Probability in many-worlds theories

Anthony J. Short

H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, U.K.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We consider how to define a natural probability distribution over worlds within a simple class of deterministic many-worlds theories. This can help us understand the typical properties of worlds within such states, and hence explain the empirical success of quantum theory within a many-worlds framework. We give three reasonable axioms which lead to the Born rule in the case of quantum theory, and also yield natural results in other cases, including a many-worlds variant of classical stochastic dynamics.

► BibTeX data

► References

[1] Louis de Broglie. ``La nouvelle dynamique des quanta''. in Solvay – The Fifth Council "Electrons and photons"Pages 105–132 (1928).

[2] David Bohm. ``A suggested interpretation of the quantum theory in terms of "hidden" variables. i''. Phys. Rev. 85, 166–179 (1952).
https:/​/​doi.org/​10.1103/​PhysRev.85.166

[3] G. C. Ghirardi, A. Rimini, and T. Weber. ``Unified dynamics for microscopic and macroscopic systems''. Phys. Rev. D 34, 470–491 (1986).
https:/​/​doi.org/​10.1103/​PhysRevD.34.470

[4] Philip Pearle. ``Combining stochastic dynamical state-vector reduction with spontaneous localization''. Phys. Rev. A 39, 2277–2289 (1989).
https:/​/​doi.org/​10.1103/​PhysRevA.39.2277

[5] Gian Carlo Ghirardi, Philip Pearle, and Alberto Rimini. ``Markov processes in hilbert space and continuous spontaneous localization of systems of identical particles''. Phys. Rev. A 42, 78–89 (1990).
https:/​/​doi.org/​10.1103/​PhysRevA.42.78

[6] Hugh Everett. ``"relative state" formulation of quantum mechanics''. Rev. Mod. Phys. 29, 454–462 (1957).
https:/​/​doi.org/​10.1103/​RevModPhys.29.454

[7] Bryce S. DeWitt. ``Quantum mechanics and reality''. Physics Today 23, 30–35 (1970).
https:/​/​doi.org/​10.1063/​1.3022331

[8] M Born. ``Zur quantenmechanik der stoßvorgänge''. Z. Physik 37, 863–867 (1926).
https:/​/​doi.org/​10.1007/​BF01397477

[9] David Wallace. ``Decoherence and ontology (or: How i learned to stop worrying and love fapp)''. In Simon Saunders, Jonathan Barrett, Adrian Kent, and David Wallace, editors, Many Worlds?: Everett, Quantum Theory, and Reality. Pages 53–72. Oxford University Press (2010).
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199560561.003.0002

[10] Valia Allori, Sheldon Goldstein, Roderich Tumulka, and Nino Zanghì. ``Many worlds and schrödinger’s first quantum theory''. The British Journal for the Philosophy of Science 62, 1–27 (2011).
https:/​/​doi.org/​10.1093/​bjps/​axp053

[11] Lev Vaidman. ``Derivations of the Born rule''. In Meir Hemmo and Orly Shenker, editors, Quantum, Probability, Logic: The Work and Influence of Itamar Pitowsky. Pages 567–584. Springer Nature Switzerland AG (2020).
https:/​/​doi.org/​10.1007/​978-3-030-34316-3_26

[12] Lev Vaidman. ``On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory''. International Studies in the Philosophy of Science 12, 245–261 (1998).
https:/​/​doi.org/​10.1080/​02698599808573600

[13] Lev Vaidman. ``Probability in the many-worlds interpretation of quantum mechanics''. In Yemima Ben-Menahem and Meir Hemmo, editors, Probability in Physics. Pages 299–311. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).
https:/​/​doi.org/​10.1007/​978-3-642-21329-8_18

[14] Wojciech Hubert Zurek. ``Environment-assisted invariance, entanglement, and probabilities in quantum physics''. Phys. Rev. Lett. 90, 120404 (2003).
https:/​/​doi.org/​10.1103/​PhysRevLett.90.120404

[15] Wojciech Hubert Zurek. ``Probabilities from entanglement, Born's rule ${p}_{k}={{\mid}{{\psi}}_{k}{\mid}}^{2}$ from envariance''. Phys. Rev. A 71, 052105 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.71.052105

[16] J. B. Hartle. ``Quantum mechanics of individual systems''. American Journal of Physics 36, 704–712 (1968).
https:/​/​doi.org/​10.1119/​1.1975096

[17] David Deutsch. ``Quantum theory of probability and decisions''. Proc. Roy. Soc. 455, 3129–3137 (1999).
https:/​/​doi.org/​10.1098/​rspa.1999.0443

[18] David Wallace. ``Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation''. Stud. Hist. Philos. Sci. B 34, 415–439 (2003).
https:/​/​doi.org/​10.1016/​S1355-2198(03)00036-4

[19] Hilary Greaves. ``Probability in the Everett interpretation''. Philosophy Compass 2, 109–128 (2007).
https:/​/​doi.org/​10.1111/​j.1747-9991.2006.00054.x

[20] David Wallace. ``How to prove the Born rule''. In Simon Saunders, Jonathan Barrett, Adrian Kent, and David Wallace, editors, Many Worlds?: Everett, Quantum Theory, and Reality. Pages 227–263. Oxford University Press (2010).
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199560561.003.0010

[21] Hilary Greaves and Wayne Myrvold. ``Everett and evidence''. In Simon Saunders, Jonathan Barrett, Adrian Kent, and David Wallace, editors, Many Worlds?: Everett, Quantum Theory, and Reality. Pages 181–205. Oxford University Press (2010).
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199560561.003.0011

[22] Adrian Kent. ``One world versus many: The inadequacy of Everettian accounts of evolution, probability, and scientific confirmation''. In Simon Saunders, Jonathan Barrett, Adrian Kent, and David Wallace, editors, Many Worlds?: Everett, Quantum Theory, and Reality. Pages 307–354. Oxford University Press (2010).
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199560561.003.0012

[23] David Albert. ``Probability in the Everett picture''. In Simon Saunders, Jonathan Barrett, Adrian Kent, and David Wallace, editors, Many Worlds?: Everett, Quantum Theory, and Reality. Pages 355–368. Oxford University Press (2010).
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199560561.003.0013

[24] Simon Saunders. ``Branch-counting in the Everett interpretation of quantum mechanics''. Proc. Roy. Soc. A 477, 20210600 (2021).
https:/​/​doi.org/​10.1098/​rspa.2021.0600

[25] David Wallace. ``The Emergent Multiverse: Quantum Theory according to the Everett Interpretation''. Oxford University Press. (2012).
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199546961.001.0001

[26] Dennis Dieks. ``Modal interpretation of quantum mechanics, measurements, and macroscopic behavior''. Phys. Rev. A 49, 2290–2300 (1994).
https:/​/​doi.org/​10.1103/​PhysRevA.49.2290

[27] Scott Aaronson. ``Quantum computing and hidden variables''. Phys. Rev. A 71, 032325 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.71.032325

[28] Samuel T. Mister, Benjamin J. Arayathel, and Anthony J. Short. ``Local probability conservation in discrete-time quantum walks''. Phys. Rev. A 103, 042220 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.103.042220

[29] David Lewis. ``A subjectivist's guide to objective chance''. In William L. Harper, Robert Stalnaker, and Glenn Pearce, editors, IFS: Conditionals, Belief, Decision, Chance and Time. Pages 267–297. Springer Netherlands, Dordrecht (1981).
https:/​/​doi.org/​10.1007/​978-94-009-9117-0_14

Cited by

[1] Ed Seidewitz, "Measurement and Probability in Relativistic Quantum Mechanics", arXiv:2209.12411, (2022).

The above citations are from SAO/NASA ADS (last updated successfully 2024-05-25 02:44:31). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-05-25 02:44:30).