may fail to satisfy. Neverthe-
less, we view the qualitative agreement between our
empiric results and the theoretical analysis as a strong
indication that the local minimums in the variational
compilation are real, present a significant hindrance,
and should be taken into account in any synthesis
approach relying on numerical optimization of para-
metric gates.

Interestingly, Figs. 6(a,b) suggest that for the cir-
cuits with few parameters, the local minimums are not
present. Also, we note that for the 4q circuits, success
ratios initially drop more slowly than for 3q circuits.
Studying the onset of local minimums, and it’s scaling
with the system size, is an interesting question that
we do not address here.
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We should mention that a success ratio is not only
a function of the loss landscape, but also of the op-
timization algorithm and the distribution of the ini-
tial conditions. One popular optimization mode for
quantum algorithms is a layerwise training [50], as
it uses less computational resources and can mitigate
the Barren plateaus [51]. However, these concerns
are not relevant on the scale of our experiments and,
moreover, the layerwise training is known to raise ad-
ditional trainability issues in some cases [52]. There is
a number of proposals to alleviate the problem of lo-
cal minimums by the choice of optimizer [53, 54], but
in our experiments, none performed sufficiently better
than simple ADAM [55]-based optimization to justify
additional computational resources that are typically
required by higher-order methods such as the natu-
ral gradient [56] or imaginary time evolution [57]. A
recent empirical comparison of various optimization
methods for quantum variational algorithms [58] also
suggests that ADAM optimizer is often the simplest
and most efficient choice.

In contrast, our experiments suggest that
parametrization and/or distribution of the ini-
tial parameters can have noticeable effects. As
explained in Sec. 2.3 template structure illustrated at
Fig. 4 features redundant 1q gates. In any entangling
block, two rotation gates can be removed without
compromising circuit expressivity, i.e. without any
shrinking in the space of all unitaries obtainable from
the template. However, performance of the templates
with the minimal number of 1q gates appears to be
worse on average (though there are counter examples,
see Sec. 5.2). This can be due to the fact that over-
parametrization favorably deforms the loss landscape
and/or because the random uniform initialization of
the angles produces a different distribution of the
initial unitaries. In the present study, we do not
attempt to disentangle the two possible effects and
leave this important question for future work. Unless
stated otherwise, reported results correspond to the
’XYZ’ templates as per Fig. 4.

4 The CPFlow algorithm
4.1 Motivation and overview
In the context of variational synthesis, results of the
previous section suggest that solving the continuous
optimization problem may be just as difficult as solv-
ing the discrete architecture search: even if the struc-
ture of the template is a perfect match for the target
unitary, finding the suitable angles may be very chal-
lenging. In the absence of an efficient way to solve the
latter problem in our approach, we choose the brute
force route of an extensive multi-start optimization.

Our second main technique is to relax the discrete
architecture search to yet another continuous opti-
mization. For illustration, consider the circuit at

Fig. 7. Here, the 2q gates are the controlled phase
gates (1), which interpolate between the identity gate
CP(0) = I and the CZ gate CP(π) = CZ. For generic
values of the angle, a single CP(a) gate can be de-
composed into 2 CZ gates (plus 1q gates). There-
fore, different values of parameters in CP gates in the
template (7) effectively capture several different tem-
plates with the 2q CZ gates and training templates
with the CP blocks can encompass both the architec-
ture search and the tuning of continuous parameters,
moreover performed in a coherent manner.

We can anticipate, however, that training CP tem-
plates directly will result in most CP gates having
generic angles and hence effectively doubling the CZ
count of the original template. To address this issue,
we introduce an additional penalty term to the loss
function that is intended to drive all CP angles to ei-
ther 0 or π. The shape of the penalty function that
we use is presented in Fig. 8.

This penalty is intended to drive all CP angles dur-
ing the optimization to either 0 or π, and hence to
reduce the CZ count of the resulting circuit. More-
over, at values a = 0, 1

2π,
3
2π, 2π the regularization

term faithfully captures the CZ cost of the CP gate.
We choose a simple linear interpolation between these
values because piecewise-linear penalty functions are
known to lead to the discrete decision-making in cer-
tain cases of continuous relaxation of discrete opti-
mization problems such as sparcification of machine
learning models [59], compressed sensing [60, 61], and
robust PCA [62] to name a few. For numerical stabil-
ity, small plateaus near the reference values are added
(empirically we find that CP angles often relax near
1
2π,

3
2π as well).

An obvious problem with this regularization func-
tion is the presence of the local minimum at a = π. In
fact, enumerating all local minimums associated with
the regularization terms of a CP template is equivalent
to the discrete search through all CZ templates that
it can reduce to. However, our empirical results sug-
gest that simultaneous optimization over CP and 1q
angles is a very efficient strategy if the overall weight
of the regularization term is chosen properly. If it
is too small, the regularization term has little effect
and the resulting decompositions tend to have a high
CZ count. When the weight is too high, the CP an-
gles effectively get captured by the closest local min-
imum and the flexibility of our strategy is lost. In
fact, optimization with a high regularization weight
could be considered a version of a random search over
the architectures (if the initial CP angles are chosen
randomly) and performs significantly worse than opti-
mization with a properly tuned regularization weight.

4.2 Procedure
We formulate the general synthesis problem as fol-
lows. Let L(U) be the loss function to be minimized
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Z (a0) X (a1) Z (a2) •
P (a15)

X (a9) Y (a11) Z (a13) • X (a16) Y (a18) Z (a20)

Z (a3) X (a4) Z (a5) • X (a10) Y (a12) Z (a14)
P (a22)

•
P (a29)

X (a23) Y (a25) Z (a27)

Z (a6) X (a7) Z (a8) • X (a17) Y (a19) Z (a21) • X (a24) Y (a26) Z (a28)

Figure 7: Template 3q circuit U3
CP on a connected topology.

Figure 8: Penalty function for angles of the CP gates. For
clarity of the figure, the width of plateaus near 0, 1

2 π, 3
2 π, 2π

is exaggerated.

with unitary as the argument. For unitary synthe-
sis L(U) may be any measure of fidelity to the target
unitary V , for example L(U) = D(U, V ). For state
preparation, one can choose L(U) = | ⟨ψ|U |0⟩ |2 where
|ψ⟩ is the target state and |0⟩ is the usual reference
state. Other loss functions can be used as well, for
an example of compiling the unitary up to a diagonal
multiplier see App. B. The goal is to find a unitary
Uk

CZ(a) such that L(Uk
CZ(a)) is sufficiently close to

the global minimum of L(U) and at the same time
the number k of 2q gates is as small as possible.

The regularized loss optimized by CPFlow reads

L(a) = L(Uk
CP (a)) + r

∑
ai∈CP

R(ai) . (6)

The first term is the value of the original loss func-
tion evaluated with the variational circuit as the ar-
gument. The second term is the regularization term,
summing the CP penalties for all CP angles in the
template. The number of 2q gates k and the overall
regularization weight r are two of the most important
hyperparameters of the model.

Three main stages of the algorithm are described
below. Precise details are given in Sec.4.3.

Static synthesis

1. Raw sampling. Loss function (6) is min-
imized starting from many initial conditions
(num_samples). For each sample, both the CP
angles and the angles of 1q gates are generated
uniformly and independently at random.

2. Selecting prospective results. Results of
the first step are filtered based on two crite-
ria (i) the original loss function L(Uk

CP ) must

be below a given threshold (entry_loss) and
(ii) the number of CZ gates in a projected
CP circuit must be below a specified value
(accepted_num_cz_gates). Condition (i) means
we only accept circuits that are close enough to
the global minimum, while (ii) rejects decomposi-
tions with too high CZ count. Projection from CP
to CZ circuits Uk

CP (a) → Uk′

CZ(a′) is preformed
by rounding off angles of CP gates that are suf-
ficiently close (within threshold_cp) to 0 or π
and substituting other CP gates with their CZ
decompositions.

3. Verification. At this stage the projected cir-
cuits contain only CZ gates and the regulariza-
tion term is removed. For each prospective CZ
circuit, the original loss function L(Uk′

CZ(a)) is
further optimized starting from initial angles a′

inherited from the CP circuit. The verification is
considered successful if the CZ circuit reaches a
more stringent loss threshold (target_loss).

This basic scheme can be modified in many ways:
by choosing a different regularization function, dif-
ferent sampling of the initial angles or altering the
details of the gradient based optimizer to name a few.
We have mostly experimented with varying two hy-
perparameters that are evidently crucial, the number
of CP gates k and the regularization weight r. Heuris-
tically, we find that a reasonable number of CP gates
is usually between k0 and 2k0, where k0 is the ex-
pected optimal CZ count of the decomposition. A
performant choice for the regularization weight r for
loss functions normalized so that 0 ≤ L(U) ≤ 1 is
r = 5 × 10−4. There could be exceptions to both
these rules of thumb. To make better choices of hy-
perparameters on a case by case basis, we use the
Bayesian tuning algorithm provided by the Hyperopt
package [63].

Tuning of hyperparameters is significantly hin-
dered by the fact that the loss function is stochastic.
Taking sufficiently many samples to reliably estimate
the quality of a hyperparameter configuration may
cost too much computational resources, while not
taking enough can make the acquired data too noisy
to be useful. On the positive side, the ultimate goal
is not to find the best hyperparameters, but rather to
find the best decompositions which routinely occur
at suboptimal points as well. The routine including
hyperparameter tuning can be summarized as follows.
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Adaptive synthesis

1. Defining the search space. Choose distribu-
tions to draw the number of gates k and the reg-
ularization weight r from. Typically, we use uni-
form distribution for k in some integer range and
lognormal distribution for r with mean around
5 × 10−4 and standard deviation 0.5.

2. Evaluating the score function. Draw a sam-
ple k, r from the hyperparameter distribution ac-
cording to the Hyperopt algorithm. Execute
steps 1 and 2 from the static routine. Any CZ
count is accepted at this stage, i.e. the results
are only selected by the value of the original loss
function L(Uk

CP (a)). Let k1, k2, . . . be CZ counts
of all prospective results selected. We define the
score function (reminiscent of softmin) by

score = − log2

(
1
N

∑
i

2−ki

)
, (7)

where N is the total number of raw samples. The
intuition is as follows. Templates that are too
expressive and have high regularization weight
will yield many high-fidelity decompositions with
excessive CZ counts. Imposing stricter hyperpa-
rameters will yield more efficient decompositions,
but also more raw samples failed to converge.

Function (7) balances between these scenarios by
averaging CZ counts of accepted decompositions,
weighting them exponentially, i.e. a single de-
composition with k CZ gates scores as two de-
compositions with k + 1 or four with k + 2. The
minimum of this function is k0, the CZ count
of the best possible decomposition. It could be
achieved if all raw samples reach the threshold
fidelity and have the optimal CZ count k = k0.
If some of the raw samples fail to converge or
require higher than optimal CZ count, the score
function increases. The maximum score = +∞
is obtained when none of the raw samples passed
the fidelity threshold.

3. Verifying best decompositions. At the previ-
ous stage, prospective decompositions are usu-
ally not verified as the verification process is
time-consuming and should not significantly alter
the score estimation (some of the decompositions
may fail to pass the verification, but this is rare).
However, if there are prospective decompositions
that improve on the current best they are verified
and if accepted, the current best is replaced.

4. Repeat. Repeat steps 2 and 3 until either the
maximum number of score evaluations is reached
or a decomposition with the desired number of
gates is found.

As the result of the adaptive routine, one narrows
down the space of good hyperparameters for the prob-
lem and collects several efficient decompositions found
in the process. This may already be sufficient for the
end goal, or provide a good starting point to generate
more decompositions using the static routine with
appropriately chosen hyperparameters. Although the
algorithm directly targets only minimization of the
CZ gate count, generating many similar decomposi-
tions allows one to further select by other criteria such
as CZ depth, or even T count and T depth. We will
illustrate this process in Sec.5.1.

4.3 Technical details
The static routine implemented in CPFlow pro-
ceeds as follows. First num_samples of initial an-
gle combinations are generated uniformly at random.
Learning at the raw sampling stage proceeds with
the ADAM optimizer with learning_rate 0.1 ran for
num_gd_iterations (2000 by default). At the selec-
tion stage for each sample, the best configuration of
angles a∗ is chosen corresponding to the minimum of
the regularized loss function (6) across all iterations.
If the primary loss function at this configuration of an-
gles L(Uk

CP (a∗)) is below the entry_loss threshold
(10−3 by default) the CP circuit is projected to the CZ
circuit Uk

CP (a∗) → Uk′

CZ(a′). Projection is performed
as follows. CP gates with angles lying within the
cp_threshold (0.2 by default) distance away from 0
or π are replaced by the identity and CZ gates respec-
tively. CP gates that were not replaced at the previous
stage are decomposed into 2 CZ decomposition using
standard methods. If the 2q gate count k′ of the re-
sulting CZ circuit is below accepted_num_cz_gates,
the circuit is deemed prospective.

At the verification stage, the original loss
function L(Uk′

CZ(a)) is further optimized
with the ADAM optimizer with a smaller
learning_rate_at_verification (0.01 by de-
fault) ran for an increased number of iterations
num_gd_iterations_at_verification (5000 by
default). Importantly, the new optimization starts
with the initial angles a′ obtained after projecting
the CP circuit. If the new optimization pass reaches
a more stringent target_loss threshold (10−6 by
default) the verification is considered successful and
the resulting circuit is added to the collection of
decompositions.

The parameters specified above work well with the
Hilbert-Schmidt loss function (1) in a sense that the
majority of prospective decompositions pass at the
verification stage. For other normalizations/shapes
of the loss function, different parameter specifications
might be required.

The adaptive search basically consists of several
static rounds. At each round the score function (7)
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is computed from the prospective results. If there is
a prospective result that improves the current best
decomposition, it is verified and added to the decom-
position pool if successful. Otherwise, the verifica-
tion stage is omitted and a new static round with
altered hyperparameters is initiated. The total num-
ber of rounds is controlled by max_evals (100 by de-
fault). Hyperparameters for each round are chosen by
the Hyperopt implementation of the tree-structured
Parzen Estimator algorithm [63] based on the pre-
vious score evaluations and input parameter distri-
butions specified by the user. We use the uniform
distribution for the number of gates k in the range
between min_num_cp_gates and max_num_cp_gates.
For the regularization weight r we use lognormal dis-
tribution with default values r_mean=5.5 × 10−4 and
r_variance=0.5. Note that by the default that we
keep, the first 20 parameter choices in Hyperopt are
intended to sample broadly from the search space and
do not depend on the previous score evaluations (only
on the input distributions), the actual optimization
starts at further steps. However, with a good choice
of the initial distributions optimal or near optimal de-
compositions are often found by CPFlow within sev-
eral first evaluations.

4.4 Computational setup
CPFlow [64] is written entirely in Python, with the
computational efficiency enabled by the JAX li-
brary [65]. One advantage of CPFlow is that the
computations are highly parallelizable as the core
of both basic routines consists in performing inde-
pendent multi-start optimizations. We also rely on
Qiskit [7] for visualization, validation, and post-
processing. Numerical experiments reported in this
paper were carried out on a server equipped with a 16
GB NVIDIA Quadro RTX 5000 GPU. A single static
routine with 1000 samples for 4q and 5q unitaries took
several minutes in our setup. Correspondingly, a typi-
cal adaptive routine with 100 evaluations using 1000
samples each took several hours.

5 Synthesis of Toffoli gates
We now put the CPFlow algorithm to work. We
choose the Toffoli gates as our key benchmark ex-
amples, motivated by several considerations. First,
the Toffoli gates are among the most essential build-
ing blocks for a great variety of quantum algorithms.
Next, large multi-controlled Toffoli gates can be built
recursively from the smaller ones [9], hence optimiza-
tion of the small-size Toffoli gates can potentially
be propagated to the large multi-controlled gates re-
quired in useful quantum algorithms. Lastly, Toffoli
gates have been studied extensively [9, 66, 67, 68, 69]
and although deriving rigorous bounds beyond the 3q
case is very difficult, the best existing decompositions

Best number of
CP gates k

Best regularization
weight r

Optimal
decompositions

Connected 7 1.31 × 10−3 28/100
Chain 14 0.88 × 10−3 19/100

Table 1: Synthesis statistics for the 3q Toffoli gate.

are likely to indeed be optimal and hence provide a
perfect benchmark.

The basic Toffoli gate, also known as the
Controlled-Controlled-NOT or the C2X gate, is de-
picted as follows.

• •
C2X = • = •

H • H

The right diagram represents the Toffoli gate as the
C2Z gate conjugated by the two Hadamard gates
(HZH = X). The C2Z gate itself is represented by
a diagonal matrix C2Z= diag(1, 1, 1, 1, 1, 1, 1,−1) and
is symmetric with respect to all qubits. Therefore, up
to a conjugation by 1q gates the Toffoli gates (C2X
as well as any CnX) are also symmetric. This implies
that even if the symmetry between the qubits is bro-
ken by e.g. a non-trivial topology, the choice of the
target qubit for the Toffoli gate is not relevant for our
synthesis problem.

5.1 3q Toffoli
In this subsection, we use CPFlow to find efficient
decompositions of the 3q Toffoli gate and illustrate
many important features of the algorithm along the
way. 3q Toffoli gate can be decomposed into 6 CZ
gates on the fully connected topology or 8 CZ gates
on the chain topology. Using CPFlow we were able to
find many inequivalent decompositions with these op-
timal CZ counts. First, we ran the adaptive routine
with 100 evaluation steps to identify the best hyperpa-
rameters in each case. Results are reported at Fig. 9.
Best hyperparameters for each topology are shown in
Table 1.

Note that at this stage decompositions with the op-
timal CZ counts have already been found, but it is
instructive to further analyze the performance of the
algorithm and generate more decompositions. To this
end, we ran the static routine with optimal hyper-
parameters and 100 samples for each topology. The
third column in Table 1 states how many of the ini-
tial conditions led to the decompositions with the op-
timal CZ count. For connected and chain topologies,
chances of finding optimal decompositions are roughly
30% and 20% respectively. These figures are to be
compared with the success ratios at the correspond-
ing gate counts shown at Fig. 6, which are of order
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Figure 9: Visualization of the hyperparameter optimization during adaptive synthesis of the 3q Toffoli gate on connected
(left panel) and chain (right panel) topologies. Red crosses corresponds to infinite score values and imply that no valid
decompositions were found at these points. Gold stars mark the best hyperparameter configurations.

Connected topology

• X (π) • • Z (−π) X (π) • Z ( π
4 )

Z (−π) X ( π
2 ) • Z ( −π

2 ) X ( π
4 ) • Z (−π) X ( 3π

4 ) • X ( 3π
4 ) • Z ( π

2 ) X ( π
2 ) Z ( π

4 )

Z ( −π
2 ) X ( π

2 ) • X ( π
2 ) • Z ( −π

2 ) X ( π
4 ) • Z ( −π

2 ) X ( π
2 ) • Z ( π

4 ) X ( π
2 ) Z ( π

2 )

Chain topology

Z ( π
2 ) X (π) • Z (−π) X (π) • Z (−π) X (π) • Z (−π) X (π) Z ( 5π

4 )

X ( π
2 ) • Z (−π) X ( π

2 ) • X ( π
2 ) • X ( 3π

4 ) • Z ( −π
2 ) X ( π

2 ) • Z ( −3π
4 ) X ( π

2 ) • X ( π
2 ) • Z ( −π

2 ) X ( π
2 ) • Z ( −π

2 ) X ( π
2 ) Z ( π

4 )

• Z (π) X ( π
2 ) • Z (−π) X ( 3π

4 ) • X ( 3π
4 ) • Z ( −π

2 ) X ( π
2 ) • Z (−π) X ( 3π

4 ) Z (π)

Figure 10: Decompositions of the 3q Toffoli gate that are likely to be optimal with respect to all four metrics: CZ depth, CZ
count, T depth, T count. Rotation gates are shortened from Rσ to σ for readability. Non-Clifford gates, each obtainable from
a single T gate, are highlighted.

X (π) • X ( π
2 ) • X ( π

2 ) • • Z ( −3π
8 ) X ( π

2 ) • Z (π) X ( π
2 ) • X ( π

2 ) • X ( 3π
8 ) • X ( 7π

8 ) • Z ( −π
2 ) X ( π

2 )

X ( π
2 ) • Z ( π

2 ) X ( π
8 ) • Z (π) X ( 5π

8 ) • X ( π
2 ) • Z ( −π

2 ) X ( π
2 )

X (π) • X (π) • X (π) •

• Z ( π
2 ) X ( π

2 ) • Z ( −5π
8 ) X ( π

2 )

• Z ( π
8 ) X ( π

2 ) • Z ( −π
2 ) X ( 3π

8 ) • Z (−π) X ( π
8 ) • Z ( −π

2 ) X ( π
2 ) • Z ( 7π

8 ) X ( π
2 ) • Z ( −π

2 ) X ( 5π
8 ) • Z ( −π

2 ) X ( π
2 ) Z ( −3π

8 )

• • X (π) Z ( −7π
8 )

• X (π) Z ( −3π
8 )

• X ( π
2 ) • Z ( π

2 ) X ( π
2 ) • X ( π

2 ) • Z ( −3π
8 ) X ( π

2 ) Z ( π
2 )

Figure 11: Decomposition of the 4q Toffoli gate on the star-shaped topology (all CZ gates touch the uppermost qubit) with
16 CZ gates.
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10% and 2% respectively. The remarkable conclusion
is that (at least in this simple example) our strategy
of coherent learning of the architecture together with
continuous parameters seems to be unreasonably effi-
cient. With the best hyperparameters, the frequency
of finding CZ count optimal decompositions is greater
than the mean success ratios for reaching the global
minimum for fixed architectures.

Decompositions which are initially generated by
CPFlow are approximate and bear little resemblance
to the standard Clifford+T representations, where 1q
gates are expressible as rotation gates with angles be-
ing rational multiples of π. We develop a simple pro-
cedure that attempts to eliminate redundant gates,
rationalize remaining ones, and if possible expand the
circuit into Clifford+T gate set. Details of the proce-
dure are deferred to App. A. The procedure is heuris-
tic and does not guarantee elimination of all spurious
angles, but often works well in practice. Applying it
to the decompositions found at the static stage, we
were able to generate 12 Clifford+T decompositions
of 3q Toffoli gates for each topology. We then sorted
these decompositions according to four metrics : CZ
count, CZ depth, T count and T depth. For both
topologies decompositions with the smallest T depth
were simultaneously optimal with respect to the three
remaining metrics. Fig. 10 depicts the best decompo-
sitions that were generated. Note that the decom-
position on the chain topology has T depth 3 and is
possibly a new result.

By construction, the distance D of decompositions
reported in Tab. 1 and depicted in Fig. 10 to the exact
3q Toffoli gates satisfies D < 10−6, approaching the
machine precision in our setup. It is natural to as-
sume, that decompositions with rational angles, like
those in Fig. 10, are in fact exact. Since all matrix
elements of the rationalized decompositions are poly-
nomials in eiπp/q (p, q ∈ Z) with integer coefficients, it
must be possible to reduce the unitary of the decom-
position to the target unitary using basic algebraic
manipulations. Using symbolic algebra software ex-
ternal to CPFlow we verified that circuits in Fig. 10,
as well all other decompositions presented explicitly
in the paper (Figs. 11,15,14) are exact. Directly inte-
grating this verification into CPFlow is left for future
work.

5.2 4q Toffoli
We now proceed to the decomposition of the 4q Tof-
foli gates, which are significantly more challenging.
Variational synthesis of the 4q Toffoli gate on various
4q topologies has been recently addressed in Ref. [38].
The approach adopted there was that of an exhaustive
search over all architectures. It is interesting to note
that for exhaustive search connectivity restrictions ac-
tually simplify the problem. Using CPFlow we were
able to reproduce all results presented in Ref. [38], see

Topology
CZ count 14 14 16 16 18
CZ depth 11 13 15 16 14

Table 2: Decompositions of 4q Toffoli gate on various topol-
gies

XYZ XZ

0.6 × 10−2 7.8 × 10−2

0.4 × 10−2 0.2 × 10−2

Table 3: Empirical success ratios for optimal decompositions
of the 4q Toffoli gate determined from 500 samples.

Table 2. Moreover, for the star-shaped topology we
achieved a minor improvement, reducing the CZ count
from 17 to 16. The corresponding circuit is depicted
at Fig. 11. Note that we did not look for decompo-
sitions minimizing CZ depth, but simply report CZ
depths of the first CZ count optimal decompositions
found during the search.

In all except for the fully connected topology, de-
compositions were discovered by the adaptive algo-
rithm with the full range of template depth for 4q
unitaries (0, 61), 500 samples at each hyperparame-
ter configuration, and 50 hyperparameter evaluations.
The clock time taken by the search for each topol-
ogy was about 40 minutes on our server 4.4. In con-
trast, the optimal decomposition on the fully con-
nected topology only appeared after about 200 hy-
perparameter evaluations and took about 2 hours.

One might wonder why did the exhaustive search
approach of Ref. [38] overlook the decomposition on
the star topology with 16 CZ gates. A plausible cause
might again be due to the local minimums. Table 3
shows empirical success ratios for the optimal circuits
found by CPFlow on the fully connected and star
topologies with two different choices of 1q gates: XYZ
and XZ. First thing to note is that the success ratio for
the star topology and XZ structure of 1q gates is only
about 2%. Work [38] indeed used the XZ template, al-
beit with a different optimization procedure [70]. We
find it likely that the appropriate architecture was
missed simply due to an insufficient amount of tri-
als. In fact, the problem of local minimums deprives
of guarantees even the exhaustive search over archi-
tectures Another interesting observation is that for a
connected circuit the success ratios of XYZ and XZ
templates differ by an order of magnitude. This high-
lights the importance of the parametrization and/or
initial sampling.
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Figure 12: A decomposition of the 5q Toffoli gate.

5.3 5q Toffoli
To our knowledge, the best decomposition of the 5q
Toffoli gate on the fully connected topology without
ancilla qubits features 30 CZ gates, an upper bound
valid for all diagonal gates [40]. The best result
of direct synthesis with CPFlow running for several
hours that we observed featured 36 CZ gates, indi-
cating that 5q unitaries with sufficiently many gates
are significantly harder to address. However, syn-
thesis with topological restrictions also poses signif-
icant challenges to the demultiplexing framework of
Ref. [40]. It is thus interesting to see if our numerical
routine can be useful.

To this end, we consider the compilation of the 5q
Toffoli gate on the chain topology. As a reference
point we take the best result achieved by the Qiskit
transpiler out of 1000 runs with optimization_level
set to 3, that yielded a decomposition with 61 CZ
gates.2 The best results of direct synthesis with
CPFlow yielded a decomposition with 69 CZ gates. As
we now show, by using a combination of the analytic
and numerical techniques this result can be improved
to 48 CZ gates.

Our strategy is to reduce synthesis of the 5q Toffoli
gate to the synthesis of several 4q blocks. We first
observe that the optimal 30 CZ gate decomposition of
the 5q Toffoli gate on a fully connected topology can
be obtained from the left circuit depicted in Fig. 12.
Triply controlled

√
X gate is a diagonal gate up to a

conjugation by the Hadamard gates and hence can be
decomposed using 14 CZ gates, just as the standard
4q Toffoli gate. Singly controlled

√
X gates can be

decomposed into 2 CZ gates each. Finally, the boxed
4q Toffoli gates can be replaced by their relative phase
counterparts [67], each requiring only 6 CZ gates. In
total, this gives 30 CZ gates, the best known amount.

We now try to adapt this decomposition to the
chain topology. The right circuit in Fig. 12 shows that

2Note that the transpilation process in Qiskit generally
yields circuits which are only equal to the target unitary up
to a possible permutation of qubits. As restoring the original
permutation might be an expensive operation in terms of the
CZ count, the transpilation results should be considered as a
lower bound.

by inserting four additional CNOT gates (each pair
originates from a SWAP gate, the two closest CNOT
gates cancel each other) around the triply controlled√

X gate we can place all 4q gates on the first four
qubits. Next, we use CPFlow to decompose C3

√
X

and relative phase C3X gates on the chain topology.
We found a decomposition of C3

√
X with 18 CZ gates,

the same gate count that is needed for decomposing
of the C3X gate on a chain topology 2. For the rela-
tive phase C3X gate, we found a decomposition with
11 CZ gates. Details and corresponding circuit dia-
grams are delegated to App.B. In the end, this yields
a decomposition of the 5q Toffoli gate on the chain
topology with 48 = 2 × 11 + 18 + 2 × 4 CZ gates in
total. We are not aware of other methods improving
this count.

6 Further benchmarks
Following [34], we test the performance of CPFlow
on a range of standard benchmark circuits from the
ibm_qx database [72, 71]. In Ref. [34] an extensive
comparison between packages SQUANDER , QFast ,
and QSearch was performed. Provided enough time,
SQUANDER reliably outperformed other packages
in most examples. From each of the Tables 1, 3 and
4 presented in Ref. [34] we pick 5 circuits with the
highest CZ count found by SQUANDER , as these
are likely to be the most challenging and hence the
most informative (for the same reason we skipped Ta-
ble 2, which mostly contains much simpler circuits).
All selected examples are 5q circuits. As before, we
consider the compilation successful if the distance to
the target unitary (1) is less than 10−6, which is ap-
proaching the machine precision in our setup.

We must note that currently CPFlow does not have
a dedicated subroutine to estimate the expected tar-
get complexity and narrow the hyperparameter win-
dow accordingly. Using the adaptive routine with
the full range of gate counts allowed by the theoreti-
cal lower bound (2) already for 5q circuits is unneces-
sarily time-consuming. Informed by the gate counts
obtained by SQUANDER we ran the adaptive rou-
tine with CP counts of templates in the range from
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Circuit CPFlow SQUANDER QSearch QFast+Qiskit+SQUANDER

I. Connected, lower complexity
4gt5_76 21 24 - -

one-two-three-v2_100 28 37 43 -
alu-v3_34 14 25 27 -
alu-v4_36 30 40 - -
4gt13_92 17 24 - -

II. Chain, lower complexity
4gt13_91 25 26 35 -
4gt5_76 22 26 51 -

alu-v0_26 28 32 - -
alu-v3_35 24 26 34 -

4mod5-v1_24 29 31 44 -
III. Connected, higher complexity

4gt10-v1_81 37* - - 39
one-two-three-v1_99 52* - - 45
one-two-three-v0_98 47* - - 61

aj-e11_165 24 - - 36
alu-v2_32 30 - - 41

Table 4: CNOT counts of circuits from imb_qx set [71] synthesized with CPFlow , SQUANDER , QSearch and a hy-
brid combination QFast+Qiskit+SQUANDER . Bars indicate either a failure to synthesize a circuit or the absence of
data. Results of CPFlow were obtained via the adaptive routine with the following options: min_num_cp_gates=20,
max_num_cp_gates=100, num_samples=1000, max_evals=100 except for the gate counts marked with an asterisk. The
latter were obtained under a different option set: min_num_cp_gates=40, max_num_cp_gates=60, num_samples=2000,
max_evals=100. Results of the other software packages are reproduced from [34].

20 to 100 for 100 evaluations with 1000 samples each.
Results are reported in Table 4 (CZ counts marked by
asterisks are explained below).

Results for group I, targeting synthesis of lower
complexity circuits on the fully connected topology,
show a significant compression achieved by CPFlow
compared to SQUANDER , averaging to approxi-
mately 25%. In contrast, for circuits of similar com-
plexity on the chain topology, group II, the difference
between CPFlow and SQUANDER is less noticeable,
averaging to a 10% additional compression. It would
be interesting to understand the role of topology in
either approach in more detail. The last group III
consists of the circuits that the SQUANDER package
failed to synthesize on its own, being unable to gener-
ate initial templates for compression [34]. In our view,
the reason is likely to be rooted in the local minimums
problem, which grows more acute with an increas-
ing gate count. The authors of Ref. [34] proposed an
interesting workaround to generate initial templates
using other software packages (Qiskit + QFast ) and
then further compress them with SQUANDER . The
resulting gate counts are reported in the last column
of Table 4. The last two circuits in this group were
synthesized by CPFlow along with the circuits from
groups I and II and turned out to have far lower
complexity than SQUANDER results suggest. On
the other hand, the first three circuits indeed proved
to be the hardest to synthesize, and in fact CPFlow

found only poor or no decompositions at all for
these circuits with the original search options. This
lead us to initiate a second adaptive optimization
with a narrower gate range (min_num_cp_gates=40,
max_num_cp_gates=60) and increased amount of
samples (num_samples=2000). Eventually, accept-
able and even apparently efficient decompositions
were found by CPFlow yielding an average compres-
sion of 25%. Yet, it also became apparent that gate
counts above 40 are a very challenging target for the
algorithm, with most trials yielding no prospective
circuits at all.

We need to stress that figures in Table 4 should not
be taken as an accurate performance comparison be-
tween the algorithms (and hence we do not report the
consumed resources and runtimes). First, the low-
level implementation and the processor that we used
are very different from those employed in Ref. [34].
Second, we relied on the results obtained in Ref. [34]
to tune hyperparameters of CPFlow in advance. Pre-
cise comparison should also have a clear metric such
as the maximum compression efficiency, faster run-
time, scalability etc. Our primary objective was to
minimize gate counts of synthesized circuits, the task
that CPFlow addressed with a promising efficiently
and within a relatively short time frame.
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7 Summary and outlook

In this paper, we presented a new approach to the
variational synthesis into CNOT plus 1q gate set. We
identified the problem of local minimums as a crucial
yet underappreciated obstacle that needs to be ad-
dressed. In the absence of an efficient way to avoid lo-
cal minimums we have made an extensive exploration
of the initial conditions space an integral part of our
scheme. We also proposed to use parametric 2q gates
as a way to unify the architecture search with the con-
tinuous optimization of 1q gates into a single coher-
ent optimization and demonstrated its efficiency. A
recent work based on a similar idea [34] also showed
significant improvement over more standard discrete
architecture search [27].

Another contribution of this work is a technique to
promote approximate numerical circuits to exact de-
compositions. As an example, for the Toffoli gates
studied in this paper we found that often efficient
decompositions can be translated into circuits with
angles being rational multiples of π and verified to
yield the exact synthesis. The technique is basically
a post-processing of the numerical synthesis results
and can be adopted by other approximate synthesis
frameworks, so we believe it should be of broader in-
terest.

While capable of generating many interesting re-
sults our method has its limitations. The first
is rather fundamental and common to all similar
schemes. Since the input circuit is represented by
means of the corresponding unitary matrix, only small
scale circuits that are easy to simulate classically can
be addressed. This however does not preclude us-
ing variational synthesis to optimize smaller building
blocks of large scale useful quantum algorithms [33].
Exploring this direction is an important and practi-
cally relevant avenue for future work.

Scaling up the variational approach within the clas-
sically accessible regime appears to be mostly limited
by the circuit complexity rather than the qubit count,
e.g. it seems to be more difficult to efficiently com-
pile a 4q circuit that requires many 2q gates than it is
to compile a 5q circuit that can be represented using
only a small amount of 2q gates. Importantly, the
challenges associated with the higher complexity are
not caused only by the combinatorial growth of the
possible architectures alone, but also by the prolifera-
tion of the local minimums in the loss landscape. Our
empirical results (cf Fig. 6) indicate that already for
4q circuits in the range from 12 to 50 2q gates the
probability of a successful continuous optimization is
less than 0.1% even for a correctly chosen architec-
ture. This probability depends on numerous factors
including details of the optimization procedure, dis-
tribution of the initial conditions and parametrization
of the loss landscape. Detailed understanding of these
mechanisms may lead to a dramatic improvement in

variational compilers’ efficiency.
There are numerous further possibilities to enhance

variational synthesis of high-complexity unitaries. For
example, if the unitary originates from a known quan-
tum circuit, it could be possible to take advantage
of this information. Splitting the original circuit in
parts, each having lower complexity, and synthesising
them separately may lead to better results. Another
proposal is to use the original circuit as the start-
ing template for the variational compression [34]. A
recent work [73] has shown that modifying template
architectures on the go can help to reduce both global
minimums and barren plateaus. It would be interest-
ing to see if some of the circuits generated by CPFlow,
which have efficient gate count but insufficient fidelity,
can serve as a useful starting point for the "burrow-
ing" procedure suggested in [73]. Eventually, the vi-
ability and resource allowance of the variational syn-
thesis must be justified by the payoff if provides for
useful applications.
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A Circuit refinement
Quantum circuits that result from numerical opti-
mization performed by CPFlow typically have many
redundant 1q gates, see Fig. 13(a) for an example.We
propose a simple refinement procedure that helps to
find a simpler representation for such circuits.

First, we test if an angle a can be set to 0 without
affecting the loss function. For instance, in the state
preparation problem the initial round of RZ gates has
no effect when applied to the all-zero state and hence
can be simply omitted.

Next, we check if there are cancellations between
pairs of rotation gates (not necessarily adjacent). As
a function of a single angle any parametrized quantum
circuit has the following simple form

U(a) = U0 cos a+ U1 sin a (9)

with some unitary matrices U0, U1. In turn, as a func-
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(a) Original circuit

Z ( π
2 ) X (π) Z (0) • Z (−2.356) X (1.257e − 05) Z (4.511)

Z (0) X (0.7854) Z ( π
2 ) • Z (−3.142) X (1.571) Z (3.685)

Z (0) X (1.489) Z (3.142)

Z ( π
2 ) X (π) Z (0) • Z (−2.356) X (1.257e − 05) Z (4.511)

Z (0) X (0.7854) Z ( π
2 ) • Z (−3.142) X (1.571) Z (3.685)

Z (0) X (1.489) Z (3.142)

(b) Circuit with reduced angles

X (3.142) • • • X (−π) • Z (0.7852)

• X (3.141) • X (1.571) • Z (−1.571) X (0.7854) • Z (−1.571) X (1.571) Z (−2.357)

• Z (−π) X (2.356) • Z (−π) X (2.356) • Z (−π) X (0.7853) • Z (−3.142) X (−0.7855) Z (3.142)

(c) Rationalized circuit

X (π) • • • X (−π) • Z ( π
4 )

• X (π) • X ( π
2 ) • Z ( −π

2 ) X ( π
4 ) • Z ( −π

2 ) X ( π
2 ) Z ( −3π

4 )

• Z (−π) X ( 3π
4 ) • Z (−π) X ( 3π

4 ) • Z (−π) X ( π
4 ) • Z (−π) X ( −π

4 ) Z (π)

Figure 13: Refinement of the approximate decomposition of the 3q Toffoli gate into an exact result.

• X (−π) • • X (−π)

X ( π
2 ) • Z ( −3π

4 ) X ( π
2 ) • X ( π

2 ) • Z ( 3π
4 ) X ( π

4 ) • Z (−π) X ( 3π
4 ) • Z ( π

4 ) X ( π
2 ) • X ( π

2 ) • Z ( π
4 ) X ( π

2 )

• X ( π
2 ) • • Z ( −π

2 ) X ( π
2 ) • Z (−π) X ( 3π

4 ) • Z (−π) X ( π
2 ) • X (−π) • Z ( −π

2 ) X ( π
2 ) • X (−π)

X ( π
4 ) • X ( 3π

4 ) • • Z ( −3π
4 ) X ( π

4 ) • Z (−π) X ( 3π
4 )

Figure 14: A decomposition of the relative phase 4q Toffoli gate on the chain topology with 11 CZ gates.
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X (π) • • X (π) • X (π)

X ( π
2 ) • X ( π

2 ) • X ( π
2 ) • X ( π

2 ) • X ( π
2 ) • Z (−π) X ( π

2 )

X ( π
2 ) • X ( π

2 ) • Z ( 7π
16 ) X ( π

2 ) • Z ( π
2 ) X ( π

16 )

• Z ( π
2 ) X ( π

2 )

• X (π) • X (π)

• X ( π
2 ) • Z (π) X ( π

2 ) • X ( π
2 ) • Z (−π) X ( π

2 ) •

• X ( 15π
16 ) • Z ( π

2 ) X ( π
2 ) • Z ( −π

16 ) X ( π
2 ) • Z ( −π

2 ) X ( 9π
16 ) • X ( 15π

16 ) •

• Z ( −7π
16 ) X ( π

2 ) • Z (−π) X ( π
2 ) •

• X (π) Z ( π
16 )

Z ( −7π
16 ) X ( π

2 ) • X ( π
2 ) • X (π) Z ( −15π

16 )

Z ( π
2 ) X ( π

2 ) • Z ( π
16 ) X ( π

2 ) • Z ( −π
2 ) X ( 7π

16 ) • Z ( −π
2 ) X ( π

2 ) Z ( −7π
16 )

Z ( π
16 ) X ( π

2 ) • Z (π) X ( π
2 ) • Z ( −9π

16 ) X ( π
2 ) Z ( −π

2 )

(8)

Figure 15: A decomposition of C3√
X gate on the chain 4q topology with 18 CZ gates.

tion of two angles it can always be represented as

U(a1, a2) = U00 cos a1 cos a2 + U01 cos a1 sin a2+
U10 sin a1 cos a2 + U11 sin a1a2 (10)

or, equivalently, as

U00 − U11

2 cos (a1 + a2) + U01 + U10

2 sin (a1 + a2)+

U00 + U11

2 cos (a1 − a2) + U10 − U01

2 sin (a1 − a2) .
(11)

Typically, all terms in this expression are non-
vanishing and different choices of a1 and a2 corre-
spond to different unitaries (up to discrete redundan-
cies). It may happen, however, that either the uni-
tary U itself or the loss function of interest L(U)
does not contain terms with a1 + a2 or a1 − a2.
For instance, for the two consecutive RX rotations
RX(a1)RX(a2) only the terms that depend on the
sum of angles are present in (11). Hence, for every
pair of angles (it is usually sufficient to only consider
angles of gates acting on the same qubit) we check
if L(U(0, a2 ± a1)) = L(U(a1, a2)) and if such pair is
found, the first angle is set to 0 and the second an-
gle is adjusted accordingly. Results of this step are
illustrated at Fig. 13(b).

Finally, we check if the resulting angles of the 1q
gates can be approximated by the rational multiples
of π without compromising the accuracy of the loss
function L(U) (in fact the accuracy is often improved
at this step), see Fig. 13(c).

The steps outlined above are heuristic and do not
always lead to expected results, but often work well

in practice. All circuits reported in this paper were
obtained automatically in this fashion. Heuristically
we find that when decompositions are close to opti-
mal, the refinement procedure works best. Possibly
this can be attributed to the fact that extra gates al-
low for more complicated redundancies in the circuit
that are not accounted for by our simple steps. Also,
the procedure works best when the loss function is the
most restrictive as in the compilation problem, when
only the global phase of the unitary is not defined.
When the loss function is more permissive, such as
in state preparation, further steps usually need to be
taken to eliminate all redundant gates.

B 4q gates featuring in the decompo-
sition of the 5q Toffoli gate
In Sec. 5.3 we constructed a decomposition of the 5q
Toffoli gate on the chain topology with 48 CZ gates.
This decomposition used efficient representations for
the square root of the 4q Toffoli gate C3

√
X and a

relative-phase 4q Toffoli gate on the chain 4q topol-
ogy. Decomposition of C3

√
X with 18 CZ gates can

be found using standard methodology described in
Sec.5.2. The resulting circuit is depicted at Fig. 15.
To find a relative-phase Toffoli gate one needs to use a
non-standard loss function. By definition [67], U is a
relative phase Toffoli gate if U = V D, where V is the
unitary matrix of the Toffoli gate and D is a diagonal
unitary matrix. To construct the corresponding loss
function we can use the fact that the sum

∑
i |Dii|2

for a unitary matrix D has the maximum value 2n iff
D is diagonal. Hence, the following loss reaches its
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minimum iff U is a relative phase Toffoli gate

L(U) = 1 −
Tr
∣∣UV †

∣∣2
2n

= 1 −
∑

i,j

∣∣UijV
∗

ji

∣∣2
2n

(12)

With this loss function and standard parameter spec-
ifications for the 4q circuits used in this work CPFlow
generated a relative phase 4q Toffoli gate on the chain
topology with 11 CZ gates. The circuit is shown at
Fig.14.
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