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Continuous-time measurements are instrumental for a multitude of tasks in quantum
engineering and quantum control, including the estimation of dynamical parameters of
open quantum systems monitored through the environment. However, such measure-
ments do not extract the maximum amount of information available in the output state,
so finding alternative optimal measurement strategies is a major open problem.

In this paper we solve this problem in the setting of discrete-time input-output
quantum Markov chains. We present an efficient algorithm for optimal estimation
of one-dimensional dynamical parameters which consists of an iterative procedure for
updating a ‘measurement filter’ operator and determining successive measurement bases
for the output units. A key ingredient of the scheme is the use of a coherent quantum
absorber as a way to physically ‘post-process’ the output after the interaction with the
system. The absorber is designed such that the joint system plus absorber stationary
state is pure at parameter value provided by a preliminary estimator. The scheme
offers an exciting prospect for optimal continuous-time adaptive measurements, but
more work is needed to find realistic practical implementations.

1 Introduction
The quantum input-output (I-O) formalism is an effective framework for describing the evolution,
monitoring and control of Markovian quantum open systems [1–3]. In this setting, the interaction
with the environment is modelled by coupling the system of interest with a quantum transmission
line (channel) represented by a Gaussian bosonic field. The output field carries information about
the open system’s dynamics which can be accessed by performing continuous-time measurements,
and the corresponding conditional system evolution is described in terms of stochastic Schrödinger
or filtering equations [4–8].

While these theories are key to quantum engineering applications, they rely on the precise
knowledge of the system’s dynamical parameters (e.g. Hamiltonian of field coupling), which are
often uncertain, or completely unknown, and therefore need to be estimated from measurement
data. The I-O formalism is ideally suited for this statistical inference task, and more generally
for implementing online system identification methods [9]. Unlike direct measurement techniques
which require repeated system re-preparations and fast control operations [10–16], the parameters
can be estimated continuously from the output measurement trajectory, even if the system is not
directly accessible or it is involved in an information processing task. The first investigation in
parameter estimation for continuously-observed quantum systems considered the estimation of the
Rabi frequency of an atom in a cavity mode, while a photon counting measurement is performed
on the cavity output [17]. Subsequent works have addressed a variety of related problems including
the dependence on measurement choice [18], adaptive estimation [19, 20] filtering with uncertain
parameters [21] particle filters for estimation [22, 23] achieving Heisenberg scaling [24–26], sensing
with error correction [27], Bayesian estimation [28–32], quantum smoothing [33–36], waveform
estimation [37, 38] estimation of linear systems [39–42], classical and quantum Fisher informations
of the output channel [28, 40, 43–48].

An upshot of these studies is that standard measurements such as counting, homodyne or
heterodyne generally do no achieve the ultimate limit given by the quantum Cramér–Rao bound
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[49–51], while the optimal measurement prescribed by the symmetric logarithmic derivative requires
collective operations on the output state. In this work we make a first step towards addressing
the key issue of devising realistic and statistically effective measurement strategies within the the
framework of the I-O theory. By realistic we mean procedures which involve sequential continuous-
time measurements (as opposed to general non-separable measurements on the output state),
possibly combined with more advanced but theoretically well understood operations such as series
connections and feedback [52].

For conceptual clarity we focus primarily on discrete-time dynamics, but we will indicate how
the techniques may be extended to continuous-time. In the discrete-time setting, the I-O dynamics
consists of a d-dimensional system of interest interacting sequentially with a chain of k-dimensional
‘noise’ input units, which are identically and independently prepared in a state |χ〉, cf. Figure 1.
We assume that the interaction unitary Uθ acting on Cd ⊗ Ck depends on a parameter θ ∈ R,
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Input Output

System

Figure 1: Quantum input-output discrete-time dynamics with θ dependent unitary interaction Uθ

which we would like to estimate by measuring the output after n evolution steps. In principle,
this can be done by applying the adaptive, separable measurement scheme developed in [53] to the
joint pure system-output state; indeed this has been shown to attain the quantum Cramér-Rao
bound. However, while theoretically applicable, the algorithm involves manipulating multi-partite
operators, making it unsuitable for processing output states with a large number n of noise units.
In addition, it is not clear how the algorithm can be applied to continuous-time dynamics.

Our main contribution is to eliminate these drawbacks by devising a scheme which exploits the
intrinsic Markovian structure of the problem. Concretely, we propose an algorithm which finds
optimal measurement bases for each of the output units by only performing computations on the
space of a doubled-up system and a noise unit, i.e. Cd ⊗ Cd ⊗ Ck. Our algorithm has a similar
structure to that of the quantum state filter describing the system’s conditional evolution, and can
be run in real-time without having to specify the time length n in advance.

While our general algorithm requires measurements on both the output and system in order to
achieve finite sample optimality, in Proposition 6.1 we prove that by measuring only the output we
incur a loss of Fisher information which is bounded by a constant, independent of the time n. Since
the quantum Fisher information scales linearly in time, this implies that output measurement is
optimal in the leading contribution to the QFI.

We now describe our scheme in more detail. In the first stage of the protocol we use a small
proportion of the output units (of sample size ñ ≈ n1−ε with small ε) in order to compute a
preliminary ‘rough estimator’ θ0 of the true parameter θ, by performing a standard sequential
measurement. This step is necessary in any quantum estimation problem in which the optimal
measurement depends on the unknown parameter [54]. In particular, this means that strictly
speaking one can only attain optimality in the limit of large sample sizes, as θ − θ0 decays as
n−(1−ε)/2 thanks to the preliminary estimation stage. In the second (main) stage of the protocol
we use θ0 to design a sequential measurement which achieves the output QFI at θ = θ0. Since the
first stage insures that θ− θ0 decays and the QFI is continuous with respect to θ, we find that the
overall scheme is asymptotically optimal at any parameter value θ.

The second stage is illustrated in Figure 2: each output unit undergoes a physical transforma-
tion (which we call ‘quantum post-processing’) followed by an adaptive projective measurement
whose basis is computed according to the ‘measurement filter’ algorithm described below. More
specifically, after interacting with the system, the post-processing consists in applying a unitary Vθ0

to the output noise unit together with an additional ancilla of the same size d as the system. The
system and ancilla can be regarded as a single open system (denotes ‘s+a’) of dimension D = d2
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Figure 2: Adaptive measurement filter: the output units undergo post-processing with a coherent quantum
absorber, followed by applying an adaptive measurement computed with the algorithm

coupled to the noise units via the unitary Wθ = Vθ0Uθ. The unitary Vθ0 is chosen such that s+a
has a pure stationary state |ψ〉 ∈ CD at θ = θ0, and the output state is identical to that of the
input. This is a discrete-time analogue of the notion of coherent quantum absorber introduced in
[55], and it insures that the ‘reference’ output state at θ = θ0 is the same as the product input state
(the ‘vacuum’), while deviations from θ0 produce ’excitations’ in the output. After the interaction
with the ancilla (absorber), the noise unit is measured in a basis determined by a simple iterative
algorithm detailed in section 5. The iterative step consists of using the current value of a certain
‘filter operator’ on system+absorber to determine the next measurement basis, and then using the
measurement outcome to update the filter operator. This simplification relies on the fact that the
output is uncorrelated from system (and absorber), which is not the case in the original dynamical
setup of Figure 1.

In section 7 we describe the results of two numerical investigations testing our theoretical
results. The first investigation focuses on a simplified model where the system plus absorber are
represented by a two-dimensional system with a pure stationary state. While this sidesteps the
preliminary estimation stage of the protocol, it allows us to specifically test the key features of the
adaptive measurement algorithm with a reasonably large trajectory length and a high number of
repetitions. For this model, we can explicitly compute the system-output QFI (cf. Lemma 7.1),
while the classical Fisher information of any output measurement strategy can be estimated by
sampling techniques. The results confirm that the adaptive measurement attains the QFI when
the system is measured at the end, while the output-only strategy is only worse by a constant
independent of trajectory length. On the other hand, simple measurements (same fixed basis
for each unit) perform strictly worse even when the measurement basis is optimised. While the
improvement here is not dramatic, our preliminary investigations indicate that the gap increases
significantly with the system dimension, depending on the chosen model. We further test the
performance of the maximum likelihood estimator and find that its mean square error approaches
the inverse of the classical Fisher information in the long-time limit, which agrees broadly with the
Cramér-Rao bound. The second numerical investigation implements the full two-stage adaptive
measurement algorithm including the use of the coherent absorber.

Finally, we note that our scheme can be extended to continuous-time dynamics by using stan-
dard time-discretisation techniques [56, 57]. Although we do not treat this in detail here, we
comment on this extension at the end of the paper.

The paper is organised as follows. In section 2 we briefly review the adaptive algorithm for
optimal separable measurements developed in [53]. Section 3 introduces the Markov dynamics
setting and reviews a key result on the asymptotic QFI of the output. Section 4 explains how
the use of ‘post-processing’ by quantum absorber reduces the general estimation problem to one
concerning a system with a pure stationary state. This is then used in section 5, which details the
adaptive measurement procedure including the key ‘measurement filter’ algorithm. In section 6.2
we show that the proposed adaptive output measurement achieves the optimal QFI rate even if
the system is not measured. We also devise a scheme to estimate the classical Fisher information
of the measurement process by sampling over trajectories. Section 7 presents simulation results
using an elaboration of an amplitude decay qubit model.
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2 Optimal separable measurements
In this section we review a result by Zhou, Zou and Jiang [53] concerning optimal parameter
estimation for multipartite pure states, using separable measurements (local measurements and
classical communication). Their method will then be applied to the problem of estimating param-
eters of discrete time quantum input-output systems. By exploiting the Markovian nature of the
dynamics, we will show that the algorithm can be recast in a simpler procedure akin to that of a
quantum state filter.

Consider a one parameter quantum statistical model {ρθ : θ ∈ R} where ρθ is a state on a
Hilbert space H which depends smoothly on the unknown parameter θ. To estimate θ we perform
a measurement on the state ρθ and compute an estimator θ̂ based on the measurement outcome.
According to the quantum Cramér-Rao bound (QCRB) [49–51], the variance of any unbiased

estimator θ̂ is lower bounded as

Var(θ̂) = E
[
(θ̂ − θ)2

]
≥ F−1

θ

where Fθ is the quantum Fisher information (QFI) defined as F (θ) = Tr(ρθL2
θ), and Lθ is the

symmetric logarithmic derivative (SLD) satisfying d
dθρθ = Lθ ◦ ρθ. In general, for any given

parameter value θ0, the QCRB is saturated1 by measuring the SLD Lθ0 and constructing a locally

unbiased estimator θ̂ = θ0 +X/F (θ0) where X is the measurement outcome.
While for full rank states the optimal measurement is essentially unique, for rank deficient

states this is not the case and a necessary and sufficient condition for a measurement to saturate
the QCRB has been derived in [51]. This has practical relevance for multipartite systems where
the measurement of the SLD may not be easy to implement. Motivated by this limitation, the
saturability condition has been further investigated in [53] where it is shown that the QCRB for
pure states of multipartite systems is achievable using separate measurements constructed in an
adaptive fashion which we now proceed to describe.

Consider the pure state model ρθ = |ψθ〉 〈ψθ| with |ψθ〉 ∈ H. We denote |ψ̇θ〉 = d
dθ |ψθ〉 and

assume that 〈ψθ|ψ̇θ〉 = 0. This can generally be arranged by choosing the (unphysical) phase
of |ψθ〉 to have an appropriate dependence on θ. In particular, in this case we have |ψ⊥θ 〉 :=
(1− |ψθ〉 〈ψθ|) |ψ̇θ〉 = |ψ̇θ〉. Under this assumption the QFI is given by

Fθ = 4‖ψ̇θ‖2. (1)

Further, we define the operator M which will play a key role in the analysis

M = |ψθ〉 〈ψ̇θ| − |ψ̇θ〉 〈ψθ| . (2)

The authors of [53] note that if a projective rank-one measurement {Ei = |ei〉〈ei|} satisfies the
conditions

〈ei|M |ei〉 = 0, and pθ(i) = |〈ei|ψθ〉|2 = 1/k, k = dim(H) (3)

then it fulfils the general criteria of [51] and therefore it achieves the QCRB. In fact, the second
condition can be relaxed to p(i) 6= 0 for all i, but we will stick to the chosen expression for
concreteness. The achievability can be understood as follows. The conditions 〈ei|M |ei〉 = 0 implies
that 〈ei|ψθ〉〈ψ̇θ|ei〉 is real, so that the phase of the basis vectors |ei〉 can be chosen such that both
〈ei|ψθ〉 and 〈ei|ψ̇θ〉 are real for all i. Together with the condition pθ(i) 6= 0, this means that in the
first order of approximation, the quantum model is described by vectors with real coefficients with
respect to the measurement basis. In this case the classical and quantum informations coincide

Iθ =
∑
i

pθ(i)
(
d log pθ(i)

dθ

)2
= 4

∑
i

(
Re〈ei|ψθ〉〈ψ̇θ|ei〉

)2

〈ei|ψθ〉〈ψθ|ei〉

= 4
∑
i

∣∣〈ei|ψθ〉〈ψ̇θ|ei〉∣∣2
〈ei|ψθ〉〈ψθ|ei〉

= 4
∑
i

∣∣〈ei|ψ̇θ〉∣∣2 = 4‖ψ̇θ||2 = Fθ.

1This achievability argument can be made rigorous in an asymptotic setting where the experimenter has an
ensemble of n independent, identically prepared systems and employs an adaptive procedure for ‘locating’ the
parameter [54, 58].
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We now assume that we deal with a multipartite system such that H = H1⊗H2⊗· · ·⊗Hn, with
dim(Hi) = ki, and follow [53] to show that a separable measurement satisfying the above conditions
can be constructed by using the algorithm outlined below. For any set of indices A ⊂ {1, . . . , n}
we denote its complement by Ac and by ρA = TrAc(ρθ) the partial state of the sub-systems with
indices in A. For m > 1 we denote by m the set {1, . . . ,m}. Similarly, we denote MA = TrAc(M)
and for single sub-systems (A = {i}) we use the notation ρi and Mi.

We measure the sub-systems sequentially, such that each individual measurement basis depends
on the outcomes of the previous measurements, as follows. In the first step, the measurement basis

{|e[1]
i 〉}

k1
i=1 of system H1 is chosen such that〈

e
[1]
i

∣∣∣M1

∣∣∣e[1]
i

〉
= 0 and p1(i) =

〈
e

[1]
i

∣∣∣ ρ1

∣∣∣e[1]
i

〉
= 1
k1
.

The existence of such a basis can be established by induction with respect to dimension, cf. proof
of Lemma 1 in [53]. The concrete construction in two dimensions is described in section 7.

After this, the following procedure is applied sequentially to determine the measurement ba-
sis for system j + 1 with j = 1, . . . , n − 1: given the outcomes ij := {i1, . . . , ij} of the first j

measurements, we choose the basis
{
|e[j+1]
i 〉

}kj+1

i=1
in Hj+1 such that〈

e
[j+1]
i

∣∣∣Mj+1(ij)
∣∣∣e[j+1]
i

〉
= 0

and

pj+1(ij , i) =
〈
e

[j+1]
i

∣∣∣ ρj+1(ij)
∣∣∣e[j+1]
i

〉
= 1
k1 · k2 · · · · kj+1

for all i = 1, . . . , kj+1, where

Mj+1(ij) =
〈
e

[j]
ij

∣∣∣Mj+1

∣∣∣e[j]
ij

〉
, ρj+1(ij) =

〈
e

[j]
ij

∣∣∣ ρj+1

∣∣∣e[j]
ij

〉
, and

∣∣∣e[j]
ij

〉
=
∣∣∣e[1]
i1

〉
⊗ · · · ⊗

∣∣∣e[j]
ij

〉
Note that the second condition means that for each j the outcome ij is independent of the others
and has equal probabilities 1/kj .

After n steps we have defined in an adpative fashion a product measurement basis∣∣∣e[n]
in

〉
=
∣∣∣e[1]
i1

〉
⊗ · · · ⊗

∣∣∣e[n]
in

〉
and one can verify that such a measurement satisfies the general condition (3).

3 Discrete quantum Markov chains and the output QFI
In the input-output formalism the dynamics of a discrete-time quantum open system Hs ∼= Cd is
modeled by successive unitary interactions with independent ‘noise units’, identically prepared in
a state |χ〉 ∈ Hu ∼= Ck. This can be pictured as a conveyor belt where the incoming ‘noise units’
constitute the input, while the outgoing ‘noise units’ make up the output of the process, cf. Figure
1. If |φ〉 ∈ Hs is the initial state of the system, and U is the unitary on Hs ⊗ Hu describing the
interaction between system and a noise unit, then the state of the system and output after n time
units is

|Ψ(n)〉 = U(n)|φ⊗ χ⊗n〉 = U (n) · · · · · U (2) · U (1)|φ⊗ χ⊗n〉 ∈ Hs ⊗H⊗nu (4)

where U (i) is the unitary acting on the system and the i-th noise unit. From equation (4) we find
that the reduced state of the system at time n is given by

ρ(n) := Trout(|Ψ(n)〉〈Ψ(n)|) = Tn(ρin), ρin = |φ〉〈φ|,

where the partial trace is taken over the output (noise units), and T : T1(Hs) → T1(Hs) is the
Markov transition operator

T : ρ 7→ Tru(U(ρ⊗ τ)U∗), τ := |χ〉〈χ|.

Accepted in Quantum 2023-03-15, click title to verify. Published under CC-BY 4.0. 5



Fixing an orthonormal basis {|1〉, . . . , |k〉} in Hu, we can express the system-output state as a
matrix product state

|Ψ(n)〉 =
k∑

i1,...,in=1
Kin . . .Ki1 |φ〉 ⊗ |i1〉 ⊗ · · · ⊗ |in〉 (5)

where Ki = 〈i|U |χ〉 are the Kraus operators of T , so that T (ρ) =
∑
iKiρK

∗
i .

Now, let us assume that the dynamics depends on a parameter θ ∈ R which we would like
to estimate, so that U = Uθ and |Ψ(n)〉 = |Ψθ(n)〉. In the input-output formalism it is usually
assumed that the experimenter can measure the output (noise units after the interaction) but may
not have access to the system. In this case the relevant quantum statistical model is that of the
(mixed) output state given by

ρout
θ (n) = Trs(|Ψθ(n)〉〈Ψθ(n)|).

The problem of estimating θ in this formulation has been investigate in both the discrete time
[43, 47] and the continuous time [44, 46, 48] settings. For our purposes, we summarise here the
relevant results of [47]. We will assume that the Markov chain is primitive, i.e. the transition
operator T has a unique full-rank steady state ρss (i.e. T (ρss) = ρss) , and is aperiodic (i.e. the
only eigenvalue of T on the unit circle is 1). In particular, for any initial state ρin, the system
converges to the stationary state Tn(ρin)→ ρss in the large n limit. Therefore, for the asymptotic
analysis we can assume that the dynamics is in the stationary regime and focus on the large time
properties of the stationary output state. The following Theorem shows that the output QFI scales
linearly with time and provides an explicit expression of the rate.

Theorem 3.1. Consider a primitive discrete time Markov chain as described above, whose uni-
tary depends smoothly on a one-dimensional parameter θ, so that U = Uθ. The quantum Fisher
information Fθ(n) of the output state ρout

θ (n) scales linearly with n and its rate is equal to

lim
n→∞

1
n
Fθ(n) = fθ = 4

k∑
i=1

Tr
[
ρssK̇

∗
i K̇i

]
+ 2Tr

Im(KiρssK̇
∗
i ) · R(Im

∑
j

K̇∗jKj)

 (6)

where R is the Moore-Penrose inverse of Id− Tθ.

Following standard quantum Cramér-Rao theory [49–51], the theorem implies that the variance
of any (unbiased) output-based estimator is bounded from below by n−1/f(θ) for large n. A
more in depth analysis [47] shows that the output model satisfies the property of local asymptotic
normality which pertains to a certain quantum Gaussian approximation of the output state and
implies that there exists an estimator θ̂n which achieves the CR bound asymptotically and has
normally distributed errors: √

n
(
θ̂n − θ

)
−→ N(0, f(θ)−1)

where the convergence is in distribution to a normal variable with variance f(θ)−1. Below, we will
make use of an extension of Theorem 3.1 which shows that the same result holds for rank-deficient
stationary states of ergodic chains, and in particular for pure states [59].

Having identified the output QFI rate, we would like to investigate measurement schemes which
can provide good accuracy for estimating the parameter θ. As noted before, the QCRB can be
achieved by measuring the SLD of the statistical model. However, the SLD of the output state is
generally a complicated operator whose measurement requires collective operations on the noise
units. On the other hand, one can consider separate measurements of the same observable on the
different noise units and system. The average statistic may provide an efficient estimator and its
(asymptotic) Fisher information can be computed explicitly [44]. However, such measurements
are in general not optimal. Here would would like to ask the more fundamental question: is it
possible to achieve the QCRB using simpler ‘local’ manipulation of the output units which involve
operations on single, rather than multiple units.
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4 Output post-processing using quantum coherent absorber
In this section we introduce a key tool which will allow us to recast the estimation problem for a
general primitive Markov chain ( which typically has a mixed stationary state) into one concerning
a Markov chain with a ‘doubled-up’ system having a pure stationary state. The construction is
a discrete-time adaptation on the concept of coherent quantum absorber introduced in [55] for
continuous-time dynamics. In section 5 we then show how the absorber can be used to compute
an adaptive, separable measurement in a simple recursive algorithm.

Consider the input-output system of section 3 characterised by a unitary U on Hs ⊗Hu. We
now modify the setup as illustrated in Figure 2 by inserting an additional physical d-dimensional
system Ha called absorber which interacts with each of the noise units via a fixed unitary V on
Ha ⊗Hu, applied immediately after U . This can be seen as a type of quantum post-processing of
the output prior to the measurement. The original system and the absorber can be considered a
single open system with space Hs⊗Ha which interacts with the same conveyor belt of noise units
via the unitary Wθ = V · U where V,U are now understood as the ampliations of the unitaries
to the tensor product Hs ⊗ Ha ⊗ Hu. The following lemma shows that for certain choices of V
the auxiliary system forms a pure stationary state together with the original one, and the noise
units pass unperturbed from input to output. This explains the ‘absorber’ terminology, which was
originally introduced in the context of continuous-time input-output dynamics [55].

Lemma 4.1. Any given primitive Markov with unitary U can be extended to a quantum Markov
chain including an absorber with unitary V , such that the doubled-up system has a pure stationary
state |ψ̃〉 ∈ Hs ⊗Ha and

W : |ψ̃〉 ⊗ |χ〉 7→ |ψ̃〉 ⊗ |χ〉, W = V U.

In particular, if the initial state of the doubled-up system is |ψ̃〉, then the n-steps output state of
the doubled-up system is identical to the input state |χ〉⊗n.

Proof. Let ρss =
∑
i λi|fi〉〈fi| be the spectral decomposition of the stationary state of the original

system with unitary U . We construct the purification

|ψ̃〉 =
∑√

λi|fi〉 ⊗ |fi〉 ∈ Hs ⊗Ha

which will play the role of stationary state of the extended system. Let |φ〉 := U |ψ̃ ⊗ χ〉 ∈
Hs ⊗ Ha ⊗ Hu be the state after applying U . We therefore look for unitary V on Ha ⊗ Hu
(ampliated by identity on Hs) such that V reverts the action of U

V : |φ〉 7→ |ψ̃ ⊗ χ〉.

Since Tra(|ψ̃〉〈ψ̃|) = ρss this means that the reduced state of the system after applying U is
still the stationary state, so that

|φ〉 =
∑
i

√
λi|fi〉 ⊗ |gi〉

where |gi〉 are mutually orthogonal unit vectors in Ha⊗Hu. We now choose a unitary V such that
V |gi〉 = |fi ⊗ χ〉, for all i, which is always possible due to orthogonality.

5 Adaptive measurement algorithm
In this section we describe our adaptive output measurement protocol for estimating an unknown
one-dimensional dynamical parameter θ of a discrete time quantum Markov chain with unitary Uθ,
as described in section 3. The protocol has two stages. In the first stage we use a small proportion
(e.g. ñ = n1−ε, with 0 < ε � 1) of the output units in order to compute a preliminary ‘rough
estimator’ θ0 of the true parameter θ by performing a standard sequential measurement. This step
is necessary in any quantum estimation problem in which the optimal measurement depends on
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the unknown parameter [54, 58], and will inform the second stage of the protocol. In the second
stage we use θ0 to design a optimal sequential measurement for θ = θ0, i.e. one that achieves the
output QFI at θ = θ0. Since δθ = θ − θ0 = O(n−1/2+ε) [44], this implies that the procedure is
asymptotically optimal for any parameter value θ, in that the classical Fisher information has the
same linear scaling as the QFI Fθ(n). This stage has two key ingredients (cf. Figure 2): a quantum
‘post-processing’ operation on output units immediately after interacting with the system, followed
by an adaptive projective measurement whose basis is computed according to a ‘measurement filter’
algorithm inspired by [53]. We now describe the two steps in detail.

Quantum post-processing. After the interaction Uθ with the system, the output units interact
sequentially with a d-dimensional ancillary system, cf. Figure 2. The interaction unitary Vθ0 is
chosen such that the ancillary system is a coherent quantum absorber for θ = θ0, see section 4 and
Lemma 4.1 for construction. This means that the system plus absorber (s+a) can be regarded as
a single D = d2 dimensional open system with associated unitary Wθ = Vθ0Uθ, which has a pure
stationary state at θ = θ0 denoted |ψ〉 ∈ CD, and whose output state is identical to the input. The
general estimation problem for Uθ has been reduced to a special one for a doubled-up system with
unitary Wθ which features a pure stationary state at θ = θ0.

Remark 1. Since the absorber transformation Vθ0 does not depend on θ and is applied after Uθ,
the overall effect over an n steps interval is to rotate the absorber plus output state by a fixed
unitary V (n)

θ0
. . . V

(1)
θ0

. This means that the total QFI does not change by introducing the absorber.
Adaptive measurement algorithm. We will assume for simplicity that the initial state of s+a is

the stationary state |ψ〉 such that the full (s+a)-output state is |Ψθ(n)〉 = Wθ(n)|ψ⊗χ⊗n〉 as defined
in (4). One could obtain similar results for different initial states by simply waiting long enought
for the system and absorber to converge to the stationary state |ψ〉. In principle we could now
apply the algorithm described in section 2 to construct and adaptive measurement whose classical
Fisher information is equal to the system-output QFI. In fact we could have done this without
using the absorber. However, this procedure has some drawbacks. Indeed, in order to compute the
measurement bases one needs to work with large dimensional spaces which becomes unfeasible in
an asymptotic setting. Secondly, it is not clear a priori whether the output units can be measured
immediately after the interaction with the system, and whether the measurements depend on the
length of the output (sample size). In addition, the procedure requires a final measurement on the
system, which may be impractical in the context of input-output dynamics. We will show that all
these issues can be addressed by taking into account the Markovian structure of our model, and
exploiting the pure stationary state property. Let us denote W = Wθ0 , Ẇ = dW

dθ

∣∣
θ0

and

A1 = M (1) = Ẇ |ψ ⊗ χ〉〈ψ ⊗ χ|W ∗ −W |ψ ⊗ χ〉〈ψ ⊗ χ|Ẇ ∗ = ẆPψ⊗χ − Pψ⊗χẆ ∗,

and
B1 = Trs+aA1 = KPχ − PχK∗, with K = 〈ψ|Ẇ |ψ〉.

In Appendix 9 we show that the adaptive measurement of [53] reduces to the following iterative
algorithm which is conceptually similar to quantum state filtering [4, 5], and involves individual
measurements on the output units immediately after the interaction with the system, and compu-
tations with operators on CD ⊗ Ck at each step.

Initialisation step (j=1). The first measurement basis
{
|e[1]
i 〉
}

in Ck is chosen such that the

following conditions are fulfilled:〈
e

[1]
i

∣∣∣B1

∣∣∣e[1]
i

〉
= 0, and

∣∣∣〈e[1]
i |χ〉

∣∣∣2 = 1
k
, for all i = 1 . . . , k.

The first noise unit is measured in this basis and the outcome X1 = i1 is obtained. The filter at
time j = 1 is defined as the (trace zero) s+a operator

Π1 =
〈
e

[1]
i1

∣∣∣A1

∣∣∣e[1]
i1

〉
.

Iterative step. The following step is iterated for j = 2, . . . , n. Given the filter operator Πj−1
of the previous step, we define

Aj = 1
Dj−1A1 +W (Πj−1 ⊗ Pχ)W ∗, Bj = Trs+aAj
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The j-th measurement basis
{
|e[j]
i 〉
}

is chosen to fulfill the conditions〈
e

[j]
i

∣∣∣Bj ∣∣∣e[j]
i

〉
= 0, and

∣∣∣〈e[j]
i |χ〉

∣∣∣2 = 1
k
, for all i = 1, . . . k. (7)

We measure the j-th noise unit in the basis
{
|e[j]
i 〉
}

and obtain the result Xj = ij . The filter at

time j is updated to

Πj =
〈
e

[j]
ij

∣∣∣Aj ∣∣∣e[j]
ij

〉
.

Final s+a measurement. This is an optional step which involves a final joint measurement

on system and absorber. The basis
{
|e[s+a]
i 〉

}D
i=1

is determined by the following conditions〈
e

[s+a]
i

∣∣∣Πn

∣∣∣e[s+a]
i

〉
= 0, p(i|i1, . . . , in) =

∣∣∣〈e[s+a]
i |ψ〉

∣∣∣2 = 1/D.

The system and absorber is measured in this basis and the outcome X = i0 is obtained.
The output measurement record {i1, . . . , in, i0} is collected and used for estimating the param-

eter θ. The likelihood function is given by

pθ(i1, . . . in, i0) =
∣∣∣〈e[s+a]

i0
⊗ e[1]

i1
⊗ · · · ⊗ e[n]

in
|Ψθ(n)

〉∣∣∣2 . (8)

For later use, we denote by pθ(i1, . . . in) the marginal distribution of the output measurement
record only.

6 Fisher informations considerations
In this section we investigate the relationship between the classical Fisher information (CFI) of the
output adaptive measurement process and the system-output QFI. We prove that both scale with
the same rate and the latter may be larger than the former by at most a constant, independent of
time.

We also provide an expression of the CFI of sequential (adaptive or standard) output mea-
surements, which is amenable to estimation by sampling. This tool will be used to confirm the
optimality of our adaptive algorithm in numerical simulations.

6.1 Achievability of the QFI with adaptive output measurements
The adaptive measurement scheme described in section 5 insures the CFI of the full measurement
(output and s+a) is equal to the QFI of the full pure state model

I
(s+a+o)
θ0

(n) = F
(s+a+o)
θ0

(n) = F
(s+o)
θ0

(n) (9)

where the last equality follows from the fact that the absorber acts as an additional rotation which
does not change the QFI, cf. Remark 1. However, in certain physical implementations the system
may not be accessible for measurements, so the more interesting scenario is that in which only the
output state is measured. In this case the CFI will generally be strictly smaller that the QFI, and
the question is whether by measuring only the output we incur a significant loss of information. In
proposition 6.1 we show that this is not the case: the difference between the QFI and the output
CFI is bounded by a constant, so for large times the loss of information is negligible compared to
both QFI and output CFI, which scale linearly with time. In section 7 we will illustrate the result
on a specific model.

Proposition 6.1. Consider the setup described in section 5, and let F (n) be the system-absober-
output QFI, and I(o)(n) be the output CFI for the optimal adaptive measurement, at θ = θ0. Then
F (n)− I(o)(n) < c for all n where c is a constant depending only on the model Uθ. Consequently,

lim
n→∞

1
n
I(o)(n) = lim

n→∞

1
n
F (n) = f > 0

where f = fθ0 is the QFI rate (6).
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6.2 Computing the classical Fisher information of the output
The classical Fisher information of the output measurement process at θ0 is

I(o)(n) = Eθ0

(
d log pθ
dθ

)2
=

∑
i1,...,in

pθ0(i1, . . . in)−1

(
dpθ(i1, . . . , in)

dθ

∣∣∣∣
θ0

)2

where the sum runs over indices such that pθ(i1, . . . , in) > 0. In general

I(o)(n) ≤ F (o)(n) ≤ F (s+o)(n)

where the successive upper bounds are output and system-output QFIs respectively.
In our simulation study we will be interested to study to what extent these bounds are saturated

in the adaptive and non-adaptive scenarios, and in particular, to verify the prediction of Proposition
6.1. Since the classical Fisher information is difficult to compute for long trajectories, we will recast
it as an expectation which can be estimated by sampling measurement trajectories. In Lemma 6.2
below, we will use the fact that at θ = θ0 the vector |ψ〉 is the stationary state, and therefore

K
[j]
i |ψ〉 = c

[j]
i |ψ〉 (10)

for any Kraus decomposition K
[j]
i = 〈e[i]

j |W |χ〉 (for simplicity we use the same notation for s+a
Kraus operators as in section 3). The proof of Lemma 6.2 can be found in Appendix 11.

Lemma 6.2. Consider the setup described in section 5. The output CFI at θ = θ0 is given by

I(o)(n) = Eθ0(f2) =
∑

i1,...,in

pθ0(i1, . . . , in)f2(i1, . . . , in) (11)

where f is the function

f(i1, . . . , in) = 2Re
n∑
j=1

〈ψ|K [n]
in
. . .K

[j+1]
ij+1

K̇
[j]
ij
|ψ〉

c
[j]
ij
. . . c

[n]
in

and the constants c[j]
ij

are defined by equation 10. In particular, I(o)(n) can be estimated by com-
puting the empirical average of f2 over sampled trajectories.

We now consider the case where a (projective) measurement {P (s+a)
i } is performed on s+a,

after obtaining the output measurement record (i1, . . . , in). We denote the additional outcome by
i0. The CFI of the full process is

I(s+a+o)(n) = Eθ0

(
d log pθ
dθ

∣∣∣∣
θ0

)2

where

pθ(i1, . . . , in, i0) =
∥∥∥P (s+a)

i0
K

[n]
in
. . .K

[1]
i1
ψ
∥∥∥2

is the likelihood function of a trajectory augmented by the system measurement outcome i0. The
relevant upper bound in this case is

I(s+a+o)(n) ≤ F (s+a+o)(n) = F (s+o)(n). (12)

A similar computation to that of Lemma 6.2 gives the system-output classical Fisher information

I(s+a+o)(n) = Eθ0(f̃2)

where f̃ is the function

f̃(i1, . . . , in, i0) = 2 Re
n∑
j=1

〈ψ|P (s)
i0
K

[n]
in
. . .K

[j+1]
ij+1

K̇
[j]
ij
|ψ〉

c
[j]
ij
. . . c

[n]
in
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For fixed (non-adaptive) measurements, the bound (12) is generally not saturated except for
special models (e.g. if the state coefficients in the measurement basis are real for all θ). In contrast,
the system-absorber-output classical Fisher information for adaptive measurements is equal to the
QFI thanks to the optimality of the adaptive measurement procedure 9. This is confirmed by our
simulation study which also investigates the performance of the fixed measurement scenario.

7 Numerical simulations
We now test the key properties of the adaptive measurement scheme developed in section 5, in two
separate numerical investigations.

The first investigation described in subsections 7.1 and 7.2 employs a simplified Markov model
which bypasses stage-one of the scheme (computing a rough estimator θ0) and simulates data at
θ = θ0. This allows us to directly study the performance of the algorithm itself (stage two), rather
than that of the combination of the two stages. The second simplification of this investigation is
that we choose a system which has a pure stationary state at θ0; this means that no absorber is
required, so the system can be seen as a surrogate for the system+absorber in the general scheme.
The reason for this is mainly practical, as it allows us to use a two-dimensional system while
system+absorber would have dimension at least four.

The second numerical investigation consists of a full simulation study including the use of
the coherent absorber and the two stage estimation procedure, and its results are presented in
subsection 7.3. Here we can see the overall performance of the estimation method, but it is harder
to estimate the Fisher information of the measurement process and to separate the contribution
of the two stages in the overall estimation error.

7.1 Simplified Markov model for the first numerical investigation
We consider a dynamical model consisting of a two-dimensional system coupled via a unitary Uθ
to two dimensional noise units in state |χ〉 = |0〉. The input state and the unitary are designed
such that the stationary state at θ0 = 0 is |ψ〉 = |0〉. Since the input is prepared in a fixed state,
we only need to define the action of Uθ on the basis vectors |0〉 ⊗ |0〉 and |1〉 ⊗ |0〉. The following
choice has unknown parameter θ and two known parameters λ and φ

Uθ : |00〉 −→ cos(θ)
√

1− θ2 |00〉+ i sin(θ)
√

1− θ2 |10〉+ θ |11〉 ,

Uθ : |10〉 −→ i sin(θ)
√

1− λ |00〉+ cos(θ)
√

1− λ |10〉+
√
λeiφ |01〉 . (13)

A non-zero value of the phase parameter φ ensures that the system-output state does not have real
coefficients in the standard basis, in which case the standard basis measurement would be optimal.
Note that at θ0 the dynamics provides a simple model for ‘photon-decay’ with decay parameter λ.

We compare two measurements scenarios. In the first, non-adaptive scenario, the noise units
are measured in a fixed orthonormal basis {|f0〉 = (|0〉 + |1〉)/

√
2, |f1〉 = (|0〉 − |1〉)/

√
2} while in

the second scenario they are measured adaptively following the algorithm described in section 5.
In both cases, given the measurement record {i1, . . . , in} ∈ {0, 1}n, the conditional state of the
system is

|ψn(i1, . . . in)〉 =
K

[n]
in
. . .K

[1]
i1
|ψ〉

‖K [n]
in
. . .K

[1]
i1
ψ‖

(14)

where the Kraus operators are {K0 = 〈f0|U |χ〉,K1 = 〈f1|U |χ〉} in the first scenario, and K
[j]
i =

〈e[j]
i |U |χ〉 in the second one. The likelihood of the output measurement trajectory is

pθ(i1, . . . in) = ‖K [n]
in
. . .K

[1]
i1
ψ‖2. (15)

Recall that the optimal measurement basis needs to satisfy the conditions (7) in section 5. For
two dimensional noise units the computation reduces to the following scheme. We express the

traceless, anti-Hermitian matrix Bj defined in section 5 as Bj = i~r [j] · ~σ where ~r [j] = (r[j]
x , r

[j]
y , 0)

is its Bloch vector, and similarly, we let ±~s [j] be the Bloch vectors of the basis vectors {|e[j]
1 〉, |e

[j]
2 〉}
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satisfying the conditions (7). Then one finds that the conditions (7) are satisfied if ~s [j] is taken to

be ~s [j] = (r[j]
y ,−r[j]

x , 0).
We study both the scenario where system of interest is measured after obtaining the output

trajectory, as well as the one where only the output measurement is considered. In the former case,
the algorithm guarantees that the classical Fisher information of the full measurement record is
equal to the QFI of the system-output state. This claim is verified numerically by comparing the
estimated classical Fisher information computed using the method described in section 6.2 with
the quantum Fisher information of the system-output state. In the latter scenario, Proposition 6.1
insures that the loss of information compared to a ‘full measurement’ is bounded by a constant
which does not depend on time.

As shown in Theorem 3.1, the system-output QFI scales linearly with time, i.e.

F
(s+o)
θ (n) = nfθ + o(n)

where the QFI rate is given by the equation (6) and the o(n) term depends on the specific system
parameters. Applying this to our model we obtain

fθ0 = 8
1−
√

1− λ
. (16)

However, it turns out that for this specific model and parameter value, the QFI can be computed
explicitly for any fixed n. The proofs of (16) and of the following lemma can be found in Appendix
12.

Lemma 7.1. The system-output QFI at θ = θ0 is given by the formula

F
(s+o)
θ (n) = = 8n

1− a + 4
[

2(a2 − an)
(1− a)2 − 2b

2(a− an)
(1− a)3 + 2(a2 − a2n)

b2

]
(17)

where a =
√

1− λ and b =
√
λ. In particular, the leading term in n is given by (16) while the

remaining terms are bounded.

7.2 Simulation studies for the simplified model
We now present the results of our first numerical investigation consisting of 3 simulation studies
using the simplified Markov model described above.

The first simulation study focuses on the comparison between the different notions of Fisher
information: the system-output QFI, the CFI of the output trajectory in the non-adapted and
adapted scenarios, and the CFI of the system-output measurement process in the adapted mea-
surement scenario. The QFI is computed using the formula in Lemma 7.1 while the CFIs are
estimated by sampling using the expression in Lemma 6.2.

The results are illustrated in Figure 3 where the different informations are plotted as a function
of time (trajectory length) n, for λ = 0.8, φ = π/4. The simulation confirms the fact that the
adaptive algorithm achieves the QFI when the system is measured together with the output, while
the CFI of the output trajectory (without measuring the system) provides a close approximation
which only differs by a constant factor. In contrast, the CFI of the standard measurement has a
smaller rate of increase; additional numerical work shows that the CFI rate can be improved by
optimising the basis of the standard measurement but it does not achieve the QFI.

The second simulation study focuses on the ‘measurement trajectory’, i.e. the sequence of
measurement settings produced in the adaptive measurement scenario. Since all measurement
bases consist of vectors in the equatorial plane on the Bloch sphere, one can parametrise each basis
by the polar coordinate ϕ of the basis vector (|0〉 ± eiϕ|1〉)/

√
2 for which ϕ belongs to a specified

interval of length π. This is illustrated in the left panel of Figure 4. This parametrisation has the
disadvantage that it does not reproduce the topology of the space of measurements which is that
of a circle, leading to some jumps in measurement angles appearing to be larger than the actual
‘distance’ between measurement bases. To remedy this, in the right panel of Figure 4 we plot 2ϕ
on circles of radius increasing linearly with time. We note that the initial steps of the trajectory
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Figure 3: Fisher informations as function of output lenght n: quantum Fisher information (blue), classical Fisher
information for the adaptive measurement with/without system measurement (orange/green), classical Fisher
information for a regular (non-adaptive) measurement.

Figure 4: Adaptive measurement trajectory with basis angle ϕ on left and ϕ plotted on the circle on the right.

show large variations which then ‘stabilise’ around a certain range of values. This has to do with
the fact that the initial angle can be chosen arbitrarily in this model as B1 = 0, cf. section 5.
Understanding the nature of this stochastic process remains an interesting topic of future research.

The third simulation study concerns the performance of the maximum likelihood estimator
(MLE) in an adapted and non-adapted output measurement scenarios. The MLE is defined by

θ̂n := arg max
τ

pτ (i1, . . . in).

where the likelihood pτ (i1, . . . in) is computed as in equation (15). In numerics, we maximise the
log-likelihood function which can be computed as the sum

log pτ (ii, . . . in) =
n∑
j=1

log ‖K [j]
ij
ψ(i1, . . . ij−1)‖2

where ψ(i1, . . . ij−1) is the system’s state conditional on the output trajectory (filter), cf. equation

(14). The MLE accuracy is quantified by the mean square error (MSE) E(n) = Eθ(θ̂n − θ)2,
which is estimated empirically by averaging over a number of simulations runs to obtain Ê(n).
To verify that the MSE scales as n−1 we plot the inverse empirical error Ê−1(n) as a function of
time. Figure 5 shows the inverse error for the adaptive and non-adaptive measurements together
with the QFI (which is equal to the CFI of the adaptive measurement) and the CFI of the non-
adaptive measurement. We note that for small values of n the inverse error is significantly lower
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Figure 5: Comparison of different Fisher informations of the output state as function of trajectory length n,
obtained by averaging over N = 10000 trajectories, at λ = 0.8, ϕ = π/4. The quantum Fisher information
(QFI) (blue) and the classical Fisher information (CFI) of adapted measurement (green) completely overlap due
to optimality. The inverse MLE error of the adapted measurement (orange) approaches the QFI for large n.
Similarly, for the standard measurement, the inverse MLE error (red) approaches the CFI (purple) for large n.

Figure 6: Histogram of the MLE distribution in the adaptive measurement scenario, with n = 200, θ = 0 and
10000 samples, at λ = 0.8, ϕ = π/4.

that the corresponding Fisher information, but it approaches the latter for larger values of n. This
suggests that the MLE achieves the Cramér-Rao bound asymptotically, which is not surprising
since the MLE is known to be asymptotically optimal for independent samples as well as for
certain classes of hidden Markov chains [60, 61]. However, proving its optimality for the adaptive
measurement process remains an open problem. In addition to the mean square error, we looked
at the distribution of the MLE. Figure 6 shows a histogram of the MLE based on N = 10000
simulations with n = 200, and it indicates that the MLE is approximately normally distributed.
Based on this, it is reasonable to conjecture that the MLE is an efficient estimator [60, 61] (i.e. has
asymptotically normal distribution with variance equal to the inverse of the Fisher information).

7.3 The second numerical investigation using the full adaptive protocol
In this section we present the results of the second numerical investigation which implements the
full estimation scheme proposed in this paper, including the preliminary estimation stage and the
use of the coherent absorber. We use the same input-output model as described by the unitary in
equation (13), but the data will be simulated at a true value of θ = 0.2 instead of θ = 0. While at
θ = 0 the system has a pure stationary state and the coherent absorber is not needed, away from
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Figure 7: Comparison of different Fisher informations of the output state as function of trajectory length n, in
the fully adaptive numerical investigation, for two proportions of samples used in the preliminary stage: q = 0.15
(left panel) and q = 0.25 (right panel). The results are obtained by averaging over N = 1000 trajectories, at
θ = 0.2 and λ = 0.8, ϕ = π/4. We plot: the asymptotic QFI (purple line), observed Fisher information for
adaptive measurement (orange line) and simple measurement (red line), inverse MSE of the MLE for adaptive
measurement (blue line) and simple measurement (green line).

this value the stationary state is mixed and we will apply the full protocol described in section 4.
In the first stage of the adaptive estimation procedure we use a fixed proportion q of the total

sample size n to obtain a preliminary estimator θ0 of θ by measuring each output unit in the
standard basis. The parameter is estimated using the maximum likelihood method. In the second
stage we apply the adaptive scheme with an absorber ‘tuned’ to the parameter value θ0 (cf. section
4). The system and absorber are prepared in the pure stationary state at θ0, the dynamics is run for
time (1− q)n and the output is measured according to the adaptive measurement filter algorithm.
The maximum likelihood estimator for the stage one and two data is then computed.

For comparison, we also run a non-adaptive scheme where the output is measured in the
standard basis for the whole duration n, without using an absorber. The maximum likelihood
estimator is again computed from the measurement data. In both experiments, the mean square
error of the MLE is estimated by averaging over 1000 repetitions.

Unlike the setup of the previous numerical study, the estimation of the classical Fisher in-
formation of the adaptive measurement process was too costly and is not included in the study.
As a proxy for the classical Fisher information we plot the average value of the observed Fisher
information for each of the two simulations. For a given measurement run (i1, . . . in), the observed
Fisher information is defined as the second derivative of the log-likelihood function evaluated at
the maximum likelihood estimator θ̂n:

Iobs(i1, . . . in) = − d2 log pθ(i1, . . . in)
dθ2

∣∣∣∣
θ=θ̂n

While a full theoretical justification of Iobs goes beyond the scope of this paper, we note that the
use of the observed Fisher information for independent identically distributed data is well grounded
in statistical methodology and is closely relate to the asymptotic normality property [62].

Figure 7 shows the results of the numerical experiments, for two values q = 0.15 and q = 0.25 of
the proportion of samples used in the preliminary estimation stage. As before, we plot the inverse
of the estimated mean square error for the simple measurement (green line) and the adaptive
measurement (blue line). In addition we plot the leading contribution to the quantum Fisher
information nf(θ) (purple line) computed using the results in Theorem 3.1, which provides the
asymptotic slope of the actual output quantum Fisher information. The average observed Fisher
information is plotted for both the simple (red line) and adaptive (orange line) measurement
setups. We note a good agreement between the inverse mean square error of the MLEs and the
observed Fisher informations. For the adaptive measurements, the observed Fisher information
also shows the same slope as the asymptotic Fisher information, as expected. We also note that in
the adaptive measurement, the mean square error does not quite achieve the (observed) quantum
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Fisher information for the range of times we considered, although it gets closer to in the case
q = 0.25 (right panel). We speculate that this may be related to a number of factors such as the
choice of q for different sample sizes, the details of the actual measurement procedure implemented
in practice (in contrast to the theoretical prescription) and even the implementation of the MLE.
For instance, in practice it may be beneficial to implement several adaptive estimation stages
where the preliminary estimator is gradually improved and used in tuning the absorber in the next
stage. All these remain interesting questions which are worth investigating in more detail and on
a case by case basis. However, these are somewhat separate issues from that of designing adaptive
measurements that achieve the QFI, which was the main focus of this work.

8 Conclusions and Outlook
In this paper we developed an efficient iterative algorithm for optimal estimation of dynamical
parameters of a discrete-time quantum Markov chain, using adaptive sequential measurements on
the output. The algorithm builds on the general measurement scheme of [53] which achieves the
quantum Fisher information for pure state models of multipartite systems with one dimensional
unknown parameters. However, unlike the scheme of [53] which requires manipulations involving
the full multipartite state, the proposed algorithm only involves computations on d2 ·k-dimensional
systems where d and k are the dimensions of the open system and noise unit respectively. There-
fore, the method can be readily applied to Markov parameter estimation for large output sizes.
The algorithm exploits the Markovian structure of the dynamics to sequentially compute optimal
measurement bases in terms of a single time-dependent ‘measurement filter’ operator, which is
updated in a way that is reminiscent of a state filter. One of the key ingredients of the proposed
scheme is the use of a coherent quantum absorber [55] which reduces the estimation problem to
one concerning a system with a pure stationary state. We considered both output and output-
system measurements scenarios and we showed that while the former achieve the full quantum
Fisher information, the latter is short of this by just a fixed constant, and in particular both have
the same scaling with time. Our theoretical results are confirmed by numerical simulations using
a simplified model related to the amplitude decay channel. We also presented results from ‘full
simulation’ study involving the use of the coherent absorber.

Our discrete-time procedure raises interesting questions about the the possibility to design
realistic optimal sequential measurements in continuous-time dynamics. In principle the scheme
can be applied to continuous time by using time-discretisation techniques [56, 57]. Although we
did not treat this in detail here, we can readily make several observations in the special case of a
single Bosonic I-O channel. For small enough time intervals δt, the field can be approximated by
a noise unit C2 with basis vectors representing the vacuum and a one-photon state respectively.
The proposed measurements consist of projections whose corresponding Bloch vectors are in the
equatorial plane; loosely speaking, this corresponds to an adaptive homodyne measurement with
a time-dependent angle. Our preliminary investigations indicate that the behavior of the time-
dependent angle ranges from deterministic evolution to a noisy stochastic process which does not
appear to be of diffusive type. This raises the question whether the remaining freedom in choosing
the measurement bases can be used to improve the adaptive algorithm and produce a more regular
measurement processes. Indeed, the second defining condition for the measurement vectors can be
relaxed, allowing for more general classes of optimal measurements, which may be more suitable
for continuous-time direction. This will be the topic of a future investigation.

Another important open question concerns the extension to chains with mixed input states, or
more multiple inputs, of which only some are observed. We speculate that for small departures
from the current scheme, the algorithm will be quasi-optimal for some time interval but will be
sub-optimal in the long time limit. In this case, restarting the evolution and measurement filter
at regular intervals may be more efficient.

From a theoretical viewpoint, it is important to understand the mathematical properties of
the stochastic processes introduced here, the adaptive measurement and the measurement trajec-
tory. Finally, it is intriguing to consider to what extent the proposed method can adapted to
multi-parameter estimation and to general (time-dependent) matrix product states, as opposed to
stationary output states of Markov processes.
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[44] C. Catana, L. Bouten, and M. Guţă, Fisher informations and local asymptotic normality for

continuous-time quantum markov processes, Journal of Physics A: Mathematical and Theo-
retical 48, 365301 (2015).

[45] A. H. Kiilerich and K. Mølmer, Estimation of atomic interaction parameters by photon count-
ing, Phys. Rev. A 89, 052110 (2014).

[46] S. Gammelmark and K. Mølmer, Fisher information and the quantum cramér-rao sensitivity
limit of continuous measurements, Phys. Rev. Lett. 112, 170401 (2014).
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9 Appendix: Derivation of the measurement filter
We start by applying the algorithm [53] to our estimation problem. The natural setup is to measure
the noise units in the order in which they emerge in the output, followed by a final measurement
on the system+absorber. For simplicity we refer to the latter as the system. We start by defining

M (n) := |Ψ(n)〉 〈Ψ̇(n)| − |Ψ̇(n)〉 〈Ψ(n)| , (18)

where the index n keeps track of the output length. In this section we will use the label 0 for
the system, and 1, . . . , n for the noise units of the output. The algorithm prescribes measurement

bases
{
|e[l]
i 〉
}k
i=1

for each of the output units l = 1, . . . , n in an adaptive, sequential fashion. The

first basis satisfies the equations〈
e

[1]
i

∣∣∣M (n)
1

∣∣∣e[1]
i

〉
= 0 and

∣∣∣〈e[1]
i

∣∣∣χ〉∣∣∣2 = 1
k
, for all i.

where M
(n)
1 = Tr0,2,...,nM

(n). The second equality follows from the fact that at θ0 we have
|Ψ(n)〉 = |ψ ⊗ χ⊗n〉. The next basis depends on the outcome i1 of the first measurement and
satisfies the constraints〈

e
[2]
i

∣∣∣M (n)
2 (i1)

∣∣∣e[2]
i

〉
= 0 and

∣∣∣〈e[2]
i

∣∣∣χ〉∣∣∣2 = 1
k
, for all i

where
M

(n)
2 (i1) = Tr0,3,...,n

〈
e

[1]
i1

∣∣∣M (n)
∣∣∣e[1]
i1

〉
.

Assuming the first j < n units have been measured and a measurement record ij := {i1, . . . , ij}
has been obtained, we denote

M (n)(ij) :=
〈
e

[1]
i1
⊗ e[2]

i2
⊗ · · · ⊗ e[j]

ij

∣∣∣M (n)
∣∣∣e[1]
i1
⊗ e[2]

i2
⊗ · · · ⊗ e[j]

ij

〉
, M

(n)
j+1(ij) := Tr0,j+2,...,nM

(n)(ij).

The measurement basis
{∣∣∣e[j+1]

i (ij)
〉}

for unit j + 1 is then obtained by solving the constraints〈
e

[j+1]
i (ij)

∣∣∣M (n)
j+1(ij)

∣∣∣e[j+1]
i (ij)

〉
= 0 and

∣∣∣〈e[j+1]
i (ij)

∣∣∣χ〉∣∣∣2 = 1
k
, for all i.
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The last step consists of measuring the system using the same procedure as for the output units.
A priori, the procedure depends on the size n of the output. The following lemma shows that

the optimal bases obtained for different output sizes coincide.

Lemma 9.1. Let j, n be two output lengths with j < n and consider applying the above procedure
to the corresponding states |Ψ(j)〉 and respectively |Ψ(n)〉. The optimal measurement bases {|e[l]

i 〉}
for the units l = 1, . . . , j satisfy the same constraints and can be chosen to be the same. In addition
we have

M
(n)
j (ij−1) = M

(j)
j (ij−1).

Proof. Recall that |Ψ(n)〉 = W (n) . . .W (1)|ψ ⊗ χ⊗n〉, and let us denote

P (n) := |ψ ⊗ χ⊗n〉 〈ψ ⊗ χ⊗n| = |Ψθ0(n)〉〈Ψθ0(n)|.
Then

|Ψ̇(n)〉 =
n∑
i=1

W (n) . . . Ẇ (i) . . .W (1)|ψ ⊗ χ⊗n〉 =
n∑
i=1

W (n) . . . Ẇ (i)|ψ ⊗ χ⊗n〉

where we used the fact that W leaves |ψ ⊗ χ〉 invariant.

We first show that the matrix M
(n)
1 does not depend on n, and therefore the first measurement

basis does not depend on the length of the output.

M
(n)
1 = Tr0,2,...,n

[
M (n)

]
=
∑
i

Tr0,2,...,n

[
W (n) · · ·W (i) · · ·W (1)P (n)W (1)∗ · · · Ẇ (i)∗ · · ·W (n)∗ − c.c

]
=
∑
i

Tr0,2,...,n

[
W (n) · · ·W (i)P (n)Ẇ (i)∗ · · ·W (n)∗ − c.c

]
=
∑
i

Tr0,2,...,n

[
W (i)P (n)Ẇ (i)∗ − c.c

]
= Tr0

[
W (1)P (1)Ẇ (1)∗ − c.c

]
+
∑
i=2

Tr0,2,...,n

[
W (i)P (n)Ẇ (i)∗ − c.c

]
= Tr0

[
M (1)

]
= M

(1)
1 , (19)

where c.c, denotes the adjoint. In the third equality we used

Tr0,2[W0,2A0,1,2W
∗
0,2] = Tr0,2[A0,1,2]

where W0,2 is a unitary acting on subsystems 0, 2 of a tripartite system, and A0,1 acts on subsystems
0, 1. In the last equality we used our assumption 〈ψ ⊗ χ|W ∗Ẇ |ψ ⊗ χ〉 = 0.

Let
{∣∣∣e[1]

i

〉}
be the measurement basis determined from M1 = M

(n)
1 = M

(j)
1 . We now show

that, conditional on the outcome i1 of this measurement, the second basis
{∣∣∣e[2]

i

〉}
does not depend

on the length of the output, which can be take to be equal to 2.
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〉
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The equalities follow in the same way as in (19), and in addition we used
∣∣∣〈e[1]

i1
|χ〉
∣∣∣2 = 1

k in the

third equality.
Using the same techniques as above we obtain the general statement

M
(n)
j (ij−1) = Tr0,j+1,...,n

[
M (n)(ij−1)

]
= 1
kj−1 Tr0

[
M (1)

]
+ Tr0

[
W (j)

(
〈e[j−1]
ij−1
|M (j−1)(ij−2) |e[j−1]

ij−1
〉 ⊗ Pχ

)
W (j)∗

]
= Tr0

[
M (j)(ij−1)

]
= M

(j)
j (ij−1). (20)

Next, we show that we can express M (j)(ij−1) in terms of M (1), M (j−1)(ij−2) and |e[j−1]
j−1 〉.

Indeed by writing W (j) = W (j)W (j − 1) we have

M (j)(ij−1) :=
〈
e

[j−1]
ij−1

∣∣∣M (j)
∣∣∣e[j−1]
ij−1

〉
=
〈
e

[j−1]
ij−1

∣∣∣W (j)W (j − 1)P (j)W ∗(j − 1)Ẇ (j)∗
∣∣∣e[j−1]
ij−1

〉
− c.c

+
〈
e

[j−1]
ij−1

∣∣∣W (j)W (j − 1)P (j)Ẇ (j − 1)∗W (j)∗
∣∣∣e[j−1]
ij−1

〉
− c.c

= 1
kj−1M

(1) +W (j)
(〈
e

[j−1]
ij−1

∣∣∣M (j−1)(ij−2)
∣∣∣e[j−1]
ij−1

〉
⊗ Pχ

)
W (j)∗ (21)

This can then be used to determine the next measurement basis, producing the iterative procedure
described in section 5, which consists in updating the ‘filter’ that determines the optimal basis at

each time step using the last measurement outcome |e[j]
ij
〉.

Let A1 = M (1) and Aj := M (j)(ij−1) for j > 1, and denote

Πj :=
〈
e

[j]
ij

∣∣∣Aj ∣∣∣e[j]
ij

〉
=
〈
e

[j]
ij

∣∣∣M (j)(ij−1)
∣∣∣e[j]
ij

〉
Then equation (21) can be written as

Aj = 1
kj−1A1 + U (j) (Πj−1 ⊗ Pχ)U (j)∗

The optimal measurement is obtained by applying the conditions to the operator Bj := Tr0Aj .

10 Appendix: Proof of Proposition 6.1
We start by using a general Fisher information identity for bipartite systems. Consider a generic
pure state model |ψθ〉 ∈ Hs ⊗ Ho and let {|eoi 〉} and {|esj〉} be optimal bases in the ‘output’ and
‘system’ subsystems, for estimating θ at a particular value θ0, as prescribed by [53]. Assume we
perform the ‘output’ measurement and let X denote the outcome whose distribution is

Pθ(X = i) = 〈ψθ|1⊗ Pi|ψθ〉, Pi = |eoi 〉〈eoi |.

The conditional state of the ‘system’ given X = i is

|ψθ(i)〉 = 1⊗ Pi|ψθ〉
‖1⊗ Piψθ‖

and this state contains the ‘remaining’ information about θ. The following inequality bounds the
total available information as

Iθ(X) + EXF (ψθ(X)) ≤ Fθ
where the first term on the left side is the classical Fisher information of the outcome distribution
Pθ and the second is the expected QFI of the conditional state |φiθ〉. Consider now the second
measurement |esj〉 on the system and let Y be its outcome. Then

Fθ = Iθ(X) + EXIθ(Y |X) ≤ Iθ(X) + EXF (ψθ(X)) ≤ Fθ
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where the first equality is due to measurement optimality, while the second is the inequality between
classical and quantum information. This implies that

Fθ − Iθ(X) = EXFθ(ψθ(X)). (22)

We now consider the Markov setup in which the system+absorber play the role of ‘system’
while the n noise units are the ‘output’. We assume that the the output and the system+absorber
are measured according to the optimal scheme presented in section 5. The joint state is given by

|Ψθ(n)〉 = W
(n)
θ · · · · ·W (1)

θ |ψ ⊗ χ
⊗n〉

and the conditional states are

|ψθ(i1, . . . , in)〉 =
K

[n]
θ,in

. . .K
[1]
θ,i1
|ψ〉√

pθ(i1, . . . in)
.

We will show that at θ = θ0 the left side of (22) is bounded by a constant which does not depend
on n. For simplicity, whenever possible we will use the compact notations such as

Ki := K
[n]
θ,in

. . .K
[1]
θ,i1

, and |ei〉 = |e[n]
in
⊗ · · · ⊗ e[1]

i1
〉.

Recall that by design the following condition holds Wθ0 |ψ⊗χ〉 = |ψ⊗χ〉, which implies |Ψθ0(n)〉 =
|ψ ⊗ χ⊗n〉 and also K

[j]
ij
|ψ〉 = c

[j]
ij
|ψ〉 for some constants c

[j]
ij

.

Recall that for a pure state model |ψθ〉 the QFI is given by

Fθ = 4
(
‖ψ̇θ‖2 − |〈ψ̇θ|ψθ〉|2

)
= 4‖ψ⊥θ ‖2, |ψ⊥θ 〉 = |ψ̇θ〉 − Pψθ |ψ̇θ〉.

Therefore, the expected system QFI on the left side of (22) is given by

Fs(θ0) = 4
∑

i

p(i)‖ψ⊥θ0
(i)‖2 (23)

where
|ψ⊥θ0

(i)〉 = |ψ̇θ0(i)〉 − Pψ|ψ̇θ0(i)〉

For simplicity we now drop the subscript θ0 and we have

|ψ̇(i)〉 = K̇i|ψ〉√
p(i)
− 1

2
Ki|ψ〉
p3/2(i)

ṗ(i) = K̇i|ψ〉√
p(i)
− 1

2
c(i)ṗ(i)
p3/2(i)

|ψ〉

and therefore

|ψ⊥(i)〉 = 1√
p(i)

(I − Pψ) K̇i|ψ〉.

Equation (23) becomes

Fs(θ0) = 4
∑

i

∥∥P⊥ψ K̇iψ
∥∥2 = 4

∥∥(P⊥ψ ⊗ I)Ψ̇(n)
∥∥2
.

Now

|Ψ̇(n)〉 =
n∑
j=1

W (n) . . .W (j+1)Ẇ (j)W (j−1) . . .W (1)|ψ ⊗ χ⊗n〉 =
n∑
j=1

W (n) . . .W (j+1)Ẇ (j)|ψ ⊗ χ⊗n〉

and by triangle inequality

Fs(θ0) ≤ 4

 n∑
j=1

∥∥∥(P⊥ψ ⊗ I)W (n) . . .W (j+1)Ẇ (j)ψ ⊗ χ⊗n
∥∥∥
2
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Let |Ψ̇(1)〉 := Ẇ |ψ ⊗ χ〉 and let τ := Tr1(Ψ̇(1)〉〈Ψ̇(1)|). Then∥∥∥(P⊥ψ ⊗ I)W (n) . . .W (j+1)Ẇ (j)ψ ⊗ χ⊗n
∥∥∥2

= Tr0,1,...n−j

(
(P⊥ψ ⊗ I)W (n−j) . . .W (1)τW (1)∗ . . .W (n−j)∗

)
= Tr0(P⊥ψ Tn−j(τ))

where in the last equality we have uses the definition of the transition operator T of the sys-
tem+absorber. Assuming that T is ergodic we have

Tn(τ)→ Pψ

exponentially fast with n so that

Tr0(P⊥ψ Tn−j(τ)) ≤ a2(n−j)

for some a < 1. Therefore

Fs(θ0) ≤ 4

 n∑
j=1

an−j

2

≤ 4 1
(1− a)2

Note that if the spectral gap of T becomes small then the convergence to stationarity is slower and
the upper bound increases.

11 Appendix: Proof of Lemma 6.2
The CFI of any output measurement can be computed explicitly by writing

d

dθ
pθ(i1, . . . in)

∣∣∣∣
θ0

= d

dθ

∥∥∥K [n]
in
· · ·K [1]

i1
ψ
∥∥∥2
∣∣∣∣
θ0

= 2Re
n∑
j=1
〈ψ|K [1]∗

i1
· · ·K [n]∗

in
K

[n]
in
· · · K̇ [j]

ij
· · ·K [1]

i1
|ψ〉

=
∣∣∣c[1]
i1
· · · c[n]

in

∣∣∣2 · 2Re
n∑
j=1

〈ψ|K [n]
in
. . .K

[j+1]
ij+1

K̇
[j]
ij
|ψ〉

c
[j]
ij
. . . c

[n]
in

Therefore

I
(out)
θ0

(n) =
∑

i1,...,in

∣∣∣c[1]
i1
· · · c[n]

in

∣∣∣2
2Re

n∑
j=1

〈ψ|K [n]
in
. . .K

[j+1]
ij+1

K̇
[j]
ij
|ψ〉

c
[j]
ij
. . . c

[n]
in

2

=
∑

i1,...,in

pθ0(i1, . . . , in)f2(i1, . . . , in) = Eθ0(f2) (24)

where f is the function

f(i1, . . . , in) = 2Re
n∑
j=1

〈ψ|K [n]
in
. . .K

[j+1]
ij+1

K̇
[j]
ij
|ψ〉

c
[j]
ij
. . . c

[n]
in

12 Appendix: Computation of finite time system-output QFI
From (5) and (1) we have

F
(s+o)
θ (n) = 4‖Ψ̇θ(n)‖2

= 4
∑
i1,...in

∥∥∥∥∥∥
n∑
j=1

Kin . . . K̇ij . . .Ki1ψ

∥∥∥∥∥∥
2

(25)
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where Ki are the (fixed) Kraus operators with respect to the standard basis, and |psi〉 = |0〉. Our
specific model ha the feature that both Ki and K̇i map the basis vectors into each other:

K0|0〉 = |0〉 K̇0|0〉 = i|1〉 K0|1〉 =
√

1− λ|1〉 K̇0|1〉 = i
√

1− λ|0〉

K1|0〉 = 0 K̇1|0〉 = |1〉 K1|1〉 =
√
λeiφ|0〉 K̇1|1〉 = 0

This allows to compute the QFI explicitly by noting the terms in the sum (25) with more that two
indices equal to 1 have zero contribution. The remaining terms can be computed as follows. The
term with only zero indices is

F (0) = 4

∥∥∥∥∥∥
n∑
j=1

K0 . . . K̇0 . . .K0|0〉

∥∥∥∥∥∥
2

= 4

∣∣∣∣∣∣
n∑
j=1

ian−j

∣∣∣∣∣∣
2

= 4
(

1− an

1− a

)2
(26)

where a =
√

1− λ.
Consider now a sequence (0, . . . , , 0, 1, 0, . . . 0) with a single one on position l. SinceK0 . . . K̇0 . . .K1 . . .K0|0〉 =

0 the only contributing terms will be those with derivative on the first (l− 1) K0s or on K1. This
gives

F (1) = 4
n∑
l=2

∥∥∥∥∥i
l−1∑
r=1

eiφal−1−rb|0〉+ an−l|1〉

∥∥∥∥∥
2

+ 4‖an−1|1〉‖2

= 4
n∑
l=2

(
b2 1− al−1

1− a + a2(n−l)
)

+ 4a2(n−1)

= 4(n− 1) b2

(1− a)2 + 4a
2 − a2n

(1− a)2 − 8b
2(a− an)
(1− a)3 + 41− a2(n−1)

b2 + 4a2(n−1) (27)

where b =
√
λ.

Finally, consider the sequences of the type (0, . . . 0, 1, 0, . . . 0, 1, 0 . . . 0) with 1s on positions
1 ≤ i < k ≤ n. In this case the nonzero contributions come from terms where the derivative is on
positions j = i. The Fisher contribution is

F (2) = 4
∑

1≤i<k≤n
‖eiφ
√
λ(1− λ)(k−i−1)/2|0〉‖2

= 4
∑

1≤i<k≤n
b2a2(k−i−1) = 4(n− 1)− 4a

2 − a2n

b2 . (28)

Adding together the contributions (26), (27) and (28) we obtain the total QFI

F
(s+o)
θ (n) = F (0) + F (1) + F (2)

= 8n
1− a

+4
[(

1− an

1− a

)2
− b2

(1− a)2 + a2 − a2n

(1− a)2 − 2b
2(a− an)
(1− a)3 + 1− a2(n−1)

b2 + a2(n−1)

]

−4
[
1 + a2 − a2n

b2

]
(29)

where the leading term is consistent with the QFI rate formula (16).
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