Beyond transcoherent states: Field states for effecting optimal coherent rotations on single or multiple qubits

Aaron Z. Goldberg1,2, Aephraim M. Steinberg3,4, and Khabat Heshami1,2,5

1National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1N 5A2, Canada
2Department of Physics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario, K1N 6N5 Canada
3Department of Physics and Centre for Quantum Information & Quantum Control, University of Toronto, Toronto, Ontario, Canada M5S 1A7
4CIFAR, 661 University Ave., Toronto, Ontario M5G 1M1, Canada
5Institute for Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Alberta T2N 1N4, Canada

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Semiclassically, laser pulses can be used to implement arbitrary transformations on atomic systems; quantum mechanically, residual atom-field entanglement spoils this promise. Transcoherent states are field states that fix this problem in the fully quantized regime by generating perfect coherence in an atom initially in its ground or excited state. We extend this fully quantized paradigm in four directions: First, we introduce field states that transform an atom from its ground or excited state to any point on the Bloch sphere without residual atom-field entanglement. The best strong pulses for carrying out rotations by angle $\theta$ are are squeezed in photon-number variance by a factor of $\rm{sinc}\theta$. Next, we investigate implementing rotation gates, showing that the optimal Gaussian field state for enacting a $\theta$ pulse on an atom in an arbitrary, unknown initial state is number squeezed by less: $\rm{sinc}\tfrac{\theta}{2}$. Third, we extend these investigations to fields interacting with multiple atoms simultaneously, discovering once again that number squeezing by $\tfrac{\pi}{2}$ is optimal for enacting $\tfrac{\pi}{2}$ pulses on all of the atoms simultaneously, with small corrections on the order of the ratio of the number of atoms to the average number of photons. Finally, we find field states that best perform arbitrary rotations by $\theta$ through nonlinear interactions involving $m$-photon absorption, where the same optimal squeezing factor is found to be $\rm{sinc}\theta$. Backaction in a wide variety of atom-field interactions can thus be mitigated by squeezing the control fields by optimal amounts.

► BibTeX data

► References

[1] Peter W. Shor. ``Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer''. SIAM Review 41, 303–332 (1999).

[2] Jonathan P. Dowling. ``Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope''. Physical Review A 57, 4736–4746 (1998).

[3] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter, and Anton Zeilinger. ``Experimental quantum teleportation''. Nature 390, 575 (1997).

[4] Johan Aberg. ``Quantifying Superposition'' (2006). arXiv:quant-ph/​0612146.

[5] T. Baumgratz, M. Cramer, and M. B. Plenio. ``Quantifying coherence''. Physical Review Letters 113, 140401 (2014).

[6] Federico Levi and Florian Mintert. ``A quantitative theory of coherent delocalization''. New Journal of Physics 16, 033007 (2014).

[7] Andreas Winter and Dong Yang. ``Operational resource theory of coherence''. Physical Review Letters 116, 120404 (2016).

[8] Aaron Z. Goldberg and Aephraim M. Steinberg. ``Transcoherent states: Optical states for maximal generation of atomic coherence''. Physical Review X Quantum 1, 020306 (2020).

[9] Kamil Korzekwa, Matteo Lostaglio, Jonathan Oppenheim, and David Jennings. ``The extraction of work from quantum coherence''. New Journal of Physics 18, 023045 (2016).

[10] M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller. ``Mesoscopic Rydberg gate based on electromagnetically induced transparency''. Physical Review Letters 102, 170502 (2009).

[11] Leslie Allen and Joseph H Eberly. ``Optical resonance and two-level atoms''. Volume 28. Courier Corporation. (1987).

[12] E. C. G. Sudarshan. ``Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams''. Physical Review Letters 10, 277–279 (1963).

[13] Roy J. Glauber. ``Coherent and incoherent states of the radiation field''. Physical Review 131, 2766–2788 (1963).

[14] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon. ``Periodic spontaneous collapse and revival in a simple quantum model''. Physical Review Letters 44, 1323–1326 (1980).

[15] Gerhard Rempe, Herbert Walther, and Norbert Klein. ``Observation of quantum collapse and revival in a one-atom maser''. Physical Review Letters 58, 353–356 (1987).

[16] Julio Gea-Banacloche. ``Collapse and revival of the state vector in the Jaynes-Cummings model: An example of state preparation by a quantum apparatus''. Physical Review Letters 65, 3385–3388 (1990).

[17] Julio Gea-Banacloche. ``Atom- and field-state evolution in the Jaynes-Cummings model for large initial fields''. Physical Review A 44, 5913–5931 (1991).

[18] Simon J. D. Phoenix and P. L. Knight. ``Establishment of an entangled atom-field state in the Jaynes-Cummings model''. Physical Review A 44, 6023–6029 (1991).

[19] Julio Gea-Banacloche. ``Some implications of the quantum nature of laser fields for quantum computations''. Physical Review A 65, 022308 (2002).

[20] S.J. van Enk and H.J. Kimble. ``On the classical character of control fields in quantum information processing''. Quantum Information & Computation 2, 1–13 (2002).

[21] Andrew Silberfarb and Ivan H. Deutsch. ``Entanglement generated between a single atom and a laser pulse''. Physical Review A 69, 042308 (2004).

[22] J. M. Raimond, M. Brune, and S. Haroche. ``Manipulating quantum entanglement with atoms and photons in a cavity''. Rev. Mod. Phys. 73, 565–582 (2001).

[23] J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff. ``Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system''. Nature 454, 315–318 (2008).

[24] R. Gutiérrez-Jáuregui and G. S. Agarwal. ``Probing the spectrum of the Jaynes-Cummings-Rabi model by its isomorphism to an atom inside a parametric amplifier cavity''. Physical Review A 103, 023714 (2021).

[25] Yuan Liu, Jasmine Sinanan-Singh, Matthew T. Kearney, Gabriel Mintzer, and Isaac L. Chuang. ``Constructing qudits from infinite-dimensional oscillators by coupling to qubits''. Physical Review A 104, 032605 (2021).

[26] Anette Messinger, Atirach Ritboon, Frances Crimin, Sarah Croke, and Stephen M Barnett. ``Coherence and catalysis in the Jaynes–Cummings model''. New Journal of Physics 22, 043008 (2020).

[27] Anatole Kenfack and Karol Życzkowski. ``Negativity of the wigner function as an indicator of non-classicality''. Journal of Optics B: Quantum and Semiclassical Optics 6, 396 (2004).

[28] Ling-An Wu, H. J. Kimble, J. L. Hall, and Huifa Wu. ``Generation of squeezed states by parametric down conversion''. Physical Review Letters 57, 2520–2523 (1986).

[29] R. Loudon and P.L. Knight. ``Squeezed light''. Journal of Modern Optics 34, 709–759 (1987).

[30] Henning Vahlbruch, Moritz Mehmet, Karsten Danzmann, and Roman Schnabel. ``Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency''. Physical Review Letters 117, 110801 (2016).

[31] Marlan O. Scully and M.S. Zubairy. ``Noise free amplification via the two-photon correlated spontaneous emission laser''. Optics Communications 66, 303–306 (1988).

[32] Michael Tavis and Frederick W. Cummings. ``Exact solution for an $n$-molecule—radiation-field Hamiltonian''. Physical Review 170, 379–384 (1968).

[33] J.R. Johansson, P.D. Nation, and Franco Nori. ``QuTiP: An open-source Python framework for the dynamics of open quantum systems''. Computer Physics Communications 183, 1760–1772 (2012).

[34] J.R. Johansson, P.D. Nation, and Franco Nori. ``QuTiP 2: A Python framework for the dynamics of open quantum systems''. Computer Physics Communications 184, 1234–1240 (2013).

[35] Gabriel Drobný and Igor Jex. ``The system of N two-level atoms interacting with a field mode: entanglement and parametric approximation''. Optics Communications 102, 141–154 (1993).

[36] S. M. Chumakov, A. B. Klimov, and J. J. Sanchez-Mondragon. ``General properties of quantum optical systems in a strong-field limit''. Physical Review A 49, 4972–4978 (1994).

[37] A.B. Klimov and S.M. Chumakov. ``Semiclassical quantization of the evolution operator for a class of optical models''. Physics Letters A 202, 145–154 (1995).

[38] J. C. Retamal, C. Saavedra, A. B. Klimov, and S. M. Chumakov. ``Squeezing of light by a collection of atoms''. Physical Review A 55, 2413–2425 (1997).

[39] Simon J. D. Phoenix and P. L. Knight. ``Establishment of an entangled atom-field state in the Jaynes-Cummings model''. Physical Review A 44, 6023–6029 (1991).

[40] J. Gea-Banacloche. ``A new look at the Jaynes-Cummings model for large fields: Bloch sphere evolution and detuning effects''. Optics Communications 88, 531–550 (1992).

[41] Stephen M Barnett and John A Vaccaro. ``The quantum phase operator: A review''. Taylor & Francis. (2007).

[42] G. Scharf. ``On a quantum mechanical maser model''. Helvetica Physica Acta 43, 806 (1970).

[43] Klaus Hepp and Elliott H Lieb. ``On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model''. Annals of Physics 76, 360–404 (1973).

[44] N M Bogoliubov, R K Bullough, and J Timonen. ``Exact solution of generalized Tavis - Cummings models in quantum optics''. Journal of Physics A: Mathematical and General 29, 6305–6312 (1996).

[45] Wangjun Lu, Jie Chen, Le-Man Kuang, and Xiaoguang Wang. ``Optimal state for a tavis-cummings quantum battery via the bethe ansatz method''. Physical Review A 104, 043706 (2021).

[46] The L. I. G. O. Scientific Collaboration. ``A gravitational wave observatory operating beyond the quantum shot-noise limit''. Nature Physics 7, 962 (2011).

[47] Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi. Askarani, Fabien Rortais, Trevor Vincent, Jacob F. F. Bulmer, Filippo M. Miatto, Leonhard Neuhaus, Lukas G. Helt, Matthew J. Collins, Adriana E. Lita, Thomas Gerrits, Sae Woo Nam, Varun D. Vaidya, Matteo Menotti, Ish Dhand, Zachary Vernon, Nicolás Quesada, and Jonathan Lavoie. ``Quantum computational advantage with a programmable photonic processor''. Nature 606, 75–81 (2022).

[48] Alexander Holm Kiilerich and Klaus Mølmer. ``Input-output theory with quantum pulses''. Physical Review Letters 123, 123604 (2019).

[49] Alexander Holm Kiilerich and Klaus Mølmer. ``Quantum interactions with pulses of radiation''. Physical Review A 102, 023717 (2020).

Cited by

[1] Shanon Vuglar and Julio Gea-Banacloche, "Recycling of a quantum field and optimal states for single-qubit rotations", Physical Review A 109 2, 022439 (2024).

[2] Baiqiang Zhu, Keye Zhang, and Weiping Zhang, "Optomechanical preparation of photon number-squeezed states with a pair of thermal reservoirs of opposite temperatures", Photonics Research 11 9, A26 (2023).

[3] Alexander S. Dellios, Bogdan Opanchuk, Margaret D. Reid, and Peter D. Drummond, "Validation tests of GBS quantum computers give evidence for quantum advantage with a decoherent target", arXiv:2211.03480, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-03-02 09:50:28) and SAO/NASA ADS (last updated successfully 2024-03-02 09:50:28). The list may be incomplete as not all publishers provide suitable and complete citation data.