Quantum Phase Recognition via Quantum Kernel Methods

Yusen Wu1, Bujiao Wu2, Jingbo Wang1, and Xiao Yuan2

1Department of Physics, The University of Western Australia, Perth, WA 6009, Australia
2Center on Frontiers of Computing Studies, Peking University, Beijing 100871, China

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The application of quantum computation to accelerate machine learning algorithms is one of the most promising areas of research in quantum algorithms. In this paper, we explore the power of quantum learning algorithms in solving an important class of Quantum Phase Recognition (QPR) problems, which are crucially important in understanding many-particle quantum systems. We prove that, under widely believed complexity theory assumptions, there exists a wide range of QPR problems that cannot be efficiently solved by classical learning algorithms with classical resources. Whereas using a quantum computer, we prove the efficiency and robustness of quantum kernel methods in solving QPR problems through Linear order parameter Observables. We numerically benchmark our algorithm for a variety of problems, including recognizing symmetry-protected topological phases and symmetry-broken phases. Our results highlight the capability of quantum machine learning in predicting such quantum phase transitions in many-particle systems.

The application of quantum computation to accelerate machine learning algorithms is one of the most promising areas of research in quantum algorithms. In this paper, we explore the power of quantum learning algorithms in solving an important class of Quantum Phase Recognition (QPR) problems, which are crucially important in understanding many-particle quantum systems. We prove that, under widely believed complexity theory assumptions, there exists a wide range of QPR problems that cannot be efficiently solved by classical learning algorithms with classical resources. Whereas using a quantum computer, we prove the efficiency and robustness of quantum kernel methods in solving QPR problems through Linear order parameter Observables. We numerically benchmark our algorithm for a variety of problems, including recognizing symmetry-protected topological phases and symmetry-broken phases. Our results highlight the capability of quantum machine learning in predicting such quantum phase transitions in many-particle systems.

► BibTeX data

► References

[1] WALTER Kohn. ``Nobel lectures: Electronic structure of matter–wave functions and density functionals''. Review of Modern Physics 71, 1253 (1999).
https:/​/​doi.org/​10.1103/​RevModPhys.71.1253

[2] Steven R White. ``Density matrix formulation for quantum renormalization groups''. Physical Review Letters 69, 2863 (1992).
https:/​/​doi.org/​10.1103/​PhysRevLett.69.2863

[3] Steven R White. ``Density-matrix algorithms for quantum renormalization groups''. Physical Review B 48, 10345 (1993).
https:/​/​doi.org/​10.1103/​PhysRevB.48.10345

[4] Federico Becca and Sandro Sorella. ``Quantum monte carlo approaches for correlated systems''. Cambridge University Press. (2017).
https:/​/​doi.org/​10.1017/​9781316417041

[5] David Ceperley and Berni Alder. ``Quantum monte carlo''. Science 231, 555–560 (1986).
https:/​/​doi.org/​10.1126/​science.231.4738.555

[6] WMC Foulkes, Lubos Mitas, RJ Needs, and Guna Rajagopal. ``Quantum monte carlo simulations of solids''. Reviews of Modern Physics 73, 33 (2001).
https:/​/​doi.org/​10.1103/​RevModPhys.73.33

[7] J Carlson, Stefano Gandolfi, Francesco Pederiva, Steven C Pieper, Rocco Schiavilla, KE Schmidt, and Robert B Wiringa. ``Quantum monte carlo methods for nuclear physics''. Reviews of Modern Physics 87, 1067 (2015).
https:/​/​doi.org/​10.1103/​RevModPhys.87.1067

[8] Giuseppe Carleo and Matthias Troyer. ``Solving the quantum many-body problem with artificial neural networks''. Science 355, 602–606 (2017).
https:/​/​doi.org/​10.1126/​science.aag2302

[9] Juan Carrasquilla and Roger G Melko. ``Machine learning phases of matter''. Nature Physics 13, 431–434 (2017).
https:/​/​doi.org/​10.1038/​nphys4035

[10] Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D Rodriguez, and J Ignacio Cirac. ``Neural-network quantum states, string-bond states, and chiral topological states''. Physical Review X 8, 011006 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.011006

[11] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko, and Giuseppe Carleo. ``Neural-network quantum state tomography''. Nature Physics 14, 447–450 (2018).
https:/​/​doi.org/​10.1038/​s41567-018-0048-5

[12] Javier Robledo Moreno, Giuseppe Carleo, and Antoine Georges. ``Deep learning the hohenberg-kohn maps of density functional theory''. Physical Review Letters 125, 076402 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.076402

[13] Giacomo Torlai and Roger G Melko. ``Learning thermodynamics with boltzmann machines''. Physical Review B 94, 165134 (2016).
https:/​/​doi.org/​10.1103/​PhysRevB.94.165134

[14] Frank Schindler, Nicolas Regnault, and Titus Neupert. ``Probing many-body localization with neural networks''. Physical Review B 95, 245134 (2017).
https:/​/​doi.org/​10.1103/​PhysRevB.95.245134

[15] Eliska Greplova, Agnes Valenti, Gregor Boschung, Frank Schäfer, Niels Lörch, and Sebastian D Huber. ``Unsupervised identification of topological phase transitions using predictive models''. New Journal of Physics 22, 045003 (2020).
https:/​/​doi.org/​10.1088/​1367-2630/​ab7771

[16] Sebastian J Wetzel. ``Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders''. Physical Review E 96, 022140 (2017).
https:/​/​doi.org/​10.1103/​PhysRevE.96.022140

[17] Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, Victor V Albert, and John Preskill. ``Provably efficient machine learning for quantum many-body problems''. Science 377, eabk3333 (2022).
https:/​/​doi.org/​10.1126/​science.abk3333

[18] Hsin-Yuan Huang, Richard Kueng, and John Preskill. ``Predicting many properties of a quantum system from very few measurements''. Nature Physics 16, 1050–1057 (2020).
https:/​/​doi.org/​10.1038/​s41567-020-0932-7

[19] Yuxuan Du, Zhuozhuo Tu, Xiao Yuan, and Dacheng Tao. ``Efficient measure for the expressivity of variational quantum algorithms''. Physical Review Letters 128, 080506 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.128.080506

[20] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli, and Stefan Woerner. ``The power of quantum neural networks''. Nature Computational Science 1, 403–409 (2021).
https:/​/​doi.org/​10.1038/​s43588-021-00084-1

[21] Zoë Holmes, Kunal Sharma, Marco Cerezo, and Patrick J Coles. ``Connecting ansatz expressibility to gradient magnitudes and barren plateaus''. PRX Quantum 3, 010313 (2022).
https:/​/​doi.org/​10.1103/​PRXQuantum.3.010313

[22] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. ``Barren plateaus in quantum neural network training landscapes''. Nature Communications 9, 1–6 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-07090-4

[23] Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J Coles. ``Noise-induced barren plateaus in variational quantum algorithms''. Nature communications 12, 1–11 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-27045-6

[24] Kunal Sharma, Marco Cerezo, Lukasz Cincio, and Patrick J Coles. ``Trainability of dissipative perceptron-based quantum neural networks''. Physical Review Letters 128, 180505 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.128.180505

[25] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleedharan, Patrick J Coles, and M Cerezo. ``Diagnosing barren plateaus with tools from quantum optimal control''. Quantum 6, 824 (2022).
https:/​/​doi.org/​10.22331/​q-2022-09-29-824

[26] Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni, Hartmut Neven, Ryan Babbush, Richard Kueng, John Preskill, et al. ``Quantum advantage in learning from experiments''. Science 376, 1182–1186 (2022).
https:/​/​doi.org/​10.1126/​science.abn7293

[27] Hsin-Yuan Huang, Richard Kueng, and John Preskill. ``Information-theoretic bounds on quantum advantage in machine learning''. Physical Review Letters 126, 190505 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.190505

[28] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. ``A rigorous and robust quantum speed-up in supervised machine learning''. Nature Physics 17, 1013–1017 (2021).
https:/​/​doi.org/​10.1038/​s41567-021-01287-z

[29] Daniel Stilck França and Raul Garcia-Patron. ``Limitations of optimization algorithms on noisy quantum devices''. Nature Physics 17, 1221–1227 (2021).
https:/​/​doi.org/​10.1038/​s41567-021-01356-3

[30] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J Bremner, John M Martinis, and Hartmut Neven. ``Characterizing quantum supremacy in near-term devices''. Nature Physics 14, 595–600 (2018).
https:/​/​doi.org/​10.1038/​s41567-018-0124-x

[31] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. ``Quantum supremacy using a programmable superconducting processor''. Nature 574, 505–510 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[32] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, et al. ``Quantum computational advantage using photons''. Science 370, 1460–1463 (2020).
https:/​/​doi.org/​10.1126/​science.abe8770

[33] Subir Sachdev. ``Quantum phase transitions''. Physics World 12, 33 (1999).
https:/​/​doi.org/​10.1088/​2058-7058/​12/​4/​23

[34] Bo-Xiao Zheng, Chia-Min Chung, Philippe Corboz, Georg Ehlers, Ming-Pu Qin, Reinhard M Noack, Hao Shi, Steven R White, Shiwei Zhang, and Garnet Kin-Lic Chan. ``Stripe order in the underdoped region of the two-dimensional hubbard model''. Science 358, 1155–1160 (2017).
https:/​/​doi.org/​10.1126/​science.aam7127

[35] Iris Cong, Soonwon Choi, and Mikhail D Lukin. ``Quantum convolutional neural networks''. Nature Physics 15, 1273–1278 (2019).
https:/​/​doi.org/​10.1038/​s41567-019-0648-8

[36] Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, Victor V Albert, and John Preskill. ``Supplementary materials for provably efficient machine learning for quantum many-body problems''. Science 377, eabk3333 (2022).
https:/​/​doi.org/​10.1126/​science.abk3333

[37] Jonas Haferkamp, Philippe Faist, Naga BT Kothakonda, Jens Eisert, and Nicole Yunger Halpern. ``Linear growth of quantum circuit complexity''. Nature Physics 18, 528–532 (2022).
https:/​/​doi.org/​10.1038/​s41567-022-01539-6

[38] Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J Coles. ``Cost function dependent barren plateaus in shallow parametrized quantum circuits''. Nature Communications 12, 1–12 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-21728-w

[39] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M Gambetta. ``Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets''. Nature 549, 242–246 (2017).
https:/​/​doi.org/​10.1038/​nature23879

[40] Bryan T Gard, Linghua Zhu, George S Barron, Nicholas J Mayhall, Sophia E Economou, and Edwin Barnes. ``Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm''. npj Quantum Information 6, 1–9 (2020).
https:/​/​doi.org/​10.1038/​s41534-019-0240-1

[41] F Duncan M Haldane. ``Nonlinear field theory of large-spin heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis néel state''. Physical Review Letters 50, 1153 (1983).
https:/​/​doi.org/​10.1103/​PhysRevLett.50.1153

[42] Frank Pollmann and Ari M Turner. ``Detection of symmetry-protected topological phases in one dimension''. Physical Review B 86, 125441 (2012).
https:/​/​doi.org/​10.1103/​PhysRevB.86.125441

[43] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. ``A variational eigenvalue solver on a photonic quantum processor''. Nature Communications 5, 1–7 (2014).
https:/​/​doi.org/​10.1038/​ncomms5213

[44] Chris Cade, Lana Mineh, Ashley Montanaro, and Stasja Stanisic. ``Strategies for solving the fermi-hubbard model on near-term quantum computers''. Physical Review B 102, 235122 (2020).
https:/​/​doi.org/​10.1103/​PhysRevB.102.235122

[45] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Simon C Benjamin, and Xiao Yuan. ``Variational ansatz-based quantum simulation of imaginary time evolution''. npj Quantum Information 5, 1–6 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0187-2

[46] Weitang Li, Zigeng Huang, Changsu Cao, Yifei Huang, Zhigang Shuai, Xiaoming Sun, Jinzhao Sun, Xiao Yuan, and Dingshun Lv. ``Toward practical quantum embedding simulation of realistic chemical systems on near-term quantum computers''. Chemical Science (2022).
https:/​/​doi.org/​10.1039/​d2sc01492k

[47] Changsu Cao, Jiaqi Hu, Wengang Zhang, Xusheng Xu, Dechin Chen, Fan Yu, Jun Li, Han-Shi Hu, Dingshun Lv, and Man-Hong Yung. ``Progress toward larger molecular simulation on a quantum computer: Simulating a system with up to 28 qubits accelerated by point-group symmetry''. Physical Review A 105, 062452 (2022).
https:/​/​doi.org/​10.1103/​PhysRevA.105.062452

[48] Sergey Bravyi, David Gosset, and Ramis Movassagh. ``Classical algorithms for quantum mean values''. Nature Physics 17, 337–341 (2021).
https:/​/​doi.org/​10.1038/​s41567-020-01109-8

[49] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani. ``On the complexity and verification of quantum random circuit sampling''. Nature Physics 15, 159–163 (2019).
https:/​/​doi.org/​10.1038/​s41567-018-0318-2

[50] Tómas A Brody, Jorge Flores, J Bruce French, PA Mello, A Pandey, and Samuel SM Wong. ``Random-matrix physics: spectrum and strength fluctuations''. Reviews of Modern Physics 53, 385 (1981).
https:/​/​doi.org/​10.1103/​RevModPhys.53.385

[51] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. ``Foundations of machine learning''. MIT press. (2018). url: mitpress.mit.edu/​9780262039406/​foundations-of-machine-learning/​.
https:/​/​mitpress.mit.edu/​9780262039406/​foundations-of-machine-learning/​

[52] Surbhi Goel and Adam R Klivans. ``Learning neural networks with two nonlinear layers in polynomial time''. In Conference on Learning Theory. Pages 1470–1499. PMLR (2019).
https:/​/​doi.org/​10.48550/​arXiv.1709.06010

[53] Adam Tauman Kalai and Ravi Sastry. ``The isotron algorithm: High-dimensional isotonic regression.''. In COLT. Citeseer (2009). url: www.microsoft.com/​en-us/​research/​publication/​isotron-algorithm-high-dimensional-isotonic-regression/​.
https:/​/​www.microsoft.com/​en-us/​research/​publication/​isotron-algorithm-high-dimensional-isotonic-regression/​

[54] Maria Schuld and Nathan Killoran. ``Quantum machine learning in feature hilbert spaces''. Physical Review Letters 122, 040504 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.040504

[55] Carsten Blank, Daniel K Park, June-Koo Kevin Rhee, and Francesco Petruccione. ``Quantum classifier with tailored quantum kernel''. npj Quantum Information 6, 41 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-0272-6

[56] Maria Schuld. ``Supervised quantum machine learning models are kernel methods'' (2021). arXiv:2101.11020.
arXiv:2101.11020

[57] Ruslan Shaydulin and Stefan M Wild. ``Importance of kernel bandwidth in quantum machine learning'' (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.106.042407

[58] Junyu Liu, Francesco Tacchino, Jennifer R Glick, Liang Jiang, and Antonio Mezzacapo. ``Representation learning via quantum neural tangent kernels''. PRX Quantum 3, 030323 (2022).
https:/​/​doi.org/​10.1103/​PRXQuantum.3.030323

[59] Norihito Shirai, Kenji Kubo, Kosuke Mitarai, and Keisuke Fujii. ``Quantum tangent kernel'' (2021). arXiv:2111.02951.
arXiv:2111.02951

[60] Kouhei Nakaji, Hiroyuki Tezuka, and Naoki Yamamoto. ``Quantum-enhanced neural networks in the neural tangent kernel framework'' (2021). arXiv:2109.03786.
arXiv:2109.03786

[61] Sofiene Jerbi, Lukas J Fiderer, Hendrik Poulsen Nautrup, Jonas M Kübler, Hans J Briegel, and Vedran Dunjko. ``Quantum machine learning beyond kernel methods''. Nature Communications 14, 517 (2023).
https:/​/​doi.org/​10.1038/​s41467-023-36159-y

[62] Teresa Sancho-Lorente, Juan Román-Roche, and David Zueco. ``Quantum kernels to learn the phases of quantum matter''. Physical Review A 105, 042432 (2022).
https:/​/​doi.org/​10.1103/​PhysRevA.105.042432

[63] Long Hin Li, Dan-Bo Zhang, and ZD Wang. ``Quantum kernels with squeezed-state encoding for machine learning'' (2021). arXiv:2108.11114.
arXiv:2108.11114

[64] Louis-Paul Henry, Slimane Thabet, Constantin Dalyac, and Loïc Henriet. ``Quantum evolution kernel: Machine learning on graphs with programmable arrays of qubits''. Physical Review A 104, 032416 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.104.032416

[65] Jonas Kübler, Simon Buchholz, and Bernhard Schölkopf. ``The inductive bias of quantum kernels''. Advances in Neural Information Processing Systems 34, 12661–12673 (2021).
https:/​/​doi.org/​10.48550/​arXiv.2106.03747

[66] Jennifer R Glick, Tanvi P Gujarati, Antonio D Corcoles, Youngseok Kim, Abhinav Kandala, Jay M Gambetta, and Kristan Temme. ``Covariant quantum kernels for data with group structure'' (2021). arXiv:2105.03406.
arXiv:2105.03406

[67] Thomas Hubregtsen, David Wierichs, Elies Gil-Fuster, Peter-Jan HS Derks, Paul K Faehrmann, and Johannes Jakob Meyer. ``Training quantum embedding kernels on near-term quantum computers''. Physical Review A 106, 042431 (2022).
https:/​/​doi.org/​10.1103/​PhysRevA.106.042431

[68] Stefan Klus, Patrick Gelß, Feliks Nüske, and Frank Noé. ``Symmetric and antisymmetric kernels for machine learning problems in quantum physics and chemistry''. Machine Learning: Science and Technology 2, 045016 (2021).
https:/​/​doi.org/​10.1088/​2632-2153/​ac14ad

[69] Xinbiao Wang, Yuxuan Du, Yong Luo, and Dacheng Tao. ``Towards understanding the power of quantum kernels in the nisq era''. Quantum 5, 531 (2021).
https:/​/​doi.org/​10.22331/​q-2021-08-30-531

[70] Riikka Huusari and Hachem Kadri. ``Entangled kernels-beyond separability''. The Journal of Machine Learning Research 22, 1105–1144 (2021).

[71] Takeru Kusumoto, Kosuke Mitarai, Keisuke Fujii, Masahiro Kitagawa, and Makoto Negoro. ``Experimental quantum kernel machine learning with nuclear spins in a solid'' (2019).
https:/​/​doi.org/​10.1038/​s41534-021-00423-0

[72] Andreas Elben, Jinlong Yu, Guanyu Zhu, Mohammad Hafezi, Frank Pollmann, Peter Zoller, and Benoı̂t Vermersch. ``Many-body topological invariants from randomized measurements in synthetic quantum matter''. Science Advances 6, 3666 (2020).
https:/​/​doi.org/​10.1126/​sciadv.aaz3666

[73] François Le Gall. ``Powers of tensors and fast matrix multiplication''. In Proceedings of the 39th international symposium on symbolic and algebraic computation. Pages 296–303. (2014).
https:/​/​doi.org/​10.1145/​2608628.2608664

[74] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. ``Swap test and hong-ou-mandel effect are equivalent''. Physical Review A 87, 052330 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.87.052330

[75] Yasuhiro Hieida, Kouichi Okunishi, and Yasuhiro Akutsu. ``Anisotropic antiferromagnetic spin chains in a transverse field: Reentrant behavior of the staggered magnetization''. Physical Review B 64, 224422 (2001).
https:/​/​doi.org/​10.1103/​PhysRevB.64.224422

[76] Jutho Haegeman, David Pérez-García, Ignacio Cirac, and Norbert Schuch. ``Order parameter for symmetry-protected phases in one dimension''. Physical Review Letters 109, 050402 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.109.050402

[77] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven, and Jarrod R McClean. ``Power of data in quantum machine learning''. Nature Communications 12, 1–9 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-22539-9

[78] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. ``Deep learning''. Nature 521, 436–444 (2015).
https:/​/​doi.org/​10.1038/​nature14539

[79] Roxana Zeraati, Tatiana A Engel, and Anna Levina. ``A flexible bayesian framework for unbiased estimation of timescales''. Nature Computational Science 2, 193–204 (2022).
https:/​/​doi.org/​10.1038/​s43588-022-00214-3

[80] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. ``Attention is all you need''. Advances in neural information processing systems 30 (2017).
https:/​/​doi.org/​10.48550/​arXiv.1706.03762

[81] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. ``Mastering the game of go without human knowledge''. Nature 550, 354–359 (2017).
https:/​/​doi.org/​10.1038/​nature24270

[82] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. ``Highly accurate protein structure prediction with alphafold''. Nature 596, 583–589 (2021).
https:/​/​doi.org/​10.1038/​s41586-021-03819-2

[83] Larry Stockmeyer. ``On approximation algorithms for# p''. SIAM Journal on Computing 14, 849–861 (1985).

[84] Sanjeev Arora and Boaz Barak. ``Computational complexity: a modern approach''. Cambridge University Press. (2009).
https:/​/​doi.org/​10.1017/​CBO9780511804090.012

[85] Larry Stockmeyer. ``The complexity of approximate counting''. In Proceedings of the fifteenth annual ACM symposium on Theory of computing. Pages 118–126. (1983).
https:/​/​doi.org/​10.1145/​800061.808740

[86] Oded Goldreich. ``Computational complexity: a conceptual perspective''. ACM Sigact News 39, 35–39 (2008).
https:/​/​doi.org/​10.1145/​1412700.1412710

[87] Heiko Hoffmann. ``Kernel pca for novelty detection''. Pattern Recognition 40, 863–874 (2007).
https:/​/​doi.org/​10.1016/​j.patcog.2006.07.009

[88] Patrick Rebentrost, Miklos Santha, and Siyi Yang. ``Quantum alphatron'' (2021). arXiv:2108.11670.
arXiv:2108.11670

Cited by

[1] Yanqi Song, Jing Li, Yusen Wu, Sujuan Qin, Qiaoyan Wen, and Fei Gao, "A resource-efficient quantum convolutional neural network", Frontiers in Physics 12, 1362690 (2024).

[2] Yusen Wu, Zigeng Huang, Jinzhao Sun, Xiao Yuan, Jingbo B Wang, and Dingshun Lv, "Orbital expansion variational quantum eigensolver", Quantum Science and Technology 8 4, 045030 (2023).

[3] Supanut Thanasilp, Samson Wang, M. Cerezo, and Zoë Holmes, "Exponential concentration in quantum kernel methods", Nature Communications 15 1, 5200 (2024).

[4] Xiao‐Hui Ni, Bin‐Bin Cai, Hai‐Ling Liu, Su‐Juan Qin, Fei Gao, and Qiao‐Yan Wen, "Multilevel Leapfrogging Initialization Strategy for Quantum Approximate Optimization Algorithm", Advanced Quantum Technologies 7 5, 2300419 (2024).

[5] Lento Nagano, Alexander Miessen, Tamiya Onodera, Ivano Tavernelli, Francesco Tacchino, and Koji Terashi, "Quantum data learning for quantum simulations in high-energy physics", Physical Review Research 5 4, 043250 (2023).

[6] Julian Schuhmacher, Laura Boggia, Vasilis Belis, Ema Puljak, Michele Grossi, Maurizio Pierini, Sofia Vallecorsa, Francesco Tacchino, Panagiotis Barkoutsos, and Ivano Tavernelli, "Unravelling physics beyond the standard model with classical and quantum anomaly detection", Machine Learning: Science and Technology 4 4, 045031 (2023).

[7] Lucas Slattery, Ruslan Shaydulin, Shouvanik Chakrabarti, Marco Pistoia, Sami Khairy, and Stefan M. Wild, "Numerical evidence against advantage with quantum fidelity kernels on classical data", Physical Review A 107 6, 062417 (2023).

[8] Kouhei Nakaji, Hiroyuki Tezuka, and Naoki Yamamoto, "Quantum-classical hybrid neural networks in the neural tangent kernel regime", Quantum Science and Technology 9 1, 015022 (2024).

[9] Ken N. Okada, Keita Osaki, Kosuke Mitarai, and Keisuke Fujii, "Classically optimized variational quantum eigensolver with applications to topological phases", Physical Review Research 5 4, 043217 (2023).

[10] Diego Tancara, José Fredes, and Ariel Norambuena, "Quantum kernels for classifying dynamical singularities in a multiqubit system", Quantum Science and Technology 9 3, 035046 (2024).

[11] Yanqi Song, Yusen Wu, Shengyao Wu, Dandan Li, Qiaoyan Wen, Sujuan Qin, and Fei Gao, "A quantum federated learning framework for classical clients", Science China Physics, Mechanics & Astronomy 67 5, 250311 (2024).

[12] Valentin Heyraud, Zejian Li, Zakari Denis, Alexandre Le Boité, and Cristiano Ciuti, "Noisy quantum kernel machines", Physical Review A 106 5, 052421 (2022).

[13] Teresa Sancho-Lorente, Juan Román-Roche, and David Zueco, "Quantum kernels to learn the phases of quantum matter", Physical Review A 105 4, 042432 (2022).

[14] Kouhei Nakaji, Hiroyuki Tezuka, and Naoki Yamamoto, "Deterministic and random features for large-scale quantum kernel machine", arXiv:2209.01958, (2022).

[15] Hiroyuki Tezuka, Shumpei Uno, and Naoki Yamamoto, "Generative model for learning quantum ensemble via optimal transport loss", arXiv:2210.10743, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-07-15 17:39:09) and SAO/NASA ADS (last updated successfully 2024-07-15 17:39:10). The list may be incomplete as not all publishers provide suitable and complete citation data.