State retrieval beyond Bayes’ retrodiction

Jacopo Surace and Matteo Scandi

ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


In the context of irreversible dynamics, associating to a physical process its intuitive reverse can result to be a quite ambiguous task. It is a standard choice to define the reverse process using Bayes' theorem, but, in general, this choice is not optimal. In this work we explore whether it is possible to characterise an optimal reverse map building from the concept of state retrieval maps. In doing so, we propose a set of principles that state retrieval maps should satisfy. We find out that the Bayes inspired reverse is just one case in a whole class of possible choices, which can be optimised to give a map retrieving the initial state more precisely than the Bayes rule. Our analysis has the advantage of naturally extending to the quantum regime. In fact, we find a class of reverse transformations containing the Petz recovery map as a particular case, corroborating its interpretation as quantum analogue of the Bayes retrieval. Finally, we present numerical evidences that by adding a single extra axiom one can isolate the usual reverse process derived from Bayes' theorem.

You can find our presentation State retrieval beyond Bayes’ retrodiction here.

► BibTeX data

► References

[1] Satosi Watanabe. Symmetry of Physical Laws. Part III. Prediction and Retrodiction. Rev. Mod. Phys., 27 (2): 179–186, April 1955. https:/​/​​10.1103/​RevModPhys.27.179.

[2] Satosi Watanabe. Conditional Probability in Physics. Progress of Theoretical Physics Supplement, E65: 135–160, January 1965. https:/​/​​10.1143/​PTPS.E65.135.

[3] Francesco Buscemi and Valerio Scarani. Fluctuation theorems from Bayesian retrodiction. Phys. Rev. E, 103 (5): 052111, May 2021. https:/​/​​10.1103/​PhysRevE.103.052111.

[4] Clive Cenxin Aw, Francesco Buscemi, and Valerio Scarani. Fluctuation theorems with retrodiction rather than reverse processes. AVS Quantum Science, 3 (4): 045601, 2021. https:/​/​​10.1116/​5.0060893.

[5] Gavin E. Crooks. Quantum operation time reversal. Physical Review A, 77 (3): 034101, 2008. https:/​/​​10.1103/​PhysRevA.77.034101.

[6] Edwin T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, Cambridge, 2003. ISBN 978-0-521-59271-0. https:/​/​​10.1017/​CBO9780511790423.

[7] José M. Bernardo and Adrian F. M. Smith. Bayesian Theory. John Wiley & Sons, September 2009. ISBN 978-0-470-31771-6. https:/​/​​10.1002/​9780470316870.

[8] Masanari Asano, Irina Basieva, Andrei Khrennikov, Masanori Ohya, and Yoshiharu Tanaka. Quantum-like generalization of the Bayesian updating scheme for objective and subjective mental uncertainties. Journal of Mathematical Psychology, 3 (56): 166–175, 2012. https:/​/​​10.1016/​

[9] Jean Dezert, Albena Tchamova, and Deqiang Han. Total Belief Theorem and Generalized Bayes' Theorem. In 21st International Conference on Information Fusion (Fusion 2018), Cambridge, United Kingdom, July 2018. https:/​/​​10.23919/​ICIF.2018.8455351.

[10] Arthur J. Parzygnat and Benjamin P. Russo. A non-commutative Bayes' theorem. Linear Algebra and its Applications, 644: 28–94, 2022. https:/​/​​10.1016/​j.laa.2022.02.030.

[11] Kevin Vanslette. Entropic Updating of Probabilities and Density Matrices. Entropy, 19 (12): 664, December 2017. https:/​/​​10.3390/​e19120664.

[12] Manfred K Warmuth and Dima Kuzmin. Bayesian generalized probability calculus for density matrices. Machine learning, 78 (1-2): 63, 2010. https:/​/​​10.1007/​s10994-009-5133-7.

[13] Kevin Vanslette. The quantum Bayes rule and generalizations from the quantum maximum entropy method. J. Phys. Commun., 2 (2): 025017, February 2018. https:/​/​​10.1088/​2399-6528/​aaaa08.

[14] Federico Holik, Manuel Sáenz, and Angel Plastino. A discussion on the origin of quantum probabilities. Annals of Physics, 340 (1): 293–310, 2014. ISSN 0003-4916. https:/​/​​10.1016/​j.aop.2013.11.005.

[15] Christopher A. Fuchs and Rüdiger Schack. Priors in Quantum Bayesian Inference. AIP Conference Proceedings, 1101 (1): 255–259, March 2009. https:/​/​​10.1063/​1.3109948.

[16] Adom Giffin and Ariel Caticha. Updating probabilities with data and moments. AIP Conference Proceedings, 954 (1): 74–84, 2007. https:/​/​​10.1063/​1.2821302.

[17] Sean A. Ali, Carlo Cafaro, Adom Giffin, Cosmo Lupo, and Stefano Mancini. On a differential geometric viewpoint of Jaynes' MaxEnt method and its quantum extension. AIP Conference Proceedings, 1443 (1): 120–128, 2012. https:/​/​​10.1063/​1.3703628.

[18] Ryszard Paweł Kostecki. Lüders' and quantum Jeffrey's rules as entropic projections. 2014. https:/​/​​10.48550/​arXiv.1408.3502.

[19] Luigi Accardi. Noncommutative Markov Chains Associated to a Preassigned Evolution: An Application to the Quantum Theory of Measurement. Adv. Math., 29: 226–243, 1978. https:/​/​​10.1016/​0001-8708(78)90012-9.

[20] Luigi Accardi and Carlo Cecchini. Conditional expectations in von Neumann algebras and a theorem of Takesaki. Journal of Functional Analysis, 45 (2): 245–273, 1982. https:/​/​​10.1016/​0022-1236(82)90022-2.

[21] M. S. Leifer. Quantum dynamics as an analog of conditional probability. Phys. Rev. A, 74: 042310, Oct 2006. https:/​/​​10.1103/​PhysRevA.74.042310.

[22] Bob Coecke and Robert W. Spekkens. Picturing classical and quantum Bayesian inference. Synthese, 186 (3): 651–696, June 2012. https:/​/​​10.1007/​s11229-011-9917-5.

[23] Masanori Ohya and Dénes Petz. Quantum Entropy and Its Use. Springer Berlin Heidelberg, 1993. https:/​/​​10.1007/​978-3-642-57997-4.

[24] Dénes Petz. Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun.Math. Phys., 105 (1): 123–131, March 1986. https:/​/​​10.1007/​BF01212345.

[25] Dénes Petz. Sufficiency of channels over von Neumann algebras. Quart. J. Math. Oxford Ser., 39 (1): 97–108, 1988. https:/​/​​10.1093/​qmath/​39.1.97.

[26] Dénes Petz. Monotonicity of quantum relative entropy revisited. Rev. Math. Phys., 15 (01): 79–91, 2003. https:/​/​​10.1142/​S0129055X03001576.

[27] Marius Junge, Renato Renner, David Sutter, Mark M. Wilde, and Andreas Winter. Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy. Ann. Henri Poincaré, 19 (10): 2955–2978, October 2018. https:/​/​​10.1007/​s00023-018-0716-0.

[28] Wolfgang Jurkat and Herbert John Ryser. Term ranks and permanents of nonnegative matrices. Journal of Algebra, 5: 342–357, 1967. https:/​/​​10.1016/​0021-8693(67)90044-0.

[29] Kristan Temme, Michael J. Kastoryano, M. B. Ruskai, M. M. Wolf, and F. Verstraete. The $\chi^2$-divergence and mixing times of quantum Markov processes. Journal of Mathematical Physics, 51 (12): 122201, December 2010. https:/​/​​10.1063/​1.3511335.

[30] Lieven Vandenberghe, Stephen Boyd, and Shao-Po Wu. Determinant Maximization with Linear Matrix Inequality Constraints. SIAM Journal on Matrix Analysis and Applications, 19 (2): 499–533, April 1998. https:/​/​​10.1137/​S0895479896303430.

[31] Robert Grone, Charles R. Johnson, Eduardo M. Sá, and Henry Wolkowicz. Positive definite completions of partial Hermitian matrices. Linear Algebra and its Applications, 58: 109–124, 1984. https:/​/​​10.1016/​0024-3795(84)90207-6.

[32] Man-Duen Choi. Completely positive linear maps on complex matrices. Linear Algebra and its Applications, 10 (3): 285–290, 1975. https:/​/​​10.1016/​0024-3795(75)90075-0.

[33] Oliver Rudolph. On extremal quantum states of composite systems with fixed marginals. Journal of Mathematical Physics, 45 (11): 4035, October 2004. https:/​/​​10.1063/​1.1776642.

[34] Franco Fagnola and Veronica Umanità. Generators of KMS Symmetric Markov Semigroups on $\mathcal{B}({\rm h})$ Symmetry and Quantum Detailed Balance. Communications in Mathematical Physics, 298 (2): 523–547, September 2010. https:/​/​​10.1007/​s00220-010-1011-1.

[35] Michael M Wolf and J Ignacio Cirac. Dividing quantum channels. Communications in Mathematical Physics, 279 (1): 147–168, 2008. https:/​/​​10.1007/​s00220-008-0411-y.

[36] M. S. Leifer and Robert W. Spekkens. Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A, 88: 052130, Nov 2013. https:/​/​​10.1103/​PhysRevA.88.052130.

[37] Salvatore Lorenzo, Francesco Plastina, and Mauro Paternostro. Geometrical characterization of non-Markovianity. Phys. Rev. A, 88: 020102, Aug 2013. https:/​/​​10.1103/​PhysRevA.88.020102.

[38] Francesco Buscemi and Michele Dall’Arno. Data-driven inference of physical devices: theory and implementation. New Journal of Physics, 21 (11): 113029, 2019. https:/​/​​10.1088/​1367-2630/​ab5003.

[39] Mary Beth Ruskai, Stanislaw Szarek, and Elisabeth Werner. An analysis of completely-positive trace-preserving maps on m2. Linear Algebra and its Applications, 347 (1): 159–187, 2002. ISSN 0024-3795. https:/​/​​10.1016/​S0024-3795(01)00547-X.

[40] Bruno De Finetti. Theory of Probability: A Critical Introductory Treatment. Wiley, 1974. ISBN 978-0-471-20141-0. https:/​/​​10.1002/​9781119286387.

[41] Jared Culbertson and Kirk Sturtz. A Categorical Foundation for Bayesian Probability. Appl Categor Struct, 22 (4): 647–662, August 2014. https:/​/​​10.1007/​s10485-013-9324-9.

[42] Denes Petz and Catalin Ghinea. Introduction to quantum Fisher information. Quantum Probability and Related Topics, pages 261–281, January 2011. https:/​/​​10.1142/​9789814338745_0015.

[43] Matteo Scandi, Paolo Abiuso, Dario De Santis, and Jacopo Surace. Quantum fisher information and its dynamical nature. in preparation.

[44] Francesco Buscemi, Daichi Fujiwara, Naoki Mitsui, and Marcello Rotondo. Thermodynamic reverse bounds for general open quantum processes. Phys. Rev. A, 102: 032210, Sep 2020. https:/​/​​10.1103/​PhysRevA.102.032210.

[45] Paolo Abiuso, Matteo Scandi, Jacopo Surace, and Dario De Santis. Characterizing (non-) Markovianity through Fisher Information. 2022. https:/​/​​10.48550/​arXiv.2204.04072.

[46] Imre Csiszár, Paul C Shields, et al. Information theory and statistics: A tutorial. Foundations and Trends in Communications and Information Theory, 1 (4): 417–528, 2004. http:/​/​​10.1561/​0100000004.

[47] Andrew Lesniewski and Mary Beth Ruskai. Monotone Riemannian Metrics and Relative Entropy on Non-Commutative Probability Spaces. Journal of Mathematical Physics, 40 (11): 5702–5724, November 1999. ISSN 0022-2488, 1089-7658. https:/​/​​10.1063/​1.533053.

[48] Heinz-Peter Breuer, Francesco Petruccione, et al. The theory of open quantum systems. Oxford University Press on Demand, 2002. URL https:/​/​​10.1093/​acprof:oso/​9780199213900.001.0001.

[49] Alexander Klyachko. Quantum marginal problem and representations of the symmetric group. 2004. https:/​/​​10.48550/​arXiv.quant-ph/​0409113.

[50] Sergey Bravyi. Compatibility between local and multipartite states. Quantum Information and Computation, 4: 012–026, 2004. https:/​/​​10.26421/​QIC4.1-2.

Cited by

[1] Arthur J. Parzygnat and James Fullwood, "From Time-Reversal Symmetry to Quantum Bayes’ Rules", PRX Quantum 4 2, 020334 (2023).

[2] Arthur J. Parzygnat and Francesco Buscemi, "Axioms for retrodiction: achieving time-reversal symmetry with a prior", Quantum 7, 1013 (2023).

[3] Paolo Abiuso, Matteo Scandi, Dario De Santis, and Jacopo Surace, "Characterizing (non-)Markovianity through Fisher information", SciPost Physics 15 1, 014 (2023).

[4] Akshaya Jayashankar and Prabha Mandayam, "Quantum Error Correction: Noise-Adapted Techniques and Applications", Journal of the Indian Institute of Science 103 2, 497 (2023).

[5] Francesco Buscemi, Joseph Schindler, and Dominik Šafránek, "Observational entropy, coarse-grained states, and the Petz recovery map: information-theoretic properties and bounds", New Journal of Physics 25 5, 053002 (2023).

[6] Akshaya Jayashankar and Prabha Mandayam, "Quantum Error Correction: Noise-adapted Techniques and Applications", arXiv:2208.00365, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2023-11-29 06:28:59) and SAO/NASA ADS (last updated successfully 2023-11-29 06:28:59). The list may be incomplete as not all publishers provide suitable and complete citation data.