State Preparation in the Heisenberg Model through Adiabatic Spiraling

Anthony N. Ciavarella, Stephan Caspar, Marc Illa, and Martin J. Savage

InQubator for Quantum Simulation (IQuS), Department of Physics, University of Washington, Seattle, Washington 98195-1550, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Updated version: The authors have uploaded version v7 of this work to the arXiv which may contain updates or corrections not contained in the published version v5. The authors left the following comment on the arXiv:
22 pages, 8 figures, published version, fixed missing acknowledgment


An adiabatic state preparation technique, called the adiabatic spiral, is proposed for the Heisenberg model. This technique is suitable for implementation on a number of quantum simulation platforms such as Rydberg atoms, trapped ions, or superconducting qubits. Classical simulations of small systems suggest that it can be successfully implemented in the near future. A comparison to Trotterized time evolution is performed and it is shown that the adiabatic spiral is able to outperform Trotterized adiabatics.

► BibTeX data

► References

[1] Erez Zohar and Benni Reznik. ``Confinement and lattice QED electric flux-tubes simulated with ultracold atoms''. Phys. Rev. Lett. 107, 275301 (2011). arXiv:1108.1562.

[2] Erez Zohar, J. Ignacio Cirac, and Benni Reznik. ``Simulating Compact Quantum Electrodynamics with ultracold atoms: Probing confinement and nonperturbative effects''. Phys. Rev. Lett. 109, 125302 (2012). arXiv:1204.6574.

[3] L. Tagliacozzo, A. Celi, A. Zamora, and M. Lewenstein. ``Optical Abelian Lattice Gauge Theories''. Annals Phys. 330, 160–191 (2013). arXiv:1205.0496.

[4] Erez Zohar, J. Ignacio Cirac, and Benni Reznik. ``Simulating (2+1)-Dimensional Lattice QED with Dynamical Matter Using Ultracold Atoms''. Phys. Rev. Lett. 110, 055302 (2013). arXiv:1208.4299.

[5] D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, U.-J. Wiese, and P. Zoller. ``Atomic Quantum Simulation of $\mathbf{U}(N)$ and $\mathrm{SU}(N)$ Non-Abelian Lattice Gauge Theories''. Phys. Rev. Lett. 110, 125303 (2013). arXiv:1211.2242.

[6] Philipp Hauke, David Marcos, Marcello Dalmonte, and Peter Zoller. ``Quantum simulation of a lattice Schwinger model in a chain of trapped ions''. Phys. Rev. X 3, 041018 (2013). arXiv:1306.2162.

[7] D. Marcos, P. Widmer, E. Rico, M. Hafezi, P. Rabl, U. J. Wiese, and P. Zoller. ``Two-dimensional Lattice Gauge Theories with Superconducting Quantum Circuits''. Annals Phys. 351, 634–654 (2014). arXiv:1407.6066.

[8] Yoshihito Kuno, Kenichi Kasamatsu, Yoshiro Takahashi, Ikuo Ichinose, and Tetsuo Matsui. ``Real-time dynamics and proposal for feasible experiments of lattice gauge–Higgs model simulated by cold atoms''. New J. Phys. 17, 063005 (2015). arXiv:1412.7605.

[9] Alexei Bazavov, Yannick Meurice, Shan-Wen Tsai, Judah Unmuth-Yockey, and Jin Zhang. ``Gauge-invariant implementation of the Abelian Higgs model on optical lattices''. Phys. Rev. D 92, 076003 (2015). arXiv:1503.08354.

[10] V. Kasper, F. Hebenstreit, M. Oberthaler, and J. Berges. ``Schwinger pair production with ultracold atoms''. Phys. Lett. B 760, 742–746 (2016). arXiv:1506.01238.

[11] G. K. Brennen, G. Pupillo, E. Rico, T. M. Stace, and D. Vodola. ``Loops and Strings in a Superconducting Lattice Gauge Simulator''. Phys. Rev. Lett. 117, 240504 (2016). arXiv:1512.06565.

[12] Yoshihito Kuno, Shinya Sakane, Kenichi Kasamatsu, Ikuo Ichinose, and Tetsuo Matsui. ``Atomic quantum simulation of a three-dimensional U(1) gauge-Higgs model''. Phys. Rev. A 94, 063641 (2016). arXiv:1605.02502.

[13] Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, and Rainer Blatt. ``Real-time dynamics of lattice gauge theories with a few-qubit quantum computer''. Nature 534, 516–519 (2016). arXiv:1605.04570.

[14] V. Kasper, F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, and J. Berges. ``Implementing quantum electrodynamics with ultracold atomic systems''. New J. Phys. 19, 023030 (2017). arXiv:1608.03480.

[15] Christine Muschik, Markus Heyl, Esteban Martinez, Thomas Monz, Philipp Schindler, Berit Vogell, Marcello Dalmonte, Philipp Hauke, Rainer Blatt, and Peter Zoller. ``U(1) Wilson lattice gauge theories in digital quantum simulators''. New J. Phys. 19, 103020 (2017). arXiv:1612.08653.

[16] Daniel González-Cuadra, Erez Zohar, and J. Ignacio Cirac. ``Quantum Simulation of the Abelian-Higgs Lattice Gauge Theory with Ultracold Atoms''. New J. Phys. 19, 063038 (2017). arXiv:1702.05492.

[17] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage. ``Quantum-classical computation of Schwinger model dynamics using quantum computers''. Phys. Rev. A 98, 032331 (2018). arXiv:1803.03326.

[18] David B. Kaplan and Jesse R. Stryker. ``Gauss’s law, duality, and the Hamiltonian formulation of U(1) lattice gauge theory''. Phys. Rev. D 102, 094515 (2020). arXiv:1806.08797.

[19] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller. ``Self-verifying variational quantum simulation of lattice models''. Nature 569, 355–360 (2019). arXiv:1810.03421.

[20] Jesse R. Stryker. ``Oracles for Gauss's law on digital quantum computers''. Phys. Rev. A 99, 042301 (2019). arXiv:1812.01617.

[21] Zohreh Davoudi, Mohammad Hafezi, Christopher Monroe, Guido Pagano, Alireza Seif, and Andrew Shaw. ``Towards analog quantum simulations of lattice gauge theories with trapped ions''. Phys. Rev. Research 2, 023015 (2020). arXiv:1908.03210.

[22] A. Avkhadiev, P. E. Shanahan, and R. D. Young. ``Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing''. Phys. Rev. Lett. 124, 080501 (2020). arXiv:1908.04194.

[23] Giuseppe Magnifico, Marcello Dalmonte, Paolo Facchi, Saverio Pascazio, Francesco V. Pepe, and Elisa Ercolessi. ``Real Time Dynamics and Confinement in the $\mathbb{Z}_{n}$ Schwinger-Weyl lattice model for 1+1 QED''. Quantum 4, 281 (2020). arXiv:1909.04821.

[24] Di Luo, Jiayu Shen, Michael Highman, Bryan K. Clark, Brian DeMarco, Aida X. El-Khadra, and Bryce Gadway. ``Framework for simulating gauge theories with dipolar spin systems''. Phys. Rev. A 102, 032617 (2020). arXiv:1912.11488.

[25] Dmitri E. Kharzeev and Yuta Kikuchi. ``Real-time chiral dynamics from a digital quantum simulation''. Phys. Rev. Research 2, 023342 (2020). arXiv:2001.00698.

[26] Alexander F. Shaw, Pavel Lougovski, Jesse R. Stryker, and Nathan Wiebe. ``Quantum Algorithms for Simulating the Lattice Schwinger Model''. Quantum 4, 306 (2020). arXiv:2002.11146.

[27] T. V. Zache, N. Mueller, J. T. Schneider, F. Jendrzejewski, J. Berges, and P. Hauke. ``Dynamical Topological Transitions in the Massive Schwinger Model with a $\theta$ Term''. Phys. Rev. Lett. 122, 050403 (2019). arXiv:1808.07885.

[28] Bing Yang, Hui Sun, Robert Ott, Han-Yi Wang, Torsten V. Zache, Jad C. Halimeh, Zhen-Sheng Yuan, Philipp Hauke, and Jian-Wei Pan. ``Observation of gauge invariance in a 71-site bose–hubbard quantum simulator''. Nature 587, 392–396 (2020). arXiv:2003.08945.

[29] Julian Bender, Patrick Emonts, Erez Zohar, and J. Ignacio Cirac. ``Real-time dynamics in $2+1D$ compact QED using complex periodic Gaussian states''. Phys. Rev. Research 2, 043145 (2020). arXiv:2006.10038.

[30] Jan F. Haase, Luca Dellantonio, Alessio Celi, Danny Paulson, Angus Kan, Karl Jansen, and Christine A. Muschik. ``A resource efficient approach for quantum and classical simulations of gauge theories in particle physics''. Quantum 5, 393 (2021). arXiv:2006.14160.

[31] Jad C. Halimeh, Haifeng Lang, Julius Mildenberger, Zhang Jiang, and Philipp Hauke. ``Gauge-Symmetry Protection Using Single-Body Terms''. PRX Quantum 2, 040311 (2021). arXiv:2007.00668.

[32] Daniel Robaina, Mari Carmen Bañuls, and J. Ignacio Cirac. ``Simulating $2+1D$ $Z_3$ Lattice Gauge Theory with an Infinite Projected Entangled-Pair State''. Phys. Rev. Lett. 126, 050401 (2021). arXiv:2007.11630.

[33] Danny Paulson, Luca Dellantonio, Jan F. Haase, Alessio Celi, Angus Kan, Andrew Jena, Christian Kokail, Rick van Bijnen, Karl Jansen, Peter Zoller, and Christine A. Muschik. ``Towards simulating 2D effects in lattice gauge theories on a quantum computer''. PRX Quantum 2, 030334 (2021). arXiv:2008.09252.

[34] Maarten Van Damme, Jad C. Halimeh, and Philipp Hauke. ``Gauge-Symmetry Violation Quantum Phase Transition in Lattice Gauge Theories'' (2020). arXiv:2010.07338.

[35] Robert Ott, Torsten V. Zache, Fred Jendrzejewski, and Jürgen Berges. ``Scalable Cold-Atom Quantum Simulator for Two-Dimensional QED''. Phys. Rev. Lett. 127, 130504 (2021). arXiv:2012.10432.

[36] Christian W. Bauer, Marat Freytsis, and Benjamin Nachman. ``Simulating Collider Physics on Quantum Computers Using Effective Field Theories''. Phys. Rev. Lett. 127, 212001 (2021). arXiv:2102.05044.

[37] Angus Kan, Lena Funcke, Stefan Kühn, Luca Dellantonio, Jinglei Zhang, Jan F. Haase, Christine A. Muschik, and Karl Jansen. ``Investigating a 3+1D Topological $\theta$-Term in the Hamiltonian Formulation of Lattice Gauge Theories for Quantum and Classical Simulations''. Phys. Rev. D 104, 034504 (2021). arXiv:2105.06019.

[38] Monika Aidelsburger, Luca Barbiero, Alejandro Bermudez, Titas Chanda, Alexandre Dauphin, Daniel González-Cuadra, Przemysław R. Grzybowski, Simon Hands, Fred Jendrzejewski, Johannes Jünemann, Gediminas Juzeliunas, Valentin Kasper, Angelo Piga, Shi-Ju Ran, Matteo Rizzi, Gérman Sierra, Luca Tagliacozzo, Emanuele Tirrito, Torsten V. Zache, Jakub Zakrzewski, Erez Zohar, and Maciej Lewenstein. ``Cold atoms meet lattice gauge theory''. Phil. Trans. Roy. Soc. Lond. A 380, 20210064 (2021). arXiv:2106.03063.

[39] Yannick Meurice. ``Theoretical methods to design and test quantum simulators for the compact Abelian Higgs model''. Phys. Rev. D 104, 094513 (2021). arXiv:2107.11366.

[40] Niklas Mueller, Torsten V. Zache, and Robert Ott. ``Thermalization of Gauge Theories from their Entanglement Spectrum''. Phys. Rev. Lett. 129, 011601 (2022). arXiv:2107.11416.

[41] Hannes Riechert, Jad C. Halimeh, Valentin Kasper, Landry Bretheau, Erez Zohar, Philipp Hauke, and Fred Jendrzejewski. ``Engineering a U(1) lattice gauge theory in classical electric circuits''. Phys. Rev. B 105, 205141 (2022). arXiv:2108.01086.

[42] Jad C. Halimeh, Lukas Homeier, Christian Schweizer, Monika Aidelsburger, Philipp Hauke, and Fabian Grusdt. ``Stabilizing Lattice Gauge Theories Through Simplified Local Pseudogenerators''. Phys. Rev. Research 4, 033120 (2022). arXiv:2108.02203.

[43] Jinglei Zhang, Ryan Ferguson, Stefan Kühn, Jan F. Haase, C. M. Wilson, Karl Jansen, and Christine A. Muschik. ``Simulating gauge theories with variational quantum eigensolvers in superconducting microwave cavities'' (2021). arXiv:2108.08248.

[44] Erik Gustafson, Burt Holzman, James Kowalkowski, Henry Lamm, Andy C. Y. Li, Gabriel Perdue, Sergio Boixo, Sergei Isakov, Orion Martin, Ross Thomson, Catherine Vollgraff Heidweiller, Jackson Beall, Martin Ganahl, Guifre Vidal, and Evan Peters. ``Large scale multi-node simulations of $\mathbb{Z}_2$ gauge theory quantum circuits using Google Cloud Platform''. In IEEE/​ACM Second International Workshop on Quantum Computing Software. (2021). arXiv:2110.07482.

[45] Shane Thompson and George Siopsis. ``Quantum computation of phase transition in the massive Schwinger model''. Quantum Sci. Technol. 7, 035001 (2022). arXiv:2110.13046.

[46] Angus Kan, Lena Funcke, Stefan Kühn, Luca Dellantonio, Jinglei Zhang, Jan F. Haase, Christine A. Muschik, and Karl Jansen. ``3+1D $\theta$-Term on the Lattice from the Hamiltonian Perspective''. PoS LATTICE2021, 112 (2022). arXiv:2111.02238.

[47] Shachar Ashkenazi and Erez Zohar. ``Duality as a feasible physical transformation for quantum simulation''. Phys. Rev. A 105, 022431 (2022). arXiv:2111.04765.

[48] Christian W. Bauer and Dorota M. Grabowska. ``Efficient Representation for Simulating U(1) Gauge Theories on Digital Quantum Computers at All Values of the Coupling'' (2021). arXiv:2111.08015.

[49] Nhung H. Nguyen, Minh C. Tran, Yingyue Zhu, Alaina M. Green, C. Huerta Alderete, Zohreh Davoudi, and Norbert M. Linke. ``Digital Quantum Simulation of the Schwinger Model and Symmetry Protection with Trapped Ions''. PRX Quantum 3, 020324 (2022). arXiv:2112.14262.

[50] Jad C. Halimeh, Luca Barbiero, Philipp Hauke, Fabian Grusdt, and Annabelle Bohrdt. ``Robust quantum many-body scars in lattice gauge theories'' (2022). arXiv:2203.08828.

[51] Julius Mildenberger, Wojciech Mruczkiewicz, Jad C. Halimeh, Zhang Jiang, and Philipp Hauke. ``Probing confinement in a $\mathbb{Z}_2$ lattice gauge theory on a quantum computer'' (2022). arXiv:2203.08905.

[52] Jad C. Halimeh, Ian P. McCulloch, Bing Yang, and Philipp Hauke. ``Tuning the Topological $\theta$-Angle in Cold-Atom Quantum Simulators of Gauge Theories'' (2022).

[53] Tomer Greenberg, Guy Pardo, Aryeh Fortinsky, and Erez Zohar. ``Resource-Efficient Quantum Simulation of Lattice Gauge Theories in Arbitrary Dimensions: Solving for Gauss' Law and Fermion Elimination'' (2022). arXiv:2206.00685.

[54] Dorota M. Grabowska, Christopher Kane, Benjamin Nachman, and Christian W. Bauer. ``Overcoming exponential scaling with system size in Trotter-Suzuki implementations of constrained Hamiltonians: 2+1 U(1) lattice gauge theories'' (2022). arXiv:2208.03333.

[55] Zohreh Davoudi, Niklas Mueller, and Connor Powers. ``Toward Quantum Computing Phase Diagrams of Gauge Theories with Thermal Pure Quantum States'' (2022). arXiv:2208.13112.

[56] Giuseppe Clemente, Arianna Crippa, and Karl Jansen. ``Strategies for the determination of the running coupling of $(2+1)$-dimensional qed with quantum computing'' (2022).

[57] R. Brower, S. Chandrasekharan, and U. J. Wiese. ``QCD as a quantum link model''. Phys. Rev. D 60, 094502 (1999). arXiv:hep-th/​9704106.

[58] Tim Byrnes and Yoshihisa Yamamoto. ``Simulating lattice gauge theories on a quantum computer''. Phys. Rev. A 73, 022328 (2006). arXiv:quant-ph/​0510027.

[59] D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, U. J. Wiese, and P. Zoller. ``Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories''. Phys. Rev. Lett. 110, 125303 (2013). arXiv:1211.2242.

[60] L. Tagliacozzo, A. Celi, P. Orland, and M. Lewenstein. ``Simulations of non-Abelian gauge theories with optical lattices''. Nat Commun 4, 2615 (2013). arXiv:1211.2704.

[61] Erez Zohar, J. Ignacio Cirac, and Benni Reznik. ``Cold-Atom Quantum Simulator for SU(2) Yang-Mills Lattice Gauge Theory''. Phys. Rev. Lett. 110, 125304 (2013). arXiv:1211.2241.

[62] Uwe-Jens Wiese. ``Ultracold Quantum Gases and Lattice Systems: Quantum Simulation of Lattice Gauge Theories''. Annalen Phys. 525, 777–796 (2013). arXiv:1305.1602.

[63] Erez Zohar, Alessandro Farace, Benni Reznik, and J. Ignacio Cirac. ``Digital lattice gauge theories''. Phys. Rev. A 95, 023604 (2017). arXiv:1607.08121.

[64] Mari Carmen Bañuls, Krzysztof Cichy, J. Ignacio Cirac, Karl Jansen, and Stefan Kühn. ``Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory: Spectral calculations with matrix product states''. Phys. Rev. X 7, 041046 (2017). arXiv:1707.06434.

[65] Andrei Alexandru, Paulo F. Bedaque, Siddhartha Harmalkar, Henry Lamm, Scott Lawrence, and Neill C. Warrington. ``Gluon Field Digitization for Quantum Computers''. Phys. Rev. D 100, 114501 (2019). arXiv:1906.11213.

[66] Natalie Klco, Jesse R. Stryker, and Martin J. Savage. ``SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers''. Phys. Rev. D 101, 074512 (2020). arXiv:1908.06935.

[67] Mari Carmen Bañuls, Rainer Blatt, Jacopo Catani, Alessio Celi, Juan Ignacio Cirac, Marcello Dalmonte, Leonardo Fallani, Karl Jansen, Maciej Lewenstein, Simone Montangero, Christine A. Muschik, Benni Reznik, Enrique Rico, Luca Tagliacozzo, Karel Van Acoleyen, Frank Verstraete, Uwe-Jens Wiese, Matthew Wingate, Jakub Zakrzewski, and Peter Zoller. ``Simulating Lattice Gauge Theories within Quantum Technologies''. Eur. Phys. J. D 74, 165 (2020). arXiv:1911.00003.

[68] Yao Ji, Henry Lamm, and Shuchen Zhu. ``Gluon Field Digitization via Group Space Decimation for Quantum Computers''. Phys. Rev. D 102, 114513 (2020). arXiv:2005.14221.

[69] Jad C. Halimeh, Valentin Kasper, and Philipp Hauke. ``Fate of Lattice Gauge Theories Under Decoherence'' (2020). arXiv:2009.07848.

[70] Valentin Kasper, Torsten V. Zache, Fred Jendrzejewski, Maciej Lewenstein, and Erez Zohar. ``Non-Abelian gauge invariance from dynamical decoupling'' (2020). arXiv:2012.08620.

[71] Anthony Ciavarella, Natalie Klco, and Martin J. Savage. ``Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis''. Phys. Rev. D 103, 094501 (2021). arXiv:2101.10227.

[72] Sarmed A Rahman, Randy Lewis, Emanuele Mendicelli, and Sarah Powell. ``SU(2) lattice gauge theory on a quantum annealer''. Phys. Rev. D 104, 034501 (2021). arXiv:2103.08661.

[73] Yasar Y. Atas, Jinglei Zhang, Randy Lewis, Amin Jahanpour, Jan F. Haase, and Christine A. Muschik. ``SU(2) hadrons on a quantum computer via a variational approach''. Nat Commun 12, 6499 (2021). arXiv:2102.08920.

[74] Zohreh Davoudi, Norbert M. Linke, and Guido Pagano. ``Toward simulating quantum field theories with controlled phonon-ion dynamics: A hybrid analog-digital approach''. Phys. Rev. Research 3, 043072 (2021). arXiv:2104.09346.

[75] Jesse R. Stryker. ``Shearing approach to gauge invariant Trotterization'' (2021). arXiv:2105.11548.

[76] Erez Zohar. ``Quantum simulation of lattice gauge theories in more than one space dimension—requirements, challenges and methods''. Phil. Trans. A. Math. Phys. Eng. Sci. 380, 20210069 (2021). arXiv:2106.04609.

[77] Jad C. Halimeh, Haifeng Lang, and Philipp Hauke. ``Gauge protection in non-abelian lattice gauge theories''. New J. Phys. 24, 033015 (2022). arXiv:2106.09032.

[78] Uwe-Jens Wiese. ``From quantum link models to D-theory: a resource efficient framework for the quantum simulation and computation of gauge theories''. Phil. Trans. A. Math. Phys. Eng. Sci. 380, 20210068 (2021). arXiv:2107.09335.

[79] M. Sohaib Alam, Stuart Hadfield, Henry Lamm, and Andy C. Y. Li. ``Primitive quantum gates for dihedral gauge theories''. Phys. Rev. D 105, 114501 (2022). arXiv:2108.13305.

[80] Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Manuel Schneider, Paolo Stornati, and Xiaoyang Wang. ``Towards quantum simulations in particle physics and beyond on noisy intermediate-scale quantum devices''. Phil. Trans. A. Math. Phys. Eng. Sci. 380, 20210062 (2021). arXiv:2110.03809.

[81] Maarten Van Damme, Julius Mildenberger, Fabian Grusdt, Philipp Hauke, and Jad C. Halimeh. ``Suppressing nonperturbative gauge errors in the thermodynamic limit using local pseudogenerators'' (2021). arXiv:2110.08041.

[82] Constantia Alexandrou, Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Georgios Polykratis, Paolo Stornati, Xiaoyang Wang, and Tom Weber. ``Investigating the variance increase of readout error mitigation through classical bit-flip correction on IBM and Rigetti quantum computers''. PoS LATTICE2021, 243 (2022). arXiv:2111.05026.

[83] Anthony N. Ciavarella and Ivan A. Chernyshev. ``Preparation of the SU(3) lattice Yang-Mills vacuum with variational quantum methods''. Phys. Rev. D 105, 074504 (2022). arXiv:2112.09083.

[84] Tobias Hartung, Timo Jakobs, Karl Jansen, Johann Ostmeyer, and Carsten Urbach. ``Digitising SU(2) gauge fields and the freezing transition''. Eur. Phys. J. C 82, 237 (2022). arXiv:2201.09625.

[85] Marc Illa and Martin J. Savage. ``Basic Elements for Simulations of Standard Model Physics with Quantum Annealers: Multigrid and Clock States''. Phys. Rev. A 106, 052605 (2022). arXiv:2202.12340.

[86] Yao Ji, Henry Lamm, and Shuchen Zhu. ``Gluon Digitization via Character Expansion for Quantum Computers'' (2022). arXiv:2203.02330.

[87] Marcela Carena, Henry Lamm, Ying-Ying Li, and Wanqiang Liu. ``Improved Hamiltonians for Quantum Simulations of Gauge Theories''. Phys. Rev. Lett. 129, 051601 (2022). arXiv:2203.02823.

[88] Anthony Ciavarella, Natalie Klco, and Martin J. Savage. ``Some Conceptual Aspects of Operator Design for Quantum Simulations of Non-Abelian Lattice Gauge Theories''. In Proceedings of the 2021 Quantum Simulation for Strong Interactions (QuaSi) Workshops. (2022). arXiv:2203.11988.

[89] Christian W. Bauer, Zohreh Davoudi, A. Baha Balantekin, Tanmoy Bhattacharya, Marcela Carena, Wibe A. de Jong, Patrick Draper, Aida El-Khadra, Nate Gemelke, Masanori Hanada, Dmitri Kharzeev, Henry Lamm, Ying-Ying Li, Junyu Liu, Mikhail Lukin, Yannick Meurice, Christopher Monroe, Benjamin Nachman, Guido Pagano, John Preskill, Enrico Rinaldi, Alessandro Roggero, David I. Santiago, Martin J. Savage, Irfan Siddiqi, George Siopsis, David Van Zanten, Nathan Wiebe, Yukari Yamauchi, Kübra Yeter-Aydeniz, and Silvia Zorzetti. ``Quantum Simulation for High Energy Physics'' (2022). arXiv:2204.03381.

[90] Indrakshi Raychowdhury, Zohreh Davoudi, and Andrew Shaw. ``Exploring different Formulations of non-Abelian Lattice Gauge Theories for Hamiltonian simulation''. PoS LATTICE2021, 277 (2022).

[91] Sarmed A Rahman, Randy Lewis, Emanuele Mendicelli, and Sarah Powell. ``Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum computer'' (2022).

[92] Roland C. Farrell, Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J. Savage. ``Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (I) Axial Gauge'' (2022). arXiv:2207.01731.

[93] Yasar Y. Atas, Jan F. Haase, Jinglei Zhang, Victor Wei, Sieglinde M. L. Pfaendler, Randy Lewis, and Christine A. Muschik. ``Real-time evolution of SU(3) hadrons on a quantum computer'' (2022). arXiv:2207.03473.

[94] Marcela Carena, Erik J. Gustafson, Henry Lamm, Ying-Ying Li, and Wanqiang Liu. ``Gauge Theory Couplings on Anisotropic Lattices'' (2022).

[95] Erik J. Gustafson, Henry Lamm, Felicity Lovelace, and Damian Musk. ``Primitive Quantum Gates for an SU(2) Discrete Subgroup: BT'' (2022).

[96] A. Avkhadiev, P. E. Shanahan, and R. D. Young. ``Strategies for quantum-optimized construction of interpolating operators in classical simulations of lattice quantum field theories'' (2022).

[97] Roland C. Farrell, Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J. Savage. ``Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (II) Single-Baryon Beta-Decay in Real Time'' (2022). arXiv:2209.10781.

[98] Chinmay Mishra, Shane Thompson, Raphael Pooser, and George Siopsis. ``Quantum computation of an interacting fermionic model''. Quantum Sci. Technol. 5, 035010 (2020). arXiv:1912.07767.

[99] Michael A. Perlin, Diego Barberena, Mikhail Mamaev, Bhuvanesh Sundar, Robert J. Lewis-Swan, and Ana Maria Rey. ``Engineering infinite-range SU(n) interactions with spin-orbit-coupled fermions in an optical lattice''. Phys. Rev. A 105, 023326 (2022). arXiv:2109.11019.

[100] Jacob Bringewatt and Zohreh Davoudi. ``Parallelization techniques for quantum simulation of fermionic systems'' (2022). arXiv:2207.12470.

[101] Muhammad Asaduzzaman, Simon Catterall, Goksu Can Toga, Yannick Meurice, and Ryo Sakai. ``Quantum Simulation of the N flavor Gross-Neveu Model'' (2022).

[102] Kubra Yeter-Aydeniz, Eugene F. Dumitrescu, Alex J. McCaskey, Ryan S. Bennink, Raphael C. Pooser, and George Siopsis. ``Scalar Quantum Field Theories as a Benchmark for Near-Term Quantum Computers''. Phys. Rev. A 99, 032306 (2019). arXiv:1811.12332.

[103] Natalie Klco and Martin J. Savage. ``Minimally entangled state preparation of localized wave functions on quantum computers''. Phys. Rev. A 102, 012612 (2020). arXiv:1904.10440.

[104] Natalie Klco and Martin J. Savage. ``Systematically Localizable Operators for Quantum Simulations of Quantum Field Theories''. Phys. Rev. A 102, 012619 (2020). arXiv:1912.03577.

[105] João Barata, Niklas Mueller, Andrey Tarasov, and Raju Venugopalan. ``Single-particle digitization strategy for quantum computation of a $\phi^4$ scalar field theory''. Phys. Rev. A 103, 042410 (2021). arXiv:2012.00020.

[106] Kübra Yeter-Aydeniz, Eleftherios Moschandreou, and George Siopsis. ``Quantum imaginary-time evolution algorithm for quantum field theories with continuous variables''. Phys. Rev. A 105, 012412 (2022). arXiv:2107.00791.

[107] Plato Deliyannis, Marat Freytsis, Benjamin Nachman, and Christian W. Bauer. ``Practical considerations for the preparation of multivariate Gaussian states on quantum computers'' (2021). arXiv:2109.10918.

[108] Stephan Caspar and Hersh Singh. ``From Asymptotic Freedom to θ Vacua: Qubit Embeddings of the O(3) Nonlinear σ Model''. Phys. Rev. Lett. 129, 022003 (2022). arXiv:2203.15766.

[109] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P. Lougovski. ``Cloud Quantum Computing of an Atomic Nucleus''. Phys. Rev. Lett. 120, 210501 (2018). arXiv:1801.03897.

[110] Hsuan-Hao Lu, Natalie Klco, Joseph M. Lukens, Titus D. Morris, Aaina Bansal, Andreas Ekström, Gaute Hagen, Thomas Papenbrock, Andrew M. Weiner, Martin J. Savage, and Pavel Lougovski. ``Simulations of subatomic many-body physics on a quantum frequency processor''. Phys. Rev. A 100, 012320 (2019). arXiv:1810.03959.

[111] John Arrington et al. ``Opportunities for Nuclear Physics & Quantum Information Science''. In Ian C. Cloët and Matthew R. Dietrich, editors, Intersections between Nuclear Physics and Quantum Information. (2019). arXiv:1903.05453.

[112] Omar Shehab, Kevin A. Landsman, Yunseong Nam, Daiwei Zhu, Norbert M. Linke, Matthew J. Keesan, Raphael C. Pooser, and Christopher R. Monroe. ``Toward convergence of effective field theory simulations on digital quantum computers''. Phys. Rev. A 100, 062319 (2019). arXiv:1904.04338.

[113] Niklas Mueller, Andrey Tarasov, and Raju Venugopalan. ``Computing real time correlation functions on a hybrid classical/​quantum computer''. Nucl. Phys. A 1005, 121889 (2021). arXiv:2001.11145.

[114] Johannes Knaute and Philipp Hauke. ``Relativistic meson spectra on ion-trap quantum simulators''. Phys. Rev. A 105, 022616 (2022). arXiv:2107.09071.

[115] Kübra Yeter-Aydeniz, Shikha Bangar, George Siopsis, and Raphael C. Pooser. ``Collective neutrino oscillations on a quantum computer''. Quant. Inf. Proc. 21, 84 (2022). arXiv:2104.03273.

[116] Erik Gustafson, Yannick Meurice, and Judah Unmuth-Yockey. ``Quantum simulation of scattering in the quantum Ising model''. Phys. Rev. D 99, 094503 (2019). arXiv:1901.05944.

[117] Christian W. Bauer, Wibe A. de Jong, Benjamin Nachman, and Davide Provasoli. ``Quantum Algorithm for High Energy Physics Simulations''. Phys. Rev. Lett. 126, 062001 (2021). arXiv:1904.03196.

[118] Erik Gustafson, Patrick Dreher, Zheyue Hang, and Yannick Meurice. ``Indexed improvements for real-time trotter evolution of a (1 + 1) field theory using NISQ quantum computers''. Quantum Sci. Technol. 6, 045020 (2021). arXiv:1910.09478.

[119] Kübra Yeter-Aydeniz, George Siopsis, and Raphael C. Pooser. ``Scattering in the Ising model with the quantum Lanczos algorithm''. New J. Phys. 23, 043033 (2021). arXiv:2008.08763.

[120] Ashley Milsted, Junyu Liu, John Preskill, and Guifre Vidal. ``Collisions of False-Vacuum Bubble Walls in a Quantum Spin Chain''. PRX Quantum 3, 020316 (2022). arXiv:2012.07243.

[121] Erik Gustafson, Yingyue Zhu, Patrick Dreher, Norbert M. Linke, and Yannick Meurice. ``Real-time quantum calculations of phase shifts using wave packet time delays''. Phys. Rev. D 104, 054507 (2021). arXiv:2103.06848.

[122] Plato Deliyannis, James Sud, Diana Chamaki, Zoë Webb-Mack, Christian W. Bauer, and Benjamin Nachman. ``Improving quantum simulation efficiency of final state radiation with dynamic quantum circuits''. Phys. Rev. D 106, 036007 (2022). arXiv:2203.10018.

[123] Patrick Dreher, Erik Gustafson, Yingyue Zhu, Norbert M. Linke, and Yannick Meurice. ``Real-time Quantum Calculations of Phase Shifts On NISQ Hardware Platforms Using Wavepacket Time Delay''. PoS LATTICE2021, 464 (2022).

[124] Xiaoyang Wang, Xu Feng, Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Georgios Polykratis, and Paolo Stornati. ``Model-Independent Error Mitigation in Parametric Quantum Circuits and Depolarizing Projection of Quantum Noise''. PoS LATTICE2021, 603 (2022). arXiv:2111.15522.

[125] Giovanni Iannelli and Karl Jansen. ``Noisy Bayesian optimization for variational quantum eigensolvers''. PoS LATTICE2021, 251 (2022). arXiv:2112.00426.

[126] Kübra Yeter-Aydeniz, Zachary Parks, Aadithya Nair, Erik Gustafson, Alexander F. Kemper, Raphael C. Pooser, Yannick Meurice, and Patrick Dreher. ``Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and Cycle Benchmarking'' (2022). arXiv:2201.02899.

[127] Jad C. Halimeh and Philipp Hauke. ``Stabilizing Gauge Theories in Quantum Simulators: A Brief Review''. In Proceedings of the 2021 Quantum Simulation for Strong Interactions (QuaSi) Workshops. (2022). arXiv:2204.13709.

[128] Cenk Tüysüz, Giuseppe Clemente, Arianna Crippa, Tobias Hartung, Stefan Kühn, and Karl Jansen. ``Classical Splitting of Parametrized Quantum Circuits'' (2022). arXiv:2206.09641.

[129] Wonho Jang, Koji Terashi, Masahiko Saito, Christian W. Bauer, Benjamin Nachman, Yutaro Iiyama, Ryunosuke Okubo, and Ryu Sawada. ``Initial-State Dependent Optimization of Controlled Gate Operations with Quantum Computer'' (2022).

[130] Toby S. Cubitt, Ashley Montanaro, and Stephen Piddock. ``Universal quantum hamiltonians''. Proceedings of the National Academy of Sciences 115, 9497–9502 (2018).

[131] Kenneth G. Wilson and J. Kogut. ``The renormalization group and the $\epsilon$ expansion''. Physics Reports 12, 75–199 (1974).

[132] Kenneth G. Wilson. ``The renormalization group and critical phenomena''. Rev. Mod. Phys. 55, 583–600 (1983).

[133] John B. Kogut. ``An introduction to lattice gauge theory and spin systems''. Rev. Mod. Phys. 51, 659–713 (1979).

[134] S. Chandrasekharan, B. Scarlet, and U.-J. Wiese. ``From spin ladders to the 2d o(3) model at non-zero density''. Computer Physics Communications 147, 388–393 (2002).

[135] R. Brower, S. Chandrasekharan, S. Riederer, and U.-J. Wiese. ``D-theory: field quantization by dimensional reduction of discrete variables''. Nuclear Physics B 693, 149–175 (2004).

[136] Falk Bruckmann, Karl Jansen, and Stefan Kühn. ``O(3) nonlinear sigma model in $1+1$ dimensions with matrix product states''. Phys. Rev. D 99, 074501 (2019).

[137] Hersh Singh and Shailesh Chandrasekharan. ``Qubit regularization of the $o(3)$ sigma model''. Phys. Rev. D 100, 054505 (2019).

[138] Tanmoy Bhattacharya, Alexander J. Buser, Shailesh Chandrasekharan, Rajan Gupta, and Hersh Singh. ``Qubit regularization of asymptotic freedom''. Phys. Rev. Lett. 126, 172001 (2021).

[139] Hersh Singh. ``Qubit regularized $o(n)$ nonlinear sigma models'' (2019).

[140] Hersh Singh. ``Large-charge conformal dimensions at the $o(n)$ wilson-fisher fixed point'' (2022).

[141] Stephan Caspar and Hersh Singh. ``From asymptotic freedom to $θ$ vacua: Qubit embeddings of the o(3) nonlinear $σ$ model'' (2022).

[142] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su. ``Toward the first quantum simulation with quantum speedup''. Proceedings of the National Academy of Sciences 115, 9456–9461 (2018).

[143] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu. ``Theory of trotter error with commutator scaling''. Phys. Rev. X 11, 011020 (2021).

[144] Tasio Gonzalez-Raya, Rodrigo Asensio-Perea, Ana Martin, Lucas C. Céleri, Mikel Sanz, Pavel Lougovski, and Eugene F. Dumitrescu. ``Digital-analog quantum simulations using the cross-resonance effect''. PRX Quantum 2, 020328 (2021).

[145] A. Bermudez, L. Tagliacozzo, G. Sierra, and P. Richerme. ``Long-range heisenberg models in quasiperiodically driven crystals of trapped ions''. Phys. Rev. B 95, 024431 (2017).

[146] P. Scholl, H. J. Williams, G. Bornet, F. Wallner, D. Barredo, L. Henriet, A. Signoles, C. Hainaut, T. Franz, S. Geier, A. Tebben, A. Salzinger, G. Zürn, T. Lahaye, M. Weidemüller, and A. Browaeys. ``Microwave engineering of programmable $xxz$ hamiltonians in arrays of rydberg atoms''. PRX Quantum 3, 020303 (2022).

[147] Z.L. Mádi, B. Brutscher, T. Schulte-Herbrüggen, R. Brüschweiler, and R.R. Ernst. ``Time-resolved observation of spin waves in a linear chain of nuclear spins''. Chemical Physics Letters 268, 300–305 (1997).

[148] C. M. Sánchez, A. K. Chattah, K. X. Wei, L. Buljubasich, P. Cappellaro, and H. M. Pastawski. ``Perturbation independent decay of the loschmidt echo in a many-body system''. Phys. Rev. Lett. 124, 030601 (2020).

[149] Anthony N. Ciavarella, Stephan Caspar, Hersh Singh, Martin J. Savage, and Pavel Lougovski. ``Floquet engineering heisenberg from ising using constant drive fields for quantum simulation'' (2022).

[150] Philip Richerme, Zhe-Xuan Gong, Aaron Lee, Crystal Senko, Jacob Smith, Michael Foss-Feig, Spyridon Michalakis, Alexey V. Gorshkov, and Christopher Monroe. ``Non-local propagation of correlations in quantum systems with long-range interactions''. Nature 511, 198–201 (2014).

[151] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos. ``Quasiparticle engineering and entanglement propagation in a quantum many-body system''. Nature 511, 202–205 (2014).

[152] Michael L. Wall, Arghavan Safavi-Naini, and Ana Maria Rey. ``Boson-mediated quantum spin simulators in transverse fields: $xy$ model and spin-boson entanglement''. Phys. Rev. A 95, 013602 (2017).

[153] Thomas G. Kiely and J. K. Freericks. ``Relationship between the transverse-field ising model and the $xy$ model via the rotating-wave approximation''. Phys. Rev. A 97, 023611 (2018).

[154] Jeremy T. Young, Sean R. Muleady, Michael A. Perlin, Adam M. Kaufman, and Ana Maria Rey. ``Enhancing spin squeezing using soft-core interactions'' (2022).

[155] Dmitry Abanin, Wojciech De Roeck, Wen Wei Ho, and François Huveneers. ``A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems''. Commun. Math. Phys. 354, 809–827 (2017).

[156] Dominic V. Else, Bela Bauer, and Chetan Nayak. ``Prethermal phases of matter protected by time-translation symmetry''. Phys. Rev. X 7, 011026 (2017).

[157] Kaoru Mizuta, Kazuaki Takasan, and Norio Kawakami. ``High-frequency expansion for floquet prethermal phases with emergent symmetries: Application to time crystals and floquet engineering''. Phys. Rev. B 100, 020301 (2019).

[158] Martin Claassen. ``Flow renormalization and emergent prethermal regimes of periodically-driven quantum systems'' (2021).

[159] Ieva Čepaitė, Anatoli Polkovnikov, Andrew J. Daley, and Callum W. Duncan. ``Counterdiabatic optimised local driving'' (2022).

[160] Mark Saffman, Thad G Walker, and Klaus Mølmer. ``Quantum information with rydberg atoms''. Rev. Mod. Phys. 82, 2313 (2010).

[161] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S Zibrov, Manuel Endres, Markus Greiner, et al. ``Probing many-body dynamics on a 51-atom quantum simulator''. Nature 551, 579–584 (2017).

[162] Vincent Lienhard, Sylvain de Léséleuc, Daniel Barredo, Thierry Lahaye, Antoine Browaeys, Michael Schuler, Louis-Paul Henry, and Andreas M. Läuchli. ``Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic ising models with antiferromagnetic interactions''. Phys. Rev. X 8, 021070 (2018).

[163] Elmer Guardado-Sanchez, Peter T. Brown, Debayan Mitra, Trithep Devakul, David A. Huse, Peter Schauß, and Waseem S. Bakr. ``Probing the quench dynamics of antiferromagnetic correlations in a 2d quantum ising spin system''. Phys. Rev. X 8, 021069 (2018).

[164] Hyosub Kim, YeJe Park, Kyungtae Kim, H-S Sim, and Jaewook Ahn. ``Detailed balance of thermalization dynamics in rydberg-atom quantum simulators''. Phy. Rev. Lett. 120, 180502 (2018).

[165] Sylvain de Léséleuc, Vincent Lienhard, Pascal Scholl, Daniel Barredo, Sebastian Weber, Nicolai Lang, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. ``Observation of a symmetry-protected topological phase of interacting bosons with rydberg atoms''. Science 365, 775–780 (2019).

[166] Alexander Keesling, Ahmed Omran, Harry Levine, Hannes Bernien, Hannes Pichler, Soonwon Choi, Rhine Samajdar, Sylvain Schwartz, Pietro Silvi, Subir Sachdev, et al. ``Quantum kibble–zurek mechanism and critical dynamics on a programmable rydberg simulator''. Nature 568, 207–211 (2019).

[167] M Morgado and S Whitlock. ``Quantum simulation and computing with rydberg-interacting qubits''. AVS Quantum Sci. 3, 023501 (2021).

[168] Giulia Semeghini, Harry Levine, Alexander Keesling, Sepehr Ebadi, Tout T Wang, Dolev Bluvstein, Ruben Verresen, Hannes Pichler, Marcin Kalinowski, Rhine Samajdar, et al. ``Probing topological spin liquids on a programmable quantum simulator''. Science 374, 1242–1247 (2021).

[169] Sepehr Ebadi, Tout T Wang, Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho, et al. ``Quantum phases of matter on a 256-atom programmable quantum simulator''. Nature 595, 227–232 (2021).

[170] Ll Masanes, Guifré Vidal, and José Ignacio Latorre. ``Time-optimal hamiltonian simulation and gate synthesis using homogeneous local unitaries'' (2002).

[171] Bartłomiej Gardas, Jacek Dziarmaga, Wojciech H Zurek, and Michael Zwolak. ``Defects in quantum computers''. Sci. Rep. 8, 1–10 (2018).

[172] R. Harris, Y. Sato, A. J. Berkley, M. Reis, F. Altomare, M. H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M. W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, and J. Yao. ``Phase transitions in a programmable quantum spin glass simulator''. Science 361, 162–165 (2018).

[173] Andrew D. King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, Kelly Boothby, Paul I. Bunyk, Colin Enderud, Alexandre Fréchette, Emile Hoskinson, Nicolas Ladizinsky, Travis Oh, Gabriel Poulin-Lamarre, Christopher Rich, Yuki Sato, Anatoly Yu. Smirnov, Loren J. Swenson, Mark H. Volkmann, Jed Whittaker, Jason Yao, Eric Ladizinsky, Mark W. Johnson, Jeremy Hilton, and Mohammad H. Amin. ``Observation of topological phenomena in a programmable lattice of 1,800 qubits''. Nature 560, 456–460 (2018).

[174] Phillip Weinberg, Marek Tylutki, Jami M. Rönkkö, Jan Westerholm, Jan A. Åström, Pekka Manninen, Päivi Törmä, and Anders W. Sandvik. ``Scaling and diabatic effects in quantum annealing with a d-wave device''. Phys. Rev. Lett. 124, 090502 (2020).

[175] Andrew D. King, Jack Raymond, Trevor Lanting, Sergei V. Isakov, Masoud Mohseni, Gabriel Poulin-Lamarre, Sara Ejtemaee, William Bernoudy, Isil Ozfidan, Anatoly Yu. Smirnov, Mauricio Reis, Fabio Altomare, Michael Babcock, Catia Baron, Andrew J. Berkley, Kelly Boothby, Paul I. Bunyk, Holly Christiani, Colin Enderud, Bram Evert, Richard Harris, Emile Hoskinson, Shuiyuan Huang, Kais Jooya, Ali Khodabandelou, Nicolas Ladizinsky, Ryan Li, P. Aaron Lott, Allison J. R. MacDonald, Danica Marsden, Gaelen Marsden, Teresa Medina, Reza Molavi, Richard Neufeld, Mana Norouzpour, Travis Oh, Igor Pavlov, Ilya Perminov, Thomas Prescott, Chris Rich, Yuki Sato, Benjamin Sheldan, George Sterling, Loren J. Swenson, Nicholas Tsai, Mark H. Volkmann, Jed D. Whittaker, Warren Wilkinson, Jason Yao, Hartmut Neven, Jeremy P. Hilton, Eric Ladizinsky, Mark W. Johnson, and Mohammad H. Amin. ``Scaling advantage over path-integral monte carlo in quantum simulation of geometrically frustrated magnets''. Nat. Commun. 12 (2021).

[176] Yuki Bando, Yuki Susa, Hiroki Oshiyama, Naokazu Shibata, Masayuki Ohzeki, Fernando Javier Gómez-Ruiz, Daniel A. Lidar, Sei Suzuki, Adolfo del Campo, and Hidetoshi Nishimori. ``Probing the universality of topological defect formation in a quantum annealer: Kibble-zurek mechanism and beyond''. Phys. Rev. Research 2, 033369 (2020).

[177] Paul Kairys, Andrew D. King, Isil Ozfidan, Kelly Boothby, Jack Raymond, Arnab Banerjee, and Travis S. Humble. ``Simulating the shastry-sutherland ising model using quantum annealing''. PRX Quantum 1, 020320 (2020).

[178] T. Lanting, M. H. Amin, C. Baron, M. Babcock, J. Boschee, S. Boixo, V. N. Smelyanskiy, M. Foygel, and A. G. Petukhov. ``Probing environmental spin polarization with superconducting flux qubits'' (2020).

[179] Kohji Nishimura, Hidetoshi Nishimori, and Helmut G. Katzgraber. ``Griffiths-mccoy singularity on the diluted chimera graph: Monte carlo simulations and experiments on quantum hardware''. Phys. Rev. A 102, 042403 (2020).

[180] Andrew D. King, Cristiano Nisoli, Edward D. Dahl, Gabriel Poulin-Lamarre, and Alejandro Lopez-Bezanilla. ``Qubit spin ice''. Science 373, 576–580 (2021).

[181] Andrew D. King, Sei Suzuki, Jack Raymond, Alex Zucca, Trevor Lanting, Fabio Altomare, Andrew J. Berkley, Sara Ejtemaee, Emile Hoskinson, Shuiyuan Huang, Eric Ladizinsky, Allison MacDonald, Gaelen Marsden, Travis Oh, Gabriel Poulin-Lamarre, Mauricio Reis, Chris Rich, Yuki Sato, Jed D. Whittaker, Jason Yao, Richard Harris, Daniel A. Lidar, Hidetoshi Nishimori, and Mohammad H. Amin. ``Coherent quantum annealing in a programmable 2,000 qubit Ising chain''. Nature Phys. 18, 1324–1328 (2022).

Cited by

[1] Thomas D. Cohen and Hyunwoo Oh, "Optimizing rodeo projection", arXiv:2305.19952, (2023).

[2] Anthony N. Ciavarella, Stephan Caspar, Hersh Singh, and Martin J. Savage, "Preparation for quantum simulation of the (1 +1 ) -dimensional O(3) nonlinear σ model using cold atoms", Physical Review A 107 4, 042404 (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2023-06-09 10:45:29). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2023-06-09 10:45:27).