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In classical physics, memoryless dynam-
ics and Markovian statistics are one and
the same. This is not true for quantum dy-
namics, first and foremost because quan-
tum measurements are invasive. Going be-
yond measurement invasiveness, here we
derive a novel distinction between classical
and quantum processes, namely the possi-
bility of hidden quantum memory. While
Markovian statistics of classical processes
can always be reproduced by a memoryless
dynamical model, our main result shows
that this is not true in quantum mechan-
ics: We first provide an example of quan-
tum non-Markovianity whose manifesta-
tion depends on whether or not a pre-
vious measurement is performed—an im-
possible phenomenon for memoryless dy-
namics; we then strengthen this result by
demonstrating statistics that are Marko-
vian independent of how they are probed,
but are nonetheless still incompatible with
memoryless quantum dynamics. Thus, we
establish the existence of Markovian statis-
tics gathered by probing a quantum pro-
cess that nevertheless fundamentally re-
quire memory for their creation.

Our ability to understand and control mem-
ory effects in the evolution of open quantum sys-
tems is becoming increasingly important as tech-
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nology allows us to manipulate interactions with
increasing levels of speed, precision and complex-
ity [1, 2]. Control over memory can be advan-
tageous in various tasks, such as creating, ma-
nipulating and preserving coherences and corre-
lations [3, 4], simulating complex dynamics [5–
18], implementing randomised benchmarking and
error correction [19–21], performing optimal dy-
namical decoupling [22–24], designing quantum
circuit architectures [25–31], and improving the
efficiency of thermodynamic machines [32–35].

One has no choice but to account for complex
noise and memory effects when modelling realis-
tic dynamical systems, as no system is truly iso-
lated; in general, the environment stores infor-
mation about the past and propagates it in time,
leading to memory effects that manifest them-
selves as complex multi-time correlations [36–40].
A special case of open dynamics are memory-
less dynamics, for which the environment retains
no memory of its previous interactions with the
system. Such dynamics have been studied ex-
tensively due to their accuracy in many practi-
cally relevant situations and their exponentially
reduced complexity from the general scenario.
Both in the classical and quantum setting, such
efficient descriptions arise by way of (time-local)
master equations that efficiently simulate the sys-
tem dynamics [41–43]; in practice, the assump-
tion of memorylessness is often made for simplic-
ity and describes many ‘real-world’ scenarios with
a high degree of accuracy [44–47].
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However, experimentally determining that a
quantum process is memoryless requires full pro-
cess tomography, which necessitates a myriad of
complex sequential measurements and has conse-
quently only been done for low-dimensional/few
timestep cases [28–30, 48]. A more tractable sit-
uation is the sequential probing of a fixed ob-
servable via sharp, projective measurements. In
this case, memoryless quantum processes—like
their classical counterparts—lead to Markovian
statistics, i.e., statistics where the future is con-
ditionally independent of the past. Thus, at first
glance, memorylessness of the dynamics seems
to manifest on the experimental level identically
for classical and quantum processes. However,
this is not the case; for one, quantum measure-
ments of any observable are generally invasive,
leading to inconsistent (sub-)statistics [49] and
the violation of Leggett-Garg inequalities [50–52].
In contradistinction, measuring an observable in
the classical world can be done non-invasively.
Moreover—beyond measurement invasiveness—
here we demonstrate that quantum processes can
yield Markovian statistics that fundamentally re-
quire memory for their creation.

More concretely, in classical physics, any
Markovian statistics can be described by a mem-
oryless dynamical model (i.e., as emerging from
a sequence of independent stochastic matrices).
In the quantum case, measuring a fixed ob-
servable no longer constitutes a tomographi-
cally complete procedure; consequently, the exis-
tence of processes with memory that nonetheless
lead to Markovian statistics when said observ-
able is probed is not surprising per se and has
been demonstrated [53–55]. This phenomenon
notwithstanding, for any (quantum) experiment
that yields Markovian statistics, it is reasonable
to believe that there always exists some memo-
ryless quantum dynamics that faithfully repro-
duces the observed statistics. Such a descrip-
tion is known as the quantum regression formula
(QRF) [44, 45, 56] and is a widely used assump-
tion that links operational quantities—namely,
recorded statistics—to dynamical ones—namely,
a model of the underlying dynamics.

Here, we ask the question: Can Markovian
statistics always be faithfully reproduced by a
memoryless dynamical model? In other words,
can the QRF always be employed to describe
Markovian statistics? Our main result, perhaps

surprisingly, answers this in the negative. Since
this contradicts the counterpart answer within
classical physics (i.e., for sharp measurements
of a given observable), we thus uncover a new
type of genuinely quantum phenomenon: Hid-
den quantum memory. This observation makes
quantum memory an emergent phenomenon: Ob-
serving Markovianity with respect to a fixed mea-
surement basis is not sufficient to guarantee the
existence of a memoryless dynamical descriptor.
Such hidden quantum memory is similar in spirit
to other quantum traits that require precisely the
resource in their implementation that they ulti-
mately hide, such as quantum channels that pre-
serve all separable states but cannot be imple-
mented via local operations and classical commu-
nication [57–59], non-signalling maps that require
signalling [60], and maximally incoherent opera-
tions that necessitate coherent resources [61–63].
We begin by outlining the envisaged setup before
detailing key properties of memoryless dynamics
(both classical and quantum).

1 Framework
In any experimental scheme concerning temporal
processes, an experimenter probes a system of in-
terest at (any subset of) times Tn := {t1, . . . , tn}
(with tn > · · · > t1) and records the correspond-
ing probability distributions {P(xΓ)}, where Γ ⊆
Tn and xΓ := {xj |tj ∈ Γ} (see Fig. 1). These
capture, for instance, the probability that x1 is
observed at time t1 and x2 at t2, and so on, with
all possible combinations of measurement times.
Note that the experimenter can also not make
a measurement at any intermediate time, e.g.,
record P(x3, x1) without measuring at t2.

Independent of the physical scenario—it could
be classical, quantum, or even post-quantum—
one can define the concept of Markovianity based
on the observed statistics alone, as conditional
independence of any current outcome from all but
the most recent one. Concretely, we have the
following working definition:

Definition 1. A Markovian statistics on a set of
times Tn is a collection of conditional probability
distributions {P(xj |xj−1, . . . , x1)}tj∈Tn for which

P(xj |xj−1, . . . , x1) = P(xj |xj−1) (1)

for all tj ∈ Tn.
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Figure 1: Probing dynamics. By probing a process—
e.g., Brownian motion, or the evolution of a spin de-
gree of freedom—sequentially (here, at times T4 =
{t1, t2, t3, t4}), an experimenter can deduce the prob-
ability distribution P(x4, x3, x2, x1). In the classical
case, this also includes all ‘contained’ distributions, e.g.,
P(x4, x2, x1) via marginalisation [see Eq. (4)]. In the
quantum case, due to invasiveness, deducing said distri-
butions requires a new experiment where no measure-
ment is performed at t3 (depicted by the shaded box).

Defined as such, the question of Markovianity
is, a priori, theory independent and concerns only
the observed statistics. As we shall see, though,
the concept of conditional probabilities is a sub-
tle issue that depends on the envisaged physical
scenario. Throughout this article, we distinguish
Markovianity from the notion of memoryless dy-
namics, which corresponds to the memory prop-
erties of the underlying dynamics that engenders
the observed statistics, thereby making the latter
a theory-dependent concept.

Specifically, the question of memorylessness
concerns whether, throughout the evolution of a
system that is coupled to some inaccessible envi-
ronment, said environment perpetuates past in-
formation about the system forward in time or ir-
retrievably dissipates it.1 The description of such
open evolution differs across physical theories:
In the classical setting, the most general state
transformations are stochastic matrices, whereas
in the quantum realm, these are quantum chan-
nels. Probability distributions arising from in-
terrogating either classical or quantum processes
therefore have different properties since they are
calculated via different rules. Our main result
shows that such a distinction holds for the rela-
tionship between Markovianity and memoryless-
ness: Although equivalent in the classical case, in
the quantum realm the observation of Markovian
statistics does not guarantee even the existence
of a memoryless dynamics that engenders them.

1We consider memory to be a property that is external
to the system, i.e., stored in the environment, rather than
information encoded in the system itself.

2 Classical Dynamics

We begin with a discussion of memoryless classi-
cal dynamics:

Definition 2. A memoryless classical dynamics
on Tn is a set of mutually independent stochas-
tic matrices {Sj:j−1}j=2,...,n and an initial state
(i.e., probability vector) p1 such that the proba-
bility distribution over any sequence of outcomes
x1, . . . , xn is given by

P(xn, . . . , x1) =
〈xn|Sn:n−1|xn−1〉〈xn−1| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1,

(2)

where |xj〉〈xj | are projectors corresponding to
measurement outcomes xj .

Although the environment plays a role in dic-
tating the state transitions between any times
tj−1 and tj—namely via the stochastic matrices
Sj:j−1, which are matrices with non-negative el-
ements whose columns sum to unity—in memo-
ryless processes, the environment does not prop-
agate information, i.e., the stochastic matrices in
Eq. (2) are mutually independent. On the other
hand, Markovianity (see Def. 1) concerns only the
observed statistics [l.h.s. of Eq. (2)]. In classical
physics, we can make the following simple obser-
vation (see App. A):

Observation 1. In the classical setting, mem-
oryless dynamics are equivalent to Markovian
statistics.

Specifically, this equivalence is given by set-
ting 〈xj |Sj:j−1|xj−1〉 = P(xj |xj−1), and it fol-
lows from Eq. (2) that for any Markovian statis-
tics/memoryless classical dynamics we have

P(xn, . . . , x1) =P(xn|xn−1)P(xn−1|xn−2) . . .
× . . . P(x2|x1)P(x1). (3)

In one direction, Obs. 1 states that for any
memoryless dynamics, the observed statistics are
Markovian—this is also true in the quantum
setting (see below). Conversely, if one records
Markovian statistics by probing a classical pro-
cess, then one can always construct a unique,
memoryless dynamical model that faithfully re-
produces them—as we will see, this is not true
for statistics gathered from quantum processes.
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A major distinction between classical and
quantum processes (memoryless or not) is that
in the classical realm, the single n-time probabil-
ity distribution P(xn, . . . , x1) contains the entire
set of statistics on all subsets of times Γ ⊆ Tn.
That is, the probability P(xΓ, IΓ) to observe a
sequence of outcomes xΓ when probing the pro-
cess at times Γ and not measuring (denoted by
the ‘do-nothing’ instrument IΓ) at the remaining
times Γ := Tn \ Γ can be deduced via marginali-
sation

P(xΓ, IΓ) =
∑
xΓ

P(xn, . . . , x1), (4)

This non-invasiveness of measurements in clas-
sical physics underlies Obs. 1 and similarly fails
to hold in quantum mechanics. As a direct con-
sequence of measurement non-invasiveness, the
properties of a memoryless classical process on
Tn translate to all ‘sub-processes’ that are probed
only at times Γ ⊂ Tn (see App. A):

Corollary 1. All sub-statistics of a memoryless
classical dynamics are Markovian and the corre-
sponding conditional probabilities are compatible.

By compatible, we mean that all conditional
probabilities are independent of how they are ob-
tained, i.e.,

P(xj ,xΓ(i))
P(xΓ(i))

= P(xj ,xΓ(i)′)
P(xΓ(i)′)

=: P(xj |xi), (5)

for all tj , ti ∈ Tn (with tj > ti) and all sub-
sets Γ(i),Γ(i)′ ⊆ Tn that contain ti as their
largest time. For a classical memoryless dynam-
ics, knowledge of any outcome xi suffices to erase
all historic information (including whether or not
a previous measurement was made) and is there-
fore the only relevant parameter for predicting
future outcomes. Such compatibility between
Markovian sub-statistics of a memoryless quan-
tum dynamics also holds (for sharp measurements
of a fixed observable), although it is less obvious,
and we will later employ the breakdown of com-
patibility as a witness for memory.

3 Quantum Dynamics

In contrast to classical physics, in quantum
mechanics, measurements are generally invasive

such that there is a difference between averag-
ing over outcomes and not performing a mea-
surement. In this article, we focus on the gener-
ally considered situation of sharp measurements
of an observable, e.g., position in the classical case
or spin in the quantum case. This allows us to
fairly compare ‘classical’ and ‘quantum’ processes
in time. Within this setting, the measurements
themselves do not ‘actively’ change the state of
the observed system (in the sense that no active
interventions are performed), and thus measure-
ment invasiveness only manifests itself in quan-
tum mechanics (due to the loss of coherences in
the observed state).

Subsequently, this makes (conditional) proba-
bilities in the quantum realm protocol-dependent
entities that require further specification; in
what follows, whenever we consider a probabil-
ity distribution P(xΓ), we mean the statistics
obtained from only performing measurements at
times in the set Γ ⊆ Tn, and doing nothing
(denoted by IΓ) at the remaining times Γ =
Tn \ Γ. Importantly, in quantum mechanics—
in contrast to Eq. (4)—P(xΓ) := P(xΓ, IΓ) 6=∑

xΓ
P(xn, . . . , x1). Such measurement invasive-

ness is well-studied and has been used to witness
the non-classicality of physical processes [49, 64–
66]. Despite these added subtleties in the defi-
nition of (conditional) probabilities, memoryless
quantum dynamics lead—just like in the classi-
cal case—to well-defined, compatible Markovian
statistics and sub-statistics. To see this, we first
generalise Def. 2 to the quantum case:

Definition 3. A memoryless quantum dynam-
ics on Tn is a set of mutually independent com-
pletely positive and trace preserving (CPTP)
maps {Λj:j−1}j=2,...,n and an initial state (den-
sity operator) ρ1 such that the probability distri-
bution over any sequence of outcomes x1, . . . , xn

is given by

P(xn, . . . , x1) = tr
[
P(xn)

n Λn:n−1 . . .Λ2:1P(x1)
1 [ρ1]

]
,

(6)

where P(xj)
j [ • ] := |xj〉〈xj | • |xj〉〈xj | are maps cor-

responding to sharp (i.e., rank-1) projective mea-
surements.

Analogous to the classical case, CPTP maps
are the most general state transformations in the
presence of environmental noise, and the absence
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of memory in the dynamics corresponds to the
mutual independence of the maps Λj:j−1 in the
definition. The above equation to compute prob-
abilities is commonly known as the quantum re-
gression formula (QRF) [44, 45, 56]. Importantly,
it allows for the computation of sub-statistics on
any Γ ⊆ Tn, not via marginalisation, but by re-
placing the projection operators corresponding to
probing times in Γ in Eq. (6) with identity maps.
Of course, one need not perform projective mea-
surements, and the above formula can be used
to calculate the probability distribution over any
sequence of outcomes for arbitrary instruments.
However, in contrast to the non-invasive measure-
ments typically considered in classical stochastic
processes, such general quantum measurements
do not necessarily reset the state of the sys-
tem, which means that memoryless quantum dy-
namics can lead to non-Markovian statistics for
general instruments [53, 54, 67, 68]. Nonethe-
less, when restricted to sharp, projective mea-
surements of a given observable, then—just as
in the classical setting—memorylessness in the
quantum realm manifests itself on the observa-
tional level as Markovianity (see App. B):

Lemma 1. Any memoryless quantum dynamics
leads to Markovian statistics (for sharp, projec-
tive measurements).

We saw earlier that memoryless classical pro-
cesses also lead to (compatible) Markovian sub-
statistics (see Cor. 1), where compatibility is
given by Eq. (5). This is also true for memoryless
quantum processes, with the important difference
that sub-statistics are not obtained by marginal-
isation, but by ‘doing nothing’ at the excluded
times, i.e., by explicitly performing the experi-
ment in a different way. Probing sub-statistics in
this manner yields meaningful conditional prob-
abilities and we have the following (see App. B):

Lemma 2. Any memoryless quantum dynamics
leads to Markovian sub-statistics (for sharp, pro-
jective measurements) that are compatible.

In both quantum mechanics and classical
physics, memoryless dynamics—when probed
sharply in a fixed basis—always lead to Marko-
vian statistics and Markovian, compatible sub-
statistics. In the classical setting, the converse
is also true: From the observation of Markovian
statistics one can always construct a (unique)

Figure 2: Markovian statistics that require memory.
When the σz observable is measured (sharply) at all
times, the circuit yields Markovian statistics. Memory
becomes apparent in the joint statistics P(x4, x3, I2, x1)
when no measurement is performed at t2, which is in
contradiction with the possibility of a memoryless dy-
namical model (Thm. 1).

memoryless process describing the situation at
hand. As discussed, measuring a fixed observ-
able of a time-evolving quantum system cannot
provide enough information to fully determine
the underlying dynamics. Nonetheless, it is rea-
sonable to assume that whenever one observes
Markovian statistics, there should exist some
memoryless description that correctly reproduces
them (indeed, this is the assumption of employ-
ing the QRF to describe Markovian statistics).
Thus, we now ask the question: Given Marko-
vian statistics (deduced via sharp, projective mea-
surements), does there always exist a memoryless
quantum dynamical model that faithfully repro-
duces them?

4 Hidden Quantum Memory & Incom-
patability
We answer the above question in the negative,
first by demonstrating a quantum process that
leads to Markovian statistics with non-Markovian
sub-statistics, and then by constructing a process
with Markovian statistics and sub-statistics that
are nonetheless incompatible.

Theorem 1. Given Markovian statistics on Tn

(deduced via sharp, projective measurements),
there does not always exist a memoryless quan-
tum dynamics that faithfully reproduces them.

Proof. Our proof is by way of constructing an
explicit example, depicted in Fig. 2. The dy-
namics is over four times and the experimenter
always measures the σz observable. An initial
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state ρ1 = 1

2 is sent to the experimenter, who
measures it. The dynamics between times t1 and
t2 is a Hadamard gate. Following the measure-
ment at t2, the system is swapped with a fidu-
cial environment state τ = |0〉, which is what
the experimenter measures at time t3. Mean-
while, the dynamics of the environment con-
sists of a measurement in the σx-basis, followed
by a preparation of |0〉(|1〉) whenever +(−) is
recorded. Between times t3 and t4, the dynam-
ics comprises a CNOT gate, controlled on the en-
vironment. Due to the gates that act on the
system and environment, this circuit can, in
principle, display memory effects for the sys-
tem dynamics. In App. C, we calculate the full
statistics P(x4, x3, x2, x1) and show them to be
Markovian, i.e., P(x4|x3, x2, x1) = P(x4|x3) and
P(x3|x2, x1) = P(x3|x2). This is because the
measurement of σz at t2 yields an output state
that is unbiased with respect to the σx-basis mea-
surement on the environment and therefore all
memory of x1 is lost. However, by calculating
the sub-statistics where the experimenter does
not measure at time t2, i.e., P(x4, x3, I2, x1), we
see that they are non-Markovian since informa-
tion about x1 is now not fully scrambled by the
‘intervention’ (or rather lack thereof) at t2, and
we have P(x4|x3, I2, x1) 6= P(x4|x3) with depen-
dence on x1. As we proved in Lem. 2, such be-
haviour cannot happen for any memoryless quan-
tum dynamics. Thus, even though the statis-
tics on Tn is Markovian, there is no memoryless
quantum dynamics that faithfully reproduces the
statistics on all four times, since the sub-statistics
fail to be Markovian.

Here, we have uncovered a new temporal quan-
tum phenomenon: Hidden quantum memory.
The fact that full statistics can be Markovian but
sub-statistics can be non-Markovian for measure-
ments of a given observable is impossible in the
classical realm. Moreover, this property cannot
occur for memoryless quantum dynamics either
(whenever said observable is measured sharply).
Thus, we have shown the existence of Markovian
statistics that, not only potentially come from
a quantum dynamics with memory (which can
happen, as is well known, when measured in a
fixed basis), but fundamentally require memory
for their reproduction.

Another way of viewing this result is that non-
Markovian sub-statistics serves as a witness for

the necessity of memory in the underlying quan-
tum dynamics. This naturally begs the ques-
tion: If the full statistics and all sub-statistics
are Markovian, does there always exist a mem-
oryless quantum dynamical model that faithfully
reproduces them? In other words, is the ability
to detect non-Markovian sub-statistics a require-
ment for ruling out a memoryless description of
the quantum dynamics? Here, we also answer
this in the negative, providing an even stronger
result than above:

Theorem 2. Given Markovian statistics and
sub-statistics on Tn and all subsets thereof (de-
duced via sharp, projective measurements), there
does not always exist a memoryless quantum pro-
cess that faithfully reproduces them.

Proof. The proof is again by constructing an
explicit example, with the corresponding cir-
cuit depicted in Fig. 3. In App. C, we cal-
culate the full statistics P(x4, x3, x2, x1) and
all relevant sub-statistics [e.g., P(x4, x3, I2, x1),
etc.] and show them to be Markovian. This
latter fact can easily be seen directly: Since
the state of the system is discarded and repre-
pared in a fixed state |0〉 between times t2 and
t3, the only way in which memory from t1
and/or t2 can influence the statistics observed
at t4—thus potentially rendering the conditional
probabilities P(x4|x3, x2, x1), P(x4|x3, I2, x1) and
P(x4|x3, x2, I1) non-Markovian—is via the state
of the environment at time t3. However, while
this state explicitly depends on whether previ-
ous measurements were performed, it crucially
does not depend on the respective measurement
outcomes. For example, if measurements at t1
and t2 are performed, then the state of the en-
vironment at t3 is proportional to the maximally
mixed state, independent of the respective mea-
surement outcomes. On the other hand, if only a
measurement at t1 is performed, then the state of
the environment at t3 is (proportional to) |0〉〈0|,
again independent of the measurement outcome
at t1. The same independence of previous out-
comes (but not of whether or not the respective
measurements were performed) holds true for all
other potential combinations of performed and
unperformed measurements (as we show explic-
itly in App. C), such that all conditional prob-
abilities observed at times t4 and t3 are indeed
Markovian. However, as can already be seen
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Figure 3: Incompatible Markovian statistics. When the
σz observable is measured on the system at all sub-
sets of times, the circuit yields Markovian statistics and
sub-statistics. Despite this Markovianity, the respective
conditional probabilities are incompatible, i.e., they de-
pend on whether or not previous measurements were
performed (Thm. 2). Such behaviour is only possible in
the presence of memory.

from the above discussion, they are not compat-
ible. Indeed, since the state of the environment
at time t3 depends upon whether or not a mea-
surement was performed at t2, the resulting con-
ditional probabilities at t4 differ depending upon
whether or not previous measurements were per-
formed, making them incompatible.

5 Conclusions

In this article, we have presented the concept
of hidden quantum memory, i.e., the existence
of processes that yield Markovian statistics (for
sharp measurements of an observable) that can-
not be explained without underlying memory. In
a similar vein to the violation of Leggett-Garg
inequalities, this phenomenon can only occur
when the performed measurements are invasive,
since otherwise the observed statistics are classi-
cal and hence Markovianity and memorylessness
coincide. However, hidden quantum memory is
not merely a different manifestation of measure-
ment invasiveness, but arises due to its interplay
with memory effects; while memoryless quan-
tum dynamics can violate Leggett-Garg inequal-
ities, they cannot propagate information about
whether or not measurements were performed at
earlier times other than the most recent—i.e.,
they cannot exhibit hidden quantum memory.

It is important to stress the assumptions
that underpin our observations, in particular
with respect to the condition that the measure-
ments of the observable are sharp. Indeed, al-
lowing for classical stochastic processes to be
probed via active interventions [69, 70] or noisy

measurements [71–74] can also lead to seem-
ingly ‘non-classical’ effects such as the violation
of Leggett-Garg inequalities [50–52], breakdown
of Kolmogorov consistency [49], or the device-
dependence of memory [53, 54], and even the no-
tion of Markovianity itself becomes either obfus-
cated or trivial [75]. In fact, with such interven-
tions the same statistics as generated by the dy-
namics of Figs. (2) and (3) can be reproduced
with classical dynamics (with memory). How-
ever, in the classical case, allowing for active ma-
nipulations of the state to permit such incom-
patible statistics is rather ad hoc—essentially re-
quiring the observer to explicitly communicate to
the environment whether or not a measurement
is made—and not intrinsic to the fundamental
properties of measurements themselves. This is
in contrast to the situation in quantum mechan-
ics, where measurements fundamentally disturb
the system state in general. By only considering
sharp measurements of an observable, we restrict
our focus to the properties of sequential measure-
ments per se and fairly compare the two theories
at the expense of rendering our results device-
dependent (which is necessary for any meaningful
distinction between classical and quantum tem-
poral effects [76]). Within this paradigm, then,
activation of hidden memory can only be seen for
quantum dynamics, making the phenomena we
uncover genuinely quantum effects.

Importantly, our results differ from the
(known) fact that probing a quantum processes
with memory in a fixed basis—i.e., sharply mea-
suring a fixed observable—can yield Markovian
statistics. For the Markovian statistics that we
reported, there exists no memoryless model that
reproduces them, either because they become
non-Markovian when measurements are not per-
formed at some times, or because all observed
statistics and sub-statistics are Markovian but in-
compatible. In turn, this implies that even if one
observes Markovian statistics in a given basis, one
cannot confidently employ a QRF to compute the
statistics in said basis. As a consequence, even
detecting the possibility of a memoryless descrip-
tion of a process is an experimentally complex
undertaking that not only requires one to deduce
joint probabilities on Tn, but also on all subsets
thereof. Naturally, one might expect that simul-
taneously demanding Markovianity and compat-
ibility of all observed sub-statistics should suffice
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to guarantee a memoryless description. However,
even under such strong requirements, the exis-
tence of a memoryless model is a priori not clear,
and investigations into this question are subject
to future work.

Together, our results expose a novel genuinely
quantum effect in time and demonstrate the rich-
ness of effects that arise from the intricate inter-
play of measurement invasiveness, memory, and
the freedom to choose different instruments that
quantum mechanics affords.
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A Classical Dynamics
A.1 Memoryless Classical Dynamics and Markovian Statistics
Here, we prove Obs. 1 of the main text:

Observation 1. In the classical setting, memoryless dynamics are equivalent to Markovian statistics.

Naturally, this equivalence is well-known, but its explicit discussion exposes many of the subtleties
with respect to marginalisation that play a crucial role in the quantum case. For the proof, in the
forwards direction, beginning with Eq. (2), we have

P(xn, . . . , x1) = 〈xn|Sn:n−1|xn−1〉〈xn−1| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1 , (7)

where {Sj:j−1} and p1 are, respectively, the stochastic matrices and the initial probability vector that
define the memoryless classical dynamics. Computing the conditional probability for an arbitrary time
tj given the entire sequence of historic outcomes up until that time explicitly gives

P(xj |xj−1, . . . , x1) = 〈xj |Sj:j−1|xj−1〉〈xj−1|Sj−1:j−2|xj−2〉〈xj−2| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1
〈xj−1|Sj−1:j−2|xj−2〉〈xj−2| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1

= 〈xj |Sj:j−1|xj−1〉 ∀xj−2, . . . , x1. (8)

This expression is independent of all x1, . . . , xj−2 and it is indeed equivalent to the the conditional
probability P(xj |xj−1) an experimenter would observe when only making measurements at tj−1 and
tj , i.e., they do not measure (which we denote below by Ij−2:1). Unlike in quantum mechanics,
this conditional probability can equivalently be expressed by marginalising the full joint probability
distribution [see Eq. (4)] as follows

P(xj |xj−1) = P(xj , xj−1, Ij−2:1)
P(xj−1, Ij−2:1)

=
∑

xj−2,...,x1 P(xj , xj−1, xj−2, . . . , x1)∑
xj−2,...,x1 P(xj−1, xj−2, . . . , x1)

=
∑

xj−2,...,x1〈xj |Sj:j−1|xj−1〉〈xj−1|Sj−1:j−2|xj−2〉〈xj−2| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1|x0〉∑
xj−2,...,x1〈xj−1|Sj−1:j−2|xj−2〉〈xj−2| . . . |x2〉〈x2|S2:1|x1〉〈x1|p1|x0〉

= 〈xj |Sj:j−1|xj−1〉. (9)

Thus we have that for a memoryless classical dynamics, the conditional probabilities P(xj |xj−1, . . . , x1)
and P(xj |xj−1) coincide (and both amount to 〈xj |Sj:j−1|xj−1〉), leading to Markovianity of the statis-
tics and consequently the decomposition of the joint probability distribution expressed in Eq. (3).

Conversely, any Markovian statistics can be faithfully reproduced via a memoryless classical model:
Given a joint probability distribution over measurement outcomes for a classical stochastic process,
one can always write

P(xn, . . . , x1) = P(xn|xn−1, . . . , x1)P(xn−1|xn−2, . . . , x1) . . . P(x2|x1)P(x1). (10)

Equation (10) holds true for any probability distribution (by definition of conditional probabilities),
with the decomposition on the r.h.s. encoding potential memory effects. For Markovian statistics, the
above expression simplifies to Eq. (3). Then, one can simply define a set of matrices {Sj:j−1} via

〈xj |Sj:j−1|xj−1〉 := P(xj |xj−1). (11)

These matrices are stochastic (as they contain only non-negative entries and each of the columns to
unity since

∑
xj
P(xj |xj−1) = 1∀xj−1). One can also define the initial state via 〈x1|p1 := P(x1). From

these objects, one can reproduce the joint statistics faithfully via the memoryless dynamical model
expressed in Eq. (2).
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A.2 Sub-Statistics of Memoryless Classical Dynamics

Here, we prove Cor. 1 of the main text:

Corollary 1. All sub-statistics of a memoryless classical dynamics are Markovian and the corre-
sponding conditional probabilities are compatible.

For the proof, consider a memoryless dynamics on Tn = {t1, . . . , tn} and an arbitrary sub-statistics
where the experimenter measures at time tj and any subset of earlier times Γ(i) (with corresponding
sequence of outcomes xΓ(i)), where tj > ti = max(Γ(i)). Below, we assume both that Γ(i) does not
‘skip times’ (e.g., it can be of the form {t3, t2, t1}, but not {t3, t1}) and that min(Γ(i)) = t1. These
assumptions are not crucial and do not affect the generality of the results, but significantly simplify
notation. We denote by M the set of all times between ti and tj and by F that of all times after tj ,
with corresponding outcome sequences xM and xF and do-nothing operations IM and IF , respectively.
For convenience, we also introduce the do-nothing operation IF jM for all times after ti. With this, we
explicitly calculate the probability of observing xj conditioned on the sequence of previous outcomes
xΓ(i) as

P(xj |xΓ(i)) = P(IF , xj , IM , xi, . . . , x1)
P(IF jM , xi, . . . , x1)

=
∑

xF xM
P(xn, . . . , x1)∑

xF xjxM
P(xn, . . . , x1)

=
∑

xF xM
P(xn|xn−1) . . .P(x2|x1)∑

xF xjxM
P(xn|xn−1) . . .P(x2|x1)

=

[∑
xF
P(xn|xn−1) . . .P(xj+1|xj)

] [∑
xM

P(xj |xj−1) . . .P(xi+1|xi)
]
{P(xi|xi−1) . . .P(x2|x1)}[∑

xF xjxM
P(xn|xn−1) . . .P(xi+1|xi)

]
{P(xi|xi−1) . . .P(x2|x1)}

=
∑
xM

P(xj |xj−1) . . .P(xi+1|xi) =: P(xj |xi), (12)

where in the second line we employed the marginalisation rule to compute the sub-statistics from the
full process on Tn, in the third line we invoked the Markovianity condition (on the full statistics), in the
fourth line we split the sums into independent parts, in the fifth line we used the fact that the first sum
in the numerator and the sum in the denominator both evaluate to unity, and the final line only depends
on xj and xi and satisfies the properties of a conditional probability distribution. Thus we see that
any sub-statistics of a memoryless classical dynamics are also Markovian, i.e., P(xj |xΓ(i)) = P(xj |xi)
for all tj > ti. As mentioned, this reasoning also holds for more ‘complicated’ sets Γ(i), albeit with a
slightly more cumbersome notation than used in the proof above.

Moreover, the Markovian sub-statistics are compatible in the sense that it does not matter what
occurred at any time prior to that of the most recent conditioning argument, i.e., ti. For instance, if
one computes P(xj |xi, Ii−1:`+1, x`, I`−1:1), this should also be independent of x` (i.e., Markovian sub-
statistics) and equal to P(xj |xΓ(i)) = P(xj |xi) computed above (i.e., compatible). This can be seen
by noting that for any historic sequence (of either measuring or not at any times t1, . . . , ti−1, which
we denote with (x ∪ I)i−1:1), the logic of Eq. (12) holds, since the only changes would appear in the
terms in curly parentheses in the fourth line, which always cancel. Hence, we have the compatibility
P(xj |xi, (x∪I)i−1:1) = P(xj |xi) for all possible combinations of measuring or not in the history leading
up to time ti. Again, this argument can be run in exactly the same vein for any two subsets of times
Γ(i) and Γ(i)′ satisfying max(Γ(i)) = max(Γ(i)′) = ti, with the result that P(xj |xΓ(i)) = P(xj |xΓ(i)′) =
P(xj |xi) for all tj > ti.
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B Quantum Dynamics

B.1 Memoryless Quantum Dynamics and Markovian Statistics

Here, we prove Lem. 1 of the main text:

Lemma 1. Any memoryless quantum dynamics leads to Markovian statistics (for sharp, projective
measurements).

Beginning with Eq. (6), we have that for any memoryless quantum dynamics

P(xn, . . . , x1) = tr
[
P(xn)

n Λn:n−1 . . .Λ2:1P(x1)
1 ρ1

]
, (13)

where {Λj:j−1} are mutually independent CPTP maps, ρ1 is an initial quantum state, and P(xj)
j [ • ] =

|xj〉〈xj | • |xj〉〈xj |. The statistics up to any time tj is given by P(In:j+1, xj , . . . , x1) =: P(xj , . . . , x1) =
tr
[
P(xj)

j Λj:j−1 . . .Λ2:1P(x1)
1 ρ1

]
(this can be seen either by direct computation or by invoking causality),

where In:j+1 denotes ‘do-nothing’ operations from tj to tn. With this, computing the conditional
probability for an arbitrary time tj given the entire sequence of historic outcomes up until that time
explicitly gives

P(xj |xj−1, . . . , x1) =
tr
[
P(xj)

j Λj:j−1 . . .Λ2:1P(x1)
1 ρ1

]
tr
[
P(xj−1)

j−1 Λj−1:j−2 . . .Λ2:1P(x1)
1 ρ1

]
=

tr
[∑

` |xj〉〈xj |L`
j:j−1|xj−1〉〈xj−1|

(
Λj−1:j−2 . . .Λ2:1P(x1)

1 ρ1
)
|xj−1〉〈xj−1|L`†

j:j−1|xj〉〈xj |
]

tr
[
|xj−1〉〈xj−1|

(
Λj−1:j−2 . . .Λ2:1P(x1)

1 ρ1
)
|xj−1〉〈xj−1|

]
=
∑

`〈xj |L`
j:j−1|xj−1〉〈xj−1|L`†

j:j−1|xj〉〈xj−1|
(
Λj−1:j−2 . . .Λ2:1P(x1)

1 ρ1
)
|xj−1〉

〈xj−1|
(
Λj−1:j−2 . . .Λ2:1P(x1)

1 ρ1
)
|xj−1〉

=
∑

`

〈xj |L`
j:j−1|xj−1〉〈xj−1|L`†

j:j−1|xj〉

= 〈xj |Λj:j−1[|xj−1〉〈xj−1|]|xj〉, (14)

where we wrote Λj:j−1[ • ] :=
∑

` L
`
j:j−1 • L

`†
j:j−1 in Kraus operator form in the second line, and then

made use of the cyclicity of the trace and the fact that the measurements are sharp (rank-1) projectors
in the third line (importantly, if the projectors are not rank-1, corresponding, e.g., to the measurement
of an observable with degeneracies, then memoryless processes do not necessarily lead to Markovian
statistics [40, 54], since in this case the state after the measurement is not fully determined by the
outcome; this fact is also true in the classical setting). This expression is independent of all x1, . . . , xj−2
and therefore the conditional probabilities are Markovian. We now show that it is indeed equivalent to
the conditional probability P(xj |xj−1, Ij−2:1) =: P(xj |xj−1), where the experimenter does not measure
at all on times t1, . . . , tj−2. Explicitly, we have

P(xj |xj−1) =
tr
[
P(xj)

j Λj:j−1P
(xj−1)
j−1 Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1

]
tr
[
P(xj−1)

j−1 Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1
]

=
tr
[∑

` |xj〉〈xj |L`
j:j−1|xj−1〉〈xj−1| (Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1) |xj−1〉〈xj−1|L`†

j:j−1|xj〉〈xj |
]

tr [|xj−1〉〈xj−1| (Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1) |xj−1〉〈xj−1|]

=
∑

`〈xj |L`
j:j−1|xj−1〉〈xj−1|L`†

j:j−1|xj〉〈xj−1| (Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1) |xj−1〉
〈xj−1| (Λj−1:j−2Ij−2 . . .Λ2:1I1ρ1) |xj−1〉
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=
∑

`

〈xj |L`
j:j−1|xj−1〉〈xj−1|L`†

j:j−1|xj〉

= 〈xj |Λj:j−1[|xj−1〉〈xj−1|]|xj〉. (15)

Thus, we see that the conditional statistics in both situations above coincide and are indeed Markovian
P(xj |xj−1, . . . , x1) = P(xj |xj−1, Ij−2:1) = P(xj |xj−1) = 〈xj |Λj:j−1[|xj−1〉〈xj−1|]|xj〉.

B.2 Sub-Statistics of Memoryless Quantum Dynamics
Here, we prove Lem. 2 from the main text:

Lemma 2. Any memoryless quantum dynamics leads to Markovian sub-statistics (for sharp,
projective measurements) that are compatible.

Similar to App. A.2, we will restrict the discussion again to subsets of Tn of the form Γ(i) = {t1, . . . , ti}
and show that P(xj |xΓ(i)) = P(xj |xi) holds for all tj > ti and ti = max(Γ(i)). Let Ij−1:i+1 denote the
‘do-nothing’ operation at all times between ti and tj . With this, we obtain

P(xj |Ij−1:i+1,xΓ(i)) =
tr
[
P(xj)

j Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:iP(xi)
i Λi:i−1P(xi−1)

i−1 . . .P(x1)
1 ρ1

]
tr
[
P(xi)

i Λi:i−1P(xi−1)
i−1 . . .P(x1)

1 ρ1
]

=
〈xj |Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:i[|xi〉〈xi|]|xj〉〈xi|Λi:i−1P(xi−1)

i−1 . . .P(x1)
1 ρ1|xi〉

〈xi|Λi:i−1P(xi−1)
i−1 . . .P(x1)

1 ρ1|xi〉
= 〈xj |Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:i[|xi〉〈xi|]|xj〉 ∀ xi−1, . . . , x1. (16)

In the case where no measurements are made until time ti, we similarly have

P(xj |Ij−1:i+1, xi, Ii−1:1) =
tr
[
P(xj)

j Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:iP(xi)
i Λi:i−1Ii−1 . . . I1ρ1

]
tr
[
P(xi)

k Λi:i−1Ii−1 . . . I1ρ1
]

= 〈xj |Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:i[|xi〉〈xi|]|xj〉〈xi|Λi:i−1Ii−1 . . . I1ρ1|xi〉
〈xi|Λi:i−1Ii−1 . . . I1ρ1|xi〉

= 〈xj |Λj:j−1Ij−1Λj−1:j−2 . . . Ii+1Λi+1:i[|xi〉〈xi|]|xj〉. (17)

Thus, we see that both conditional probabilities are equal and independent of all measurement
outcomes prior to ti i.e., we haveP(xj |Ij−1:i+1, xi, xi−1, . . . , x1) = P(xj |Ij−1:i+1, xi, Ii−1:1) =: P(xj |xi)
and the sub-statistics are indeed Markovian. Regarding compatibility, note that for any combination
of measuring or not in the times prior to ti, the only changes to the above expressions occur in
the numerator term that always cancels with the corresponding part in the denominator, and so
compatibility also holds true. In other words, we have P(xj |Ij−1:i+1, xi, (x ∪ I)i−1:1) = P(xj |xi) for
all possible choices of (x ∪ I)i−1:1, i.e., all possible choices of measuring or not at times {t1, . . . , ti−1}
in the history. As for the classical case we demonstrated in App. A.2, the argument above can be run
in exactly the same way for more ‘complicated’ subsets Γ(i) ⊂ Tn, with the only difference being that
the notation becomes slightly more cumbersome.

C Hidden Quantum Memory and Incompatibility
C.1 Hidden Quantum Memory
Here we explicitly calculate all sub-statistics of the example used regarding Thm. 1 and show that, while
the full statistics is Markovian, there are non-Markovian sub-statistics, i.e., we uncover hidden quantum
memory. This phenomenon acts as a witness to the impossibility of a memoryless quantum dynamical
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Figure 4: Circuit with hidden quantum memory. For convenience, we reproduce the circuit provided in Fig. 2 in the
main text. Additionally, to better facilitate orientation, the states that are explicitly mentioned throughout the proof
are marked in green, i.e., the points in the circuit where the states ρ2, ρ

′
2, ρ3, ϕ3, . . . occur.

model by way of contradiction with (the first part of) Lem. 2, which states that any memoryless
dynamics leads to Markovian sub-statistics. The circuit corresponding to the process we discuss is
shown in Fig. 4, where, for convenience, the states we explicitly calculate in the discussion below are
annotated.

We begin with the full statistics. The probability over measurement outcomes at time t1 are set by
the initial state of the process, i.e.,

P(x1) = tr [|x1〉〈x1|ρ1] , (18)

with the post-measurement (sub-normalised) state given by ρ2(x1) = P(x1)|x1〉〈x1|. Without loss of
generality, we choose ρ1 = 1

2 and thereby set P(x1 = 0) = P(x1 = 1) = 1
2 . The process then consists

of a Hadamard gate, which rotates said post-measurement state (which is diagonal in the σz-basis) to
the σx-basis, and we have

ρ′2(x1) := Hρ2(x1)H =
{1

2 |+〉〈+| for x1 = 0
1
2 |−〉〈−| for x1 = 1.

(19)

The experimenter then measures the σz observable again, yielding the joint two-time statistics

P(x2, x1) = 1
4 ∀ x2, x1. (20)

The state after the second measurement is independent of x1 and given by

ρ3(x2, x1) = 1
4 |x2〉〈x2| ∀ x2, x1. (21)

This state is then swapped with the environment, which is prepared in an arbitrary fiducial state τ ,
which we set as the blank state |0〉. The joint system-environment state ϕ3 immediately prior to the
measurement at t3 is given by

ϕ3(x2, x1) = SWAP[ρ3(x2, x1)⊗ τ ] = τ ⊗ ρ3(x2, x1) = 1
4 |0〉〈0| ⊗ |x2〉〈x2|. (22)

The experimenter then measures the system at time t3, recording the probabilities

P(x3, x2, x1) =
{1

4 for x3 = 0
0 for x3 = 1

∀ x2, x1. (23)
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This distribution is Markovian, as we have the conditional probabilities

P(x3|x2, x1) =
{

1 for x3 = 0
0 for x3 = 1

∀ x2, x1, (24)

which are independent of x1 [in fact, the statistics are ‘super’-Markovian as the conditional probabilities
are even independent of x2, so we have P(x3|x2, x1) = P(x3|x2) = P(x3)]. The system-environment
state ϕ′3(x3, x2, x1) following the measurement at t3 is

ϕ′3(x3, x2, x1) = (P(x3)
3 ⊗ I)[ϕ3(x2, x1)] = 1

4 |0〉〈0| ⊗ |x2〉〈x2|, (25)

i.e., the measurement at t3 is non-invasive (note that the outcome x3 = 1 cannot occur). Subsequently,
a channel occurs that measures the environment in the σx-basis and feeds forward |0〉 (|1〉) whenever
the measurement outcome is + (−). The corresponding CPTP map is given by Υ[ • ] =

∑
k Y

k • Y k†

with Kraus operators Y 0 = |0〉〈+| and Y 1 = |1〉〈−|. Since 〈±|x2〉〈x2|±〉 = 1
2 ∀x2, this yields the

system-environment state

ϕ4(x3, x2, x1) = (I ⊗Υ)[ϕ′3(x3, x2, x1)] = 1
8 |0〉〈0| ⊗ 1. (26)

After this, a CNOT gate on system and environment occurs (with the environment qubit acting as
control), leading to

ϕ′4(x3, x2, x1) = CNOT[ϕ4(x3, x2, x1)] = 1
8(|00〉〈00|+ |11〉〈11|). (27)

The experimenter performs the final measurement at t4, recording the probabilities

P(x4, x3, x2, x1) =
{1

8 for x3 = 0
0 for x3 = 1

∀ x4, x2, x1. (28)

This distribution is indeed Markovian, as the conditional probabilities are

P(x4|x3, x2, x1) =
{1

2 for x3 = 0
0 for x3 = 1

∀ x4, x2, x1, (29)

[where we take the convention that conditioning on an event that cannot occur (i.e., x3 = 1) gives
conditional probability 0]. Thus, the full joint statistics P(x4, x3, x2, x1) is Markovian.

On the other hand, consider the situation in which the experimenter does not measure at time t2, i.e.,
observes the sub-statistics P(x4, x3, I2, x1). Everything until Eq. (19) remains the same, but without
measurement at t2 we have the state

ρ3(I2, x1) = I2[ρ′2(x1)] = 1
2

{
|+〉〈+| for x1 = 0
|−〉〈−| for x1 = 1.

(30)

The system is then swapped with the environment, yielding the joint state

ϕ3(I2, x1) = SWAP[ρ3(I2, x1)⊗ τ ] = τ ⊗ ρ3(I2, x1) = 1
2

{
|0〉〈0| ⊗ |+〉〈+| for x1 = 0
|0〉〈0| ⊗ |−〉〈−| for x1 = 1.

(31)

Measurement of the system at t3 leads to the joint statistics

P(x3, I2, x1) =
{1

2 for x3 = 0
0 for x3 = 1

∀ x1. (32)
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Thus, we have the conditional probabilities

P(x3|I2, x1) =
{

1 for x3 = 0
0 for x3 = 1

∀ x1. (33)

The system-environment state ϕ′3(x3, I2, x1) following the measurement at t3 is

ϕ′3(x3, I2, x1) = (P(x3)
3 ⊗ I)[ϕ3(I2, x1)] = 1

2

{
|0〉〈0| ⊗ |+〉〈+| for x1 = 0
|0〉〈0| ⊗ |−〉〈−| for x1 = 1.

(34)

After the map Υ on the environment, we have the system-environment state

ϕ4(x3, I2, x1) = (I ⊗Υ)[ϕ′3(x3, I2, x1)] = 1
2

{
|0〉〈0| ⊗ |0〉〈0| for x1 = 0
|0〉〈0| ⊗ |1〉〈1| for x1 = 1

= 1
2 |0〉〈0| ⊗ |x1〉〈x1|. (35)

Upon application of the CNOT gate, the system-environment state is

ϕ′4(x3, I2, x1) = CNOT[ϕ4(x3, I2, x1)] = 1
2 |x1〉〈x1| ⊗ |x1〉〈x1|. (36)

The experimenter finally performs the measurement at t4 on the reduced state of the system
ρ′4(x3, I2, x1) = 1

2 |x1〉〈x1| (with x3 = 0 being the only possibility), recording the statistics

P(x4, x3, I2, x1) =
{1

2δx4x1 for x3 = 0
0 for x3 = 1.

(37)

This sub-statistics is, however, non-Markovian, since the conditional probability at time t4 depends on
x1. Explicitly, we have

P(x4|x3, I2, x1) = P(x4, x3, I2, x1)
P(x3, I2, x1) =

{
δx4x1 for x3 = 0
0 for x3 = 1

6= P(x4|x3). (38)

As we have discussed in the main text, such non-Markovian sub-statistics cannot arise for a memoryless
quantum dynamics probed by sharp, projective measurements (as is the case in this example), and
therefore we conclude that the statistics observed—although Markovian on the whole—cannot be
faithfully reproduced by a memoryless quantum dynamical model.

C.2 Incompatibility

Here we explicitly calculate all sub-statistics of the example used regarding Thm. 2 and show that
although they are all Markovian (i.e., unlike in Thm. 1, there is no explicit activation of hidden
quantum memory witnessed via non-Markovian sub-statistics), they are nonetheless incompatible and
therefore serve to witness the impossibility of a memoryless quantum dynamical description by way of
contradiction with (the second part of) Lem. 2.

Intuitively, the corresponding circuit is such that the state of the environment at time t3, where
system and environment are in a product state, does not depend upon any previously observed mea-
surement outcomes at times t1 and t2 (thus yielding Markovian (sub-)statistics for all conceivable
subsets Γ ⊆ {t1, t2, t3, t4} at which measurements can be performed), but rather only on whether
or not any such prior measurements were performed (thus leading to Markovian but incompatible
(sub-)statistics. To see this explicitly, we now calculate the intermediate system-environment states at
all relevant points throughout the circuit (see Fig. 5 for better orientation).
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Figure 5: Circuit with incompatible Markovian (sub-)statistics. For convenience, we reproduce the circuit provided
in Fig. 3 in the main text. Additionally, to better facilitate orientation, the states that are explicitly mentioned
throughout the proof are marked in green, i.e., the points in the circuit where the states ϕ′

1, ϕ2, . . . occur.

Firstly, we have

ϕ′1 = 1
2(|00〉〈00|+ |11〉〈11|) . (39)

After time t1, this state is transformed to either

ϕ2(x1) = 1
2 |x1x1〉〈x1x1| or ϕ2(I1) = ϕ′1 (40)

depending on whether a measurement was performed or not. Following the first Hadamard gate applied
to the system, we then have either

ϕ′2(x1) = 1
2 |±〉〈±|

x1 ⊗ |x1〉〈x1| or ϕ′2(I1) = 1
2(|+0〉〈+0|+ |−1〉〈−1|). (41)

Here, |±〉〈±|x1 is used to denote the state |+〉〈+| for x1 = 0 and |−〉〈−| for x1 = 1. Analogously, after
time t2, we have the system-environment states

ϕ3(x2, x1) = 1
4 |x2x1〉〈x2x1|, ϕ3(I2, x1) = 1

2 |±〉〈±|
x1 ⊗ |x1〉〈x1|, or ϕ3(x2, I1) = 1

4 |x2〉〈x2| ⊗ 1.
(42)

Between times t2 and t3, the system and environment undergo a Hadamard gate on the system, followed
by a CNOT gate (with system acting as control)), after which the system is discarded and re-prepared
in the |0〉 state. Consequently, the system-environment state immediately prior to the measurement
at t3 is one of

ϕ′3(x2, x1) = 1
8 |0〉〈0| ⊗ 1, ϕ′3(I2, x1) = 1

2 |00〉〈00|, or ϕ′3(x2, I1) = 1
4 |0〉〈0| ⊗ 1 . (43)

Consequently, the state of the environment depends on whether or not measurements were performed
at t1 and t2 (e.g., it is proportional to 1 if both measurements were performed, and proportional to
|0〉〈0| if only the measurement at t1 was performed), while the reduced state of the system is always
equal to |0〉〈0| for any combination of measurements and outcomes. With this, we see directly that

P(x3|x2, x1) = P(x3|I2, x1) = P(x3|x2, I1) = δx30, (44)

and therefore the three-point statistics ending at time t3 are Markovian (and compatible), since the
corresponding conditional probabilities do not depend on any previous outcomes. Analogously, since
the system-environment state ϕ4 immediately before the final CNOT gate depends (at most) on the
outcome x3, but not on outcomes x2 or x1, all statistics ending at time t4 are also Markovian (note
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that for a four-step process, the statistics ending at times t3 and t4 are the only ones that have to be
checked with respect to Markovianity).

However, the resulting four-point conditional probabilities are not compatible. For example, we have

ϕ4(x3, x2, x1) = 1
8δx30|x3〉〈x3| ⊗ 1 and ϕ4(x3, I2, x1) = 1

2δx30|x30〉〈x30| , (45)

such that following the final CNOT, the reduced system state is either

ρ′4(x3, x2, x1) = 1
8δx301 or ρ′4(x3, I2, x1) = 1

2δx30|x3〉〈x3|, (46)

depending on whether or not a measurement was made at time t2. Consequently, we can compute the
corresponding statistics in either scenario:

P(x4, x3, x2, x1) = 1
8δx30 and P(x4, x3, I2, x1) = 1

2δx30δx4x3 . (47)

In a similar vein, from Eq. (45), we can directly compute the relevant statistics for the processes
ending at time t3 to be

P(x3, x2, x1) = 1
4δx30 and P(x3, I2, x1) = 1

2δx30. (48)

Finally, combining the above two equations, we obtain

P(x4|x3, x2, x1) = 1
2δx30 and P(x4|x3, I2, x1) = δx30δx4x3 . (49)

Although both of these conditional probability distributions are Markovian (i.e., show no dependence
on outcomes prior to x3), they nonetheless differ depending upon whether some intervention was made
overall in the past, i.e., they are incompatible. Since these conditional probabilities are incompatible,
there cannot be a memoryless quantum dynamics that faithfully reproduces them (as demonstrated in
Lem. 2), proving the claim.
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