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We develop a method to synthesize a class of entangling multi-qubit gates for a quan-
tum computing platform with fixed Ising-type interaction with all-to-all connectivity.
The only requirement on the flexibility of the interaction is that it can be switched on
and off for individual qubits. Our method yields a time-optimal implementation of the
multi-qubit gates. We numerically demonstrate that the total multi-qubit gate time
scales approximately linear in the number of qubits. Using this gate synthesis as a
subroutine, we provide compilation strategies for important use cases: (i) we show that
any Clifford circuit on n qubits can be implemented using at most 2n multi-qubit gates
without requiring ancilla qubits, (ii) we decompose the quantum Fourier transform in
a similar fashion, (iii) we compile a simulation of molecular dynamics, and (iv) we pro-
pose a method for the compilation of diagonal unitaries with time-optimal multi-qubit
gates, as a step towards general unitaries. As motivation, we provide a detailed discus-
sion on a microwave controlled ion trap architecture with magnetic gradient-induced
coupling (MAGIC) for the generation of the Ising-type interactions.

1 Introduction
In order to run a program on any computing platform, it is necessary to decompose its higher-level
logical operations into more elementary ones and eventually translate those into the platform’s
native instruction set. This process is called “compiling.” Both for classical and quantum comput-
ers, this is a non-trivial task. The performance of the compiled program depends not only on the
optimizations done by the compiler but also on the available instructions and their implementation.

Especially in the era of noisy and intermediate-scale quantum (NISQ) devices, quantum algo-
rithms are limited by the coherence time of the noisy qubits and the number of noisy gates needed
to run them [1]. Thus, it is imperative not only to improve the current quantum devices but also to
design fast gates and optimized compilers that use the specific architecture’s peculiarities to reduce
the circuit depth. Moreover, these endeavors help to reduce the noise-levels of physical gates and
are thus also important for reducing the overhead in quantum error correction [2].

Quantum compilation is further complicated by the fact that the type and performance of the
native instructions depend severely on the available physical interactions and the extent to which
they can be controlled. Most of the compiling literature has focused on native instructions given
by single and two-qubit gates. Two-qubit gates are arguably the simplest entangling gates that
can be experimentally realized and dominate in most quantum computing architectures, such as
supercomputing qubits.

In contrast, ion trap quantum computers naturally involve all-to-all interactions and thus al-
low for the realization of multi-qubit gates which entangle multiple qubits simultaneously [3, 4].
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Consequently, there has been a growing interest in studying compilation with multi-qubit gates,
and advantages over the use of two-qubit gates have been demonstrated [5–10].

The experimental realization of multi-qubit gates in ion trap quantum computers remains an
active field of research. Recent proof-of-principle experiments have demonstrated such gates acting
on up to 10 qubits [11–13]. These rely on precomputing and controlling rather complicated laser
pulse shapes to physically implement the desired interactions.

In this work, we propose a simple method that uses some all-to-all interaction to emulate
arbitrary couplings. We use this idea to synthesize time-optimal multi-qubit gates under minimal
experimental setup and control hardware assumptions.

Concretely, we consider a quantum computing platform that satisfies the following requirements:

(I) single-qubit rotations can be executed in parallel, and

(II) it offers Ising-type interactions with all-to-all connectivity.

We also develop compilation strategies with these gates, for which we additionally require that

(III) there is a way to exclude specific qubits from participating in the interaction.

This assumption is sufficient to guarantee that unitaries can be compiled in a circuit depth de-
pending only on the size of their support.

The requirements (I)–(III) are satisfied, for example, in ion trap platforms [11–13]. The mo-
tivation for our research originates from working with an ion trap where all gate control is based
on microwave pulses and where Ising-type interactions with all-to-all connectivity are mediated
through magnetic gradient-induced coupling (MAGIC) [14–21], see Section 1.4.

For concreteness, we assume that all Ising interactions are of ZZ type, and we call the multi-
qubit gates generated by arbitrary ZZ couplings ‘GZZ gates’. Furthermore, by requirement (II),
there is an Ising Hamiltonian H with fixed ZZ interactions We then present a synthesis method
which realizes an arbitrary GZZ gate as a sequence of time evolutions under H, interleaved with
suitable X layers. The purpose of these X layers is to temporarily flip the signs of some ZZ coupling
terms in H to accumulate the desired coupling over the sequence. We show that such a sequence
can always be found and use a linear program (LP) to find a time-optimal realization of the desired
GZZ gate. The resulting gate time scales approximately linear with the number of participating
qubits n and requires at most n(n− 1)/2 X layers.

This method may produce very short evolution times that can lead to problematically crammed
single-qubit rotations in practice. We address this issue with a variation of our approach that
extends the LP to a mixed integer program (MIP).

We proceed by developing several compiling strategies with GZZ gates. We show that any
Clifford circuit on n qubits can be implemented using at most n + 1 GZZ gates, n two-qubit
gates and few single-qubit gates. As an example for non-Clifford unitaries, we decompose the
quantum Fourier transform (QFT) in a similar fashion into n/2 GZZ gates, n/2 two-qubit gates
and single-qubit gates. An important application of quantum computers is the simulation of
molecular dynamics. We present a method to tailor the approximate simulation in Ref. [22] to
our setup by compiling layers of Givens rotations into time-optimal GZZ gates. This method
significantly reduces the required number of single-qubit rotations with arbitrary small angles,
which are challenging to implement in practice. Moreover, we propose a compilation method for
diagonal unitaries as a step toward compilation strategies for general unitaries.

1.1 Comparison to previous works
Synthesis of multi-qubit gates. Previous works [11–13] have mainly focused on implementing
multi-qubit gates on ion trap quantum computers using the laser-controlled Mølmer-Sørensen (MS)
mechanism [23–25]. This setup requires segmented, amplitude-modulated laser pulses, the shape
of which can be efficiently precomputed using the efficient, arbitrary, simultaneously entangling
(EASE) gate implementation [13].

Here, the novelty of our work is that we only require the engineering of a single, fixed Ising
Hamiltonian, which can be calibrated and fine-tuned to high accuracy. This situation can be
found in MAGIC ion traps [14–21] but may also serve as a practical design principle for other
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architectures. With our synthesis method, multi-qubit GZZ gates can be realized using only ad-
ditional X gates, resulting in a sequential series of simple pulses. Arguably, this requires less
fine-grained control of the pulse shapes than the EASE gate protocol [13] and may thus be more
implementation-friendly. However, we leave a detailed comparison of the approaches for future
experimental work.

Furthermore, we introduce gate time, instead of gate count, as the central metric for our
synthesis of multi-qubit gates. This metric is meaningful, especially for NISQ devices, since the
execution of circuits is limited by the coherence time of the qubits. As we show, a side effect of our
method is that it also produces rather short circuits, but not necessarily the shortest ones. From
our numerical studies, we expect that the gate time of our approach scales at most linear with
the number of participating qubits n. Hence, we expect our method to produce faster multi-qubit
gates than the EASE gate protocol, which additionally scales linearly in the total number of qubits
N .

A conceptually related approach to our synthesis method was presented in Ref. [26] in the
context of digital-analog quantum computing (DAQC). There, the gate synthesis is based on
solving a system of linear equations and is inherently restricted to X layers acting on at most
two qubits. In contrast, our work optimizes for the total gate time of the sequence and, to this
end, allows for layers with arbitrary support. In this way, we avoid the problem of negative times
encountered in Ref. [26] and observe a gate time scaling approximately linear in n, in contrast to
the quadratic scaling in Ref. [26].

Compilation with GZZ gates. A strategy to decompose general unitaries with multi-qubit GZZ
gates is presented in Ref. [6]. It is based on maximizing the fidelity while using as few multi-qubit
gates as possible. This optimization is computationally costly, so the numerical results in Ref. [6]
cover only up to 4 qubits.

Different compiling strategies with multi-qubit GZZ gates have recently been investigated for
Clifford unitaries. In Ref. [7], an implementation with 12n− 18 GZZ gates is reported, which has
been improved to 6n−8 GZZ gates in Ref. [8]. Subsequently, it was shown that 6 log(n)+O(1) GZZ
gates are enough if n/2 ancillary qubits are used [9]. Here, our ancilla-free approach reduces the
prefactor because it requires at most n+ 1 multi-qubit GZZ gates and n two-qubit gates. Shortly
after publishing the preprint of this work, it was shown in Ref. [10] that any Clifford unitary on
n qubits can, in fact, be implemented with at most 26 so-called GCZ gates which are equivalent
to GZZ up to single-qubit Z rotations. In Ref. [10], the authors also pointed out that the results
in Ref. [27] can be used to obtain an ancilla-free implementation with 2 log(n) +O(1) GZZ gates.
The constant-depth scheme of Ref. [10] can be readily combined with the time-optimal synthesis
of GZZ gates discussed in Section 2 to show that any Clifford unitary can be realized in linear
time on a platform satisfying the requirements (I)–(III). For large n this would further reduce the
number of required GZZ gates. However, for small n ≤ 13 the compilation method presented in
Section 3.2 may still be advantageous.

Refs. [19, 28] propose a hand-tailored implementation of the quantum Fourier transform on
three qubits that uses simultaneous Ising-type interactions to achieve a speed-up. We use the
same interactions, but our scheme can be applied to systems of arbitrary size and employs our
time-optimal multi-qubit gates (cf. Section 3.3.)

1.2 Outline
The remainder of the paper is structured as follows: We close this introductory section with a
brief introduction to the computational primitives obtained from the requirements (I)–(III) and
how these are realized in microwave controlled ion traps with MAGIC. In Section 2, we introduce
our GZZ gate and the time-optimal gate synthesis method. Also, we define the MIP to solve the
problem of too short Ising-evolution times and support our claim of time-optimality with numerical
results. In Section 3 we present compiling strategies with our multi-qubit gate for Clifford circuits,
the QFT, molecular dynamics, and general diagonal unitaries. Moreover, we demonstrate the
performance of these compilation schemes with numerical results for the Clifford circuits and the
QFT.
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Figure 1: Schematics of a MAGIC ion trap. Left: six ions in linear configuration, with the plot below indicating
the confining trap potential Vext in axial direction and magnetic gradient field B. There is Coulomb repulsion
between any two ions (only indicated for next neighbors). Right: the transition frequencies of the hyperfine
sublevels of the 171Yb+ ground statedepend on the magnetic field strength (Breit-Rabi diagram [29], Zeeman
effect exaggerated). The transitions on the right correspond to σ−, π and σ+ qubit, respectively.

1.3 Computational primitives
On the abstract quantum computing platform with N qubits specified by the requirements (I)–(III)
above, interactions between the qubits are generated by the Ising-type Hamiltonian

H0 := −1
2Z

TJZ = −
N∑
i<j

JijZiZj , (1.1)

where the vector Z = (Z1, . . . , ZN )T collects all local Pauli Z operators. The coupling matrix
J ∈ RN×N is a symmetric matrix which encapsulates the physical properties of the platform. Since
the diagonal entries of J merely generate a global and hence unobservable phase, we henceforth
assume that J has vanishing diagonal. By requirement (III), we can assume that H0 acts only on
the n ≤ N relevant qubits, and we thus assume w.l.o.g. that J is a n× n matrix.

Letting the system evolve under the Hamiltonian (1.1) for some time t generates a unitary
operation on the qubits. Our gate synthesis method is based on the observation that layers of local
X gates can be used to emulate the evolution under a modified Hamiltonian: For any binary vector
s ∈ Fn2 , set

Xs :=
n⊗
i=1

Xsi , (1.2)

and define the qubit encoding m = (−1)s ∈ {−1,+1}n (to be understood entry-wise). We then
have the following modified time evolution:

Xs exp(−itH0) Xs = exp
(
− itH(m)

)
. (1.3)

Here,H(m) := − 1
2Z

TJ(m)Z is the modified Hamiltonian with coupling matrix J(m) := J◦mmT ,
and ◦ denotes the Hadamard (entry-wise) product.

If we apply multiple time evolution operators with different encodings in succession, we can
further simplify this scheme. For two encodingsm = (−1)s andm′ = (−1)s′ , we can combine the
adjacent X layers in Eq. (1.3) and obtain

Xs e−itH0 Xs Xs′ e−it′H0 Xs′ = Xs e−itH0 Xs⊕s′ e−it′H0 Xs′ . (1.4)

Hence, a change of encoding can be performed with a number of X gates equal to the number of
sign flips needed to obtainm′ fromm. The total number of X layers needed to traverse a sequence
of encodings is only one more than the length of the sequence.

1.4 Experimental motivation: Ion trap quantum computing with microwaves
Let us give a brief overview of a physical platform on which our computational primitives can be
realized. For details, we refer the reader to Appendix A and Ref. [15].
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The energy difference between hyperfine sublevels of some atomic state typically falls into the
microwave regime of the electromagnetic spectrum, which makes pairs of such hyperfine states
natural candidates for microwave-controlled qubits. For example, the “ground state” of ions with
nuclear spin I = 1

2 and total electron angular momentum J = 1
2 (e.g. Ytterbium-171 ions, 171Yb+)

exhibits four hyperfine sublevels. They group into a singlet with F = 0 and a triplet with F = 1,
where F is the quantum number specifying the magnitude of total angular momentum F = I+J .
The triplet states are energetically degenerate, but can be distinguished by their value of the
magnetic quantum number mF ∈ {−1, 0,+1}. The non-degenerate singlet state has mF = 0.
There is an energy gap between the multiplets, which for 171Yb+ corresponds to a microwave
frequency of about 12.6GHz, see also Figure 1b.

We use one ion to implement a single qubit and choose the singlet state as the computational
zero state |0〉 := |F = 0,mF = 0〉. We then have the freedom to encode the computational
one state |1〉 into any of the triplet states, and indicate this by the magnetic quantum number
mF ∈ {−1, 0,+1} of the chosen |1〉 := |F = 1,mF 〉.

In ion traps, magnetic fields can be used to lift the degeneracy of the triplet through the Zeeman
effect, see Figure 1b. This separates the different qubit encodings in frequency space and enables
single-qubit operations through microwave-driven two-level Rabi oscillations. Certain sequences
of pulses on different transitions in the multilevel system can also be used to change the qubit
encoding coherently (see Appendix A). However, this possibility only plays a minor role in our
analysis, as we will explain below.

We now extend our scope to multiple ions in the same trap. They are stored in a linear
configuration and form a “Coulomb crystal” due to their mutual repulsion. In the MAGIC scheme,
the eponymous magnetic gradient along the crystal axis leads to different field strengths for the
different ion positions, see Figure 1a. The consequence are different Zeeman splittings, which
make the qubits distinguishable in frequency space. Thus, addressability is achieved, although the
microwaves cannot be focused onto single ions. Additionally, the ions experience a “dipole force” in
the inhomogeneous field, which couples internal and external degrees of freedom (s. Appendix A).
This effect can be interpreted as an Ising-like interaction between the qubits, which we use in this
work to generate multi-qubit gates.

To sum it up, the abstract requirements (I)–(III) are realized in microwave-driven ion traps
exposed to inhomogeneous magnetic fields as follows: (I) single qubit rotations are realized by
microwave-driven Rabi oscillations which can be executed in parallel through digitally generated
microwave signals [30]. (II) the Ising-type interaction is the natural interaction in this setup. (III)
selected ions can be taken out of the interaction by encoding them into the magnetic insensitive
state with mF = 0.

2 Synthesizing multi-qubit gates with Ising-type interactions
In this section, we investigate the set of gates which is generated by all possible time evolution
operators of the Hamiltonians H(m) defined in Eq. (1.1). Given time steps λm ≥ 0 during which
the encoding m is used, we thus consider unitaries of the form∏

m

e−iλmH(m) = e−i
∑

m
λmH(m), (2.1)

where we used that the diagonal HamiltoniansH(m) mutually commute. For all possible encodings
m ∈ {−1,+1}n we collect the time steps λm in a vector λ ∈ R2n and interpret t =

∑
m λm as the

total time of the unitary e−iH .
We interpret the generated unitary as the time evolution operator under the total Hamiltonian

H := −1
2Z

TAZ , (2.2)

where we defined the total coupling matrix

A :=
∑
m

λmJ(m) = J ◦
∑
m

λmmm
T (2.3)
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and used the linearity of the Hadamard product.
Since the mmT are symmetric, A inherits the symmetry and the vanishing of the diagonal

of J , see Section 1.3 and Appendix A. We wish to make our description of the coupling matrix
independent of the platform dependent details given by J . Therefore, we define the Hadamard
quotient M with entries

Mij :=
{
Aij/Jij , i 6= j ,

0, i = j .
(2.4)

The implicit assumption that J has no vanishing non-diagonal entries is commonly met by experi-
ments. Our objective is to minimize the total gate time and the amount of m’s needed to express
the matrix M . To this end we formulate the following linear program (LP):

minimize 1Tλ

subject to M =
∑
m

λmmm
T ,

λ ∈ R2n−1

≥0 ,

m ∈ {−1,+1}n.

(2.5)

As above, 1 = (1, 1, . . . , 1) is the all-ones vector such that 1Tλ =
∑

m λm. Moreover, we use the
symmetry (−m)(−m)T = mmT to reduce the degree of freedom in λ from 2n to 2n−1.

This LP has the form of a `1-norm minimization over the non-negative vector λ. As such, it
is a convex relaxation of minimizing the number of non-zero entries of λ, sometimes called the
`0-“norm”. Heuristically, it is thus expected that the LP (2.5) favors sparse solutions. As we shall
see shortly in Theorem 2.2, the LP (2.5) always has a feasible solution (i.e. there are variables λ
such that all constraints are satisfied) for any symmetric matrix M with vanishing diagonal. The
theory of linear programming then guarantees the existence of an optimal solution with at most
n(n− 1)/2 non-zero entries, see Proposition 2.3.

For any symmetric n×n matrix A with vanishing diagonal, we define an associated multi-qubit
gate GZZ(A), where GZZ stands for “global ZZ interactions”,

GZZ(A) := ei 1
2 ZTAZ . (2.6)

Here, the decomposition of A is found using the LP (2.5) and involves at most n(n− 1)/2 different
encodingsm. Recall from Section 1.3, that these encodings can be emulated with suitable X layers
and hence GZZ(A) can be implemented using at most n(n−1)/2+1 such layers. We call the exact
number of X layers the encoding cost of GZZ(A), and 1Tλ the total GZZ time. For this derivation,
we have intentionally been agnostic of the physical details of the ion trap but note that the values
of λm and therefore t depend on the (physical) coupling matrix J .

Finally, given an optimal decomposition of A, it is also possible to minimize the total number of
X gates needed for the implementation. Since every X gate introduces noise, such a minimization
improves the fidelity of GZZ gates in practice. By Eq. (1.4), the number of X gates needed to
change the encoding from m to m′ is exactly the number of signs in m that have to be flipped to
obtain m′. Since the resulting gate e−iH does not depend on the order of encodings m, one can
minimize the total number of sign flips over all possible orderings. However, finding an optimal
ordering generally corresponds to solve a traveling salesman problem on the support of λ and is
thus NP-hard [31]. Nevertheless, there are good heuristic algorithms, e.g. Christofides’s algorithm
introduced in Ref. [32].

Before demonstrating how to use the flexibility and the all-to-all connectivity of GZZ gates
for compiling, we discuss some theoretical aspects as well as limitations and extensions of the
above approach. We conclude by presenting numerical results for the synthesis of GZZ(A) gates
for randomly chosen matrices A.

2.1 Theoretical aspects
First, we show the existence of a solution for the LP (2.5) via frame theoretic arguments, then
we investigate the sparsity of optimal solutions from a geometrical viewpoint. Let us define the
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n(n− 1)/2-dimensional subspace of symmetric matrices with vanishing diagonal by

Sym0(Rn) := {M ∈ Sym(Rn) |Mii = 0 ∀i ∈ [n]} . (2.7)

Moreover, we denote the set of outer products generated by all possible encodings by

V :=
{
mmT

∣∣m ∈ {−1,+1}n,mn = +1
}
. (2.8)

Due to the symmetry mmT = (−m)(−m)T we can uniformly fix the value of one of the entries
of m. We chose the convention mn = +1.

Definition 2.1. Let V be a (finite-dimensional) Hilbert space. A set of vectors v1, . . . , vN ∈ V is
called a frame if their linear span is V . A frame is said to be tight if there exists a > 0 such that
for all v ∈ V

a‖v‖2 =
N∑
i=1
|〈v, vi〉|2 . (2.9)

Moreover, a frame is said to be balanced if
∑N
i=1 vi = 0.

With this definition, we obtain the following:

Theorem 2.2. The set V is a balanced tight frame for Sym0(Rn). In particular, the LP (2.5) has
a feasible solution for any M ∈ Sym0(Rn).

The proof that V is a balanced tight frame can be found in Appendix B, along with other
properties of V. Since V is a frame for Sym0(Rn), any matrix M ∈ Sym0(Rn) can be decomposed
asM =

∑
m λmmm

T . In other words, the LP (2.5) has a feasible solution for anyM ∈ Sym0(Rn).
Then, a standard linear programming argument shows that there is always an optimal solution
with sparsity at most n(n − 1)/2. Such a solution can be numerically found by using variants of
the simplex algorithm (see e.g. Ref. [33] for more details). We formulate this fact as the following
proposition and defer the proof to Appendix C, where we also show some geometric properties of
optimal solutions of a more general class of LP’s.

Proposition 2.3 (Sparsity of optimal solutions). There exists an optimal solution to the LP (2.5)
with sparsity ≤ n(n − 1)/2 for every M ∈ Sym0(Rn). The simplex algorithm is guaranteed to
return such an optimal solution.

2.2 Practical limitations
In the previous section we showed how to implement a GZZ gate through the Ising-evolution time
under at most n(n− 1)/2 different encodings. However, in an actual ion trap, practical limitations
might occur for very short evolution times. For this work, we neglect the potential error introduced
by a finite recoding time, i.e. the time needed to perform X gates. During recoding we have
additional Hamiltonian terms corresponding to the X gates simultaneously with the “always-on”
Ising Hamiltonian (1.1). These cause unwanted effects and the introduced errors become non-
negligible when the Ising-evolution time approaches the recoding time, see also Appendix A.3.
Below we observe in our numerical results for the LP that some λm are below that recoding time.
In this section, we address these problems and propose extensions to our approach to mitigate
them. First, we discuss the amount of error we would make in an appropriate norm by ignoring
too small λm, i.e. by defining a threshold ε and setting λm ≡ 0 if λm < ε. To avoid small evolution
times in the first place, we then define a mixed integer program (MIP) which can solve the problem
exactly with a lower (and upper) bound on the λm.

2.2.1 Truncation error

Suppose the target Hamiltonian H is decomposed as in Eq. (2.2). Given a threshold ε > 0 for the
λm, we define C := {m | λm ≤ ε} and approximate H by the Hamiltonian

H ′ = −
∑

m/∈C

λmZ
T (J ◦mmT )Z . (2.10)
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Figure 2: The error scaling, from Eq. (2.11), introduced by truncating all λm < εl = 27µs from the solution of
the LP is displayed. The error bars show the minimum/maximum deviation from the mean over 20 randomly
sampled binary A matrices.

The diamond norm error made by replacing the time evolution operator of H with the one of H ′,
is upper bounded by half their spectral norm distance (see e.g. Ref. [34]):

1
2

∥∥∥e−iH − e−iH′
∥∥∥
∞

= max
x∈Fn2

∣∣∣∣sin(1
2(Hx,x −H ′x,x)

)∣∣∣∣ . (2.11)

Here, we used that H and H ′ are diagonal in the computational basis with diagonal entries Hx,x :=
〈x |H |x〉 and, moreover, that |1− eiϕ| = 2 |sin(ϕ/2)|. The difference of the diagonal entries is

Hx,x −H ′x,x = −
∑
i6=j

Jij
∑

m∈C
λmmimj(−1)xi+xj . (2.12)

Since | sin(θ)| ≤ |θ| for all θ ∈ R, we find that
1
2

∥∥∥e−iH − e−iH′
∥∥∥
∞
≤ 1

4
∑
i 6=j
|Jij |

∑
m∈C

λm . (2.13)

Hence, the truncation error scales with the total truncated time and the interaction strength. Both
depend on the number of participating qubits n, however not in a straightforward way. The scaling
of the truncation error under realistic assumptions is showed in Figure 2.

2.2.2 The mixed integer program approach

To avoid small λm without introducing an additional error as above, we propose to add a lower
bound on their values to the LP (2.5). To this end, we introduce additional binary variables b, as
in Ref. [35], which renders the optimization into the following mixed integer program (MIP):

minimize α1Tλ+ (1− α)1T b

subject to M =
∑
m

λmmm
T ,

εlb ≤ λ ≤ εub,

λ ∈ R2n−1

≥0 ,

m ∈ {−1,+1}n,

b ∈ F2n−1

2 .

(2.14)

Here 0 ≤ εl < εu are bounds on the entries of λ: The lower bound εl can be set to the minimal
Ising-evolution time which can be realized in practice. The upper bound εu can be chosen freely,
but small values of εu are favorable since the runtime of the MIP is generally shorter for smaller
intervals [εl, εu] as explained in Ref. [35]. Since max(λ) depends on maxi<j(Mij) one can select
εu ∝ maxi<j(Mij). The parameter α ∈ [0, 1] is used to assign weights to the optimization of 1T b
(sparsity) and 1Tλ (total GZZ time), respectively.
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Figure 3: An example coupling matrix J for an ion trap with 10 ions and harmonic trap potential. J is
determined by the physical parameters of the trap, see Section 2.3 for the concrete values, and can be computed
by Eq. (A.12).

2.3 Numerical results
We investigate how well the proposed methods for the synthesis of GZZ(A) gates performs in
practice. To this end, we solve the LP (2.5) and the MIP (2.14) numerically for randomly chosen
matrices A and compare the solutions to a naive approach. As explicated above, our goal is to
minimize the total GZZ time 1Tλ subject to A/J = M =

∑
m λmmm

T . The numerical results
in this section show the performance of GZZ gates on all qubits, i.e. n = N .

To demonstrate the performance of our approach in a realistic setting we consider the ion trap
architecture of Appendix A with a harmonic trap potential. Concretely, we take Ytterbium 171Yb+

ions with Rabi frequency Ω = 2π 100kHz, magnetic field gradient B1 = 100T/m and axial trap
frequency ωz = 2π 100kHz. This determines the coupling matrix J via Eq. (A.12), see Ref. [36]
for more details. An example coupling matrix J for 10 ions is shown in Figure 3. We made the
Python code for its computation available on GitHub [37].

On a logical level, we consider a symmetric binary matrix A ∈ Sym0(Fn2 ) defined in Eq. (2.3),
which indicates where the ZZ gates are located: For all i < j, Aij = 1 if there is a ZZ gate between
qubits i and j. We simulate a random ZZ gate layer by sampling the entries of the lower/upper
triangular part of A uniformly from {0, 1}.

We compare the results of the LP and the MIP with a “naive approach”, which corresponds to
a sequential execution of the ZZ gates. As before, we neglect the gate time for single-qubit gates.
Moreover, “total gate time” refers to the total GZZ time, i.e. 1Tλ, for the LP and the MIP. For
the naive approach, the “total gate time” is the time needed to execute the sequence of ZZ gates,
i.e.

∑
i<j Aij/Jij , and the encoding cost is the number of ZZ gates

∑
i<j Aij .

Figure 4 shows the numerical results for solving the LP (2.5) and the MIP (2.14). The encoding
cost for the naive approach scales roughly with n2/4 since on average half of the randomly chosen
n(n−1)/2 entries of the lower triangular part of A do not vanish. In Figure 4 we find that the total
GZZ time scales linearly with the number of participating qubits. In contrast, by Proposition 2.3
the number of encodings needed to implement a GZZ gate increases quadratically with the number
of participating qubits. Thus, the time between the encodings becomes shorter and shorter, which
results in arbitrarily small evolution times λm for many qubits, see also Section 2.2. Hence, the
more qubits we consider, the more solutions λm of the LP are smaller than the lower bound εl,
see Figure 2. This explains the deviation of the encoding cost of the MIP from that of the LP.

Figure 4 also shows that the MIP can be solved in practice and, similar to the LP, yields nearly
time-optimal GZZ gates. Thus, even when taking practical limitations into account, GZZ gates can
be implemented in linear time and an encoding cost of approximately n(n− 1)/2.
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Figure 4: Comparing the performances of the LP and the MIP to the naive approach for the implementation
of a random ZZ layer. The error bars show the minimum/maximum deviation from the mean over 20 randomly
sampled binary A matrices. Left: The encoding cost to implement a random ZZ layer on n qubits. The naive
approach only costs half as much as the LP, see Section 2.3. For many qubits, the LP approaches the upper
bound (red dashed line) of Proposition 2.3, whereas the MIP exceeds this upper bound. Right: The total gate
time of the naive approach scales quadratically with the number of qubits due to the quadratic scaling of the
number of possible ZZ gates. The total gate time of both the LP and the MIP scales approximately linear. The
inset shows a zoomed in version of the plot. One can see that the LP and the MIP roughly take twice as long
as the slowest two-qubit ZZ gate (green dashed line).

Details of computer implementation. We use the Python package CVXPY [38, 39] with the
GNU linear program kit simplex solver [40] to solve the LP, and the MOSEK solver [41] for the
MIP. We change one parameter of MOSEK to improve the runtime at the expense of not finding
the optimal solution. Concretely, we set the MOSEK parameter MSK_DPAR_MIO_TOL_REL_GAP to
0.6.

For the MIP we choose the lower bound 27µs = εl ≤ λm for all m, which is motivated by
the concrete ion trap setup: the duration of a robust X gate is about five times longer than the
duration of a X gate (i.e. a π-pulse), which is roughly π/Ω = 5µs [42]. We further pick the upper
bound εu = 3/2 maxi<j |Mij |. Note that if the interval [εl, εu] is too narrow, we might not be able
to find any feasible solution. If it is too wide, the runtime of the solver might increase [35]. We
observed in our numerical studies (not shown) that both the total gate time and the encoding
cost are essentially constant in α as long as α is not too close to the extremal values 0 and 1.
We therefore, deliberately put equal weights on the two terms in the objective function and set
α = 0.5.

In practice, the simplex algorithm has a runtime which is polynomial in the problem size [43].
Since the LP (2.5) has 2n−1 variables, the runtime is exponential in n. For moderate n, this is
however still manageable on modern hardware – a Laptop with Intel Core i7 Processor (8x 1.8
GHz) and 16 GB RAM needs on average only 20 seconds to solve the LP for n = 13. This is about
the size of most ion trap quantum computers nowadays. The runtime of mixed integer programs
is exponential in the worst case. Nevertheless, solving MIP (2.14) for n = 13 qubits using the
MOSEK solver took on average about seven minutes on the same hardware.

An implementation of the LP and MIP used to generate Figure 4 is provided on GitHub [37].

3 Compilation with GZZ gates
The GZZ gates defined in Eq. (2.6) can be used in compilation schemes to improve multi-qubit
gate counts over previous results [7, 8, 26]. Our main result is that we can implement any Clifford
circuit on n qubits using only n+ 1 GZZ gates, n two-qubit gates and single-qubit gates.
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First, we introduce the notation used in later sections and derive some gate equivalences that
will help us later. Then, we study the practically relevant case of compiling global Clifford unitaries.
These ubiquitous unitaries play an important role as basic building blocks of quantum circuits,
especially in fault-tolerant quantum computing, and are of major importance for cryptographic and
tomographic protocols due to their statistical properties. For the compilation of Clifford unitaries,
we make use of their Bruhat decomposition, also used in Ref. [44], and compile the entangling
layers into GZZ gates. Interestingly, this compilation scheme for entangling Clifford layers can be
generalized beyond pure Clifford circuits. As an example, we show how it can be used to compile
an n-qubit QFT. Finally, we propose a compiling scheme for general diagonal unitaries which may
be used as a step towards decomposing general unitaries.

3.1 Notation
We introduce some notation and link our GZZ gate from Eq. (2.6) to other known entangling gates.
Subscripts on gates indicate on which qubits they act. For x ∈ Fn2 and α ∈ [0, 2π) we thus have

Z rotation: RZ(α)j |x〉 = eiαxj |x〉 ,
ZZ gate: ZZ(α)i,j |x〉 = eiα(xi⊕xj)|x〉 ,

Controlled Z rotation: CRZ(α)i,j |x〉 = eiαxixj |x〉 ,
Controlled X gate: CXi,j |x〉 = |x1, . . . , xj−1, xj ⊕ xi, xj+1, . . . , xn〉 ,

Hadamard gate: Hj |x〉 = 1√
2
|x1, . . . , xj−1〉

(
|0〉+ (−1)xj |1〉

)
|xj+1, . . . , xn〉 ,

(3.1)
where ⊕ denotes addition modulo 2. In particular, we denote the phase gate and the controlled-Z
gate as

Sj := RZ(π/2)j and CZi,j := CRZ(π)i,j , (3.2)

respectively. Note that in the definition of the ZZ gate α can be identified with entries of the matrix
A in Eq. (2.3). In terms of integer arithmetic , we have 2xy = x + y − (x ⊕ y) for x, y ∈ {0, 1}
which yields

CRZ(α)i,j ≡ RZ(α/2)i RZ(α/2)j ZZ(−α/2)i,j . (3.3)

Since the GZZ gate from Eq. (2.6) consists only of ZZ gates, we can express it as

GZZ(A) = eia
∏
i<j

ZZ(−2Aij)i,j , (3.4)

where A ∈ Sym0(Rn) is a symmetric matrix with vanishing diagonal and a :=
∑
i<j Aij . Similarly,

a layer of arbitrary controlled RZ rotations is characterized by A ∈ Sym0(Rn) via

GCRZ(A) :=
∏
i<j

CRZ(Aij)i,j = e− i
4a GZZ(A/4)

n∏
i=1

RZ(bi/2)i , (3.5)

where we used Eq. (3.3) and abbreviated bi :=
∑
j Aij . A general CX layer is given by

GCX(B)|x〉 := |Bx〉 , (3.6)

with a matrix B ∈ GLn(F2). We call GCX(B) a directed CX layer if B is lower or upper triangular.

3.2 Clifford circuits
The Clifford group Cln is a finite subgroup of the unitary group U(2n) that is generated by the
single-qubit Hadamard gate Hj and phase gate Sj , as well as the two-qubit CXi,j gate. Conversely,
it is a natural task to decompose an arbitrary Clifford unitary U ∈ Cln into these generators. This
task is solved by a number of algorithms, see e.g. Refs. [45–47], with the same asymptotic gate
count, but a differently structured output circuit .
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Here, we make use of the so-called “Bruhat decomposition” [44, 46]. This decomposition has
the advantage that the entangling gates are grouped either in CZ gate layers or directed CX layers,
which both can be directly compiled into GZZ gates. More precisely, the algorithm in Ref. [44]
writes any Clifford unitary in the form -X-Z-CX-CZ-S-H-CX-CZ-S-, where

• -X-Z- is a layer of Pauli gates,
• -CX- are layers of directed CX gates,
• -CZ- are layers of controlled Z gates,
• -S- are layers of phase gates S and
• -H- is a layer consisting of Hadamard gates H (and permutation operations).

In the following, we concentrate on the decomposition of the CZ and CX layers as the remaining
layers consist of local gates with straightforward implementation. As we show, the compilation of
a directed CX layer is a lot more expensive than the compilation of a CZ layer.

As a corollary of CZ layer compilation, we show how to efficiently prepare multi-qubit stabilizer
states with GZZ gates, i.e. states of the form U |0〉 where U ∈ Cln is a Clifford unitary. Stabilizer
states are important e.g. for the construction of mutually unbiased bases, or more generally, infor-
mationally complete positive operator valued measures (POVMs), and their preparation is thus of
practical relevance for tomographic protocols, see e.g. Refs. [48, 49].

First we transform the directed CX layer by conjugating the CX gate targets with Hadamard
gates. Then we use the structure of the resulting gate layer to reduce the encoding cost with the
GZZ gate. Furthermore, we use the same method to reduce the encoding cost of the QFT. We
underpin the advantages of our method with numerical simulations.

3.2.1 Implementing CZ layers

Since CZ gates commute, we can rewrite any CZ circuit, using Eqs. (3.2) and (3.5), as

GCZ(A) :=
∏
i<j

CZAiji,j =
∏
i<j

CRZ(πAij)i,j

= GCRZ(πA)

= e− iπ
4 a GZZ

(π
4A
) n∏
i=1

RZ

(π
2 bi
)
i

= e− iπ
4 a GZZ

(π
4A
) n∏
i=1

Sbii ,

(3.7)

where A ∈ Sym0(Fn) is again a symmetric matrix with zero diagonal and a and bi are defined as
in Section 3.1. Note that the phase gate S has order 4, so effectively only bi mod 4 plays a role
and the single-qubit gates are from the set {I,S,Z,S†}.

3.2.2 Stabilizer state preparation

Although any stabilizer state can be written as U |0〉 for some Clifford unitary U ∈ Cln, not the
full Clifford group is needed to generate all stabilizer states. In fact, it is well known that any
stabilizer state can be obtained by acting with local Clifford gates on graph states [50, 51]. Graph
states are defined as

|A〉 :=
∏
i<j

CZAiji,j |+
n〉, (3.8)

where A ∈ Sym0(Fn2 ) and |+n〉 = H⊗n|0〉. Hence, by the above, any stabilizer state can be
prepared by an initial global Hadamard layer, a GZZ gate, and a final layer of single-qubit Clifford
gates.
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3.2.3 Decomposing directed CX layers

Let us now consider the two directed CX layers in the Bruhat decomposition [44]. With the notation
introduced in Eq. (3.6), a fan-out gate with the following action on a state x ∈ Fn2 ,

GCX(BFO)|x〉 = |x1, x2 ⊕ x1, . . . , xn ⊕ x1〉 , (3.9)

has the binary matrix

BFO =


1 0 · · · 0
1
... 1n−1
1

 . (3.10)

From the structure of the matrix BFO it can be seen that any directed CX layer can be realized
by at most n − 1 fan-out gates. Each fan-out gate is equivalent to a GCRZ gate, conjugated with
Hadamard gates on the target qubits. Since by Eq. (3.5) each GCRZ can be realized with one GZZ
gate, we need at most n−1 GZZ gates to realize a directed CX layer, see Eq. (3.11) for an example.
Concretely, the total encoding cost for a directed CX layer, implementing each of the n− 1 fan-out
gates with one GZZ gate scales as O(1/6n3). Below Eq. (3.11) we show that bn−1

2 c GZZ gates are
enough to implement a directed CX layer. Therefore, one requires n − 1 (if n is odd) or n − 2
(if n is even) GZZ gates, for the two directed CX layers appearing in the Bruhat decomposition
of Ref. [44]. Since we can realize the CZ layer with exactly one GZZ gate, each Clifford circuit
requires only n + 1 or n GZZ gates and only n − 1 or n two-qubit CZ gates for n odd or n even,
respectively.

Fully directed CX layer. We call a directed CX layer fully directed if the corresponding gate
GCX(B) is characterized by a n× n matrix B with zeros in the upper triangular matrix and ones
everywhere else. Fully directed CX layers are related to the textbook QFT, see Section 3.3 below.

Remember that we can represent any directed CX layer as a concatenation of n−1 fan-out gates.
Commuting Hadamard gates through each target of the fan-out gate transforms the controlled X
to a controlled Z gate by HXH = Z. This converts a fan-out gate into a CZ-type fan-out gate, which
we also call fan-out gate for short. We can thus transform a fully directed CX layer by applying
1 = H2 from the left and commuting one of the Hadamard gates to the right until it hits a control:

. . .

. . .

. . .

. . .

. . .

=

. . .

. . .

. . .

. . .

. . .

H Z H

H Z Z H

H Z Z H

H Z Z Z H

(3.11)

Note that such a transformation obviously works also for an arbitrary directed CX layer. The
locations of the resulting H and CZ gates can be represented as tables

TH =



0 0 0 · · · 0
1 1 0 · · · 0

1 0 1
...

...
...

. . . 0
1 0 · · · 0 1

 and TCZ =


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

 , (3.12)

where TCZ has the same form as the matrix B for the fully directed CX layer. The row index
of these tables indicates the qubit on which the corresponding gate acts, while the column index
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indicates the “time step”, i.e. the horizontal position in the circuit diagram. Thus, TCZ[i, j] = 1 if
qubit i is either a control or a target of a CZ at time step j, and TCZ[i, j] = 0 if qubit i is idle
at time step j. Similarly, TH[i, j] = 1 if a Hadamard gate acts on qubit i at time step j, and
TH[i, j] = 0 if qubit i remains unchanged. For a fully directed CX layer, TH and TCZ always have
this form. To locate the components of the circuit on the right-hand side of Eq. (3.11) one starts
with reading the first column of TH, then the first column of TCZ and so on.

We now aim at reducing the encoding cost of the fully directed CX layer on n qubits. To this
end, we reduce the supports m of the GZZ gates implementing the fan-out gates in the CX layer,
since the encoding cost of a GZZ gate scales as m(m−1)/2, see Section 2. Consider an odd column
i in TCZ which corresponds to a CZ-type fan-out gate with control on qubit i. We split column i
into two columns as follows: The first one representing a two-qubit CZ gate on qubits i and i+ 1,
and the second column is the same as the original one except that it does not target qubit i + 1.
This splitting increases the number of columns in TCZ by one. For example, for n = 5 and i = 1 we
split the column [1, 1, 1, 1, 1]T into [1, 1, 0, 0, 0]T and [1, 0, 1, 1, 1]T , where we keep in mind that the
first nonzero entry in a column denotes the control qubit and hence has to appear in both parts.
Furthermore, we update the Hadamard table TH by inserting a zero column after column i+ 1 to
account for the new column in TCZ. The fan-out gate resulting from the split of the odd column i
of TCZ together with the even column i+ 1 can be implemented with one GZZ on i qubits.

Note that we can not move parts of columns of TCZ to the left since there is always a Hadamard
gate on the left of the control qubit of that column that blocks it. Therefore, we only split odd
columns i and move them to the right.

This splitting of columns of TCZ corresponds to moving the Hadamard gate on the i+ 1 qubit
to the left or, equivalently, moving all CZ gates except the one acting on the i + 1 qubit to the
right, as exemplified in the following for n = 5 qubits:

H Z H

H Z Z H

H Z Z Z H

H Z Z Z Z H

=

H Z H

H Z Z H

H Z Z Z H

H Z Z Z Z H

(3.13)

For general n, the scheme works exactly the same as in this example.
The circuit before the splitting on the left-hand side of Eq. (3.13) can be implemented with

n − 1 GZZ gates each acting on n, . . . , 2 qubits respectively, where n is the number of qubits of
the directed CX layer, and thus have an encoding cost of

∑n
i=2 i(i− 1)/2 = n3/6 + O(n2). On the

right-hand side we need dn−1
2 e CZ gates and bn−1

2 c GZZ gates, resulting in an encoding cost of

⌈
n− 1

2

⌉
+
bn−1

2 c∑
i=0

n− 2i
2 (n− 2i− 1) = 1

12n
3 + O(n2) . (3.14)

The first term comes from the encoding cost of the CZ gates, which is one per CZ gate. The second
term comes from combining a GZZ gate on n qubits with a GZZ gate on n − 1 qubits resulting
in a GZZ gate on n qubits. The encoding cost in Eq. (3.14) has the same cubic scaling with n as
before combining GZZ gates, but we were able to improve the coefficient from 1/6 to 1/12. Recall
from Section 2.3 that the encoding cost of the naive approach scales only quadratic, so we trade
higher encoding cost for faster gates. Each CZ gate can be implemented as described in Eq. (3.3)
for α = π by a single ZZ gate and two additional single-qubit RZ(π/2) ≡

√
Z = S gates on the

control and target qubit, respectively. Since the S gates do commute with ZZ and GZZ gates but
do not commute with Hadamard gates, we can combine most of the S gates to an Sk gate, where
k ∈ {0, 1, 2, 3}. There are two Hadamard gates on n−1 qubits and none on the first qubit, therefore
we have 2(n− 1) + 1 Sk gates. To summarize, in addition to dn−1

2 e CZ gates and bn−1
2 c GZZ gates

we need 2n− 1 Sk gates to implement a fully directed CX layer on n qubits.
Our method optimizes both the encoding cost and the total gate time of the directed CX layer.

We expect to lose time-optimality for a fully directed CX layer if we split any GZZ gate into
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smaller pieces and therefore reduce the encoding cost. In the extreme case, we would split all GZZ
gates into two-qubit ZZ gates and thereby would end up with the naive approach explained in
Section 2.3. Our method combines parts of the i-th column of TCZ with the i + 1-th column to a
GZZ gate on n− i+ 1 qubits. One could think that moving parts of the larger GZZ gate farther to
the right might improve the encoding cost. But the support of the part left behind, and therefore
the encoding cost increases the farther we push the other part to the right. In the extreme case
of pushing all parts as far as possible to the right we end up with a “transposed” table where the
lower triangular part is zero, and we did not achieve any reduction of the encoding cost.

Algorithm 1 Moving Hadamard gates.
Input: TCZ

Initialize TH as in Eq. (3.12)
hmax ← 0 . Position of the rightmost H that has already been moved left
for i = 1, . . . , n− 1 do

TH[i, i]← 0 . H on i-th qubit leaves its position
c← max{j = 0, . . . , i− 1|TCZ[i, j] = 1}+ 1 . Find position directly after first CZ to the left
if c = NaN then . No CZ found (max was taken on an empty set)

TH[i, 0]← 0 . Cancel H in the first layer
else if c = i then . Unable to move left, attempt to move right

if {j = i, . . . , n− 1|TCZ[i, j] = 1} = ∅ then . If no CZ is to the right...
TH[i, n− 1]← 1 . ...move H to the last layer, ...

else
TH[i, i]← 1 . ...otherwise remain in place.

else
hmax ← max{hmax, c} . Find the more restrictive condition (either CZ on current qubit

or H on previous)
TH[i, hmax]← 1 . Move H to the target layer

Output: TH

Arbitrary directed CX layer. Until now, we considered only fully directed CX layers which in
practice is a very special case. More common are arbitrary directed CX layers which corresponds
to a GCX(B) with B ∈ Fn×n2 still being lower/upper triangular but more sparse. This sparsity,
which translates to the table TCZ, can be used to further reduce the encoding cost. One might be
able to move the Hadamard gates to the left/right which changes the support of the GZZ gates.
We explain three different scenarios which can be easily verified by the simple structure of TCZ and
TH. Obviously, the two Hadamard gates on any qubit i > 1 cancel if they are separated only by
identities. Similarly, if there is no control or target of a CZ gate to the right of a Hadamard gate
H, one can move H to the last position of the circuit (without cancellation). Otherwise, it might
still be possible to push the Hadamard gate on qubit i to the left until it hits a target of some CZ
gate. However, one needs to be careful to not disrupt any previously generated GZZ gates with
qubit i in its support. This can be accomplished by disallowing the Hadamard gate to move across
other Hadamard layers. Algorithm 1 implements these moves of the Hadamard gates by updating
the table TH accordingly.

Algorithm 2 pools multiple columns of TCZ together into a single GZZ gate similar as for fully
directed CX layers. This takes into account the sparsity of TCZ and the positions of the Hadamard
gates, i.e. TH generated by Algorithm 1. As for fully directed CX layers, we can split a column of
TCZ into a two-qubit CZ gate and a GZZ gate if necessary. The algorithm starts from the left and
tries to move columns of TCZ, or parts of it, to the right. The following cases occur: If a column
of TCZ has a Hadamard gate left to the first nonzero entry, i.e. the control of the fan-out gate,
then it can only be moved to the right. If a column of TCZ has no Hadamard gate left to the first
nonzero entry, then this column can be combined with the previous column. If a column has one
Hadamard gate to the right, then the column can be split into a two-qubit CZ gate whose target
is the qubit on which the Hadamard gate acts, and a GZZ gate which can be moved to the right.
Due to the structure of TCZ and TH there is never a Hadamard gate to the right of the first nonzero
entry, i.e. the control of the fan-out gate, of a column.
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Algorithm 2 Moving CZ gates.
Input: TCZ, TH

for i = 1, . . . , n− 1 do
if TH[:, i] ∧ TCZ[:, i] has at least one 1 then . TCZ[:, i] has Hadamard gates to the left

if TH[:, i+ 1] has exactly one 1 then . TCZ[:, i] has one Hadamard gate to the right
Split TCZ[:, i] into:
T 1

CZ := TH[:, i+ 1]⊕ ei and . ei = [0, . . . , 0, 1, 0, . . . , 0]T with 1 at the ith position.
T 2

CZ := TH[:, i+ 1]⊕ TCZ[:, i]
if T 2

CZ has at least two 1’s then . Check that T 2
CZ is not trivial

Move T 2
CZ to the right.

else . TCZ[:, i] has no Hadamard gates to the left
Move TCZ[:, i] to the left.

Output: TCZ (modified)

Example. Consider the following circuit implementing an arbitrary directed CX layer on n = 5
qubits where the first two fan-out gates do not target qubits 2 and 3, respectively:

H H

H Z H

H Z Z Z H

H Z Z Z Z H

Algorithm 1=⇒ H Z H

H Z Z Z H

H Z Z Z Z H

Algorithm 1 cancels two Hadamard gates on the second qubit which is not targeted by the first
fan-out gate, i.e. TCZ[2, 1] = 0. On the third qubit, Algorithm 1 moves the rightmost Hadamard
gate one layer to the left since TCZ[3, 2] = 0 but TCZ[3, 1] = 1.

Algorithm 2 takes the output of Algorithm 1 and splits GCZ1 into CZ1 and GCZ′1 since it has
Hadamard gates to the left and right. Then it pools GCZ′1, GCZ2 and GCZ3 together into a single
gate GCZ5:

H Z H

H Z Z Z H

H Z Z Z Z H

GCZ1 GCZ2 GCZ3 GCZ4

Algorithm 2=⇒ H Z H

H Z Z Z H

H Z Z Z Z H

CZ1 GCZ5 CZ2

Note that any GCZ gate is equivalent to a GZZ up to single-qubit RZ rotations. The total encoding
cost of the compiled circuit is 2 + n/2(n − 1) = 12 whereas the original circuit has the encoding
cost 6 + 3 + 3 + 1 = 13.

In this section we discussed how to implement the entangling operations of a Clifford unitary.
We only need one GZZ gate to implement one fan-out gate, as one can see in Eq. (3.5), (3.10) and
Hadamard gate commutation, instead of two multi-qubit gates used in the compilation schemes
in Refs. [7, 8]. We further showed that we only require n + 1 GZZ and n two-qubit CZ gates
to implement a Clifford unitary on n qubits. Due to the flexibility of our GZZ gate, we further
optimized the implementation of a directed CX layer to reduce the encoding cost.

The compilation of directed CX circuits via Algorithms 1 and 2 is available as a Python imple-
mentation on GitHub [37].

3.2.4 Numerical results for the directed CX layer

We demonstrate the performance of Algorithms 1 and 2 for compiling an arbitrary directed CX
layer. Since the CX layer is the most costly gate layer, in the Bruhat decomposition we only present
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Figure 5: Comparing the performances of Algorithms 1 and 2, fan-out and the naive approach for the imple-
mentation of a random directed CX layer. The error bars show the variance over 100 samples. The numerical
values are obtained using the hardware specific parameters from Section 2.3. Top and bottom: Sparse and
dense TCZ with the probability 0.2 and 0.8 for picking a “1”, respectively. Left: The encoding cost of a random
directed CX layer on n qubits. In the top left the large variance in the encoding cost is due to the sparsity of
TCZ. In contrast, for dense TCZ (bottom left) Algorithms 1 and 2 lead to a reduced encoding cost compared
to the fan-out approach. Right: Neglecting local gates, for both sparse and dense TCZ the Algorithms 1 and 2
yields the lowest total CX layer time.

the compilation of this layer.
Consider a directed CX layer with randomly chosen entries of the lower triangular part of TCZ,

and TH as in Eq. (3.12). We distinguish between the naive implementation, the implementation
of the fan-out gates directly as a GZZ gate (and local gates) and the application of Algorithms 1
and 2 to TCZ and TH. Like in Section 2.3, the naive implementation corresponds to the sequential
execution of two-qubit ZZ gates. Therefore, the encoding cost and the total gate time for the naive
approach is

∑
i<j TCZ[i, j] and

∑
i<j TCZ[i, j]/Jij , respectively.

Implementing the fan-out gate directly associates one GZZ gate with each column of TCZ.
We further take advantage of the sparsity of TCZ. If we consider the fan-out gate represented
by the i-th column of TCZ, then for all j with TCZ[i, j] = 0 we can exclude all the j-th qubits
from the participation in that GZZ gate, reducing the encoding cost. Thus, for the fan-out gate
implementation we have n− 1 symmetric matrices A with ones in the first row/column and zeros
everywhere else. The total encoding cost for the fan-out approach is therefore the sum of the
encoding costs for the n− 1 GZZ(A) gates. The same holds for the total CX layer time as the sum
of the total GZZ times.

Algorithms 1 and 2 take a different advantage of the sparsity of TCZ by commuting Hadamard
gates and combining parts of multiple fan-out gates to one GZZ gate. As stated above, we need at
most bn−1

2 c GZZ gates. If k fan-out gates are combined, the resulting GZZ gate is characterized
by a symmetric matrix A where the first k rows (and also columns) can have non-zero values. The
total encoding cost for the Algorithms 1 and 2 is the sum of the encoding costs of the bn−1

2 c GZZ
gates plus the encoding cost of the dn−1

2 e ZZ gates. The same holds for the total CX layer time as
the sum of the total GZZ times and the times for the dn−1

2 e ZZ gates. Note that we neglect local
gates in our considerations.
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Figure 6: The quantum Fourier transform (with reversed order of the output qubits, i.e. without the swapping
gates at the end).

Figure 5 shows that for a dense directed CX layer Algorithms 1 and 2 have a significant advan-
tage in the total CX layer time over the naive and the fan-out implementation. Also, the encoding
cost is reduced compared to the fan-out implementation. For sparse TCZ the advantage is still
visible in the total CX layer time, but the difference between the approaches is less substantial.

3.3 Quantum Fourier transform
The quantum Fourier transform is an essential ingredient in many quantum algorithms. To define
the corresponding unitary operator on an n-qubit register, we identify the elements of the compu-
tational basis |x1, . . . , xn〉 for xj ∈ F2 with integers in binary representation, i.e. x =

∑n
j=1 xj2n−j .

The QFT is then given as

QFT|x〉 = 1
2n/2

2n−1∑
y=0

e2πixy2−n |y〉 = 1
2n/2

n⊗
j=1

(
|0〉+ e2πix2−j |1〉

)
. (3.15)

The latter form immediately leads to the efficient quantum circuit in Figure 6 which uses n(n−1)/2
controlled RZ-rotations with angles 2π/2j for j = 2, . . . , n and n Hadamard gates. For convenience,
we introduce the shorthand notation Rj := RZ(2π/2j), in particular Z := R1, S := R2 =

√
Z, and

T := R3 = 4
√

Z. In the QFT circuit in Figure 6 we can collect for each j < n the subsequent
controlled Rn−j , . . . ,R1 to a (multi-qubit) GCRZ(A) gate specified by the (n− j + 1)× (n− j + 1)
symmetric matrix

A = 2π


0 2−1 . . . 2−n+j

2−1 0 . . . 0
...

...
. . .

2−n+j 0 0

 . (3.16)

Since our compilation scheme for the fully directed CX layer in Section 3.2.3 is agnostic of the
rotation angles, up to local RZ rotations, we can apply it directly to the QFT circuit. This yields
the compiled QFT circuit:

H S
H

GCRZ(A1)
H S

H GCRZ(A3)
. . .

. . .

. . .

. . .

S
H

Note that we are able to achieve this form without any Hadamard gate obstructing the required
movement of CRZ gates. The combination of diagonal multi-qubit gates across non-diagonal local
gates has been carried out for small systems e.g. in Refs. [19, 28]. However, this approach requires
numerics in unitary groups beyond SU(2), which we avoid to ensure scalability (w.r.t. the Hilbert
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Figure 7: Left: The encoding cost, i.e. the different encodings, we need to implement GZZ(A1) on n qubits.
For the naive approach the encoding cost only increases with 2(n − 2), since that is the number of non-zero
entries in A1. Right: Due to the exponentially small non-zero entries in A1 even the naive approach seems to
have an asymptotic linear scaling of the total gate time. As before, the numerical values are obtained using the
hardware specific parameters from Section 2.3.

space dimension). We also do not address the compilation of local RZ rotations here, see e.g.
Ref. [52] which covers that topic.

After our compilation scheme we have dn−1
2 e CS gates (controlled-

√
Z gates) and bn−1

2 c GCRZ
gates characterized by the symmetric matrix

Aj := 2π


0 0 2−2 · · · 2−n+j

0 0 2−1 · · · 2−n+j+1

2−2 2−1 0 · · · 0
...

...
...

. . .
2−n+j 2−n+j+1 0 0

 . (3.17)

A GCRZ(Aj) gate can be implemented as described in Section 3.1 using a GZZ(Aj) and additional
single-qubit RZ gates on the qubits they act on. For the QFT, we can push the resulting RZ gates
on the target qubits to the end of circuit, and likewise we can push the ones on the control qubits
to the beginning.

In conclusion, we can apply the fully directed CX layer compiling scheme to implement a QFT
circuit with the same amount of GZZ gates and the same encoding cost. The most difficult part
in the QFT are the local RZ rotations with exponentially small angles. Due to the small values in
the matrices Aj one can also expect a practical issue in the implementation with too small λm,
see Section 2.2.

Numerical results for the QFT

We provide the numerical results for the performance of the GZZ(Aj) gate with Aj from Eq. (3.17)
in Figure 7. It is a priori unclear how the exponentially small entries in Aj effect the time spent in
each encoding λm. We set j = 1 since GZZ(A1) acts on n qubits and is therefore the most costly
GZZ gate in the QFT. As in Section 2.3 we compare the result of the GZZ gate implementation via
the LP (2.5) against the naive approach, i.e. the sequential implementation of two-qubit controlled
Rj gates. As before, we neglect the finite recoding time, i.e. the time for executing the X gate
layers, and only consider the time needed to execute a GZZ(A1) gate or the naive approach. Note
that in Figure 7 we consider only a single GZZ(A1) gate, while the total QFT circuit consists of
bn−1

2 c GZZ(Aj) gates.
Due to the exponentially small entries in A1 we might in practice run into the problem of too

small λm for a QFT on a moderate amount of qubits.
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3.4 Circuit reduction for quantum chemistry applications
Simulating molecular dynamics is probably one of the main applications for quantum computations.
Molecular dynamics are governed by the Coulomb Hamiltonian, consisting of the kinetic energy
terms and of the Coulomb interactions between the electrons and the nuclei. It is common to
neglect the kinetic terms of the nuclei which is called “Born-Oppenheimer approximation” [53].

The determination of approximate ground and excited eigenstates of the remaining electronic
Hamiltonian is a hard task even on a quantum device [54]. Since simulating the time-dependent
Schrödinger equation is more natural on a quantum computer there has been much effort to approx-
imate eigenstates by solving the time-dependent Schrödinger equations [55–57]. The corresponding
time evolution can be approximated by factorizing the time dependent interactions intom−1 layers
[22]:

Ut ≈ UExt Ĝ(ϕm)
[
m−1∏
k=1

GZZ(Ak) Ĝ(ϕk)
]

R̂Z(θ0,1) Ĝ(ϕ0) , (3.18)

where the hat denotes layers of the gates and G(ϕ) is a Givens rotation on two qubits. UExt
represents the constant nucleus-nucleus Coulomb interaction and corresponds to a global phase
which we henceforth omit. Ak ∈ Sym0(Rn) denotes the total coupling matrix, characterizing the
GZZ gate. The right-hand side can then be represented as the circuit

G(ϕ0)

G(ϕ0)

RZ(θ0)

RZ(θ1)

RZ(θ0)

RZ(θ1)

G(ϕ1)

G(ϕ1)

GZZ(A1)

G(ϕ2)

G(ϕ2)

GZZ(A2)

. . .

. . .

. . .

. . .

...
...

. (3.19)

The implementation of the GZZ gates is straightforward, see Section 2, and we again do not address
the compilation of local RZ(θ) rotations in this work. Therefore, we focus on the decomposition of
the Givens rotation

G(ϕ) =


1 0 0 0
0 cos(ϕ) sin(ϕ) 0
0 − sin(ϕ) cos(ϕ) 0
0 0 0 1

 ≡
S RY(−ϕ) S†

S H RY(−ϕ) H S†
(3.20)

where RY(ϕ) = e−iY ϕ/2 is a rotation around the y-axis. Using the Euler decomposition, up to
global phases we can express RY(ϕ) as

RY(ϕ) ≡
√

X
†

RZ(ϕ)
√

X ≡ S† RX(ϕ) S . (3.21)

Inserting this into Eq. (3.20) we obtain

G(ϕ) ≡
S

√
X RZ(−ϕ) √

X† S†

S H S RX(−ϕ) S† H S†

. (3.22)

Using the commutation rule
CX2,1 RZ(ϕ)1 ≡ ZZ1,2(ϕ) CX2,1 (3.23)

twice, first we commute the RZ gate with the right CX, then conjugate the RX gate and the left
CX with Hadamard gates and commute them. This gives

G(ϕ) ≡
S

√
X H

ZZ(−ϕ)
H

ZZ(−ϕ)

√
X† S†

S H S H H S† H S†
. (3.24)
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Since any layer of ZZ gates can be implemented with only one GZZ gate, see Eq. (3.4), we can
collect the parallel ZZ(−ϕ) gates of the Givens rotation layer Ĝ(ϕ) into a single GZZ(−ϕANN )
gate. Overall, this results in two GZZ gates per Givens rotation layer. Here, ANN ∈ Sym0(Fn2 )
denotes the total coupling matrix that pairwise couples next-neighbor qubits, i.e. qubits 1 and 2,
qubits 3 and 4, etc. Concretely, ANN takes the form

ANN =


0 1
1 0

. . .
0 1
1 0

 . (3.25)

Usually, the subdiagonal of the hardware-given coupling matrix J contains the largest values and
thus corresponds to the fastest ZZ gates. This results in very fast GZZ(−ϕANN ) gates.

A straightforward implementation of the Givens rotation layer with Eq. (3.20) results in n
local RY rotations with arbitrary angle. On a quantum computer with a finite native gate set the
rotations with arbitrary angle might be challenging to implement. Although there are methods to
decompose rotations with arbitrary angle into a native gate set, see e.g. Refs. [58–60], they always
come with a considerable encoding cost.

To sum up, to approximate molecular dynamics as described by the circuit (3.19) one needs
2(m + 1) GZZ(−ϕkANN ) gates, (m − 1) GZZ(Ak) gates, n local RZ(θ0,1) gates and some local
Clifford gate.

3.5 Decomposing general diagonal unitaries
Since the GZZ gate is diagonal, it is natural to look for a compilation procedure to implement
general diagonal unitaries using the GZZ gate together with local RZ and Hadamard gates. We
assume that we are able to implement RZ gates with arbitrarily small angles which in practice
might be difficult. Yet, there are algorithms to approximate any RZ-angle using only Clifford+T
gates [59] or Clifford+

√
T [52]. This compilation scheme leads us beyond Clifford circuits and

should be understood as a stepping stone towards more general compilation schemes.
First we introduce the representation of diagonal unitaries by phase polynomials [61, 62]. Then

we show how certain terms of the phase polynomial can be implemented in parallel. We optimize
the order of these parallelized layers such that the encoding cost and the total GZZ time is reduced.

Any diagonal n-qubit unitary acts as

Uf |x〉 := e2πif(x)|x〉, (3.26)

with x ∈ Fn2 for some pseudo-Boolean function f : Fn2 → R. Such a function can be uniquely
expressed as a multilinear phase polynomial [63, Theorem 1.1],

f(x) =
∑

y∈Fn2

αyχy(x) (3.27)

with coefficients or phases αy ∈ R and parity function x 7→ χy(x) = y1x1 ⊕ · · · ⊕ ynxn for each
parity y ∈ Fn2 . Additionally taking into account basis state transformations |x〉 7→ |g(x)〉 the above
extends to the so-called sum-over-paths representation, which was used in Refs. [61, 62].

Terms in the expansion of f of the form αxi and α(xi ⊕ xj) can directly be implemented as
RZ(α)i and ZZ(α)i,j gate, respectively, and are therefore easy. We thus only consider terms with
more than two variables xi.

We define the unitary representing one term in f(x) by

Ui,y|x〉 := e2πiαyχy(x)|x〉 , (3.28)

where i is a qubit index. The role of the subscript i gets apparent in the circuit representation of
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the unitary Ui,y

Ui,y ≡

. . . . . .

...

. . . . . .

. . . . . .

xl1

xlm−1

xi = xlm RZ(αy)

=

. . . . . .

...

. . . . . .

. . . . . .

xl1

xlm−1

xi = xlm H H RZ(αy) H H

(3.29)

where l = (k ∈ [n] : yk 6= 0) ∈ [n]m is a sequence containing the m non-zero components of y
and with the conjugating Hadamard gates, the RZ gate and all the CX gate targets on the i-th
qubit. Note that we omit αy in Ui,y since the following discussion is agnostic of the phase αy. The
domain of Ui,y is given by the support of the parity supp(y) := {k | yk 6= 0}. Since the unitaries of
the two CX layers conjugating the RZ gate in Ui,y are permutation matrices one has the freedom
in choosing any i ∈ supp(y). That is, for any i, j ∈ supp(y), Ui,y and Uj,y implement the same
unitary. Applying Eq. (3.5) to the right-hand side of Eq. (3.29), we find that each Ui,y can be
implemented with two GZZ gates, one RZ(αy) gate, four Hadamard gates and some RZ(π/2) gates.

Clearly, two such diagonal unitaries Ui,y and Ui,y′ can be implemented in parallel if their
supports are disjoint, i.e. if supp(y) ∩ supp(y′) = ∅. Since our GZZ gates are time-optimal, this
results in a time-optimal implementation of those unitaries, assuming as above a time-optimal
implementation of the single-qubit RZ gates. Denote by S := {supp(y) | y ∈ Fn2 , |y| > 2} the set
of all supports of the parities without the easy terms. Algorithm 3 is a heuristic algorithm, which
parallelizes Ui,y with disjoint supports such that the resulting support is as large as possible.

Algorithm 3 Parallelizing supports.
Input: S . Set of supports
L ← ∅
while S 6= ∅ do

Choose sk ∈ S
S ← S \ {sk} . Remove sk from S
s← {sk}
while There exists si ∈ S s.t. s ∩ si = ∅ and maxsi∈S |s ∪ si| do

s← s ∪ {si} . Append disjoint support with maximal union size
S ← S \ {si}

L ← L ∪ s . Append to set of parallelized layers
Output: L . Set of parallelized layers

Between any two consecutive unitaries Ui,y and Ui′,y′ with support overlap o := supp(y) ∩
supp(y′) = s ∩ s′ 6= ∅ two types of cancellation can happen. First, the Hadamard gates cancel,
provided that they act on the same qubit. This is achieved by choosing the qubit i on which the
Hadamard gates act, concretely by demanding i = i′ ∈ o. Thereafter, one can combine the two
CZ layers of Ui,y and Ui′,y′ and implement them with just one GZZ gate, see Eq. (3.5). Doing so,
a second cancellation happens automatically: One can see from the right-hand side of Eq. (3.29)
that between Ui,y and Ui,y′ , 2|o| CZ gates cancel and therefore |o| less qubits participate in the
GZZ gate. This leads to a quadratic reduction O(|o|2) of the encoding cost, which for a n qubit
GZZ gate is n(n− 1)/2.

Let Lr := {u ∈ L | |u| = r}, where L is the set of all parallelized layers returned by Algorithm 3,
be the subset of all parallelized layers that contain r disjoint supports of unitaries Ui,y. The set
Lr is important for the placement of the Hadamard gates. For example, if two parallelized layers
u, u′ ∈ Lr are executed consecutively and there exist i and j for all s1, . . . , sr ∈ u and s′1, . . . , s′r ∈ u′
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such that si ∩ s′j 6= ∅, then all interleaving Hadamard gates cancel if they are placed on the qubits
contained in si ∩ s′j .

We now extend this argument to all parallelized layers u(k) ∈ Lr. If there is a qubit contained
in the repeated overlap of the r supports of all consecutive parallelized layers, all Hadamard gates
between the parallelized layers cancel. Concretely, for the cancellation of all Hadamard gates there
must exist indices ik ∈ {1, . . . , r} for all s(k)

1 , . . . , s
(k)
r ∈ u(k) such that

⋂|Lr|
k s

(k)
ik
6= ∅. We further

note that if we apply u ∈ Lr and v ∈ Lr′ successively for r 6= r′, then it is impossible that all
interleaving Hadamard gates cancel.

The next lemma gives the encoding cost for the set of parallelized layers Lr and deals with the
placement of the Hadamard gates by introducing few ancilla qubits.

Lemma 3.1. The set of parallelized layers Lr can be implemented using 2r Hadamard gates, |Lr|r
non-Clifford RZ rotations and |Lr|+ 1 GZZ gates by introducing at most r ancilla qubits.
Proof. Each u(k) ∈ Lr contains 2r Hadamard gates. The position of the 2r Hadamard gates can
be chosen freely on the r supports s(k)

1 , . . . , s
(k)
r ∈ u(k). So we want to find qubits qi in the overlap

of all supports, i.e. qi ∈
⋂|Lr|
k s

(k)
ik

with for each i = 1, . . . , r. If this is not possible for qubit qi,
i.e.

⋂|Lr|
k s

(k)
ik

= ∅, we add an ancilla qubit to all supports containing qi and set qi to that qubit.
One sees that in the worst case, setting all q1, . . . , qr to the ancilla qubits and adding them to the
supports s1, . . . , sr for all u ∈ Lr results in the cancellation of all interleaving Hadamard gates,
leaving only 2r Hadamard gates. The GZZ gate count results from combining the two GZZ gates
of subsequent u’s as discussed above.

Note that the r ancilla qubits can be reused by different Lr since we do not encode any
information on them. For an n-qubit diagonal unitary one needs r ≤ bn3 c ancilla qubits to ensure
that all Hadamard gates cancel. The upper bound comes from the fact that we consider only
supports with |y| > 2 so at most bn3 c many supports can be in parallel.

Assume now, that we have r ancilla qubits or that all interleaving Hadamard gates cancel.
Then one can freely permute the order of the parallelized layers. Such reordering does not change
the GZZ gate count, but it possibly reduces the amount of qubits participating in the GZZ gates
and therefore the encoding cost. We thus want to find an order such that the cancellation of CZ
gates is maximized, i.e. we want to maximize the overlap of the supports of consecutive parallelized
layers. We define the shared support size between two parallelized layers u, u′ ∈ Lr with r elements
as Su,u′ :=

∑r
i=0 |si ∩ s′i|, where si ∈ u and s′i ∈ u′. Choose the ordering of elements in Lr that

maximizes the shared support size Su,u′ over all pairs of parallelized layers u, u′ ∈ Lr. This relates
to the traveling salesman problem in the formulation of Ref. [64] with each parallelized layer as a
vertex and weights Su,u′ on the edge between u and u′. Hence the reordering of the parallelized
layers cannot be solved efficiently. However, there are heuristic algorithms, e.g. the Christofides
algorithm [32] which only takes O(|Lr|3) steps and guarantees that the solution is within a factor
3/2 of the optimal solution.

In the worst case of the proposed compiling method for general diagonal unitaries, we consider
the set of all supports S without easy gates, i.e., without single- and two-qubit gates. This set
has |S| = 2n − (n + n(n − 1)/2) = 2n − n(n + 1)/2 elements, and contains for every element
s ∈ S also the complement s̄ with |s ∪ s̄| = n. Therefore, we can always parallelize two gates,
the one corresponding to s and that corresponding to s̄. We thus only have L2 which has size
|L2| = |S|/2 = 2n−1 − n(n + 1)/4. Using Lemma 3.1, this requires only two ancilla qubits and
|S|/2 GZZ gates.

In this section we proposed a method to decompose arbitrary diagonal unitaries into local gates
and GZZ gates. We showed that this leads to an optimization problem which in general is NP-hard.
Using heuristic algorithms might still achieve a significant reduction in the encoding cost.

Example. We illustrate the compilation scheme explained above on a diagonal unitary on five
qubits. Let x ∈ F5

2 and define a diagonal unitary as in Eq. (3.26) with

f(x) =1
2
(
x1 ⊕ x2 + x3 ⊕ x4 + x4 ⊕ x5

+ x1 ⊕ x2 ⊕ x3 + x2 ⊕ x4 ⊕ x5

+ x2 ⊕ x3 ⊕ x4 ⊕ x5
)
.

(3.30)
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The factor 1/2 is chosen for convenience and yields a RZ(π) = Z gate in the circuit representation
of Eq. (3.29) for each term in f . Conjugating these Z gates with Hadamard gates as in Eq. (3.29)
we get one HZH = X gate for each term.

Note that in the above we considered only si = supp(yi) > 2, since all terms with si = 2 can
be implemented with a single GZZ gate. To keep this example short we here also allow si = 2 since
this gives more non-trivial possibilities to parallelize layers. We illustrate the diagonal unitary with
the supports si in the circuit diagram below. Applying Algorithm 3 yields

x1

s1

s5x2 s4

s7

x3

s2

s6x4

s3

x5 s4

=

x1

s1

s5x2 s4

s7

x3

s6

s2

x4

s3

x5 s4

u1 u2 u3 u4

. (3.31)

We now group the parallelized layers ui together in the sets L2 = {u1, u2, u3} and L1 = {u4}. In
this example we do not make use of ancilla qubits. One can see that the placement of the Hadamard
gates should be on s1 ∩ s5 ∩ s4 = {x2} for the supports s1, s5, s4 and on s6 ∩ s3 ∩ s2 = {x4} for the
supports s6, s3, s2 such that all the interior Hadamard gates cancel. For s7 the Hadamard gate can
be placed on x2 or x4. Since |s4 ∩ s7| = |s2 ∩ s7| both choices are equally good for the cancellation
of CZ gates. We chose the Hadamard position for s7 to be x4. The shared support size Sui,uj
between two parallelized layers for the set L2 can be calculated and expressed as the matrix

S =

∗ 4 3
4 ∗ 2
3 2 ∗

 (3.32)

With Su2,u1 = 4 and Su1,u3 = 3 we get the optimal order for L2 as u2, u1, u3, and 2(Su2,u1 +
Su1,u3) = 14 CZ gates cancel. Using Eq. (3.29) and HZH = X, the resulting circuit is

x1

x2 H X X X H

x3

x4 H X X X X H

x5

GZZ1 GZZ2 GZZ3 GZZ4 GZZ5 GZZ6

. (3.33)

One needs six GZZ gates to implement the diagonal unitary. The encoding cost for each GZZi in
Eq. (3.33) with support si is |si|(|si| − 1)/2, such that the total implement cost is 10 + 3 + 6 +
1 + 3 + 6 = 29. For the circuit on the left-hand side of Eq. (3.31) we require two GZZ gates for
each support si. We have 7 supports si, i.e. 14 GZZ gates which leads to the total encoding cost
is 2(2 + 2 + 2 + 2 + 3 + 3 + 6) = 40. Thus, in this example our compilation scheme reduces the
encoding cost by ≈ 25%.

4 Conclusion
In this work, we showed how to synthesize a time-optimal multi-qubit gate, the GZZ gate, on
an abstract quantum computing platform. The only requirements on the platforms are that (I)
single-qubit rotations can be executed in parallel, (II) it offers global Ising-type interactions with
all-to-all connectivity, and (III) that there is a way to exclude certain qubits from the participation
in the multi-qubit gate. We showed that and how to realize these requirements in a microwave
controlled ion trap using magnetic gradient-induced coupling (MAGIC).
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Arbitrary couplings between the qubits can be generated via X gate layers interleaved by the
Ising-type evolution. The required X gate layers as well as the durations of the evolution times
are determined by solving an LP. In numerical experiments we showed that the gate time of the
resulting GZZ gates scales approximately linear with the number of participating qubits under
reasonable assumptions on an implementing physical platform. Based on these time-optimal GZZ
gates, we presented an improved compiling strategy for Clifford circuits, and applied this strategy
to compile the QFT. Moreover, we applied the GZZ gates to the simulation of molecular dynamics,
and presented a compiling strategy for general diagonal unitaries. This can be thought of as a step
towards compilation strategies for arbitrary unitaries.

In the future, it will be interesting to investigate how the GZZ gates perform on a real-world
ion trap, and how robust they can be made against errors similar to the error mitigation scheme
for the DAQC setting [65]. Moreover, we hope that our time-optimal gate synthesis method will
be applied to small ion trap registers which are embedded in a quantum processing unit (QPU)
module.
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Appendices

A Ion trap quantum computing with microwave control
In this section we explain in more detail how qubits are encoded into cold ions stored in a trap,
how MAGIC can be used to tailor interactions between these qubits, and how microwaves perform
single-qubit gates. A full in-depth treatment can be found in Refs. [15, 36].

In short, pairs of hyperfine states of ions are interpreted as the computational basis states of
qubits. These ions are cooled down to form a “Coulomb crystal”, a stable configuration confined by
the trap potential. An inhomogeneous magnetic field superimposed with the trap makes the crystal
equilibrium depend on the internal state (the qubits). Changes in the internal state hence lead to
excitations (phonons), which can be interpreted as interactions between the qubits. The position-
dependent Zeeman effect makes individual qubit transitions addressable. Microwaves drive Rabi
oscillations on these transitions to perform single-qubit gates.

A.1 Ytterbium ions and qubits
We consider ions with nuclear spin I = 1

2 and total electron angular momentum J = 1
2 , for

example single-ionized Ytterbium-171 (171Yb+). These values imply that the “ground state” (the
lowest main quantum number) is spanned by four “hyperfine” sublevels. Since nuclear spin and
electron angular momentum couple to each other through an interaction term ∝ I · J , the full
Hamiltonian is not diagonal in the naive product basis |mI ,mJ〉. One instead introduces the total
angular momentum F := I + J . The corresponding quantum numbers F and mF = −F, . . . , F
can be used to label the hyperfine eigenstates, which group into a singlet |F = 0,mF = 0〉 and a
triplet |F = 1,mF = −1, 0,+1〉. The singlet forms the overall ground state and is separated by an
energy gap from the triplet states, which all have the same energy. The energy difference is called
the “hyperfine structure constant” of the ion. This quantity is usually determined experimentally
and typically lies in the microwave regime. For 171Yb+, it corresponds to a frequency of f0 =
12.642812118466(2)GHz [66].
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Placing the ion in an external magnetic field B yields new dipole terms ∝ B · I and ∝ B · J
in the Hamiltonian. Since these new terms do not preserve F , the |F,mF 〉 basis is no longer an
eigenbasis. However, they still preserve mF , so the new energy eigenstates are superpositions of
states with equal mF . The “outer” triplet states |F = 1,mF = ±1〉 remain basis states due to their
unique mF , but

∣∣F = 0,mF = 0
〉
and |F = 1,mF = 0〉 form two orthogonal linear combinations

with amplitudes depending on the field strength B := |B|. Also the eigenvalues of the Hamiltonian
become B-dependent, and the previous triplet degeneracy is lifted. For the present case of four
states, the problem can be solved analytically leading to the Breit-Rabi formula [29]. We are mainly
interested in the weak field limit B → 0, commonly known as the Zeeman effect. The energy shift
of the states |F = 1,mF = ±1〉 is exactly proportional to B (“linear Zeeman effect”), while the
other two eigenvalues are field-independent to first order (“magnetic insensitive”). However, they
do have a higher-order dependence starting from ∝ B2, which is known as the “quadratic Zeeman
effect”, see also Figure 1b. Not only are these eigenvalues close to the zero-field values, but also the
linear combinations have a dominant component of either |F = 0,mF = 0〉 or |F = 1,mF = 0〉.
So although this is technically wrong, one casually keeps the |F,mF 〉 nomenclature for the basis
states even in the presence of a small magnetic field.

We now wish to “encode” a qubit into this four-dimensional state space, i.e. to pick two of
the energy eigenstates as computational basis states |0〉 and |1〉. A priori, there are six possible
choices. The Zeeman splitting between the F = 1 states is typically on the order of MHz, so orders
of magnitude smaller than the hyperfine splitting. Also, the transitions between |F = 1,mF = 0〉
and the other two triplet states are degenerate to first order in B. This is why one usually chooses
|0〉 := |F = 0,mF = 0〉 and only considers the three remaining possibilities which we refer to as

σ+ qubit with |1〉 := |F = 1,mF = +1〉,
π qubit with |1〉 := |F = 1,mF = 0〉,
σ− qubit with |1〉 := |F = 1,mF = −1〉.

One may also label the qubits by themF of their |1〉 state. The B-dependent transitions frequencies
between |0〉 and |1〉 can then be written

ω(mF , B) = 2πf0 +mF
µB

~
+ O(B2), (A.1)

where µ has units of a magnetic moment (µ ≈ µB, the Bohr magneton, for 171Yb+). This reflects
both the quadratic (mF = 0) and the linear (mF = ±1) Zeeman effect.

A.2 Trap Hamiltonian and MAGIC
So far, we only considered a single ion. In an ion trap quantum computer, N such ions are
confined in an (effective) potential generated by DC and RF electrodes. We assume that the
potential geometry and N have been selected such that the ions form a “linear Coulomb crystal”,
i.e. a one-dimensional chain stabilized by the external trap potential and the mutual Coulomb
repulsion of the ions, see Figure 1a. If the crystal has been cooled sufficiently, we can disregard
the radial dynamics and focus on the direction of the ion chain which we choose as the z axis. The
system is described by a Hamiltonian with three contributions: the kinetic energy T (p) ∝ p2 of
the ions with momenta p = (p1, . . . , pN )T , and the external and Coulomb potentials

Vtot(z) :=
N∑
i=1

Vext(zi) +K

N∑
i<j

1
|zi − zj |

, (A.2)

with ions positions z := (z1, . . . , zN )T and Coulomb constant K. Again, after sufficient cooling it
is reasonable to assume that the system is close to an equilibrium configuration z̄. The potential
can then be expanded in terms of the elongation q := z − z̄. The first order term vanishes due to
equilibrium, such that

Vtot(z̄ + q) = Vtot(z̄) + 1
2q

T HV (z̄)q + O(|q|3), (A.3)
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where HV is the Hessian matrix of Vtot. We drop the constant term and neglect the higher-
order terms in the following (harmonic approximation). This results in a quadratic many-body
Hamiltonian with a well-known spectrum of phonon excitations.

We add two more ingredients to the system: An inhomogeneous magnetic field with constant
gradient B1 in z direction,

B(z) = B(z)êz, B(z) = B0 +B1z, (A.4)

and the internal dynamics of ionic qubits with chosen bases specified bymF := (mF,1, . . . ,mF,N )T .
Plugging Eq. (A.4) into Eq. (A.1) yields a qubit-specific transition frequency that depends on both
zi and mF,i. In the Hamiltonian, the splitting can be expressed using the Pauli Z operator of the
qubit. Expanded to first order in q, the corresponding term reads

−~
2

N∑
i=1

ω(mF,i, B(zi))Zi = −~
2

N∑
i=1

(
ω

(0)
i +mF,i

µB1

~
qi

)
Zi

= −~
2

N∑
i=1

ω
(0)
i Zi −

µB1

2 qT (mF ◦Z) ,

(A.5)

with Z := (Z1, . . . , ZN )T the local Z operators and frequencies ω(0)
i that depend on mF,i, z̄i and

various constants. The first term of the result is a typical Zeeman term involving only the qubits,
while the second term couples external (q) and internal (Z) degrees of freedom. This last term is
the central ingredient of magnetic gradient-induced coupling (MAGIC).

Collecting all contributions gives the Hamiltonian

H = T (p) + 1
2q

T HV (z̄)q − µB1

2 qT (mF ◦Z)− ~
2

N∑
i=1

ω
(0)
i Zi . (A.6)

It is still second-order in the external degrees of freedom, but no longer purely quadratic. We fix
this by completing the square in q,

H = T (p) + 1
2

(
q − µB1

2 H−1
V (z̄)(mF ◦Z)

)T
HV (z̄)

(
q − µB1

2 H−1
V (z̄)(mF ◦Z)

)
− ~

2

N∑
i=1

ω
(0)
i Zi −

1
2

(
µB1

2

)2
(mF ◦Z)T H−1

V (z̄)(mF ◦Z) .
(A.7)

The existence of the inverse Hessian H−1
V (z̄) is guaranteed by the assumption of a stable equilibrium,

which implies that HV is positive definite. Note also that HV and its inverse are symmetric matrices.
In Eq. (A.7), it is evident that the first line is quadratic in the external degrees of freedom “up to a
state dependent translation”, while the second line only involves the qubits. Formally, this means
that we can conjugate the Hamiltonian with the unitary

U := exp
(

i µB1

2~ p
T H−1

V (z̄)(mF ◦Z)
)

(A.8)

to separate external and internal dynamics. Noting that U commutes with all terms of H except
for the one involving q, this results in

H̃ := UHU† = Hphonons(p, q) +Hqubits(Z), (A.9)

with Hphonons(p, q) being a standard many-body phonon Hamiltonian that is easily solvable in
normal coordinates. The internal part is simply the second line of Eq. (A.7), which we rewrite as

Hqubits(Z) = −~
2

N∑
i=1

ω
(0)
i Zi −

~
2Z

TJ(mF )Z. (A.10)
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Here, we used the Hadamard product identity (for vectors a, b and a matrix C)

(a ◦ b)TC(a ◦ b) = aT (C ◦ bbT )a (A.11)

and defined
J(mF ) := J ◦mFm

T
F ,

J := 1
~

(
µB1

2

)2
H−1
V (z̄).

(A.12)

The two terms of Eq. (A.10) commute, so we can treat them separately, or remove the first one
entirely by another unitary transformation. In any case, the local operators Zi do not entangle
the qubits, so we focus our analysis on the second term. The diagonal entries of J(mF ) simply
generate a constant term −~

2 Tr[J(mF )]1, which amounts to a global and hence unobservable
phase. Without loss of generality, we can thus set the diagonal terms of J to zero. Finally, for
the discussion on the logical layer, we choose units in which ~ = 1. After these simplifying steps,
Eq. (A.10) becomes the Hamiltonian (1.1) on which our analysis is based.

We provide Python code for the computation of coupling matrices based on the trap potential
and physical parameters on GitHub [37].

A.3 Microwaves and single-qubit gates
A comprehensive discussion of the physics of microwave-controlled single-qubit gates, in particular
within the MAGIC scheme, goes even beyond the scope of this appendix. It involves common
concepts from quantum optics like the rotating wave approximation and Lamb-Dicke parameter,
extended to the situation with a permanent inhomogeneous magnetic field. This extension is
crucial, because it is the magnetic gradient that enables reasonable gate times even for microwave
radiation which are otherwise much slower than optical gates. We recommend Refs. [15, 36] for
more details.

Important for our analysis is that resonant microwave excitation of a hyperfine transition in-
duces a Rabi Hamiltonian on the corresponding qubit,

HRabi(Ω, φ) = ~Ω
2
(

cos(φ)X + sin(φ)Y
)
. (A.13)

Here, X and Y are Pauli operators, Ω is the Rabi frequency which is proportional to the microwave
amplitude, and φ is a parameter controlled by the relative phase between the microwave and es-
sentially the qubit’s Larmor precession. Resonant excitation means that the microwave frequency
matches the transition frequency ω(mF , B) of the targeted qubit. While the microwave is switched
on, one (or several, if the experimental setup allows for multitone signals) Hamiltonian(s) of the
form (A.13) act simultaneously with (A.10), potentially with different Rabi frequencies Ωi. As
these Hamiltonians do not commute, the time evolution of the system usually eludes exact analyti-
cal treatment. However, in applications one aims to make the Rabi frequencies orders of magnitude
larger than the entries of J , which govern the entangling dynamics. This allows for the approxi-
mation that the gates induced by the Hamiltonian (A.13) are instantaneous, or equivalently that
the Hamiltonian (A.10) is negligible while the microwave is on. The validity of this approximation
and the errors introduced by it are discussed in Section 2.2 and Ref. [26]. Time evolution under
the Rabi Hamiltonian (A.13) for a time θ/Ω implements a family of Bloch rotation gates,

R(θ, φ) := exp
(
− iθ
~ΩHRabi(Ω, φ)

)
. (A.14)

On the Bloch sphere, they rotate by an angle θ around an axis in the xy-plane specified by azimuth
φ. The X and H gates necessary for our analysis are generated by

X = i R(π, 0), H = i R(π, 0) R
(π

2 ,
π

2

)
. (A.15)
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A.4 Physical and virtual recoding
As mentioned before, the π qubit with mF = 0 is called “magnetic insensitive” because it depends
on B only in second order. This can be used to exclude (up to quadratic corrections) qubits
from the interaction and perform “subset operations”. Corresponding rows and columns in the
coupling matrix J(mF ) in Eq. (A.12) manifestly vanish. However, insensitivity also means that all
π qubits have roughly the same transition frequency, see Eq. (A.1). Hence, they are not separately
addressable, and we cannot perform independent single-qubit operations on them. The advantages
and disadvantages of π qubits naturally pose the question, whether one can change the qubit basis
during computation.

This can be answered in the affirmative, but one intermediately has to consider (at least) three-
dimensional subspaces instead of qubits. Let X± denote the X gate on the σ± qubit of the same
ion. These gates “swap” the two states on which they act, and one can easily confirm that the
local sequences X+ X− X+ and X− X+ X− both effectively swap the states |F = 1,mF = +1〉 and
|F = 1,mF = −1〉. Thus, they “recode” between the σ+ and σ− qubit.

Coding into and out of the π qubit is slightly more complicated due to the mentioned degenerate
transitions. Yet we can use the global swap-like operation X⊗N0 , which applies an X gate to all π
qubits at once (assuming that shifts due to the quadratic Zeeman effect do not become prohibitive).
Sequences of the form

X⊗N0
(
. . .⊗ I⊗ . . .⊗ X+⊗ . . .⊗ X−⊗ . . .

)
X⊗N0 , (A.16)

i.e. with an arbitrary combination of local X± and idle gates in between two global X⊗N0 gates,
achieve a recoding between π and σ± qubits (for an X± gate) or just swap back and forth, effectively
doing nothing (for an idle gate).

The described sequences of three rounds of microwave gates are able to physically manipulate
the way quantum information is encoded in the ions. However, our main concern is not how
information is stored, but how it can be processed. To that end one usually does not need to
recode between the physical σ+ and σ− qubits, but can instead use single layers of X gates (on the
physical qubit in use) to emulate the opposite encoding. This can significantly reduce the number
of single-qubit gates in a circuit, and we make heavy use of this possibility. Using the notation of
Eq. (1.3), a detailed derivation of this technique reads

Xs exp
(

it
2Z

TJ(mF )Z
)

Xs = exp
(

it
2X

sZTXsJ(mF )XsZXs

)
= exp

(
it
2 ((−1)s ◦Z)T J(mF ) ((−1)s ◦Z)

)
= exp

(
it
2Z

T
(
J(mF ) ◦

(
(−1)s ((−1)s)T

))
Z

)
= exp

(
it
2Z

TJ
(
(−1)s ◦mF

)
Z

)
,

(A.17)

where we used that Pauli strings Xs are self-inverse and applied the Hadamard product identity
Eq. (A.11). Negative signs in (−1)s exchange, from the perspective of the J coupling, the σ qubits,
but leave π qubits invariant. If this technique is used consecutively, subsequent X gate layers can
be combined into a single one,

Xs Xs′ = Xs⊕s′ , (A.18)

saving even more single-qubit gates, as detailed in the main text.

B Frame theory
In this section we connect our approach to frame theory, which is concerned with spanning sets
for Hilbert spaces, i.e. with generalizations of the notion of a basis, see e.g. Ref. [67].

We consider the space of symmetric matrices with vanishing diagonal that is defined by

Sym0(Rn) := {M ∈ Sym(Rn) |Mii = 0 ∀i ∈ [n]} . (B.1)
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Moreover, we denote the set of outer products of all possible encodings m = (−1)b, where b ∈ Fn2 ,
by

V :=
{
mmT

∣∣m ∈ {−1,+1}n,mn = +1
}
. (B.2)

We further define what it means for a frame to be harmonic:

Definition B.1. [67, Definition 11.1] Let G be a finite abelian group, and let Ĝ be the set of
irreducible characters of G. A tight frame {φi}i∈J for Rk is called a harmonic if it is unitarily
equivalent to

(ξ|J)ξ∈Ĝ ⊂ R|J| ≡ Rk, (B.3)

where J ⊂ G and |J | = k.

The following theorem extends Theorem 2.2 and shows that V is a frame with certain properties.

Theorem B.2. V is a balanced equal-norm harmonic tight frame for Sym0(Rn).

Proof. Let k = n(n − 1)/2 = dim(Sym0(Rn)) and l = 2n−1 = |V|. We denote the synthesis
operator of V by V : Rl≥0 → Sym0(Rn) : λ 7→

∑
m λmmm

T which can be represented by a matrix
V ∈ {−1,+1}l×k. We further denote the column v(m) of V , containing the lower triangular
elements ofmmT . First we want to show that each row of V corresponds to a row of a Hadamard
matrix. Since the elements of any Hadamard matrix Hy,x (with normalization factor) are given
by Walsh functions Hy,x = 2−n/2Wy(x) = 2−n/2(−1)y·x for y,x ∈ Fn2 , this amounts to showing
that the rows of V correspond to Walsh functions Wy(x) := (−1)y·x, where y · x =

∑n
i yixi.

Writing m = (−1)b, the components of the matrix mmT are (mmT )gh = (−1)bg⊕bh . Then
the entries of the columns v(m) are v(m)gh = (−1)bg⊕bh = (−1)b·(eg⊕eh), where the tuple g, h is
the index of the row of V and ei ∈ Fn2 denotes the i-th standard unit vector.

This shows that v(m)gh = Wb(eg ⊕ eh). So the eg ⊕ eh encodes the row indices and the
b encodes the column indices of the Hadamard matrix. Since we consider all b ∈ Fn2 we have
all columns of the Hadamard matrix. This shows that each row of V corresponds to a row of a
Hadamard matrix.

Since the rows/columns of a Hadamard matrix form an orthonormal basis one can use the
row construction of tight frames from orthogonal projections [67, Theorem 2.3] to get an equal-
norm tight frame. Furthermore, the Hadamard matrix is the character table of the cyclic group
Cn2 = C2×· · ·×C2 which is abelian. This can be seen by its recursive definition Hn = H1⊗Hn−1,
where H1 is the character table of C2. Thus, Ref. [67, Theorem 11.1] implies that this equal-norm
tight frame is also a harmonic.

It is balanced if
∑

b(−1)bg⊕bh = 0 for all g, h = 1, . . . , n with g 6= h. Since we only consider the
lower/upper triangular matrix without the diagonal g = h, our frame is indeed balanced.

Corollary B.3. The normalized frame {mmT /
√
k}m∈{−1,+1}n for Sym0(Rn) forms a spherical

2-design.

Proof. The elements of the normalized frame {mmT /
√
k}m∈{−1,+1}n constitute a set of unit

vectors in Rk which form a normalized balanced tight frame by Theorem B.2. Then, by Refs. [68,
Proposition 1.2] and [67, Proposition 6.1], {mmT /

√
k}m∈{−1,+1}n is also a spherical 2-design.

Theorem B.4. The entries of the Gram matrix P = V TV are given by

Pm,m′ = 〈v(m),v(m′)〉 = n

2 (n− 1)− 2∆b,b′(n−∆b,b′) , (B.4)

where v(m) are the columns of V , containing the lower triangular elements ofmmT , and ∆b,b′ :=
|b⊕ b′| is the Hamming distance between b and b′.

Proof. As in the proof above, write the (g, h)-th entry of the column v(m) as

v(m)gh = (−1)bg⊕bh . (B.5)
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This yields
〈v(m),v(m′)〉 =

∑
g<h

(−1)bg⊕bh(−1)b
′
g⊕b

′
h

=
∑
g<h

(−1)bg⊕b
′
g⊕bh⊕b

′
h

=
∑
g<h

(−1)cg⊕ch ,

(B.6)

where we set c := b ⊕ b′. The summand after the last equation is the outer product m̃m̃T for
m̃ ∈ {−1,+1}n and m̃ = (−1)c. If the Hamming distance ∆b,b′ vanishes, then m̃ = (+1, . . . ,+1)
and 〈v(m),v(m′)〉 = n(n − 1)/2 which is the maximal entry of the Gram matrix located at the
diagonal. If ∆b,b′ 6= 0, m̃ contains ∆b,b′ -many summands −1, such that the lower triangular part
of m̃m̃T contains ∆b,b′(n−∆b,b′)-many summands −1. Therefore,

〈v(m),v(m′)〉 = n

2 (n− 1)− 2∆b,b′(n−∆b,b′) . (B.7)

C Convex optimization arguments for the linear program (LP)
We investigate the sparsity and geometric properties of the optimal solutions of the LP (2.5). First,
we prove Proposition 2.3, which is a standard result in linear programming:

Proposition C.1 (Sparse optimal solutions). There is an optimal solution to the LP (2.5) with
sparsity ≤ n(n − 1)/2 for every M ∈ Sym0(Rn). The simplex algorithm is guaranteed to return
such an optimal solution.

Proof. The LP (2.5) has m = n(n− 1)/2 equality constraints. The feasible polytope is the convex
polytope obtained by intersecting the (n − m)-dimensional subspace defined by those with the
positive cone x ≥ 0. To define a vertex of the feasible polytope, a point x has to saturate at least
n −m many inequalities xi ≥ 0, hence, it has at most n − (n −m) = m many non-zero entries.
The optimal solutions are obtained by minimizing over the feasible polytope and thus correspond,
in general, to a face of this polytope. Any vertex of this face defines an optimal solution which has
to be at least m = n(n− 1)/2-sparse. The last statement follows since the simplex algorithm only
returns vertices of the feasible polytope.

Alternative algorithms like interior point methods should be avoided. Since those are not
guaranteed to return vertices of the feasible polytope if there is an entire face of optimal solutions,
their solution will generally be a dense vector.

We can say a bit more about the solutions of the LP (2.5) by geometrical observations. These
observations hold more generally for LPs of the following form.

Definition C.2. Suppose that vectors v1, . . . , vN ∈ Rd are the vertices of a full-dimensional poly-
tope P and the origin is contained in the convex hull of P , i.e. 0 ∈ conv(P ). Given a vector u ∈ Rd,
we define the following linear program:

minimize 〈1, x〉 =
N∑
i=1

xi

subject to u = V x,

x ≥ 0

(C.1)

where V =
∑N
i=1 vie

>
i ∈ Rd×N .

Lemma C.3. In the setting of Definition C.2, the following holds:

(i) The point u ∈ Rd lies in a cone generated by a face F of P . In particular, there is a feasible
solution x of the LP (C.1) with support only on the vertices of F .
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(ii) Every feasible solution with support on the vertices of F has the same objective value, namely
〈f, u〉 where f is a normal vector of F , i.e. F ⊂ {y ∈ Rd | 〈f, y〉 = 1}. This value does not
depend on the choice of normal vector.

(iii) There is a feasible solution with sparsity ≤ dimF + 1 ≤ d and objective value 〈f, u〉.
(iv) The optimal solutions of the LP (C.1) correspond exactly to the possible conical combinations

of u in cone(F ∗) := {
∑
i xivi | vi ∈ F ∗, xi ∈ R≥0} where F ∗ is the lowest-dimensional face of

P such that u ∈ cone(F ∗). In particular, the minimum is given by 〈f, u〉 where f is some
normal vector of F ∗.

Proof. Statement (i) follows from the observation that given a point u ∈ Rd \ 0, there is a unique
λ > 0 such that λu lies on a face F of P . Thus, cone(F ) contains u. More precisely, the cones
spanned by the facets of P form a partition of Rd where the intersections between any two cones
is either {0} or a cone spanned by a lower-dimensional face of P .

For statement (ii), let w.l.o.g. v1, . . . , vs be the vertices that lie in F . By assumption, u ∈
cone(v1, . . . , vs) and hence u =

∑s
i=1 xivi. We find

〈f, u〉 =
s∑
i=1

xi〈f, vi〉 =
s∑
i=1

xi = 〈1, x〉. (C.2)

Note that the objective value 〈f, u〉 is necessarily the same, for any choice of normal vector.
Statement (iii) follows by triangulating the face F with simplices. These simplices have dimF+1

vertices and u has to lie in the cone spanned by one of those. Thus, there is a feasible solution
with sparsity at most dimF + 1 ≤ d and objective value 〈f, u〉.

Finally, let x∗ be an optimal solution. Suppose that there is a i ∈ supp(x∗) such that the vertex
vi is not in F . Then, we can find a supporting hyperplane of F with normal vector f such that
〈f, vi〉 < 1. We thus have

〈f, u〉 =
∑
j 6=i

x∗j 〈f, vj〉+ x∗i 〈f, vi〉 <
∑
j

x∗j = 〈1, x∗〉. (C.3)

According to (ii), 〈f, u〉 is the objective value of a feasible solution with support on F . Hence, x∗
could not have been optimal, and all optimal solutions have to have support on F . Clearly, all
previous arguments still hold if we find a face F ′ ⊂ F of P such that u ∈ cone(F ′) and hence the
statement follows.
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