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The implementation of time-evolution operators U(t), called Hamiltonian
simulation, is one of the most promising usage of quantum computers. For
time-independent Hamiltonians, qubitization has recently established efficient
realization of time-evolution U(t) = e−iHt, with achieving the optimal com-
putational resource both in time t and an allowable error ε. In contrast,
those for time-dependent systems require larger cost due to the difficulty
of handling time-dependency. In this paper, we establish optimal/nearly-
optimal Hamiltonian simulation for generic time-dependent systems with time-
periodicity, known as Floquet systems. By using a so-called Floquet-Hilbert
space equipped with auxiliary states labeling Fourier indices, we develop a
way to certainly obtain the target time-evolved state without relying on ei-
ther time-ordered product or Dyson-series expansion. Consequently, the query
complexity, which measures the cost for implementing the time-evolution, has
optimal and nearly-optimal dependency respectively in time t and inverse error
ε, and becomes sufficiently close to that of qubitization. Thus, our protocol
tells us that, among generic time-dependent systems, time-periodic systems
provides a class accessible as efficiently as time-independent systems despite
the existence of time-dependency. As we also provide applications to simula-
tion of nonequilibrium phenomena and adiabatic state preparation, our results
will shed light on nonequilibrium phenomena in condensed matter physics and
quantum chemistry, and quantum tasks yielding time-dependency in quantum
computation.

1 Introduction
Simulating quantum many-body systems is one of the most promising usages of quantum
computers that can fully exploit their computational powers, as R. Feynman’s proposal in
the beginning of quantum computers [1]. The implementation of a time-evolution operator
under Hamiltonians, called Hamiltonian simulation, has been the most important problem
for efficiently and accurately accomplishing quantum simulation. In fact, the application
of Hamiltonian simulation nowadays ranges from condensed matter physics to quantum
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chemistry, such as quantum dynamics [2, 3, 4] and quantum phase estimation [5, 6, 7, 8].
For long time, Trotterization has been a standard way of Hamiltonian simulation for
both time-independent and time-dependent systems, which can provide simple realization
available in today’s quantum computers [2, 9, 10, 11, 12]. Instead, it requires a huge
number of elementary gates up to poly (1/ε) to achieve an acceptable error ε.

For time-independent systems, various efficient Hamiltonian simulation algorithms
have appeared in the past decade, which yield fewer resources than Trotterization to
implement the time-evolution U(t) = e−iHt [13, 14, 15, 16, 17, 18]. Among them, the
qubitization technique [18] achieves the best cost in that its query complexity (a measure
of cost) has optimal scaling both in time t and inverse error 1/ε in an additive way. [18].
In contrast, for time-dependent systems, while there exist several efficient Hamiltonian
simulation for constructing time-evolution U(t) [19, 20, 21, 22, 23, 24], they largely rely
on discretizing the time. Although the truncated Dyson-series algorithm [19, 20], which
is versatile among them, achieves the query complexity optimal or nearly-optimal both in
t and 1/ε, its scaling is multiplicative with requiring much larger cost than qubitization.
This originates from the difficulty of efficiently dealing with continuous-time modulation.
It is nontrivial whether we can simulate time-dependent Hamiltonians with much fewer
cost close to that of the qubitization.

Among time-dependent Hamiltonians, one of the most important targets of quantum
simulation is a time-periodic Hamiltonian satisfying H(t + T ) = H(t) with T being a
period. In fact, quantum systems under time-periodic Hamiltonians are called Floquet
systems, and have been platforms of various nonequilibrium phenomena in condensed
matter physics and quantum chemistry; for instance, they can host nonequilibrium phases
of matter absent in time-independent systems, such as topological phases [25, 26, 27]
and time crystals [28, 29, 30, 31, 32, 33]. Time-periodic Hamiltonians also cover optical
responses in solids and molecules [34, 35, 36, 37], exemplified by high-harmonic gener-
ation and photo-chemical reactions. In addition, adiabatic quantum dynamics such as
Thouless pumping [38, 39, 40] and adiabatic state preparation for quantum computation
[41, 6, 42] can be regarded as a part of time-periodic Hamiltonian dynamics under suf-
ficiently large period T . Despite fundamental significance and potential application of
time-periodic Hamiltonians in broad fields, there is no Hamiltonian simulation protocol
which can efficiently handle their time-dependency, while their simulation itself is possible
by the truncated Dyson-series algorithm.

In this paper, we develop an optimal and/or nearly-optimal quantum algorithm for
time-periodic Hamiltonian simulation. The key idea of our formalism is mapping time-
dependent systems to effective time-independent systems in the infinite-dimensional Floquet-
Hilbert space, obtained by the Fourier series expansion in time. Although the infinite-
dimensionality prohibits its simulation on quantum computers, we resolve this by for-
mulating the Lieb-Robinson bound [43], amplitude amplification, and the qubitization
technique. Consequently, we can simulate the target time-evolved state with arbitrary
small error and failure probability with a finite-dimensional Hilbert space by preparing
ancillary states labeling Fourier indices.

The resulting query complexity for time-periodic Hamiltonian simulation has optimal
and nearly-optimal scaling respectively in time t and inverse error 1/ε, and significantly,
these contributions appear in an additive way. This implies that the time-periodic Hamil-
tonian simulation can be executed with the cost sufficiently close to qubitization, which
provides the theoretically best scaling, despite the existence of time-dependency. We also
note that the auxiliary states for Fourier indices accurately reproduce the exact dynamics
with fewer degrees of freedom than those for discretized time, which is employed for generic
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time-dependent systems. This leads to smaller query complexity and simpler oracles of
our algorithm compared to the truncated Dyson-series algorithm. In addition, we provide
simulation of the Fermi-Hubbard model under light and adiabatic state preparation as
potential applications. Thus, our protocol will shed light on the promising usage of quan-
tum computers for nonequilibrium quantum many-body phenomena in condensed matter
physics and quantum chemistry, and the optimal control in quantum computation.

The rest of this paper is organized as follows. In Section 2, we briefly review Floquet
theory and the qubitization for this paper to be self-contained. We provide our main
results in Sections 3-9, with firstly summarizing them in Section 3. In Section 4, we derive
the Lieb-Robinson bound in time-periodic systems, and the way to accurately reproduce
the exact dynamics with the Floquet-Hilbert space. Sections 5 and 6 are devoted to
deriving the subroutines of the algorithm. They respectively provide the amplification
protocol that can realize the time-evolved state with sufficiently high success probability
(Section 5) and efficient implementation of the time-evolution operator in the Floquet-
Hilbert space (Section 6). Section 7 completes the optimal time-periodic Hamiltonian
simulation, and compares its resource with other algorithms for time-independent / -
dependent Hamiltonian simulation. We provide some promising applications in Section 8,
and concludes our paper in Section 9.

2 Preliminaries
2.1 Review on Floquet theory
We briefly review Floquet theory to analyze Schrödinger equation under a time-periodic
Hamiltonian,

i
d
dt |ψ(t)〉 = H(t) |ψ(t)〉 , H(t+ T ) = H(t), (1)

and its solution

|ψ(t)〉 = U(t) |ψ(0)〉 , U(t) = T exp
(
−i
∫ t

0
dt′H(t′)

)
. (2)

Here, the time-evolved state of the system of interest is represented by |ψ(t)〉, and we
assume that it is defined on a finite-dimensional Hilbert space H. The set of states

{|ψj〉}dim(H)
j=1 denotes a certain choice of the basis of H. Floquet theorem says that the

solution |ψ(t)〉 is always written in the form of

|ψ(t)〉 =
dim(H)∑
α=1

cαe
−iεαt |φα(t)〉 , |φα(t+ T )〉 = |φα(t)〉 , (3)

similar to Bloch theorem for spatially-periodic systems. Here, εα ∈ [−π/T, π/T ) and
|φα(t)〉 ∈ H are respectively called quasienergy and Floquet state. Time-periodicity of
H(t) and |φα(t)〉 allows the Fourier series expansion as

H(t) =
∑
m∈Z

Hme
−imωt, |φα(t)〉 =

∑
m∈Z
|φmα 〉 e−imωt, (4)

with the frequency ω = 2π/T . The hermiticity of H(t) implies H−m = H†m. We as-
sume ‖H(t)‖ < ∞ (‖·‖ ; operator norm), which results in

∑
m∈Z ‖Hm‖2 < ∞. Introduc-

ing an auxiliary degree of freedom {|l〉}l∈Z (sometimes called photon number) to relate

Accepted in Quantum 2023-03-16, click title to verify. Published under CC-BY 4.0. 3



Figure 1: Intuitive understanding of the effective Hamiltonian Heff [Eq. (6)] in the Floquet-Hilbert
space. It can be seen as a single-particle quantum system with the potential H0 − lω and the hopping
H−m on a infinite one-dimensional chain. We should introduce the cutoffs |−lmax + 1〉 and |lmax〉 to
embed it on quantum computers, which leads to H lmax

eff [Eq. (18)].

|φlα〉 ↔ |l〉 |φlα〉, every pair of εα, |φα(t)〉 can be obtained by the time-independent eigen-
value equation,

Heff

∑
l∈Z
|l〉 |φlα〉

 = εα

∑
l∈Z
|l〉 |φlα〉

 , (5)

with the effective Hamiltonian defined by

Heff =
∑
l∈Z
|l〉 〈l| ⊗ (H0 − lω) +

∑
l,m∈Z

|l〉 〈l +m| ⊗H−m. (6)

Intuitively, this time-independent Hamiltonian Heff describes a static one-dimensional sys-
tem, where each l-th site has potential energy H0− lω, as Fig. 1. Off-diagonal terms H−m
represent hopping by −m sites, which can be recognized as either emission or absorp-
tion of |m| photons. We remark that the difficulty of time-dependence does not vanish
by this mapping; it is translated into infinite dimensionality of the space spanned by
{|l〉 |ψj〉 | l ∈ Z, j = 1, 2, . . . ,dim(H)}, which is called Floquet-Hilbert space or Sambe
space [44]. While the effective Hamiltonian Heff is often used for identifying εα, |φα(t)〉,
it can be employed also for directly determining the dynamics as follows [45];

|ψ(t)〉 =
∑
l∈Z

e−ilωt 〈l|e−iHefft|0〉 |ψ(0)〉 . (7)

We can extract the dynamics under a time-dependent Hamiltonian H(t) from that under
the time-independent one Heff by preparing auxiliary systems labeled by |l〉. However,
we note that applying optimal algorithms for time-independent systems to simulating
this extended dynamics is not straightforward, since the Floquet-Hilbert space is infinite-
dimensional.

2.2 Review on qubitization technique
Here, we briefly review so-called qubitization technique to efficiently implement e−iHt for
time-independent Hamiltonian H on the Hilbert space H [18]. It begins with assuming the
existence of block-encoding, that is, we suppose an na-qubit auxiliary state |G〉a (called an
oracle state) and a unitary gate O on the space C2na ⊗H (called an oracle gate) satisfying

〈G|O|G〉a = H

α
, α ≥ ‖H‖. (8)
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The inequality α ≥ ‖H‖ comes from the norm of the unitary gate as ‖O‖ = 1, and the
parameter α represents a typical energy scale of the whole system. Here, the oracles O and
|G〉a are supposed to be efficiently implemented; the unitary gates O and G, which realizes
the oracle state from a reference state |0〉a as G |0〉a = |G〉a, require at most C ∈ poly (N)
elementary gates.

The explicit construction of the oracles has been explored for certain classes of static
Hamiltonians. For instance, when the Hamiltonian H is given by a linear combination of
unitary (LCU) as

H =
jmax∑
j=1

αjUj , αj ≥ 0, Uj ; unitary, (9)

a possible choice of the oracles is

O =
jmax∑
j=1
|j〉 〈j|a ⊗ Uj , |G〉a =

jmax∑
j=1

√
αj
α
|j〉a , (10)

with α = ∑jmax
j=1 αj . The number of ancillary qubits na scales as log jmax. Since jmax is

poly (N) for typicalN -site systems, the number of elementary gates for the oracles amounts
to C ∈ poly (N). LCUs cover various types of Hamiltonians exemplified by quantum spin
systems composed of local Pauli operators and fermionic systems in condensed matter
physics and quantum chemistry [46]. The block-encoding of other Hamiltonians, such as
sparse-access matrices and purified density matrices, has been also revealed [18, 47, 48].

Once we find out the oracles O and |G〉a, we can organize a unitary gate Wq, imple-
mented by O(1) additional ancillary qubits and O(q)-times usage of O, G, and O(na)
elementary gates, which satisfies

Wq |0〉⊗{na+O(1)} |ψ〉 = |0〉⊗{na+O(1)} e−iHt |ψ〉+O(εq), (11)

for every state |ψ〉 ∈ H. Here, the error εq comes from approximating e−iHt by a certain
degree-q polynomial of H, and decays as εq ∈ O((αt/q)q). The scaling of q required for
making the error εq smaller than an acceptable error ε is given by the following formula;

q ∈ Θ
(
αt+ log(1/ε)

log(e+ (αt)−1 log(1/ε))

)
. (12)

In order to determine the explicit form of Wq, we resort to quantum signal processing [17].
It dictates that only poly (q)-time classical computation is required for this purpose.

To summarize the qubitization technique, we require the following computational re-
sources to implement the time-evolution operator e−iHt with an acceptable error ε (See
also Table 1);

• Number of ancillary qubits; na +O(1)

• Query complexity; q [Eq. (12)]

• Number of elementary gates;

O
({

αt+ log(1/ε)
log(e+ (αt)−1 log(1/ε))

}
(C + na)

)
. (13)

Here, the query complexity is defined by the complexity counted by the number of oracles,
corresponding to q in this case, and gives the scaling of the number of elementary gates
below. Significantly, the query complexity takes an additive form as

αt+ o(log(1/ε)) ∈ poly (N) t+ o(log(1/ε)). (14)
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The o(log(1/ε)) term scales as log(1/ε)/ log log(1/ε) under 1/ε→∞ with fixed time t. Its
scaling is known to be optimal both in t and 1/ε for simulating generic time-independent
Hamiltonians [47].

In our algorithm for time-periodic Hamiltonians, we exploit qubitization as a subrou-
tine to implement time evolution under an effective Hamiltonian in Floquet theory. We
can achieve the query complexity for time-periodic systems in the additive form like Eq.
(14), while the conventional truncated Dyson-series algorithm for generic time-dependent
systems needs the query complexity in a multiplicative form αt× o(log(αt/ε)).

3 Summary of this paper
In this section, we overview our main results on efficient quantum simulation of time-
periodic Hamiltonians. We will provide their detailed derivation in the following Sections
4-7.

3.1 Overview of Algorithm
We first show an overview of the algorithm for time-evolution under a time-periodic Hamil-
tonian H(t+ T ) = H(t). Throughout the main text, we assume that the Fourier compo-
nents of the Hamiltonian H(t) vanishes at a certain cutoff mmax ∈ O(1);

Hm = 0, if |m| > mmax. (15)

(This discussion can be extended to cases where Hm exponentially decays in |m|. See
Appendix C.).

The central attempt in the algorithm is to efficiently simulate Eq. (7),

|ψ(t)〉 =
∞∑

l=−∞
e−ilωt 〈l| e−iHefft |0〉 |ψ(0)〉 , (16)

on quantum circuits. The time-dependency is erased by mapping the dynamics to the one
on the Floquet-Hilbert space, which results in the following two benefits. First, we do not
discretize the time with infinitesimal intervals. We instead rely on Fourier indices l ∈ Z,
which are originally discrete, and actually they lead to much better accuracy with the
same auxiliary degrees of freedom. Second, we can use various Hamiltonian simulation
algorithms for time-independent systems. Since the qubitization technique has achieved
the best query complexity in the time t and the inverse error 1/ε, exploiting it for Heff
accelerate the simulation of time-periodic systems.

On the other hand, in order to simulate the time-evolved state |ψ(t)〉 via Eq. (16) on
quantum circuits, we also have several problems to be tackled. First, the Floquet-Hilbert
space is infinite dimensional. We have to introduce truncation at a certain Fourier index
lmax, and consider a finite set of indices defined by

Dlmax = {−lmax + 1,−lmax + 2, . . . , lmax} ⊂ Z. (17)

Then, we focus on the approximate dynamics by

H lmax
eff =

∑
l∈Dlmax

|l〉 〈l| ⊗ (H0 − lω) +
∑

l∈Dlmax

∑
m 6=0;l+m∈Dlmax

|l〉 〈l +m| ⊗H−m,

(18)
|ψlmax(t)〉 =

∑
l∈Dlmax

e−ilωt 〈l| e−iH
lmax

eff t |0〉 |ψ(0)〉 . (19)
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The finite-dimensional space, spanned by 2lmax × dim(H) states {|l〉 |ψj〉 | l ∈ Dlmax , j =
1, . . . ,dim(H)}, is called the truncated Floquet-Hilbert space. While lmax →∞ reproduces
|ψlmax(t)〉 → |ψ(t)〉, it is nontrivial how we should choose lmax to achieve the accuracy∥∥∥|ψ(t)〉 − |ψlmax(t)〉

∥∥∥ ≤ ε. The second problem is the small success probability of post-

selecting the ancillary state. Even if we succeed in approximation with finite lmax, Eq.
(19) requires a projection to a unnormalized ancillary state

∑
l∈Dlmax |l〉 for the state in

the truncated Floquet-Hilbert space,

|Ψlmax(t)〉 = e−iωt
∑

l
|l〉〈l|e−iH

lmax
eff t |0〉 |ψ(0)〉 . (20)

In the actual computation, we need post-selection to an ancillary state given by

|almax〉 = 1√
2lmax

∑
l∈Dlmax

|l〉 . (21)

Success probability of the projection is given by
∥∥∥〈almax |Ψlmax(t)〉

∥∥∥2
' 〈ψ(t)|ψ(t)〉 /(2lmax) =

1/(2lmax). As lmax increases to ensure the accuracy, the expected time to successfully ob-
tain |ψ(t)〉 becomes longer in proportion to it. The final problem is about implementation

of e−iH
lmax

eff t. While the effective Hamiltonian Heff is time-independent, its structure is
complicated due to the additional degrees of freedom labeled by {|l〉}. It is nontrivial
whether the optimal Hamiltonian simulation algorithm, i.e. the qubitization technique,
provides the optimality for time-periodic systems.

Our algorithm relying on the truncated Floquet-Hilbert space efficiently simulates the
time-evolved state |ψ(t)〉 with resolving the above problems. The significant developments
are composed of the following steps;

(a) Decision of the Fourier index for truncation, lmax, to achieve an allowable error ε.

(b) Amplification by symmetry and oblivious amplitude amplification to enhance the suc-
cess probability up to 1−O(ε).

(c) Efficient implementation of exp
(
−iH lmax

eff t
)

by the qubitization technique.

In Step (a), we explicitly derive the upper bound of
∥∥∥|ψ(t)〉 − |ψlmax(t)〉

∥∥∥ in a similar way

to the Lieb-Robinson bound. We show that the choice of lmax, based on

lmax ∈ Θ
(
γt+ log(1/ε)

log(e+ (γt)−1 log(1/ε))

)
, (22)

γ = sup
t

(‖H(t)−H0‖), (23)

is sufficient to make the error smaller than ε. Here, γ gives the scale of the time-dependent
terms in H(t). The second step (b) plays a role in amplifying the success probability of the
post selection from 1/(2lmax) to 1−O(ε). The first protocol, which we call amplification
by symmetry, exploits the symmetry of Heff which is always present and inherent in time-
periodic systems. It brings the success probability from 1/(2lmax) to 1/4 − O(ε) only
with small cost of O(log lmax) elementary gates. Following this, we apply the oblivious
amplitude amplification [16], reminiscent of Grover’s search algorithm [49]. The success
probability is further amplified from 1/4−O(ε) to 1−O(ε). Exploiting these two kinds of
amplification, we can obtain the target state |ψ(t)〉 only with a little additional resource
that does not change the scaling. The final step (c) constructs conversion of the effective
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Hamiltonian so that exp
(
−iH lmax

eff t
)

can be efficiently implemented. The original effective

Hamiltonian H lmax
eff is not suitable for the qubitization technique, since the additional

degrees of freedom |l〉 makes its block-encoding inefficient. To resolve this problem, we

derive an alternative effective Hamiltonian such that the desired evolution exp
(
−iH lmax

eff t
)

is accurately reproduced. The block-encoding for the alternative effective Hamiltonian
requires O(1)-times queries to the oracles for each Fourier component {Hm}, which is
important for achieving optimal or nearly-optimal dependence in t and 1/ε.

3.2 Main results
Here, we summarize the computational resources for computing the dynamics |ψ(t)〉 un-
der a time-periodic Hamiltonian H(t). We construct two different quantum algorithms
depending on the time scale of the dynamics. The first case is an adiabatic-like case, where
we are interested in the dynamics over O(1) periods as ωt ∈ O(1). We call it “adiabatic”
since adiabatic dynamics under sufficiently large period T is a typical target, while T is
not required to be large. The other case is generic long-time regime, in which we focus
on dynamics over multiple periods as ωt ∈ Ω(1). The algorithms for both cases follow
Steps (a)-(c) of Section 3.1; the number of ancillary qubits is determined by the truncation
order lmax of Step (a), and the number of elementary gates comes mainly from the cost of

implementing exp
(
−iH lmax

eff t
)

in Step (c).

We assume that the Fourier component Hm becomes zero for |m| > mmax with an
O(1) constant mmax. The block-encoding for each Hm is supposed to be given by an
oracle unitary gate Om and an na-qubit oracle state |Gm〉 as

〈Gm|Om|Gm〉 = Hm

αm
, αm > 0. (24)

Each oracle state |Gm〉 is generated by trivial states as |Gm〉 = Gm |0〉. We define the
energy scale of the Hamiltonian H(t) by

α =
∑

|m|≤mmax

αm, (25)

and suppose that {αm}m can be embedded into an O(1)-qubit quantum system by

Gcoef |0〉 =
∑

|m|≤mmax

√
αm
α
|m〉 ∈ C2mmax+1. (26)

The query complexity is defined by the number of queries to the oracles Om, Gm, and Gcoef ,
where each of them is supposed to require at-most C elementary gates. We summarize the
computational resources for simulating |ψ(t)〉 in the adiabatic-like regime and the generic
long-time regime respectively by the following theorems.

Theorem 1. (Resource for adiabatic-like regime)
Suppose that we are interested in the time-evolved state |ψ(t)〉 from an arbitrary

initial state |ψ(0)〉 over O(1) periods. The computational resources to obtain it with the
acceptable error and the failure probability smaller than O(ε) are summarized as follows;

• Number of ancillary qubits;

na +O(log(γt) + log log(1/ε)). (27)
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• Scaling of query complexity;

αt+ log(1/ε)
log(e+ {αt+ o(log(1/ε))}−1 log(1/ε)) . (28)

The o(log(1/ε)) term in the above denominator scales as

log(1/ε)
log(e+ (γt)−1 log(1/ε)) . (29)

• Additional gates per query;

O(na + log(γt) + log log(1/ε)). (30)

The query complexity has optimal scaling in the time t and nearly-optimal scaling in the
inverse error 1/ε.

Theorem 2. (Resource for long-time regime)
Suppose that we are interested in the time-evolved state |ψ(t)〉 from arbitrary initial

states |ψ(0)〉 over multiple periods ωt ∈ Ω(1). The computational resources to obtain it
with the acceptable error and the failure probability smaller than O(ε) are summarized
as follows;

• Number of ancillary qubits;

na +O(log(γ/ω) + log log(ωt/ε)). (31)

• Scaling of query complexity;

αt+ ωt log(ωt/ε)
log(e+ {α/ω + o(log(ωt/ε))}−1 log(ωt/ε)) . (32)

The o(log(ωt/ε)) term in the above denominator scales as

log(ωt/ε)
log(e+ (γ/ω)−1 log(ωt/ε)) . (33)

• Additional gates per query;

O(na + log(γ/ω) + log log(ωt/ε)) (34)

The scaling of the query complexity is optimal in time t for practical problems up to
poly (N)-time, while it is formally nearly-optimal. It is nearly-optimal in the inverse error
1/ε.

The parameters α and γ, defined by Eqs. (25) and (23), respectively represent energy
scales of the overall terms and the time-dependent terms in H(t). They typically scale
as α, γ ∈ poly(N) with the system size N . In contrast, the frequency ω = 2π/T is
typically an O

(
N0) value much smaller than α and γ (The high-frequency cases where ω

are comparable to or larger than α, γ are trivial, as discussed in Appendix D). While the
above theorems are about time-periodic Hamiltonians with vanishing Fourier components
at mmax ∈ O(1) as Hm = 0 (|m| > mmax), we obtain similar results for Hamiltonians
with exponentially-decaying Fourier components ‖Hm‖ . e−O(|m|). See Appendix C for
its derivation.
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4 Building an appropriate truncated Floquet-Hilbert space
This section is devoted to deriving the proper truncation order for the Floquet-Hilbert
space, following (a) in Section 3.1. In order to achieve desirable accuracy for the exact
time-evolved state with the truncated Floquet-Hilbert space, we should obtain an exact
upper bound on its error. Here, we prove the Lieb-Robinson bound in the Floquet-Hilbert
space in Section 4.1, and determine a proper truncation order based on it in Section 4.2.

4.1 Lieb-Robinson bound in Floquet-Hilbert space
The proper choice of the truncation order lmax is determined so that the approximate state
|ψlmax(t)〉 [See Eq. (19)] can reproduce the time-evolved state |ψ(t)〉 with satisfying the

relation
∥∥∥|ψ(t)〉 − |ψlmax(t)〉

∥∥∥ ≤ ε. From the explicit formula Eq. (19), we can see that it is

important to observe how the transition amplitude 〈l|e−iH
lmax

eff t|0〉 behaves for sufficiently
large l. We first show the upper bound on this transition amplitude in Theorem 3. Since
it is reminiscent of the Lieb-Robinson bound in single-particle quantum systems [50], we
call it the Lieb-Robinson bound in the Floquet-Hilbert space.

Theorem 3. (Bound on transition amplitude)
We assume Hm = 0 for |m| > mmax. Then, for indices l, l′ ∈ Z satisfying |l − l′| ≥

2mmaxγt, the transition amplitude is bounded by

∥∥∥〈l| e−iH lmax
eff t |l′〉

∥∥∥ ≤ 2 (γt)d|l−l′|/mmaxe

(d|l − l′|/mmaxe)!
(35)

≤
(

γt

d|l − l′|/mmaxe

)d|l−l′|/mmaxe
, (36)

where the parameter γ is defined by Eq. (23).

Proof.— We will omit the superscripts lmax for some operators introduced here since
they are not important. We first employ the interaction picture. With the unitary opera-
tion defined by

U0(t) = e−iH0t, H0 =
∑

l∈Dlmax

|l〉 〈l| ⊗ (H0 − lω), (37)

the time evolution operator e−iH
lmax

eff t is represented as

e−iH
lmax

eff t = U0(t)UI(t), (38)

UI(t) = T exp
(
−i
∫ t

0
dt′HI(t′)

)
. (39)

Here, the Hamiltonian in the interaction picture is defined by

HI(t) = U0(t)†(H lmax
eff −H0)U0(t)

=
∑
l

∑
m>0

(eimωt |l〉 〈l +m| ⊗HI
−m(t) + h.c.), (40)

HI
−m(t) = eiH0tH−me

−iH0t, (41)

where the summation in the second line is taken over l,m such that l, l+m ∈ Dlmax . Using
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the Dyson series expansion, we obtain∥∥∥〈l| e−iH lmax
eff t |l′〉

∥∥∥ =
∥∥〈l|UI(t)|l′〉

∥∥
≤

∞∑
n=0

∫ t

0
dtn . . .

∫ t2

0
dt1
∥∥〈l|HI(tn) . . .HI(t1)|l′〉

∥∥
=

∞∑
n=0

∫ t

0
dtn . . .

∫ t2

0
dt1

∥∥∥∥∥∥
∑
{li}

n∏
i=1
〈li|HI(ti)|li−1〉

∥∥∥∥∥∥. (42)

In the last equality, we employ the identity
∑
li∈Dlmax |li〉 〈li| = I for n − 1 times. The

summation
∑
{li} is taken over li ∈ Dlmax for i = 1, 2, . . . , n − 1 under the fixed l0 = l′

and ln = l. Each product
∏n
i=1 〈li|HI(ti)|li−1〉 represents a complex transition amplitude

from |l′〉 to |l〉 along the path |l′〉 → |l1〉 → . . . → |ln−1〉 → |l〉 under HI(ti). Since the
Hamiltonian HI(ti) shifts the Fourier index |li〉 by at-most mmax due to Eq. (18), the low
order terms labeled by n < |l − l′|/mmax disappears. This results in

∥∥∥〈l| e−iH lmax
eff t |l′〉

∥∥∥ ≤ ∞∑
n=d|l−l′|/mmaxe

∫ t

0
dtn . . .

∫ t2

0
dt1
∥∥∥∥∥〈l|

n∏
i=1

HI(ti)|0〉
∥∥∥∥∥

≤
∞∑

n=d|l−l′|/mmaxe

tn

n!

(
sup
t

(‖HI(t)‖)
)n

(43)

Here, HI(t) is a Toeplitz matrix that satisfies 〈l|HI(t)|l′〉 = e−i(l−l
′)ωtHI

l−l′(t) −
H0δl−l′,0. This leads to the upper bound of its operator as follows [51],

‖HI(t)‖ ≤ sup
t′

∥∥∥∥∥∥
∑
m∈Z

(eimωtHI
−m(t)−H0δm,0)eimωt′

∥∥∥∥∥∥


= sup
t′

(∥∥H(t− t′)−H0
∥∥) = γ. (44)

We also use the following inequality;

∞∑
n=n0

xn

n! ≤ 2x
n0

n0! , if n0 ≥ 2x ≥ 0. (45)

This relation can be easily confirmed by

∞∑
n=n0

xn

n! = xn0

n0!

∞∑
n=n0

xn−n0

n(n− 1) . . . (n0 + 1) ≤
xn0

n0!

∞∑
n=0

(1
2

)n
. (46)

For the indices l, l′ satisfying |l − l′| ≥ 2mmaxγt, we can substitute x = γt and n0 =
d|l − l′|/mmaxe. This results in the bound,

∥∥∥〈l| e−iH lmax
eff t |l′〉

∥∥∥ ≤ 2 (γt)d|l−l′|/mmaxe

(d|l − l′|/mmaxe)!
. (47)

The inequality from the Stirling formula,

n0! ≥ 2
(
n0
e

)n0

, (48)

ensures the inequality Eq. (36). �

Accepted in Quantum 2023-03-16, click title to verify. Published under CC-BY 4.0. 11



The Lieb-Robinson bound in the transition amplitude provides a guide for choosing a
proper truncation order. By setting l′ = 0, Eqs. (35) and (36) say that the contributions to
|ψlmax(t)〉 from indices satisfying |l| ≥ 2mmaxγt rapidly decay as l−l. Thus, O(γt) becomes
a possible truncation order. However, we note that the change in lmax affects |ψlmax(t)〉
also via the change in the support of the effective Hamiltonian H lmax

eff . By taking it into
account with using the Lieb-Robinson bound, we obtain the exact upper bound on the
error between |ψ(t)〉 and |ψlmax(t)〉 as follows.

Theorem 4. (Floquet-Hilbert space truncation)
We consider the approximate time-evolved state obtained from the truncated Floquet-

Hilbert space, |ψlmax(t)〉, given by Eq. (19). Then, its deviation from the exact one |ψ〉 is
bounded by ∥∥∥|ψ(t)〉 − |ψlmax(t)〉

∥∥∥ ≤ 20mmax
(γt)dlmax/mmaxe

(dlmax/mmaxe)!
, (49)

if the truncation order lmax satisfies lmax ≥ 2mmaxγt.

Proof.— We evaluate the convergence of |ψlmax(t)〉. For different orders lmax, l
′
max

satisfying l′max > lmax, we compute the difference,∥∥∥|ψl′max(t)〉 − |ψlmax(t)〉
∥∥∥ ≤ ε1 + ε2, (50)

ε1 =
∑

l∈(Dl′max\Dlmax )

∥∥∥∥〈l| eiH l′max
eff t |0〉

∥∥∥∥, (51)

ε2 =
∑

l∈Dlmax

∥∥∥∥〈l| eiH l′max
eff t − eiH

lmax
eff t |0〉

∥∥∥∥. (52)

The first error comes from truncating the order of the post-selected state |almax〉. Using
Theorem 3 directly implies

ε1 ≤
∑

l∈(Dl′max\Dlmax )

(γt)d|l|/mmaxe

(d|l|/mmaxe)!
≤ 2

∞∑
l=lmax

(γt)dl/mmaxe

(dl/mmaxe)!
. (53)

The summation
∑∞
l=lmax can be divided based on l (mod. mmax), and each summation

corresponds to the left hand side of Eq. (45) with n0 ≥ dlmax/mmaxe. In other words, for
lmax ≥ 2mmaxγt, we obtain the following inequality,

∞∑
l=lmax

(γt)dl/mmaxe

(dl/mmaxe)!
≤ 2mmax

(γt)dlmax/mmaxe

(dlmax/mmaxe)!
. (54)

As a result, the first error ε1 is bounded by 4mmax(γt)dlmax/mmaxe/(dlmax/mmaxe)!.
The second error ε2 comes from truncating the order of the effective Hamiltonian. In

a similar way to the proof of Theorem 3, each term is bounded by∥∥∥∥〈l| eiH l′max
eff t − eiH

lmax
eff t |0〉

∥∥∥∥ ≤ ∞∑
n=0

∫ t

0
dtn . . .

∫ t2

0
dt1
∥∥∥∥∥〈l|

n∏
i=1

H
l′max
I (ti)−

n∏
i=1

H lmax
I (ti)|0〉

∥∥∥∥∥,
(55)

where we explicitly write the size lmax, l
′
max for HI(t) [See Eq. (40)]. In a similar manner

to Eq. (42), 〈l|
∏n
i=1 H

l′max
I (ti)|0〉 and 〈l|

∏n
i=1 H lmax

I (ti)|0〉 respectively represent transi-
tion amplitudes summed over all possible paths |0〉 → |l1〉 → . . . → |ln−1〉 → |l〉 under
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H
l′max

eff (t) and H lmax
eff (t). Their differences survive only when the path goes across the do-

main Dl′max\Dlmax , where these two Hamiltonians have different actions. In other words,
low order terms with n < {(lmax − 0) + (lmax − |l|)/mmax should vanish. Considering that

the norm of H lmax
eff (t) and H

l′max
eff (t) is both bounded by γ, we obtain

ε2 ≤
∑

l∈Dlmax

∞∑
n=d(2lmax−|l|)/mmaxe

tn

n!2γ
n

≤ 4
∑

l∈Dlmax

(γt)d(2lmax−|l|)/mmaxe

(d(2lmax − |l|)/mmaxe)!

≤ 16mmax
(γt)dlmax/mmaxe

(dlmax/mmaxe)!
. (56)

In the last inequality, we again use the relation Eq. (54). Taking the limit l′max →∞ for
ε1 + ε2 reproduces the result of Theorem 4. �

4.2 Truncation order of Floquet-Hilbert space
We hereby determine the truncation order lmax so that |ψlmax(t)〉 can reproduce the exact
time-evolved state with a desirable error up to O(ε). By using the inequality from the
Stirling formula, Eq. (48) to Theorem 4, we obtain the error bounded by

∥∥∥|ψ(t)〉 − |ψlmax(t)〉
∥∥∥ ≤ 10mmax

(
emmaxγt

lmax

)lmax/mmax

, (57)

for lmax ≥ 2mmaxγt. The truncation order lmax is chosen so that the right hand side can
be smaller than ε. To this aim, we should evaluate a function f(x) = (κ/x)x [κ > 0],
which is known to be dealt with the Lambert W function W (x) satisfying W (x)eW (x) = x
[52]. Here, we rely on the resulting proposition [47].

Proposition 5.
The function f(x) = (κ/x)x [κ > 0] is monotonically decreasing in x ≥ κ/e, and

satisfies the following inequality for 0 < η < 1;

f(x) ≤ η, ∀x ≥ eκ+ 4 log(1/η)
log(e+ κ−1 log(1/η)) . (58)

See Lemma 59 in the full version of Ref. [47] for the proof. Based on the above
proposition, we choose lmax by

lmax = mmax +
⌈
e2mmaxγt+ 4mmax log(10mmax/ε)

log(e+ (eγt)−1 log(10mmax/ε))

⌉
, (59)

so that the error can be bounded from above as

10mmax

(
emmaxγt

lmax −mmax

)(lmax−mmax)/mmax

≤ ε. (60)

We note that this choice does not violate the condition lmax ≥ 2mmaxγt, which is required

for Theorem 4. The monotonicity of f(x) ensures
∥∥∥|ψ(t)〉 − |ψlmax(t)〉

∥∥∥ ≤ ε under the

above choice (The additional term mmax is attached for later calculation, especially for
Appendix B.1) and B.2).
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Let us discuss how lmax increases in the time t and the inverse error 1/ε. The form
of the error in lmax, given by Eq. (49), is the same as that for qubitization in the query
complexity q, given by εq ∈ O((αt/q)q). Therefore, its scaling can be determined in a
similar way, which results in

lmax ∈ Θ
(
γt+ log(1/ε)

log(e+ (γt)−1 log(1/ε))

)
. (61)

To reproduce the truncated Floquet-Hilbert space, we should prepare an ancillary system
labeled by {|l〉}l∈Dlmax . The number of qubits for such ancillary system is at-most

O(log lmax) ⊂ O(log(γt) + log log(1/ε)). (62)

5 Amplitude amplification of the dynamics
In this section, we show two kinds of amplification to achieve sufficiently high success
probability of extracting the time-evolved state |ψ(t)〉.

As we stated in Section 3.1, the approximate state |ψlmax(t)〉 cannot be directly realized
on quantum circuits. After simulating the dynamics in the truncated Floquet-Hilbert
space to get |Ψlmax(t)〉 defined by Eq. (20), we make a projection to |almax〉. Although
the resulting renormalized state is sufficiently close to |ψlmax(t)〉 and also the time-evolved
state |ψ(t)〉 as

〈almax |Ψlmax(t)〉
‖〈almax |Ψlmax(t)〉‖ = |ψlmax(t)〉

‖|ψlmax(t)〉‖ = |ψ(t)〉+O(ε) (63)

for lmax given by Eq. (59), we should be careful of the low success probability; it becomes∥∥∥〈almax |Ψlmax(t)〉
∥∥∥2
∈ O

(
(lmax)−1).

We need approximately O(γt)-times trials of the post selection, and every trial is

expected to require at-least O(t) complexity for implementing |Ψlmax(t)〉 = e−iH
lmax

eff t |0〉⊗
|ψ(0)〉. Therefore, the naive implementation based on Eq. (19) is not efficient for the
time-evolved state |ψ(t)〉 in that the expected computational time reaches O

(
t2
)
.

We resolve this problem by the amplification of the success probability up to 1−O(ε) in
the next section. The first one, which exploits the symmetry of the effective Hamiltonian
Heff , amplifies from O

(
l−1
max

)
to O(1). The latter one following this, which is reminiscent

of the Grover’s search algorithm, allows the success probability 1 − O(ε). As discussed
later, using only either one fails to efficiently compute |ψ(t)〉.

5.1 Amplification by symmetry
We introduce the amplification exploiting the symmetry of the effective Hamiltonian Heff .
First of all, we specify the symmetry here; it is about the translation of the photon number
from |l〉 to |l +m〉. When we define the translation operator on the Floquet-Hilbert space
by Tm = ∑

l∈Z |l〉 〈l +m| ⊗ I, Heff satisfies the translation symmetry,

T †mHeffTm = Heff +mω, (64)
〈l|e−iHefft|l′〉 = eil

′ωt 〈l − l′|e−iHefft|0〉 . (65)

Since the symmetry is present as long as the time-periodicity H(t+ T ) = H(t) holds, the
amplification discussed here is always available in our algorithm.

Here, we provide two tasks for the amplification by symmetry. First, we slightly extend
the truncated Floquet-Hilbert space to C8lmax ⊗H, where the Fourier index |l〉 is chosen
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from l ∈ D4lmax = {−4lmax + 1,−4lmax + 2, . . . , 4lmax}. The number of additional qubits
required for this extension from Clmax ⊗ H is three, and hence this does not affect the
scaling of the computational resources. The second task is to preprocess the initial state
by

U lmax
ini |0〉 |ψ(0)〉 = |almax〉 |ψ(0)〉 , (66)

where the unitary operator U lmax
ini is expressed by

U lmax
ini =

(
|almax〉 〈0|+ . . .

)
⊗ I. (67)

The unitary operator U lmax
ini nontrivially acts only on the ancillary space, and it can be

implemented withO(log lmax) gates (e.g. for lmax such that log2 lmax ∈ N, we have U lmax
ini =

Had⊗ log2(2lmax)⊗ I with the Hadamard gate Had). This process plays a role of making the
initial state approximately translation-invariant with the width of Fourier indices, 2lmax.
The remaining procedures after the above two tasks is the same as those for the original
protocol in Section 3.1. Reflecting that the ancillary Hilbert space is extended to C8lmax ,
we evolve the above uniform state |almax〉 |ψ(0)〉 by H 4lmax

eff and
∑
l∈D4lmax lω |l〉 〈l|⊗I, and

make a projection to |a4lmax〉. The resulting state |ψ̄lmax(t)〉 is calculated as follows.

|ψ̄lmax(t)〉 ≡ 〈a4lmax | e−it
∑

l
lω|l〉〈l|e−iH

4lmax
eff t |almax〉 |ψ(0)〉 . (68)

The point of this process is that the above state |ψ̄lmax(t)〉 can reproduce |ψ(t)〉 with
O(1) amplitude owing to the translation symmetry of the effective Hamiltonian, Eqs.
(64) and (65). We give its brief explanation in this section, while the rigorous derivation
is provided in Appendix B.1. Although we do not have the exact translation symmetry
represented by Eqs. (65) due to the finite-size effect of lmax, it is expected to approximately
hold as

〈l| e−iH
4lmax

eff t |l′〉 ' eil′ωt 〈l − l′| e−iH
4lmax

eff t |0〉 . (69)

if the truncation order lmax is sufficiently large. As a matter of fact, we can derive the
exact upper bound on the difference between the left- and right-hand sides based on the
Lieb-Robinson bound (See Lemma 8 in Appendix B.1). We proceed the discussion with
assuming the approximate relation Eq. (69) here. The resulting state of the process
|ψ̄lmax(t)〉 can be roughly computed as follows;

|ψ̄lmax(t)〉 = 1
4lmax

∑
l′∈Dlmax

∑
l∈D4lmax

e−ilωt 〈l| e−iH
4lmax

eff t |l′〉 |ψ(0)〉

' 1
4lmax

∑
l′∈Dlmax

∑
l∈D4lmax

e−i(l−l
′)ωt 〈l − l′| e−iH

4lmax
eff t |0〉 |ψ(0)〉

= 1
4lmax

∑
l′∈Dlmax

(|ψ(t)〉+O(ε))

= 1
2 |ψ(t)〉+O(ε). (70)

The second equality comes from Theorem 4, considering that the summation of l− l′ over
l ∈ D4lmax is sufficient to suppress the error up to O(ε). As a result, we obtain

|ψ̄lmax(t)〉 ' 1
2(|ψ(t)〉+O(ε)). (71)

Let us focus on the success probability of the projection onto |a4lmax〉. It is provided
by 〈ψ̄lmax(t)|ψ̄lmax(t)〉 = 1/4 +O(ε), which is much larger than the original one 1/(2lmax).
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Therefore, the amplification protocol by symmetry enables us to avoid O(t)-times repe-
tition of the time evolution e−iHefft in contrast to the original protocol. Intuitively, this
drastic improvement can be understood as a result of the interference under the translation
symmetry, as Fig. 2. As we can see from Eq. (20), the target state |ψ(t)〉 is extracted from
|Ψlmax(t)〉 via the accompanying ancillary state |almax〉, which is uniform in the Fourier in-
dex |l〉. When we begin with the non-uniform initial state |0〉 |ψ(0)〉, the resulting state
after the time evolution is also non-uniform. Since it involves (1/

√
2lmax)∑l∈Dlmax eikl |l〉

for k ∈ (2π/2lmax)Z (different eigenstates of the translation operator) with approximate
equal weight, the amplitude of the desirable component |almax〉 is comparably small as
1/
√

2lmax. In contrast, when we employ the uniform initial state |almax〉 |ψ(0)〉, only the
uniform components that includes |almax〉 are amplified while the other components cancels
one another. It can be viewed also as the interference of different initial states |l′〉 |ψ(0)〉
in |almax〉 |ψ(0)〉 as shown in Fig. 2, and this is why the amplification protocol achieves
O(1) amplitude of |almax〉 |ψ(0)〉.

We summarize the amplification by symmetry with adding the exact results obtained
in Appendix B.1. We prepare the truncated Floquet-Hilbert space C8lmax ⊗H, and make
the initial state uniform as |almax〉 |ψ(0)〉. As a result, this process is described by a unitary
gate

U lmax
amp1(t) = (U 4lmax

ini )†e−it
∑

l
lω|l〉〈l|e−iH

4lmax
eff tU lmax

ini , (72)

where the last unitary gate (U 4lmax
ini )† is added to replace the projection to |a4lmax〉 by

the one to |0〉. This approximately realizes the time-evolved state |ψ(t)〉 with 1/4 +O(ε)
success probability as

〈0|U lmax
amp1(t) |0〉 |ψ(0)〉 ' 1

2(|ψ(t)〉+O(ε)). (73)

The probability 1/4 comes from the ratio of the width of the initial state |almax〉 to that
of the projected ancillary state |a4lmax〉. The exact version, derived based on the Lieb-
Robinson bound in Appendix B.1, is stated as follows, and ensures the validity of the
discussion here.

Theorem 6. (Amplification by symmetry)
We designate the truncation order lmax ∈ Θ(γt + log(1/ε)/ log log(1/ε)) by Eq. (59).

Then, ∥∥∥∥〈0|U lmax
amp1(t) |0〉 |ψ(0)〉 − 1

2 |ψ(t)〉
∥∥∥∥ ≤ ε

3 . (74)

is satisfied for an arbitrary initial state |ψ(0)〉 ∈ H.

We finally note that the amplification solely by this process cannot achieve the success
probability 1−O(ε) with keeping the efficiency. Analogous to the above formulation, when
we set the widths of the supports of the initial ancillary state, the effective Hamiltonian,
and the projected ancillary state to plmax, qlmax, qlmax (p, q ∈ N, q ≥ p+ 2) respectively,
the success probability becomes p/q. However, the probability larger than 1− ε demands
the relation,

1− ε < p

q
≤ p

p+ 2 . (75)

This implies p ≥ 2(1 − ε)/ε, and hence the number of ancillary qubits reaches at-least
log(plmax) ∈ O(log(γt/ε)). In addition, the query complexity includes a term propor-
tional to the dimension of the ancillary system, qlmax as discussed later in Section 6. This
implies that the query complexity increases linearly in 1/ε, destroying the original log-
arithmic scaling. Thus, relying solely on this amplification protocol is not suitable for
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Boundary
terms

(a)                                  (b)

Figure 2: Schematic picture of how the dynamics in the truncated Floquet-Hilbert space provides
the time-evolved state |ψ(t)〉. (a) The dynamics when we begin with the initial state |0〉 |ψ(0)〉 [See
Eq. (20)]. Following the Lieb-Robinson bound, Theorem 3, the state spreads out within the region
|l| . lmax. This spread results in the low amplitude O

(
1/
√
lmax

)
of the target output |almax〉 |ψ(t)〉.

(b) The dynamics under the amplification by symmetry, where we employ the uniform initial state
|almax〉 ||ψ(0)〉〉 as Eq. (68). Interference takes place within the region |l| . lmax, and thereby enhances
the amplitude of the uniform target state |a4lmax〉 |ψ(t)〉 up to O(1). The gray region represents the
support of boundary terms in the refined effective Hamiltonian H 4lmax

eff,pbc [See Eq. (101)]. It is sufficiently
far from the light-blue region relevant to the dynamics, which is determined by the Lieb-Robinson bound.
This results in the validity of the refined effective Hamiltonian as Theorem 7 says.

efficient simulation of the dynamics. We resolve this problem by the oblivious amplitude
amplification below.

5.2 Oblivious amplitude amplification
The above amplification based on the translation symmetry of Heff enhances the amplitude
of |ψ(t)〉 from 1/

√
2lmax to 1/2−O(ε). Here, we introduce another amplification, called the

oblivious amplitude amplification [16], to achieve the amplitude (or the success probability)
1−O(ε).

The starting point of this amplification is the result of the previous section 5.1. Equa-
tion (73), or equivalently Theorem 6, indicates that the consequence of the amplification
by symmetry is written as

U lmax
amp1(t) |0〉 |ψ(0)〉 = 1

2 |0〉 (|ψ(t)〉+O(ε)) + |Ψ⊥〉 , (76)

with an additional term |Ψ⊥〉 ∈ C8lmax ⊗H satisfying

(|0〉 〈0| ⊗ I) |Ψ⊥〉 = 0. (77)

The state |Ψ⊥〉 generally depends on |ψ(0)〉 and t. The oblivious amplitude amplification
takes a similar strategy to that of the Grover’s search algorithm, in which we compose the
following two unitary operators;

R = (2 |0〉 〈0| − I)⊗ I, (78)
U lmax

amp2(t) = −U lmax
amp1(t)R[U lmax

amp1(t)]†RU lmax
amp1(t). (79)
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The first one R reverses the sign of |l〉 for l 6= 0, and it is implemented with O(log lmax)
gates. The second one U lmax

amp2(t) plays a role in enhancing the amplitude of |ψ(t)〉 up to
1−O(ε). Its action on any initial state |0〉 |ψ(0)〉 is computed as follows;

U lmax
amp2 |0〉 |ψ(0)〉 = U lmax

amp1R(U lmax
amp1)†

(
−1

2 |0〉 |ψ(t)〉+ |Ψ⊥〉
)

+O(ε)

= U lmax
amp1R

{
|0〉 |ψ(0)〉 − (U lmax

amp1)† |0〉 |ψ(t)〉
}

+O(ε). (80)

In the second equality, we use the relation obtained by applying (U lmax
amp1)† to Eq. (76).

Next, we evaluate

R(U lmax
amp1)† |0, ψ(t)〉 = 2 |0〉

(
〈0| (U lmax

amp1)† |0〉
)
|ψ(t)〉 − (U lmax

amp1)† |0, ψ(t)〉 . (81)

Theorem 6 indicates that the time evolution operator U(t) is approximated as∥∥∥∥〈0|U lmax
amp1(t)|0〉 − 1

2U(t)
∥∥∥∥ ≤ ε

3 , (82)

and hence the relation ∥∥∥∥〈0|[U lmax
amp1(t)]†|0〉 − 1

2U(t)†
∥∥∥∥ ≤ ε

3 (83)

is also satisfied. This provides the relation,

R(U lmax
amp1)† |0〉 |ψ(t)〉 = |0〉 |ψ(0)〉 − (U lmax

amp1)† |0〉 |ψ(t)〉+O(ε), (84)

and substituting this into Eq. (80) results in

U lmax
amp2(t) |0〉 |ψ(0)〉 = |0〉 |ψ(t)〉+O(ε), (85)

for an arbitrary initial state |ψ(0)〉.
This result indicates that the operation U lmax

amp2(t) generates the time-evolved state
|ψ(t)〉 with the amplitude 1−O(ε). Or equivalently, as an exact bound for the error, we
can derive the inequality, ∥∥∥U lmax

amp2(t) |0〉 |ψ(0)〉 − |0〉 |ψ(t)〉
∥∥∥ ≤ ε. (86)

The coefficient comes from the fact that an error bounded by ε/3 appears due to Theorem
6 every time we call Eq. (76). The amplification protocol U lmax

amp2(t) employs 3 times queries

to U lmax
amp1(t). Reflecting that the operations U lmax

ini and R require relatively a little resource

(at-most O(log lmax) elementary gates and complexity), the resource for U lmax
amp2(t) has the

same scaling as the one for implementing the time evolution operators e−it
∑

l
lω|l〉〈l| and

e−iH
4lmax

eff t.
As well as the amplification by symmetry, relying only on the oblivious amplitude

amplification fails to efficiently enhances the success probability to obtain |0〉 ⊗ |ψ(t)〉
from O

(
l−1
max

)
to 1−O(ε). When we do not use the first amplification, the protocol of the

oblivious amplitude amplification is given by

Ũ lmax
amp2,p = −

{
U lmax

orig R(U lmax
orig )†R

}p
U lmax

orig , (87)

where the operation U lmax
orig represents the time evolution without the amplification by

symmetry, defined by

U lmax
orig (t) = (U lmax

ini )†e−it
∑

l
lω|l〉〈l|e−iH

lmax
eff t. (88)
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Applying Ũ lmax
amp2,p to the initial state |0〉 ⊗ |ψ(t)〉 returns |0〉 ⊗ |ψ(t)〉 whose amplitude

increases from 1/
√

2lmax approximately in proportion to p. The integer p should be
O
(√
lmax

)
to achieve the amplitude 1−O(ε), reminiscent of the Grover’s search algorithm.

In other words, O
(√
lmax

)
times call of e−it

∑
l
lω|l〉〈l| and e−iH

lmax
eff t is required when we

use Ũ lmax
amp2,p. This is why we suggest the combination of the two amplification protocols,

with which O(1) times call of e−it
∑

l
lω|l〉〈l| and e−iH

lmax
eff t can amplify the amplitude of

|0〉 ⊗ |ψ(t)〉 from 1/
√

2lmax to 1−O(ε).

6 Block-encoding of Effective Floquet Hamiltonian
In the previous section, we show that the combination of the two kinds of amplification
protocols, implemented by U lmax

amp2(t) [See Eq. (86)], provides the target time-evolved state

|ψ(t)〉 with an arbitrarily small error O(ε). The computational resource for U lmax
amp2(t) is

mostly determined by that for e−it
∑

l
lω|l〉〈l| and e−iH

4lmax
eff t. Our strategy is to implement

these two time evolution operators by the qubitization technique [18]. As discussed in
Section 5.2, the computational resources are determined by how to introduce the block-
encoding of the two static Hamiltonians, H lmax

LP = ∑
l∈Dlmax lω |l〉 〈l| ⊗ I (linear potential

Hamiltonian) and H lmax
eff (effective Hamiltonian). The aim of this section is to obtain an ef-

ficient block-encoding of them and to evaluate the costs required to implement e−it
∑

l
lω|l〉〈l|

and e−iH
4lmax

eff t.

6.1 Block-encoding of linear potential Hamiltonian
We compose block-encoding of the linear potential Hamiltonian,

H 4lmax
LP =

∑
l∈D4lmax

lω |l〉 〈l| ⊗ I. (89)

By simple calculation, it can be written in the form of an LCU,

H 4lmax
LP =

∑
l∈D4lmax

ω

2 V
4lmax
l ⊗ I, (90)

V 4lmax
l =

4lmax∑
l′=l
|l′〉 〈l′| −

l−1∑
l′=−4lmax+1

|l′〉 〈l′| . (91)

Using the block-encoding formalism of LCUs by Eq. (10), we immediately obtain the
oracle unitary gate and the oracle state by

O4lmax
LP =

∑
l∈D4lmax

(|l〉 〈l|)b ⊗ V 4lmax
l ⊗ I, (92)

〈a4lmax |O4lmax
LP |a4lmax〉b = H 4lmax

LP
4lmaxω

. (93)

The subscript b for the states |l〉b and |a4lmax〉b represents a new ancillary system introduced
for the block-encoding, requiring the number of qubits nb ∈ O(log lmax). Combining Eqs.
(91) and (92), the oracle unitary gate is rewritten by

O4lmax
LP =

 ∑
l,l′;l′−l≥0

|l, l′〉 〈l, l′| −
∑

l,l′;l′−l<0
|l, l′〉 〈l, l′|

⊗ I. (94)
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To implement this oracle, we use a comparator defined by

Comp |l, l′〉 |0〉b′ =
{
|l, l′〉 |0〉b′ if l′ ≥ l,
|l, l′〉 |1〉b′ if l′ < l,

(95)

with a single-qubit ancillary system b′ [53]. We can immediately confirm the relation,

Comp†Zb′Comp |l, l′〉 |0〉b′ |ψ〉 = O4lmax
LP |l, l′〉 |0〉b′ |ψ〉 , (96)

for arbitrary inputs l, l′ ∈ D4lmax and |ψ〉 ∈ H, where Zb′ denotes a Pauli Z operator on
the system b′. Since the comparator on n qubits can be composed of O(n) elementary
gates, the oracle unitary gate O4lmax

LP requires at-most O(log lmax) gates. The oracle state
|a4lmax〉b, which has equal weights in |l〉, can be prepared by O(log lmax) elementary gates.

We implement the time-evolution e−iH
4lmax

LP t with accuracy 1 −O(ε) by qubitization.
The number of additional gates, other than the block-encoding, is proportional to the
number of ancillary qubits for the oracle O4lmax

LP , that is, we need O(log lmax) additional
gates per query. Based on Section 2.2, it can be executed with the following resources;

• Number of ancillary qubits; O(log lmax)

• Scaling of overall complexity;{
lmaxωt+ log(1/ε)

log(e+ (lmaxωt)−1 log(1/ε))

}
log lmax. (97)

6.2 Block-encoding of effective Hamiltonian

We hereby provide a way to efficiently implement e−iH
4lmax

eff t by the qubitization technique.
We find out that naive block-encoding of the effective Hamiltonian H 4lmax

eff , given by Eq.
(18), faces at the severe increase of the complexity in lmax. This originates from the fact
that the number of nontrivial terms in H 4lmax

eff increases linearly in lmax. To avoid this
problem, we take an alternative approach which yields only O(log lmax) complexity as
follows;

1. Find a refined effective Hamiltonian H on the truncated Floquet-Hilbert space

C8lmax ⊗ H, such that e−iH t accurately reproduces e−iH
4lmax

eff t with an arbitrarily
small error O(ε).

2. Construct block-encoding of H with composing of efficient implementation of its
oracle unitary gate and oracle state.

First, we specify the assumption for the time-periodic Hamiltonian H(t). Here, we
suppose two kinds of the oracles that can be accessed. The first one is about the block-
encoding of each Fourier component Hm (|m| ≤ mmax), given by

〈Gm|aOm |Gm〉a = Hm

αm
, αm > 0, (98)

with an na-qubit ancillary system. Each oracle unitary gate on C2na ⊗ H is represented
by Om, and each oracle state |Gm〉a ∈ C2na is generated by a quantum circuit Gm as
|Gm〉a = Gm |0〉⊗na . The second oracle is a query to coefficients of Fourier components,
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represented by αm. We define the oracle unitary circuit Gcoef , acting on C2mmax+1 [i.e.
O(1)-qubit system], by

Gcoef |0〉 =
∑

|m|≤mmax

√
αm
α
|m〉 , α =

∑
|m|≤mmax

αm. (99)

The parameter α, defined by α = ∑
|m|≤mmax αm, characterizes the energy scale of the

Hamiltonian H(t). In fact, considering ‖Hm‖ ≤ αm for each m, it is bounded by ‖H(t)‖ ≤∑
|m|≤mmax ‖Hm‖ ≤ α. The parameter α also provides the bound on the energy scale of

time-dependent terms γ, as

γ ≤
∑

m6=0;|m|≤mmax

‖Hm‖ ≤ α. (100)

Implementation of the oracle Gcoef is equivalent to embedding probability distributions in
quantum states [54], which also appears as the oracle state for the qubitization technique
in the case of a LCU [See Eq. (10)]. Stimulated by its various applications covering linear
equation solver [55] and quantum singular value transformation [47, 48], there have been
various efficient implementations [56, 54, 46, 57, 58]. Here, we suppose that the number of
elementary gates required for the oracles Om, Gm, and Gcoef is at-most C. As discussed
later in Section 8, the form of time-periodic Hamiltonians H(t) designated by Eq. (98) is
reasonable in that they involve various important classes such as LCUs.

6.2.1 Construction of a refined effective Hamiltonian

Let us compose a refined effective Hamiltonian, which accurately reproduces the dynamics

of e−iH
4lmax

eff t. To come to the point, such a Hamiltonian equipped with suitability for
efficient block-encoding is given by

H 4lmax
eff,pbc = H 4lmax

eff +
∑

(l,m)∈∂F 4lmax

(|l〉 〈l ⊕m| ⊗H−m + h.c.), (101)

with ∂F 4lmax = {(l,m) | 4lmax −mmax + 1 ≤ l ≤ 4lmax, 4lmax − l + 1 ≤ m ≤ mmax}. The
integer l⊕m ∈ D4lmax is defined modulo 8lmax. The additional terms in H 4lmax

eff,pbc connects

the boundary of D4lmax so that the hopping terms, |l〉 〈l +m|, induced by H−m can be
translation-invariant under the shift of |l〉. The subscript “pbc” comes from the periodic
boundary conditions (PBC) for the hopping terms.

In our algorithm, we employ the time evolution e−iH
4lmax

eff,pbc t instead of the original

one e−iH
4lmax

eff t, which is derived by Floquet theory. In other words, we organize the
amplification protocols with the refined effective Hamiltonian H 4lmax

eff,pbc as

U lmax
amp1,pbc(t) = (U 4lmax

ini )†e−iH
4lmax

LP te−iH
4lmax

eff,pbc tU lmax
ini , (102)

U lmax
amp2,pbc(t) = −U lmax

amp1,pbcR(U lmax
amp1,pbc)

†RU lmax
amp1,pbc, (103)

and apply them to the initial state |0〉 |ψ(0)〉. The refined effective Hamiltonian is valid
in a sense that it can also provide the exact time-evolved state as

U lmax
amp2,pbc(t) |0〉 |ψ(0)〉 = |0〉 |ψ(t)〉+O(ε). (104)

The rigorous upper bound on the error is provided by the following theorem.
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Theorem 7. (Refined effective Hamiltonian)
We choose lmax ∈ O(γt+ log(1/ε)/ log log(1/ε)) by Eq. (59). Then, the refined ef-

fective Hamiltonian H 4lmax
eff,pbc well reproduces the dynamics by the original one H 4lmax

eff
as ∥∥∥∥〈0|U lmax

amp1,pbc(t) |0〉 |ψ(0)〉 − 1
2 |ψ(t)〉

∥∥∥∥ ≤ ε

3 , (105)∥∥∥U lmax
amp2,pbc(t) |0〉 |ψ(0)〉 − |0〉 |ψ(t)〉

∥∥∥ ≤ ε, (106)

for an arbitrary initial state |ψ(0)〉 ∈ H.
We deliver its detailed proof in Appendix B.2, and instead we briefly explain why the

refined effective Hamiltonian is valid. The proof relies mainly on the Lieb-Robinson bound,
stated by Theorem 3. Focusing on the amplification protocols U lmax

amp1(t) and U lmax
amp1,pbc(t),

the resulting difference caused by them originates from their actions on the uniform initial
state |almax〉 |ψ(0)〉, as Eq. (72). As we can see from Fig. 2 (b), the Lieb-Robinson bound
dictates that the dynamics during U lmax

amp1(t) is almost closed within −2lmax . l . 2lmax
in the Fourier indices. In contrast, the support of the additional terms of the refined
effective Hamiltonian in Eq. (101) is located at {|l〉}l for l ' ±4lmax, which is sufficiently
far from the Fourier indices relevant for the dynamics. As a result, the refined protocol
U lmax

amp1,pbc(t) transforms the state |almax〉 |ψ(0)〉 in almost the same way as the original

one U lmax
amp1(t), and hence it also outputs the target state |ψ(t)〉 as Eq. (105). Discussion

similar to Section 5.2 ensures that the oblivious amplitude amplification under the refined
effective Hamiltonian, represented by U lmax

amp2,pbc(t), provides |ψ(t)〉 with a sufficiently small
error O(ε) as Eq. (106).

6.2.2 Block-encoding of a refined effective Hamiltonian

The benefit of employing the refined effective Hamiltonian H 4lmax
eff,pbc instead of the original

one H 4lmax
eff is reduction of resources for implementing block-encoding. We construct

an oracle unitary gate O4lmax
eff and an oracle state |G4lmax

eff 〉 for it. With the help of the
additional terms in Eq. (101), the Hamiltonian is written in the following form;

H 4lmax
eff,pbc =

∑
|m|≤mmax

Add4lmax
m ⊗Hm −H 4lmax

LP , (107)

Add4lmax
m =

∑
l∈D4lmax

|l ⊕m〉 〈l| . (108)

The unitary gate Add4lmax
m is a full quantum adder that translates an index l by m modulo

8lmax. It can be implemented by O(log lmax) complexity and elementary gates.
Then, to construct the block-encoding, we prepare four kinds of auxiliary systems

labeled by a, b, c, d. The system a is an na-qubit system prepared for the block-encoding
of Hm [See Eq. (98)], and the system b is the one for H 4lmax

LP having 8lmax dimension [See
Section 6.1]. The other systems c and d have the dimension 2mmax + 1 and 2 respectively,
yielding the number of qubits ncd ∈ O(logmmax) (it is a constant here). We define a
unitary gate O4lmax

eff by

O4lmax
eff = |0〉 〈0|d ⊗

∑
|m|≤mmax

|m〉 〈m|c ⊗Add4lmax
m ⊗Om − |1〉 〈1|d ⊗ O4lmax

LP , (109)

where we omit the identity operators. We also provide a state |G4lmax
eff 〉 by

|G4lmax
eff 〉 =

∑
m
√
αm |0〉d |m〉c |a4lmax〉b |Gm〉a +

√
4lmaxω |1〉d |0〉c |a4lmax〉b |0〉a√

α+ 4lmaxω
. (110)
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In the above formula, we implicitly include ancillary qubits to efficiently implement the
oracles [e.g. the comparator for O4lmax

LP in Eq. (95)]. The number of such ancillary qubits
is smaller than O(log lmax), and hence we neglect it below. We can confirm that they
provide the block-encoding of H 4lmax

eff as follows;

〈G4lmax
eff |O4lmax

eff |G4lmax
eff 〉 =

H 4lmax
eff,pbc

α+ 4lmaxω
, (111)

where we use the block-encoding for Hm and H 4lmax
LP represented by Eqs. (98) and (93).

We evaluate the resources for implementing the oracles. The oracle unitary gate O4lmax
eff

given by Eq. (109) requires elementary gates at-most O(mmax(log lmax + C) + log lmax),
since the unitary operators Add4lmax

m , Om, and O4lmax
LP respectively yield O(log lmax), C,

O(log lmax) gates. On the other hand, the oracle state |G4lmax
eff 〉 can be prepared by

|G4lmax
eff 〉 = G4lmax

eff |w〉d (Gcoef |0〉c) |a
4lmax〉b |0〉

⊗na
a , (112)

with using the quantum circuit G4lmax
eff and the state |w〉d defined by

G4lmax
eff = Id ⊗

∑
|m|≤mmax

|m〉 〈m|c ⊗ Ib ⊗ (Gm)a, (113)

|w〉d =
√

α

α+ 4lmaxω
|0〉d +

√
4lmaxω

α+ 4lmaxω
|1〉d . (114)

The quantum circuit G4lmax
eff can be composed of O(mmaxC) elementary gates. The cost of

the state preparation |w〉d is negligible compared to others since it requires only a single-
qubit rotation. The cost for preparing |a4lmax〉b is at-most O(log lmax) complexity and ele-
mentary gates. To summarize, the cost for the oracles O4lmax

eff and |G4lmax
eff 〉, which embody

the refined effective Hamiltonian H 4lmax
eff,pbc via Eq. (111), is at-most O(mmax(C + log lmax))

elementary gates. The additional gates per query, other than the block-encoding, amounts
to O(na + log(lmax)).

As a result, preparing a unitary circuit corresponding to e−iH
4lmax

eff t with an allowable
error up to O(ε) is summarized as follows;

• Number of ancillary qubits;

na(lmax) = na +O(log lmax + logmmax). (115)

• Scaling of query complexity q(lmax);

(α+ lmaxω)t+ log(1/ε)
log(e+ {(α+ lmaxω)t}−1 log(1/ε)) . (116)

• Number of overall gates;

O(q(lmax)mmax{C + na + log lmax}) (117)

Since mmax is supposed to be a O(1) constant, we will omit it from the cost in the rest of
the paper.
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Ancillary qubits Query complexity
Trotterization

(for H and H(t)) 0 αt · (αt/ε)1/p, (p-th order)

Time-independent H
(Qubitization [18]) na +O(1) (Independent of t, ε) αt+ log(1/ε)

log(e+(αt)−1 log(1/ε))

Time-periodic H(t)
(Adiabatic, Theorem 1) na +O(log(γt) + log log(1/ε)) αt+ log(1/ε)

log(e+{αt+o(log(1/ε))}−1 log(1/ε))

Time-periodic H(t)
(Generic, Theorem 2) na +O(log(γ/ω) + log log(ωt/ε)) αt+ ωt log(ωt/ε)

log(e+{α/ω+o(log(ωt/ε))}−1 log(ωt/ε))

Time-dependent H(t)
(Dyson series [19, 20]) na +O(log{(γωt/α+ αt)/ε}) αt log(αt/ε)

log log(αt/ε)

Table 1: Scaling of the computational resources for Hamiltonian simulation. The definitions for several
parameters are a little different between the above studies. In that case, for simplicity, we replace them
by those which have the similar scales (e.g. ‖H(t)‖ ↔ α,

∥∥ d
dtH(t)

∥∥ ↔ ωγ). We also note that the
query complexity is measured by the oracles, but their definitions depends on the algorithms. See Eq.
(133) [for Trotterization], Eq. (8) [for qubitization], Eq. (24) and Eq. (26) [for our algorithm], and
Eq. (135) [for the truncated Dyson-series algorithm].

7 Algorithm and Its computational cost
This section provides the main result of this paper; we compose the efficient quantum
algorithm for simulating the time-evolved state |ψ(t)〉 = U(t) |ψ(0)〉 under the Hamiltonian
H(t+ T ) = H(t). We note that we take two different approaches depending on the time
scale of interest. The first case is the adiabatic-like case, in which we are interested in O(1)-
period dynamics with t/T ∈ O(1). We call it “adiabatic-like” since long-time dynamics
during 0 ≤ t ≤ T under the sufficiently large period T , exemplified by Thouless pumping
and adiabatic state preparation, is a typical target. The second case is the generic long-
time case, where we are interested in multiple-period dynamics at t/T ∈ Ω(1). In that
case, the the period T is not so large and we often consider long-time dynamics at t� T ,
exemplified by laser-irradiated materials.

7.1 Adiabatic-like cases
We consider the adiabatic-like cases, where long-time dynamics over O(1)-periods is of
interest. For simplicity, we first consider the dynamics within one period at t ∈ [0, T ].
The algorithm in this case is composed of the following steps;

1. Determine the truncation order of the Fourier index lmax by Eq. (59), for the given
time t.

2. Compose two unitary gates U 4lmax
LP (t) and U 4lmax

eff (t), corresponding to the time

evolution operators e−iHLPt and e−iH
4lmax

eff,pbc t by the qubitization technique; We can
find such operators satisfying

U 4lmax
LP (t) |0〉⊗na(4lmax) |l〉 |ψ〉 = |0〉⊗na(4lmax) e−ilωt |l〉 |ψ〉+O(ε), (118)

U 4lmax
eff (t) |0〉na(4lmax) |l〉 |ψ〉 = |0〉⊗na(4lmax) e−iH

4lmax
eff,pbc t |l〉 |ψ〉+O(ε), (119)

for arbitrary inputs l ∈ D4lmax and |ψ〉 ∈ H.

3. Execute the amplification protocols with substituting U 4lmax
LP (t) and U 4lmax

eff (t) re-
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spectively for e−iHLPt and e−iH
4lmax

eff,pbc t [See Section 5];

Ū lmax
amp1 = (U 4lmax

ini )†U 4lmax
LP U 4lmax

eff U lmax
ini , (120)

Ū lmax
amp2 = −Ū lmax

amp1R(Ū lmax
amp1)†RU lmax

amp1. (121)

4. Apply the unitary operation Ū lmax
amp2(t) to the initial state |0〉⊗na(4lmax) |0〉 |ψ(0)〉;

Ū lmax
amp2(t) |0〉⊗na(4lmax) |0〉 |ψ(0)〉 = |0〉⊗na(4lmax) |0〉 |ψ(t)〉+O(ε). (122)

Step 1. determines the dimension of the truncated Floquet-Hilbert space as C8lmax⊗H
so that it can accurately reproduce |ψ(t)〉 with the precision 1 − O(ε), as discussed in
Section 4. In Step 2., we employ the qubitization technique to realize the time evolution
in the truncated Floquet-Hilbert space, as discussed in Section 6. We note that U 4lmax

LP (t)
and U 4lmax

eff (t) can exploit a common O(log(lmax))-qubit ancillary system. It is sufficient

to prepare an {na(4lmax)}-qubit ancillary state |0〉⊗na(4lmax) [See Eq. (115)]. Steps 3. and
4. execute the amplification of the time-evolved state |ψ(t)〉 as discussed in Section 5. By

projecting the ancillary state to |0〉⊗na(4lmax) |0〉, we succeed in preparing the target state
|ψ(t)〉 with precision 1−O(ε), where the success probability is 1−O(ε). These steps do
not change the scaling of the required resource from Eqs. (120) and (121), reflecting that
the unitary operations Uini and R yield at-most O(log lmax) gates.

We finally determine the resource for simulating time-periodic Hamiltonians in adiabatic-
like regimes. The ancillary system should involve the degree of freedom for Fourier indices
{|l〉}l∈D4lmax and na(4lmax) qubits for qubitization. The total number of ancillary qubits
is

na(4lmax) + dlog2(8lmax)e ∈ na +O(log(γt) + log log(1/ε)). (123)

The numbers of the oracles Om and Gcoef are dominated by the qubitization under the re-
fined effective Hamiltonian. Considering the assumption ωt ∈ O(1), the query complexity
given by Eq. (116), scales as

(α+ γ)t+ log(1/ε)
log(e+ (γt)−1 log(1/ε)) + log(1/ε)

log(e+ {(α+ γ)t+ o(log(1/ε))}−1 log(1/ε)) ,

∈ O
(
αt+ log(1/ε)

log(e+ {αt+ o(log(1/ε))}−1 log(1/ε))

)
, (124)

where the o(log(1/ε)) term scales as Eq. (29) originating from the scaling of lmax. The
scaling dependent on γ can be absorbed into that of α, due to the relation γ ≤ α. We
summarize the results in Theorem 1 and Table 1. The number of overall elementary gates
there is determined by the query complexity and the set of additional quantum gates per
query, each of which at most yields O(log lmax) gates. By the O(1)-times repetition of this
procedure for t ∈ [0, T ], the same result for O(1)-period dynamics is obtained.

7.2 Generic long-time cases
We next consider the other generic cases where we are interested in long-time dynamics
over multiple periods as ωt ∈ Ω(1). In this regime, we take a different strategy from that for
the adiabatic cases; We split the time t by t = (n+δ)T with n ∈ N and δ ∈ [0, 1). Following
this separation, we implement the time-evolution operator U(t) by n-times operation of
U(T ) and single operation of U(δT ). The algorithm is composed of the following steps;
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1. Split the time by t = (n+ δ)T with n ∈ N and δ ∈ [0, 1). Determine the truncation
order lTmax by substituting T and ε/n into t and ε of Eq. (59);

lTmax ∈ Θ
(
γT + log(n/ε)

log(e+ (γT )−1 log(n/ε))

)
= Θ

(
γ/ω + log(ωt/ε)

log(e+ (γ/ω)−1 log(ωt/ε))

)
. (125)

2. Compose a unitary gate Ū
lTmax

amp2(T ), which satisfies

Ū
lTmax

amp2(T ) |0〉⊗na(4lTmax) |0〉 |ψ(0)〉 = |0〉⊗na(4lTmax) |0〉 |ψ(T )〉+O(ε/n), (126)

by the qubitization and the amplitude amplification protocols (Follow Steps 2.-4. of
Section 7.1 wih substituting T , ε/n, and lTmax into t, ε, and lmax respectively).

3. Apply the unitary gate Ū
lTmax

amp2(T ) to the initial state n times, which results in

[Ū lTmax
amp2(T )]n |0〉⊗na(4lTmax) |0〉 |ψ(0)〉 = |0〉⊗na(4lTmax) |0〉 |ψ(nT )〉+O(ε). (127)

4. Prepare the unitary gate Ū
lTmax

amp2(δT ) by substituting δT , ε, and lTmax into t, ε, and
lmax respectively in Steps 2.-4. of Section 7.1. Applying it once to the above state
results in

Ū
lTmax

amp2(δT )[Ū lTmax
amp2(T )]n |0〉⊗na(4lTmax) |0〉 |ψ(0)〉 = |0〉⊗na(4lTmax) |0〉 |ψ(t)〉+O(ε).(128)

for arbitrary initial states |ψ(0)〉.

We remark several points in each step. Steps 1. and 2. are executed to apply U(T ),
giving the time-evolution over one period T . Here, we set the acceptable error to O(ε/n)
so that we can obtain the time-evolved state |ψ(nT )〉 with an error up to O(ε) after the

n-times repetition in Step 3. The cost for the unitary gate Ū
lTmax

amp2(T ) is dominated only by

that of U
4lTmax

eff , which reproduces the time evolution exp
(
−iH 4lTmax

eff,pbcT
)

by the qubitization.

This comes from the fact that the time evolution e−iH
4lTmax

LP T is trivial due to

e−iH
4lTmax

LP T =
∑

l∈D4lTmax

eilωT |l〉 〈l| ⊗ I = 1, (129)

and we do not need U
4lTmax

LP in Eq. (120). As a result, the query complexity for n-times

implementation of Ū
lTmax

amp2(T ) during Step 3. is proportional to

n

{
(α+ lTmaxω)T + log(n/ε)

log(e+ {(α+ lTmaxω)T}−1 log(n/ε))

}
∈ O

(
αt+ ωt log(ωt/ε)

log(e+ {α/ω + o(log(ωt/ε))}−1 log(ωt/ε))

)
. (130)

We use the fact n ∈ O(ωt) in the above relation. Step 4. realizes the remaining micromo-
tion U(δT ) for the duration δT with an error up to O(ε). We remark that the choice of
the truncation order lTmax so far is sufficient to achieve the precision 1 − O(ε) for U(δT )
due to lTmax > lδTmax. This implies that we can reuse the ancillary state |0〉⊗na(4lTmax) for the
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qubitization approach to the time-evolution U(δT ) in Step 4. The cost for implementing

Ū
lTmax

amp2(δT ) once is obtained by setting t = δT in adiabatic-like cases. It is smaller than
the cost for implementing the time-evolution U(T ), and does not affect the scaling of the
computational resource.

Finally, we provide the computational resource for time-periodic Hamiltonian dynamics
in generic long-time regimes. The number of ancillary qubits is given by na(4lmax) +
dlog2(8lTmax)e, which is bounded by

na +O(log(γ/ω) + log log(ωt/ε)). (131)

The query complexity is dominated by Eq. (130). We summarize them in Theorem 2 and
Table 1.

7.3 Comparison with other algorithms
Let us compare our algorithm on time-periodic Hamiltonians with other quantum al-
gorithms for Hamiltonian simulation, based on Table 1. We pick up the qubitization
technique [18] for time-independent Hamiltonian H and the truncated Dyson-series al-
gorithm [19, 20] for generic time-dependent Hamiltonian H(t), whose resources have the
best scaling in t and 1/ε as far as we know. We also consider the standard way, Trotteri-
zation, which covers generic time-independent, time-periodic, and generic time-dependent
Hamiltonians.

Let us first compare our algorithm with Trotterization. When the Hamiltonian can be
divided into H(t) = ∑Γ

r=1Hr(t), where every term in Hr(t) commutes with one another
at every time, the first-order Trotterization roughly approximates the time-evolution U(t)
by

U(t) =
M−1∏
l=0

[ Γ∏
r=1

(
T e−i

∫ tl+1
tl

dt′Hr(t′)
)]

+O
(

(αt)2

M

)
, (132)

with M partitions of the time t as tl = lt/M [2]. Reflecting that the Trotterization error
polynomially decreases in the partition number M , we need queries to a layered quantum
circuit

Γ∏
r=1

(
T e−i

∫ tl+1
tl

dt′Hr(t′)
)

(133)

for O
(
(αt)2/ε

)
times to achieve the allowable error ε. While the coefficient α and the

powers in t and 1/ε can be improved by higher-order Trotterization [12], its resource
increases polynomially in 1/ε. Our algorithm has better scaling of elementary gates than
Trotterization in that the resource increases logarithmically in 1/ε.

The comparison with the qubitization and the truncated Dyson-series algorithm is
instructive for evaluating the efficiency of our algorithm due to the inclusion relation,

[Set of time-independent H] ⊂ [Set of time-periodic H(t) = H(t+ T )]
⊂ [Set of generic time-dependent H(t)]. (134)

The qubitization technique achieves the least number of ancillary qubits in a sense that
it is independent of t and 1/ε. It also has the best query complexity, in which the opti-
mal scaling both in t and 1/ε appears in an additive way as Eq. (14). The number of
ancillary qubits and the query complexity for the qubitization provide the best bound for
time-periodic Hamiltonians, while it is nontrivial whether or not it is actually achievable.
Comparison with the truncated Dyson-series algorithm tells us how efficiently we deal
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with the time-dependent Schrödinger equation. The cost reduction compared to them can
be interpreted as improvement of efficiency due to the time-periodicity.

Before going to the comparison respectively for the adiabatic-like regime and the
generic long-time regime, we remark several points in common. First, we replace some
parameters by those which have similar scales to simply compare these algorithms. For
instance, the parameters α and γ respectively give the energy scales of the whole Hamilto-
nian H(t) and the time-dependent terms H(t)−H0 according to Eqs. (25) and (23). We

substitute α and ωγ respectively for supt(‖H(t)‖) and supt(
∥∥∥ d

dtH(t)
∥∥∥), which are charac-

teristic values in the truncated Dyson-series algorithm.
The second point is the complexity of the oracles themselves. In the qubitization

technique, the query complexity is measured by the oracles to a static Hamiltonian H as
Eq. (8). In contrast, the truncated Dyson-series algorithm for generic cases employs the
oracle

Ham−O =
M∑
l=1
|l〉 〈l| ⊗O(tl), (135)

where l labels the discretized time tl with the partition number M ∈ O(1/ε) [19]. The
oracle Ham−O includes multiple implementation of O(tl), which is an oracle for a static
instantaneous Hamiltonian H(tl) (some specific cases such as LCUs and sparse-access
matrices with integrable time-dependency can be simplified [20]). Our algorithm for time-
periodic Hamiltonians uses the oracles {Om, |Gm〉}, which gives block-encoding of each
Fourier component Hm as Eq. (98), and the oracle for the coefficients, Gcoeff given by Eq.
(99). The query complexity in our algorithm is roughly measured by the oracle for a static
operator Hm since the latter one Gcoeff , a quantum gate on at-most O(1) qubits, is usually
negligible. Therefore, note that our algorithm adopts essentially the same measure for the
query complexity as the query complexity, while the truncated Dyson-series algorithm
counts it by rather complicated oracles involving discretized time.

7.3.1 Adiabatic-like cases

We assess the cost for simulating time-periodic Hamiltonians in the adiabatic-like cases
based on Table 1. First, we compare the number of ancillary qubits with those for other
algorithms. What should be noted in our algorithm is its scaling in the inverse error 1/ε.
Our algorithm requires O(log log(1/ε)) additional qubits, whose number lies just in the
middle of that for the qubitization (ε-independent) and that for the truncated Dyson-series
algorithm [O(log(1/ε))]. Importantly, the reduction compared to the latter one can be
attributed to the faster convergence of our formalism based on the Fourier indices. The
error arising from time discretization polynomially decays in the partition number M ;
as a result, the truncated Dyson-series algorithm requires at-least O(log(1/ε)) ancillary
qubits via the oracle Eq. (135). In contrast, we introduce the truncation order lmax for the

Floquet-Hilbert space. The error by this cutoff scales as O
(
(γt/lmax)lmax

)
, whose decay

is faster than the exponential function e−O(lmax). This leads to the reduction of ancillary
qubits from O(log(1/ε)) to O(log log(1/ε)).

Next, we compare the query complexity. When we fix the inverse error 1/ε and increase
time t, it scales as O(αt). The linear increase in time t implies the optimality of our
algorithm in time. When we consider 1/ε → ∞ for given time, the query complexity
scales as

log(1/ε)
log log log(1/ε) , (136)
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where we substitute the form of the o(log(1/ε)) term, Eq. (29), into Eq. (28). This scaling
is nearly-optimal in 1/ε. Importantly, their contributions affect the query complexity in
an additive way as αt + o(log(1/ε)). This means that our algorithm deals with time-
periodic systems with the cost sufficiently close to qubitization [See Eq. (14)], and saves
resource compared to the truncated Dyson-series algorithm requiring the multiplicative
query complexity αt × o(log(αt/ε)). As long as we suppose polynomial accuracy ε ∈
1/poly (N), implying log(1/ε) . αt, the query complexity can achieve the best scaling for
time-independent systems.

While we hereby provide comparison with the truncated Dyson-series algorithm, our
algorithm outperforms other time-dependent Hamiltonian simulation algorithms [21, 22,
23, 24] in the presence of time-periodicity. For instance, Ref. [24] can achieve the additive
query complexity when the second derivative of H(t) in t vanishes (i.e., linear dependence),
but time-periodicity prohibits vanishing derivatives. For time-periodic Hamiltonian sim-
ulation, the additive query complexity close to that of the qubitization is unique to our
algorithm. Any of the other algorithms using the discretized time requires at-least O(1/ε)
degrees of freedom, while we need O(log(1/ε)) for the Fourier indices. Thus, our algorithm
always saves the number of ancillary qubits.

7.3.2 Generic long-time cases

Here, we evaluate the computational resources for generic long-time regimes. We suppose
that the frequency ω is constant and hence small compared to the whole-system energy
scales α and γ, which usually increase polynomially in the system size N . This assumption
comes from the fact that ω typically represents the frequency of external drives (e.g. light),
which is size-independent. More importantly, when the frequency ω is poly (N) so that
it becomes comparable to α and γ, the dynamics can be efficiently simulated by the
methods for time-independent Hamiltonians with the help of high-frequency expansions
[59, 60, 61, 62, 63], as we prove in Appendix D. Therefore, it is sufficient to consider the
computational resources under ω ∈ O

(
N0) and α, γ ∈ poly (N).

The number of ancillary qubits is similar to that for the adiabatic cases. We note
that its scaling in the time [O(log log t)] overwhelms that of the truncated Dyson-series
algorithm [O(log t)] in addition to the inverse error 1/ε. The number of ancillary qubits
for time-periodic Hamiltonians lie between those for time-independent and time-dependent
Hamiltonians in terms of both t and 1/ε.

We discuss the query complexity given by Theorem 2. Under the fixed allowable error
ε, the scaling of the query complexity in sufficiently large time t is given by

αt+ ωt
log(ωt/ε)

log log log(ωt/ε) ≤ {α+ ω log(1/ε)}t+ ωt log(ωt). (137)

Due to the second term in the right hand side, the query complexity has at least nearly-
optimal dependence in t, which involves logarithmic correction log(ωt). However, reflecting
the assumptions α ∈ poly (N) and ω ∈ O

(
N0), the O(ωt log(ωt)) term can be non-

negligible compared to O(αt) only when the time reaches t ∼ eα/ω/ω ∈ O
(
epoly(N)T

)
.

Therefore, unless we consider unpractical time scales t ∈ eΘ(N), this nearly-optimal scaling
is formal, and the query complexity actually increases linearly in time t, showing the
optimal scaling. On the other hand, when we focus on the scaling in the inverse error 1/ε,
the query complexity scales as

ωt
log(1/ε)

log log log(1/ε) . (138)
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Thus, our algorithm achieves nearly-optimal scaling in 1/ε with slight deviation from the
optimal dependence by log log(1/ε)/ log log log(1/ε).

When it comes to the combined scaling of the query complexity in t and 1/ε, we note
that it has an additive form as

αt+ ωt× o(log(1/ε)), (139)

where we neglect O(ωt log(ωt)). Although linear increase in t couples with logarithmic
increase in 1/ε, the coefficient ωt ∈ O

(
N0)t is much smaller than the whole energy-time

scale αt ∈ poly (N) t. As a consequence, also in generic long-time cases, our algorithm
achieves the query complexity close to that of qubitization [See Eq. (14)] and saves much
cost compared to the truncated Dyson-series algorithm, where the query complexity scales
as poly (N) t× o(log(αt/ε)).

8 Illustrative examples
In this section, we briefly discuss some potential applications of the algorithm. We expect
that it can be applied to nonequilibrium quantum many-body phenomena, which are often
of interest in condensed matter physics and quantum chemistry. In terms of quantum
computation, it will offer an efficient protocol for adiabatic state preparation, which can
be applied to quantum phase estimation for instance. We suggest the simplest examples
for both applications below.

8.1 Nonequilibrium quantum many-body phenomena
The first application is to simulate nonequilibrium dynamics of periodically-driven quan-
tum materials. Optical responses are typical but of great interest both in condensed matter
physics and quantum chemistry. We pick up an N -site Fermi-Hubbard model under laser
light as the simplest case;

H(t) = HHub +Hext(t), (140)
HHub =

∑
k

∑
σ=↑,↓

εkn̂kσ + U
∑
x

n̂x↑n̂x↓. (141)

Here, n̂kσ = ĉ†kσ ĉkσ and n̂xσ = ĉ†xσ ĉxσ are number operators of electrons in the momentum
and real spaces respectively, generated by fermionic annihilation operators ĉkσ and ĉxσ.

The time-periodic term Hext(t) represents the coupling with light. When we shine
linearly-polarized light with the frequency Ω, it is given by

Hext(t) = sin(Ωt)
∑
x,σ

Vxn̂xσ, (142)

which results in T = 2π/Ω and mmax = 1. The Fourier components Hm are given by
H0 = HHub and H±1 = (±i)∑x,σ(Vx/2)n̂xσ. To evaluate the cost of simulating |ψ(t)〉,
we compose the oracles for them. We employ a unitary operation, called fermionic fast
Fourier transform (FFFT) [64, 65, 66], which transforms the basis in the momentum space
ki to that in the real space xi as n̂kiσ = FFFT†n̂xiσFFFT. We map the fermionic system
to a spin system by Jordan-Wigner transformation as n̂xσ = (1+Zxσ)/2 (“xσ” denotes an
index for qubits). By neglecting constant terms and a conserved particle number

∑
xσ n̂xσ,
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the block-encoding for {Hm} can be constructed by the technique for LCUs, as Eq. (10).
Assuming εk, U, Vx ≥ 0 without loss of generality, this leads to

O0 = |0〉 〈0| ⊗
∑
x,σ

|x, σ〉 〈x, σ| ⊗ FFFT†ZxσFFFT

+ |1〉 〈1| ⊗
∑
x,σ

|x, σ〉 〈x, σ| ⊗ Zx↑Zx↓, (143)

|G0〉 =
∑
x,σ

(√
εx
α0
|0〉+

√
U

2α0
|1〉
)
|x, σ〉 , (144)

O±1 = I ⊗
∑
x,σ

|x, σ〉 〈x, σ| ⊗ (±iZxσ), (145)

|G±1〉 = |0〉
∑
x,σ

√
Vx

2α±1
|x, σ〉 , (146)

with α0 = 2∑x εx + UN and α±1 = ∑
x Vx. In the above oracles, the unitary gate O0

requires much cost due to O(1)-times usage of FFFT, which can be implemented with
at-most O(N logN)-depth quantum circuits composed of adjacent two-qubit gates [66].
The depth needed for each oracle is at-most O(N logN).

The number of ancillary qubits for them to express {|0〉 |x, σ〉 , |1〉 |x, σ〉} amounts to
na ∈ O(logN). The energy scales of the whole Hamiltonian, α, determined by Eq. (25)
as

α = 2
∑
x

εx + UN + 2
∑
x

Vx. (147)

Although it is difficult to obtain γ from its definition Eq. (23), we can easily obtain its
upper bound, which results in

γ ≤
∑
m=±1

‖Hm‖ =
∑
x

Vx. (148)

It is adequate for determining the computational resource, since α is rather dominant
in the query complexity and γ appears as O(log γ) in the number of ancillary qubits.
When we define the characteristic local energy scale by αloc = max(εk, U, Vx), they are
approximately described by α, γ ∈ O(αlocN).

Finally, if we are interested in the time-evolved state |ψ(t)〉 over multiple periods, the
following resources are required to achieve the precision 1−O(ε);

• Number of ancillary qubits;

O(log(αlocN/Ω) + log log(Ωt/ε)). (149)

• Overall gate complexity;

O({αlocNt+ Ωt log(Ωt/ε)}N logN). (150)

The above results are based on Eqs. (130) and (131), where we neglect size-independent
additional gates for each query to the oracles. According to classical numerical calculations
[67, 68, 69], the above model is expected to host high-harmonic generation, where intense
oscillation with the frequency nΩ (n = 2, 3, . . .) arises in response to laser light with the
frequency Ω. Our algorithm allows to efficiently identify such a nontrivial nonequilib-
rium phenomenon with guaranteed accuracy by simulating the Fourier spectrum of some
observables 〈ψ(t)|O|ψ(t)〉 (e.g. electric current) [70].
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Another interesting example is a discrete time crystal as a phase of matter inherent
in nonequilibrium, where time-translation symmetry is spontaneously broken [28, 29, 30].
When we choose Hext(t) by uniform circularly-polarized ac field represented by

Hext(t) = V
∑
x

(
eiΩtĉ†x↑ĉx↓ + e−iΩtĉ†x↓ĉx↑

)
, (151)

the Fermi-Hubbard model becomes a potential platform for a time-crystalline phenomenon
protected by Floquet dynamical symmetry [71]. Its signature can be detected by subhar-
monic oscillations of spatio-temporal correlation functions and local observables. These
values are both efficiently computed via the time-evolution operator U(t) by our algorithm,
requiring the computational resources similar to Eqs. (149) and (150).

As nonequilibrium systems dominated by time-periodic Hamiltonians have been vigor-
ously explored as Floquet systems, our algorithm will cover various phenomena. We also
note that our algorithm is extended to time-periodic Hamiltonians with exponentially-
decaying Fourier components ‖Hm‖ . e−O(|m|). Since we often face at situations where
high-frequency components of H(t) rapidly diminish, our result will be useful for a variety
of nonequilibrium phenomena in condensed matter physics and quantum chemistry, other
than the above examples (See also Appendix C.5).

8.2 Adiabatic state preparation
Adiabatic state preparation is a protocol to obtain a preferable quantum state by adiabat-
ically evolving quantum systems with time-dependent Hamiltonians H(t). While it has
been originally developed in the context of adiabatic quantum computation relying on the
adiabatic theorems of quantum dynamics [42], it can be exploited also on circuit-based
quantum computers by mimicking the adiabatic dynamics under H(t). One of typical aims
is to prepare initial states required for quantum simulation [41, 6, 58]. Here, we provide
the simplest application of our algorithm in this field.

We prepare a time-periodic Hamiltonian H(t), which continuously connects two dif-
ferent time-independent Hamiltonians H̄0 and H̄1. A certain eigenstate of H̄0, denoted
by |ψ̄0〉, is supposed to be easily prepared on quantum circuits, and we assume that the
eigenstate of H̄1, which is continuously connected to |ψ̄0〉, corresponds to the target state
|ψ̄1〉. As the simplest case, we organize such a time-periodic Hamiltonian by

H(t) = H̄0(1− sinωt) + H̄1 sinωt, (152)

with satisfies H(0) = H̄0 and H(T/4) = H̄1. Our algorithm for the adiabatic-like cases
in Section 7.1 enables us to efficiently execute the adiabatic state preparation. Since the
Fourier components of H(t) is simply given by H0 = H̄0 and H±1 = ±(H̄0 − H̄1)/2i with
mmax = 1, the following oracles are necessary;

O0 = I ⊗ Ō0, |G0〉 = |0〉 |Ḡ0〉 , (153)
O±1 = |0〉 〈0| ⊗ (∓iŌ0) + |1〉 〈1| ⊗ (±iŌ1), (154)

|G±1〉 =
√
ᾱ0 |0〉 |Ḡ0〉+

√
ᾱ1 |1〉 |Ḡ1〉√

ᾱ0 + ᾱ1
. (155)

Here, (Ō0, |Ḡ0〉 , ᾱ0) and (Ō1, |Ḡ1〉 , ᾱ1) respectively provides the block-encoding of the
time-independent Hamiltonians H̄0 and H̄1 as Eq. (8). The oracles O±1 and |G±1〉 gives
the block-encoding of H±1 as 〈G±1|O±1|G±1〉 = 2H±1/(ᾱ0 + ᾱ1). According to the stan-
dard adiabatic theorem [42], the duration required for approximating the target state |ψ̄1〉

Accepted in Quantum 2023-03-16, click title to verify. Published under CC-BY 4.0. 32



by the adiabatically-evolved state U(T/4) |ψ̄0〉 with accuracy 1 − O(ε) roughly amounts

to T &
∥∥∥H̄0 − H̄1

∥∥∥/ε∆2, where ∆ denotes the minimal gap upon the instantaneous eigen-

state of H(t) continuously connecting |ψ̄0〉 and |ψ̄1〉. Therefore, in the adiabatic state
preparation based on our algorithm, the query complexity counted by the oracles of the
two static Hamiltonians H̄0 and H̄1 amounts to

ᾱ0 + ᾱ1
ε∆2

∥∥∥H̄0 − H̄1
∥∥∥+ o(log(1/ε)). (156)

Although the second term is buried by the first one polynomially increasing in 1/ε, the
cost has better scaling in 1/ε compared to the cases where similar schedules for H(t) are
tackled with the Trotterization [∼ (1/ε)1+2/p] or the truncated Dyson-series algorithm
[∼ (1/ε) log(1/ε)].

In adiabatic quantum computation, the required time in 1/ε can be improved via more
sophisticated scheduling, such as local adiabatic interpolation [72], boundary cancellation
[73, 74] and quasi-adiabatic processes [75]. In particular, the last one has achieved the
query complexity poly-logarithmic in 1/ε with the help of the truncated Dyson-series al-
gorithm. If we can find time-periodic Hamiltonians which are consistent with such sophis-
ticated schedules, it will offer a more efficient protocol for the adiabatic state preparation.

9 Discussion and Conclusion
We conclude our paper with summarizing the results. In this paper, we focus on time-
dependent systems with time-periodicity, and organize an efficient implementation of their
time-evolution operators. Once we prepare the oracles which embeds each Fourier compo-
nent and each coefficient of the Hamiltonian, a series of unitary operations on the truncated
Floquet-Hilbert space extract the time-evolved state |ψ(t)〉 with an allowable error 1/ε,
whose query complexity are both optimal or nearly-optimal in t and 1/ε. In addition, it
has an additive scaling αt + o(log(1/ε)) [adiabatic-like regime] or αt + ωt × o(log(1/ε))
[generic long-time regime], and hence achieves the cost sufficiently close to that of the best
algorithm for time-independent systems [18], despite the existence of time-dependency.
As exemplified by nonequilibrium quantum many-body phenomena and adiabatic state
preparation, our algorithm will contribute to pioneering applications of quantum com-
puters for various aims, in condensed matter physics, quantum chemistry, and quantum
computation.

We finally discuss some potential future directions of our results. The first one is to
explore efficient implementation of meaningful functions in time-periodic systems, other

than the time-evolution operator U(t) = T exp
(
−i
∫ t
0 H(t′)dt′

)
. In our algorithm, we

exploit the qubitization technique to implement the exponential function, e−iH
lmax

eff t, in
the effective Hamiltonian H lmax

eff . As the qubitization technique allows to efficiently apply
various polynomial functions, we expect that our algorithm can be extended for various
aims other than the unitary time evolution discussed here. For instance, our discussion on
the Lieb-Robinson bound in Section 4 is valid also when a time-periodic Hamiltonian H(t)
is non-hermitian. This suggests that our algorithm may be available also for solving time-
periodic linear differential equations [76], exemplified by dissipative quantum may-body
systems [77, 78]. While we do not expect exponential speedup due to the non-unitarity
in general, it will offer an efficient way both in time and desirable accuracy. It would
be important to clarify what kind of function is useful in time-periodic systems, how the
Lieb-Robinson bound and the amplitude amplification should be modified, and then how
the computational cost is affected.
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Another significant direction is to seek for useful tasks that can be efficiently tackled
with time-periodic Hamiltonians. As we have shown throughout the paper, time-periodic
Hamiltonians can be simulated more efficiently generic time-dependent Hamiltonians with
computational resources close to those for time-independent Hamiltonians. This means
that quantum tasks which inevitably requires time-dependent operations, such as adiabatic
state preparation, can be optimized by tuning their schedules in a time-periodic way. It will
be important to clarify what kind of tasks can be addressed by time-periodic Hamiltonians
and how our algorithm provides better scaling in 1/ε for their costs, which we leave for
future work.
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Appendix

A Short explanation of Eq. (7)
Our algorithm is mainly based on the fact that the dynamics in the Floquet-Hilbert space,

|ψ∞(t)〉 = lim
lmax→∞

∑
l∈Dlmax

e−ilωt 〈l| e−iH
lmax

eff t |0〉 |ψ(0)〉 , (157)

exactly corresponds to the solution |ψ(t)〉 [45]. Here, we roughly explain this relation for
this paper to be self-contained. We differentiate the above formula in t;

i
d
dt |ψ

∞(t)〉 =
∑
l∈Z

e−ilωt 〈l| (Heff + lω)e−iHefft |0〉 |ψ(0)〉

=
∑
l∈Z

∑
m∈Z

e−ilωtH−m 〈l +m| e−iHefft |0〉 |ψ(0)〉

=

∑
m∈Z

H−me
imωt

∑
l∈Z

e−ilωt 〈l| e−iHefft |0〉 |ψ(0)〉


= H(t) |ψ∞(t)〉 . (158)

Noting that |ψ∞(0)〉 = |ψ(0)〉, the uniqueness of the solution of the Schrödinger equation
suggests the relation |ψ∞(t)〉 = |ψ(t)〉.

B Proof of the theorems for formulation
B.1 Amplitude amplification by symmetry
In Section 5.1, we discuss the amplification of the time-evolved state |ψ(t)〉 with exploiting
the translation symmetry of generic time-periodic Hamiltonians. With the usage of the
protocol,

U lmax
amp1(t) = (U 4lmax

ini )†e−it
∑

l
lω|l〉〈l|e−iH

4lmax
eff tU lmax

ini , (159)

we see that it generates the time-evolved state |ψ(t)〉 with O(1) amplitude as

〈0|U lmax
amp1(t) |0〉 |ψ(0)〉 ' 1

2(|ψ(t)〉+O(ε)). (160)

We rigorously prove this statement, which is summarized as Theorem 6.
In order to show Theorem 6, we begin with discussing the approximate translation

symmetry. To be precise, we evaluate how much error appears in the approximation,

〈l| e−iH
4lmax

eff t |l′〉 ' eil′ωt 〈l − l′| e−iH
4lmax

eff t |0〉 , (161)

which we refer to as Eq. (69) in the main text. The exact upper bound on this error is
given by the following theorem.

Lemma 8. (Approximate translation symmetry)
We choose the truncation order lmax ∈ Θ(γt+ log(1/ε)/ log log(1/ε)) by Eq. (59). For

indices l′ ∈ Dlmax and l ∈ D4lmax , the inequality
∥∥∥〈l|e−iH 4lmax

eff t|l′〉 − eil′ωt 〈l 	 l′|e−iH
4lmax

eff t|0〉
∥∥∥ ≤ 8(γt)n(l′,l)

n(l′, l)! (162)
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is satisfied with
n(l′, l) =

⌈(8lmax − 2mmax − |l| − |l′|)
mmax

⌉
. (163)

Here, l 	 l′ ∈ D4lmax denotes the difference l − l′ defined modulo 8lmax.

Proof.— We consider dynamics under a perturbed Hamiltonian Hpert(t), defined by

Hpert(t) = H 4lmax
eff + Hb(t), (164)

Hb(t) =
∑

(l,m)∈∂F 4lmax

(|l〉 〈l ⊕m| ⊗ ei8lmaxωtH−m + h.c.), (165)

with ∂F 4lmax = {(l,m) | 4lmax −mmax + 1 ≤ l ≤ 4lmax, 4lmax − l+ 1 ≤ m ≤ mmax}. In the
interaction picture based on H0 = ∑

l∈D4lmax |l〉 〈0|⊗(H0−lω), the perturbed Hamiltonian
Hpert,I(t) is exactly translation symmetric under arbitrary shift |l〉 → |l ⊕m〉 as

Hpert,I(t) =
∑

m 6=0;|m|≤mmax

Add4lmax
m ⊗ e−imωtHI

m(t). (166)

In the original frame, this exact symmetry implies the satisfaction of

〈l|Upert(t)|l′〉 = eil
′ωt 〈l 	 l′|Upert(t)|0〉 , (167)

where Upert(t) indicates the time evolution operator under the perturbed Hamiltonian
Hpert(t). Upon this relation, we evaluate the upper bound on the error by a triangle
inequality,

[l.h.s. of Eq. (162)] ≤
∥∥∥〈l|e−iH 4lmax

eff t −Upert(t)|l′〉
∥∥∥+

∥∥∥〈l 	 l′|e−iH 4lmax
eff t −Upert(t)|0〉

∥∥∥.
(168)

We begin with computing the bound of the first term. Using the Dyson series expansion
in the interaction picture, similarly to Eqs. (37)-(42), it can be bounded by∥∥∥〈l|e−iH 4lmax

eff t −Upert(t)|l′〉
∥∥∥

≤
∞∑
n=0

∫ t

0
dtn . . .

∫ t2

0
dt1
∥∥∥∥∥〈l|

n∏
i=1

Hpert,I(ti)−
n∏
i=1

H 4lmax
I (ti) |l′〉

∥∥∥∥∥. (169)

As discussed in the proof of Theorem 3, each integrand is decomposed into contribu-
tions from the transition amplitudes via paths |l′〉 → |l1〉 → . . . → |l〉. The difference
between the Hamiltonians Hpert(t) and H 4lmax

eff arises only when the path goes across
D4lmax\D4lmax−mmax , which is the support of Hb(t). For low order terms with n < n(l′, l),
defined by Eq. (163), such a nontrivial path is absent, and we obtain∥∥∥〈l|e−iH 4lmax

eff t −Upert(t)|l′〉
∥∥∥ ≤ ∞∑

n=n(l′,l)

tn

n!

{(
sup
t

(‖Hpert,I(t)‖)
)n

+ γn
}
. (170)

Since the Hamiltonian Hpert,I(t) given by Eq. (166) is a circulant matrix (i.e. invariant
under the shift of |l〉) [51], its operator norm can be bounded by

‖Hpert,I(t)‖ ≤ sup
t′

∥∥∥∥∥∥
∑
m6=0

e−imωtHI
m(t)eimωt′

∥∥∥∥∥∥


= sup
t′

(∥∥H(t− t′)−H0
∥∥) = γ. (171)
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As a result, Eq. (170) is further bounded by∥∥∥〈l|e−iH 4lmax
eff t −Upert(t)|l′〉

∥∥∥ ≤ 2
∞∑

n=n(l′,l)

(γt)n
n! . (172)

In a similar way, we can obtain the bound on the second term of the right hand side
of Eq. (168), which results in the above formula under the replacement of n(l′, l) by
n(0, l	 l′). Since n(0, l	 l′) is always larger than n(l′, l) from their definitions, we obtain
the accuracy of the approximate translation symmetry as

[l.h.s of Eq. (162)] ≤ 4
∞∑

n=n(l′,l)

(γt)n
n! ≤ 8(γt)n(l,l′)

n(l′, l)! . (173)

When we choose the truncation order lmax by Eq. (59), the integer n(l′, l) is always larger
than 6γt for indices l ∈ D4lmax and l′ ∈ Dlmax . We use Eq. (45) for the last inequality.
�

This lemma ensures that the approximate translation symmetry in the truncated
Floquet-Hilbert space is extremely accurate; the right hand side of Eq. (162) is approx-
imately O

(
ε3) under the choice of lmax, Eq. (59). As we intuitively discuss in Section

5.1, the approximate translation symmetry ensures the amplification by symmetry as Eq.
(73). We next prove the consequence of Theorem 6, which gives the exact description of
Eq. (73); ∥∥∥∥〈0|U lmax

amp1(t) |0〉 |ψ(0)〉 − 1
2 |0〉 |ψ(t)〉

∥∥∥∥ ≤ ε

3 . (174)

Proof of Theorem 6.— We track Eq. (70) in a rigorous way. We begin with the
definition,

〈0|U lmax
amp1(t) |0〉 |ψ(0)〉 = 1

4lmax

∑
l′∈Dlmax

∑
l∈D4lmax

e−ilωt 〈l| e−iH
4lmax

eff t |l′〉 |ψ(0)〉 . (175)

We separate the summation over l ∈ D4lmax in the above formula by∑
l∈D4lmax

=
∑

l;l−l′∈D3lmax

+
∑

l∈D4lmax ;l−l′ /∈D3lmax

. (176)

Let us focus on the first summation. For each l′ ∈ Dlmax , the summation can be approxi-
mated as∥∥∥∥∥∥

∑
l;l−l′∈D3lmax

e−ilωt 〈l| e−iH
4lmax

eff t |l′〉 |ψ(0)〉 − |ψ(t)〉

∥∥∥∥∥∥
≤

∑
l;l−l′∈D3lmax

8(γt)n(l′,l)

n(l′, l)! +

∥∥∥∥∥∥
∑

l∈D3lmax

e−ilωt 〈l| e−iH
4lmax

eff t |0〉 |ψ(0)〉 − |ψ(t)〉

∥∥∥∥∥∥
≤

∑
l∈D4lmax

8(γt)n(lmax,l)

n(lmax, l)!
+ 10mmax

(
emmaxγt

3lmax

)3lmax/mmax

. (177)

In the first inequality, we employ Lemma 8 with taking l− l′ = l	 l′ for l− l′ ∈ D3lmax into
consideration. The last inequality comes from Theorem 4. The first term in Eq. (177) is
further bounded by

16
∞∑

l=3lmax−2mmax

(γt)dl/mmaxe

(dl/mmaxe)!
≤ 16mmax

(
eγt

d3lmax/mmax − 2e

)d3lmax/mmax−2e
, (178)
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where we use the relation Eq. (54) and the Stirling’s formula Eq. (48). This accomplishes
the evaluation of Eq. (177) with the usage of Eq. (60) as

[Eq. (177)] ≤ 26mmax

(
eγt

3lmax/mmax − 3

)3lmax/mmax−3

≤ 26mmax

[(
eγt

lmax/mmax − 1

)lmax/mmax−1
]3

≤ 13
500(mmax)2 ε

3. (179)

We next compute the second summation in Eq. (176), which is taken over l ∈ D4lmax

satisfying l− l′ /∈ D3lmax . The Lieb-Robinson bound, dictated by Theorem 3, immediately
concludes its upper bound by∥∥∥∥∥∥

∑
l∈D4lmax ;l−l′ /∈D3lmax

e−ilωt 〈l| e−iH
4lmax

eff t |l′〉 |ψ(0)〉

∥∥∥∥∥∥ ≤
∑

l;l−l′ /∈D3lmax

2 (γt)d|l−l′|/mmaxe

(d|l − l′|/mmaxe)!

≤ 4
∞∑

l=3lmax

(γt)dl/mmaxe

(dl/mmaxe)!

≤ 4mmax

(
emmaxγt

3lmax

)3lmax/mmax

≤ ε3

250(mmax)2 . (180)

Finally, we show that the amplification protocol relying on the symmetry reproduces
the time-evolved state |ψ(t)〉. Combining the results of Eqs. (179) and (180), we arrive at∥∥∥∥〈0|U lmax

amp1(t) |0〉 |ψ(0)〉 − 1
2 |0〉 |ψ(t)〉

∥∥∥∥ ≤ 1
4lmax

∑
l′∈Dlmax

(
13ε3

500(mmax)2 + ε3

250(mmax)2

)

≤ 3
200(mmax)2 ε

3, (181)

which is smaller than ε/3 for mmax ∈ N and ε ∈ [0, 1]. �

B.2 Validity of refined effective Hamiltonian

In Section 6.2, we raise an efficient block-encoding protocol for implementing e−iH
lmax

eff t by
the qubitization technique. The strategy is to substitute the effective Hamiltonian under
the periodic boundary conditions, H 4lmax

eff,pbc, for the original one H 4lmax
eff ; The complexity

of the oracles reduces from O(lmax) to O(log lmax). In order to justify this replacement of
H 4lmax

eff with H 4lmax
eff,pbc, we provide Theorem 7, which says that its error is bounded from

above by ∥∥∥∥〈0|U lmax
amp1,pbc(t) |0〉 |ψ(0)〉 − 1

2 |ψ(t)〉
∥∥∥∥ ≤ ε

3 , (182)∥∥∥U lmax
amp2,pbc(t) |0〉 |ψ(0)〉 − |0〉 |ψ(t)〉

∥∥∥ ≤ ε. (183)

The amplification protocols under the refined effective Hamiltonian, U lmax
amp1,pbc(t) and

U lmax
amp2,pbc(t), are designated by Eqs. (102) and (103).
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Proof of Theorem 7.— The validity of U lmax
amp2,pbc(t), i.e. Eq. (183), is derived by Eq.

(182) following the discussion in Section 5.2. It is sufficient to prove the relation, Eq.
(182). We first evaluate the upper bound of∥∥∥〈0|U 4lmax

amp1,pbc(t) |0〉 |ψ(0)〉 − 〈0|U 4lmax
amp1 (t) |0〉 |ψ(0)〉

∥∥∥
≤ 1

4lmax

∑
l∈D4lmax

∑
l′∈Dlmax

∥∥∥∥〈l|e−iH 4lmax
eff,pbc t − e−iH

4lmax
eff t|l′〉

∥∥∥∥. (184)

Each transition amplitude in the summation can be computed in a similar way to the proof
of Lemma 8. We decompose the refined effective Hamiltonian by H 4lmax

eff,pbc = H 4lmax
eff + Hb

with the perturbation

Hb =
∑

(l,m)∈∂F 4lmax

(|l〉 〈l ⊕m| ⊗H−m + h.c.). (185)

Following the discussion in the proof of Lemma 8, the perturbation Hb which locally acts
on the domain ∂F 4lmax hardly changes the transition amplitude from the original effective
Hamiltonian H 4lmax

eff . As a result, the deviation can be bounded by∥∥∥∥〈l|e−iH 4lmax
eff,pbc t − e−iH

4lmax
eff t|l′〉

∥∥∥∥ ≤ ∞∑
n=n(l′,l)

tn

n!

{(
sup
t

(‖Hpbc,I(t)‖)
)n

+ γn
}
, (186)

where the Hamiltonian in the interaction picture is defined by

Hpbc,I(t) = [U0(t)]†
∑
m6=0

Add4lmax
m ⊗Hm

U0(t). (187)

We again use the property of circulant matrices, and obtain ‖Hpbc,I(t)‖ ≤ γ, which leads
to ∥∥∥∥〈l|e−iH 4lmax

eff,pbc t − e−iH
4lmax

eff t|l′〉
∥∥∥∥ ≤ ∞∑

n=n(l′,l)
2(γt)n
n! ≤ 4

(
γt

n(l′, l)

)n(l′,l)
. (188)

As a result, we get the difference between the original and refined effective Hamiltonians
as ∥∥∥〈0|U 4lmax

amp1,pbc(t)−U 4lmax
amp1 (t) |0〉 |ψ(0)〉

∥∥∥ ≤ 1
2

∑
l∈D4lmax

4(γt)n(lmax,l)

n(lmax, l)!

≤ 4
∞∑

l=3lmax−2mmax

(γt)dl/mmaxe

(dl/mmaxe)!

≤ 4
( 3γt

3lmax/mmax − 2

)3lmax/mmax−2

≤ ε3

250(mmax)2 . (189)

As stated by Theorem 6, the original amplification protocol U 4lmax
amp1 (t) accurately generates

|ψ(t)〉 as Eq. (181). Therefore, the one under the refined effective Hamiltonian is also
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justified as∥∥∥∥〈0|U lmax
amp1,pbc(t) |0〉 |ψ(0)〉 − 1

2 |ψ(t)〉
∥∥∥∥

≤
∥∥∥〈0|U 4lmax

amp1,pbc(t)−U 4lmax
amp1 (t) |0〉 |ψ(0)〉

∥∥∥+
∥∥∥∥〈0|U 4lmax

amp1 (t) |0〉 |ψ(0)〉 − 1
2 |ψ(t)〉

∥∥∥∥
≤ 19

1000(mmax)2 ε
3. (190)

This bound is actually smaller than ε/3, and we complete the proof of Theorem 7. �

C Extension to exponentially-decaying Fourier components
In the main text, we focus on time-periodic Hamiltonians which have vanishing Fourier
components Hm = 0 for |m| > mmax. Here, we generalize our results to time-periodic
Hamiltonians H(t) with exponentially-decaying Fourier components as

‖Hm‖ ≤ he−|m|/ζ , h, ζ > 0, (191)
for |m| > 0. The norm of H0 is arbitrary as long as it is bounded. The effective Hamil-
tonian in the truncated Floquet-Hilbert space, H lmax

eff , is the same as Eq. (18), but it
is dense in the basis {|l〉}l∈Dlmax compared to the cases where Hm = 0 is satisfied for
|m| > mmax.

We formulate the protocol in a similar manner to the main text, and show that the
computational resources for the time-evolved state have nearly-optimal dependence both
in t and 1/ε. The difference mainly comes from the form of the Lieb-Robinson bound
and the infinite series of {Hm} needed for designating H(t). The former one affects the
truncation order lmax for the Floquet-Hilbert space. The latter one yields the change
in block-encoding so that almost all the information about H(t) can be embedded with
keeping the efficiency.

C.1 Truncation order of Floquet-Hilbert space
We first determine the proper truncation order lmax for the Floquet-Hilbert space, as we
did in Section 4. To this aim, we begin with deriving the Lieb-Robinson bound on the
transition rate, corresponding to Theorem 3.

Theorem 9. (Bound on transition rate)
We assume ‖Hm‖ ≤ he−|m|/ζ with certain positive constants h and ζ. Then, for l, l′

such that |l|, |l′| ≤ lmax, the transition rate is bounded from above by∥∥∥〈l| e−iH lmax
eff t |l′〉

∥∥∥ ≤ exp
(
−|l − l

′| − 2βζ ′ht
ζ ′

+ 2/β
)
. (192)

Here, β and ζ ′ are positive constants defined by
β = (1− e−1/ζ)−1, ζ ′ = (1/ζ − 1 + e−1/ζ)−1. (193)

Proof.— We prove the theorem in a similar way to Theorem 3. We start from the
Dyson series expansion in the interaction picture [See Eq. (42)],∥∥∥〈l| e−iH lmax

eff t |l′〉
∥∥∥ ≤ ∞∑

n=0

∫ t

0
dtn . . .

∫ t2

0
dt1

∥∥∥∥∥∥
∑
{li}

n∏
i=1
〈li|HI(ti)|li−1〉

∥∥∥∥∥∥
≤

∞∑
n=0

∫ t

0
dtn . . .

∫ t2

0
dt1

∑
{li}

n∏
i=1
‖〈li|HI(ti)|li−1〉‖, (194)
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where we insert the identity
∑
li∈Dlmax |li〉 〈li| = I for n−1 times. The summation

∑
{li} is

taken over li ∈ Dlmax for i = 1, 2, . . . , n− 1 under fixed l0 = l′ and ln = l. We introduce a
new variable mi = li− li−1 instead of using {li}, and then the above integrand is bounded
by

Fn ≡
∑
{li}

n∏
i=1
‖〈li|HI(ti)|li−1〉‖

≤
∑

{mi}ni=1∈Zn
δl′+m1+...+mn,l

n∏
i=1
‖H−mi‖

≤
∑

{mi}ni=1∈Zn
δl′+m1+...+mn,lh

ne−
∑n

i=1 |mi|/ζ . (195)

Since l′ +m1 + . . .+mn = l implies |m1|+ . . .+ |mn| ≥ |l− l′|, it can be further bounded
as follows,

Fn ≤
∑

{mi}ni=1∈Zn
θ

(
n∑
i=1
|mi| − |l − l′|

)
hne−

∑n

i=1 |mi|/ζ

≤ (2h)n
∞∑

m1,...,mn=0
θ

(
n∑
i=1

mi − |l − l′|
)
e−
∑n

i=1 mi/ζ .

≡ (2h)nSn(|l − l′|). (196)

Here, θ(x) is a step function, defined by θ(x) = 1 for x ≥ 0 and θ(x) = 0 otherwise. The
summation Sn(M) is defined by

Sn(M) =
∞∑

m1,...,mn=0
θ

(
n∑
i=1

mi −M
)
e−
∑

i
mi/ζ , (197)

which satisfies S1(M) = ∑∞
m=M e−m/ζ = βe−M/ζ .

Let us evaluate the upper bound on Sn(M). We split the summation over mn into the
one over mn ≤M − 1 and the one over mn ≥M , which results in

Sn(M) =
M−1∑
mn=0

e−mn/ζSn−1(M −mn) + βne−M/ζ . (198)

We use this relation recursively until S1 appears. After the single use of this equality, we
obtain

Sn(M) ≤
M−1∑
mn=0

M−mn−1∑
mn−1=0

e−(mn+mn−1)/ζSn−2(M −mn −mn−1)

+βn−1e−M/ζ
M−1∑
mn=0

1 + βne−M/ζ , (199)

where we use e−mn/ζ ≤ 1 for the second term. By repeating this calculation n− 1 times,
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we arrive at

Sn(M) ≤

M−1∑
m1=0

. . .

M−1−Mn−2∑
mn−1=0

 e−Mn−1/ζS1(M −Mn−1)

+e−M/ζ
n−1∑
k=1

βn−k+1

M−1∑
m1=0

. . .

M−1−Mk−2∑
mk−1=0

 1

= e−M/ζ
n∑
k=1

βn−k+1

M−1∑
m1=0

. . .

M−1−Mk−2∑
mk−1=0

 1, (200)

where
∑k
i=1mk is denoted by Mk. In the above formula, the summation of 1 over {mi}k−1

i=1
represents the number of lattice points included in a (k− 1)-dimensional pyramid PMk−1 =
{(x1, . . . , xk−1) ∈ [0,M −1]k | 0 ≤∑i xi ≤M −1}, and hence it is bounded by the volume
of PM+2

k−1 . This leads to the relation,

Sn(M) ≤ βne−M/ζ
n∑
k=1

{β−1(M + 2)}k−1

(k − 1)! ≤ βne−(1/ζ−1/β)M+2/β, (201)

We define a positive constant ζ ′ by 1/ζ ′ = 1/ζ−1/β as Eq. (193). The above inequality
enables to evaluate the integrand Fn as

Fn ≤ (2h)nSn(|l − l′|) ≤ (2βh)ne−|l−l′|/ζ′+2/β. (202)

Finally, going back to the inequality Eq. (194), we arrive at the bound on the transition
rate, ∥∥∥〈l| e−iH lmax

eff t |l′〉
∥∥∥ ≤ ∞∑

n=0

tn

n! (2βh)ne−|l−l′|/ζ′+2/β ≤ e2βht−|l−l′|/ζ′+2/β. (203)

This completes the proof of the theorem. �
Theorem 9 says that the bound on the transition amplitude from |l′〉 to |l〉 exponentially

decays in the distance |l − l′| for Hamiltonians with ‖Hm‖ . e−O(|m|). The decay is

relatively slow compared to the cases Hm = 0 (|m| > mmax) showing O
(
|l − l′|−|l−l′|

)
.

In fact, this result is reminiscent of the Lieb-Robinson bound for short-ranged interacting
systems [79, 80, 81], which provides exponentially-decaying correlation functions under
interactions Uij ∼ e−O(|i−j|). Based on Theorem 9, we assess how the exact time-evolved
state can be approximated by the truncated Floquet-Hilbert space, and determine the
proper truncation order lmax. We summarize the result by the following theorem, which
is a counterpart of Theorem 4.

Theorem 10. (Floquet-Hilbert space truncation)
We assume ‖Hm‖ ≤ Ce−|m|/ζ . The exact time-evolved state |ψ(t)〉 is approximated by

the truncated state |ψlmax(t)〉 [See Eq. (19)] as∥∥∥|ψ(t)〉 − |ψlmax(t)〉
∥∥∥ ≤ 4ζ ′e2βht−(lmax−1)/ζ′+2/β. (204)

Proof.— The derivation is similar to the one for Theorem 4. According to Eqs. (50)-
(52), we should evaluate the following two values,

ε1 =
∑

l∈(Dl′max\Dlmax )

∥∥∥∥〈l| eiH l′max
eff t |0〉

∥∥∥∥, ε2 =
∑

l∈Dlmax

∥∥∥∥〈l| eiH l′max
eff t − eiH

lmax
eff t |0〉

∥∥∥∥, (205)
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where the left hand side of Eq. (204) is bounded by ε1 + ε2 under l′max →∞. Theorem 9
soon concludes the upper bound of ε1;

ε1 ≤
∑

l∈(Dl′max\Dlmax )

e2βht−|l|/ζ′+2/β

≤ 2
∫ ∞
lmax−1

dxe2βht−x/ζ′+2/β

≤ 2ζ ′e2βht−(lmax−1)/ζ′+2/β. (206)

The second error ε2 can be evaluated by the Dyson series expansion like Eq. (42); each
term of ε2 in Eq. (205) is bounded from above by

∞∑
n=0

∫ t

0
dtn . . .

∫ t2

0
dt1
∥∥∥∥∥〈l|

n∏
i=1

H
l′max
I (ti)−

n∏
i=1

H lmax
I (ti)|0〉

∥∥∥∥∥. (207)

As stated in the proof of Theorem 3, each of 〈l|
∏n
i=1 H

l′max
I (ti)|0〉 and 〈l|

∏n
i=1 H lmax

I (ti)|0〉
is decomposed into a product of transition amplitudes via a path |0〉 → |l1〉 → . . . →
|ln−1〉 → |l〉. Their difference appears only when the path goes across Dl′max\Dlmax . In
other words, denoting the summation over the set of {li} taking such nontrivial paths by∑′
{li}, we reach

[Eq. (207)] ≤
∞∑
n=0

∫ t

0
dtn . . .

∫ t2

0
dt1

∑
{li}

′
n∏
i=1

∥∥∥〈li|H l′max
I (ti)|li−1〉

∥∥∥. (208)

When we define the hopping distance mi by mi = li − li−1, it should satisfy
∑n
i=1 |mi| ≥

(lmax − |l|) + (lmax − 0) for {li} such that a nontrivial path is organized. This results in
the relation described by

ε2 ≤
∑

l∈Dlmax

∞∑
n=0

tn

n!
∑

{mi}ni=1∈Zn

(
n∏
i=1
‖H−mi‖

)
× θ

(
n∑
i=1
|mi| − 2lmax + |l|

)

≤
∑

l∈Dlmax

∞∑
n=0

(2ht)n
n! Sn(2lmax − |l|)

≤
∑

l∈Dlmax

∞∑
n=0

(2βht)n
n! e−(2lmax−|l|)/ζ′+2/β

≤ 2ζ ′e2βht−(lmax−1)/ζ′+2/β. (209)

Combining this inequality with
∥∥∥|ψ(t)〉 − |ψlmax(t)〉

∥∥∥ ≤ ε1 + ε2 and Eq. (206), we obtain

Eq. (204), which completes the proof. �
Theorem 10 determines the proper truncation order of the Floquet-Hilbert space for

the algorithm. When we aim at the desirable accuracy as
∥∥∥|ψ(t)〉 − |ψlmax(t)〉

∥∥∥ ≤ ε, it is

sufficient to choose the truncation order lmax by

lmax =
⌈
2βζ ′ht+ ζ ′ log(1/ε) + ζ ′ log

(
4ζ ′
)

+ 2ζ ′
β

+ 1
⌉
∈ Θ (ht+ log(1/ε)) . (210)

The result has similar scaling in t and 1/ε to the one for Hamiltonians with a finite number
of Fourier components, described by Eq. (59), other than the factor of log log(1/ε). While
the actual mmax is infinite for exponentially-decaying Fourier components as ‖Hm‖ ≤
he−|m|/ζ , the parameters h and ζ ′ play a role of γ and mmax respectively.
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C.2 Amplitude amplification
We next verify the validity of the amplitude amplification protocols, discussed in Section 5,
for time-periodic Hamiltonians with exponentially-decaying Fourier components ‖Hm‖ ≤
he−|m|/ζ .

The first amplification relies on the translation symmetry of the effective Hamiltonian,
as discussed in 5.1. To show its extension, we begin with discussing the approximate
translation symmetry in the truncated Floquet-Hilbert space, which is a counterpart of
Lemma 8.

Lemma 11. (Approximate translation symmetry)
We assume ‖Hm‖ ≤ he−|m|/ζ , and consider the truncated Floquet-Hilbert space C8lmax⊗

H. The transition rate has an approximate translation symmetry in that it satisfies∥∥∥〈l| e−iH 4lmax
eff t |l′〉 − eil′ωt 〈l 	 l′| e−iH

4lmax
eff t |0〉

∥∥∥ ≤ 2e2βht−(8lmax−|l|−|l′|)/ζ′+2/β. (211)

Proof.— The proof is done in a similar manner to that of Lemma 11. We consider a
perturbation H̃b(t) designated by

H̃b(t) =
∑

(l,m)∈∂F̃ 4lmax

|l〉 〈l ⊕m| ⊗ e8ilmaxωtH−m + h.c., (212)

with ∂F̃ 4lmax = {(l,m) | l ∈ D4max , 8lmax − l + 1 ≤ m ≤ 8lmax − 1}. This Hamiltonian
indicates hopping terms that go across the boundaries |4lmax〉 and |−4lmax + 1〉. Let
Ũpert(t) denote a time evolution operator under H 4lmax

eff + H̃b(t). Then, due to the exact
translation symmetry in the interaction picture, the transition amplitude 〈l|Ũpert(t)|l′〉
satisfies

〈l|Ũpert(t)|l′〉 = eil
′ωt 〈l 	 l′|Ũpert(t)|0〉 . (213)

The difference of transition amplitudes between H 4lmax
eff +H̃b(t) and H 4lmax

eff is bounded
in a similar way to Eqs. (207) and (209). The difference survives only when the trajectory
|l′〉 → |l1〉 → |ln−1〉 → |l〉 pass through the boundaries |4lmax〉 and |−4lmax + 1〉 via
H̃b(t), and then its length

∑n
i=1 |mi| with mi = li− li−1 should be equal to or larger than

(4lmax − |l|) + (4lmax − |l′|). We obtain its upper bound in a similar way to Eq. (209),∥∥∥〈l|Ũpert(t)− e−iH
4lmax

eff t|l′〉
∥∥∥ ≤ n∑

n=0

(2ht)n
n! Sn(8lmax − |l| − |l′|)

≤ e2βht−(8lmax−|l|−|l′|)/ζ′+2/β. (214)

Using this relation twice and the symmetry Eq. (213) leads to Eq. (211). �
With the usage of this approximate translation symmetry, we can organize the ampli-

tude amplification by symmetry like Theorem 6. We prepare the truncated Floquet-Hilbert
space C8lmax⊗H, and make the initial state uniform in |l〉 with lmax ∈ Θ(ht+log(1/ε)). The

state resulting from the time evolution exp
(
−iH 4lmax

eff t
)

outputs the target time-evolved

state |ψ(t)〉 with amplitude 1/2 as follows.

Theorem 12. (Amplification by symmetry)
We assume ‖Hm‖ ≤ he−|m|/ζ , and choose the truncation order lmax ∈ O(ht+ log(1/ε))

by Eq. (210). Let us summarize the amplification protocol relying on the symmetry by
U lmax

amp1(t), whose explicit formula is given by Eq. (72). Then, it generates the time-evolved
state |ψ(t)〉 with O(1) amplitude as∥∥∥∥〈0|U lmax

amp1(t)|0〉 |ψ(0)〉 − 1
2 |ψ(t)〉

∥∥∥∥ ≤ 5
64(ζ ′)2 ε

3. (215)
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It is reasonable to assume that the desirable error ε is sufficiently small, not greater than
the constant 8ζ ′/

√
15. Then, the right hand side of the above formula is bounded by ε/3,

which reproduces Theorem 6.

Proof.— The proof follows that of Theorem 6, described in Appendix B.1. The left
hand side of the above inequality can be bounded by two contributions determined by Eq.
(176). The first contribution, which corresponds to Eq. (177), is given by∥∥∥∥∥∥

∑
l;l−l′∈D3lmax

e−ilωt 〈l| e−iH
4lmax

eff t |l′〉 |ψ(0)〉 − |ψ(t)〉

∥∥∥∥∥∥
≤

∑
l;l−l′∈D3lmax

2e2βht− 7lmax−|l|
ζ′ + 2

β +
∥∥∥|ψ3lmax(t)〉 − |ψ(t)〉

∥∥∥
≤ 8ζ ′e2βht−(3lmax−1)/ζ′+2/β ≤ ε3

8(ζ ′)2 . (216)

Here, we used Lemma 11 in the second line, Theorem 10 in the third line, and the choice
of lmax, Eq. (210), in the last line. The second contribution, which is a counterpart of Eq.
(180), is bounded by∥∥∥∥∥∥

∑
l;l−l′ /∈D3lmax

e−ilωt 〈l| e−iH
4lmax

eff t |l′〉 |ψ(0)〉

∥∥∥∥∥∥ ≤
∑

l;l−l′ /∈D3lmax

e2βht−|l−l′|/ζ′+2/β

≤ 2ζ ′e2βht−(3lmax−1)/ζ′+2/β ≤ ε3

32(ζ ′)2 .

(217)

By combining these results like Eq. (181), we complete the proof of Theorem 12. �
The above theorem ensures the amplification by symmetry also for time-periodic

Hamiltonians with ‖Hm‖ ≤ he−|m|/ζ ; it enhances the amplitude from O
(
l−1
max

)
to 1/2

only with additional O(log lmax) elementary gates. In order to bring the amplitude up to
1−O(ε), we need the oblivious amplitude amplification. Its validity immediately follows
from Theorem 12, as we discussed in 5.2. In other words, when we apply the protocol
U lmax

amp2(t), defined by Eq. (79), the time-evolved state |ψ(t)〉 can be obtained with accuracy
1−O(ε); ∥∥∥U lmax

amp2(t) |0〉 |ψ(0)〉 − |0〉 |ψ(t)〉
∥∥∥ ≤ 15

64(ζ ′)2 ε
3. (218)

The right hand side is bounded by ε for sufficiently small ε.

C.3 Qubitization technique for effective Hamiltonian
Simulating |ψ(t)〉 via the amplitude amplification U lmax

amp2(t) requires the time evolution

operators exp
(
−iH 4lmax

LP t
)

and exp
(
−iH 4lmax

eff t
)
. The former one is the same as Section

6.1. We hereby present how the latter one is implemented for the cases ‖Hm‖ ≤ he−|m|/ζ .
We take a similar strategy to Section 6.2, that is, we first organize a refined effective
Hamiltonian H 4lmax

eff,pbc, which can accurately reproduce the dynamics under H 4lmax
eff . After

that, we compose its block-encoding which can be efficiently achievable.
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C.3.1 Refined effective Hamiltonian

We introduce a refined effective Hamiltonian H 4lmax
eff,pbc, which acts on the truncated Floquet-

Hilbert space C8lmax ⊗H, by

H 4lmax
eff,pbc = H 4lmax

eff + H̃b, H̃b =
∑

(l,m)∈∂F̃ 4lmax

|l〉 〈l ⊕m| ⊗H−m + h.c., (219)

where ∂F̃ 4lmax shares the definition with the one in Eq. (212). Owing to the additional
term Hb, the hopping terms induced by H−m become translation symmetric in |l〉 as

H 4lmax
eff,pbc =

∑
m∈D4lmax

Add4lmax
m ⊗Hm −H 4lmax

LP . (220)

Here, a full quantum adder Add4lmax
m , defined by Eq. (108), appears and it allows efficient

implementation of block-encoding as discussed later. Before going to its block-encoding,
we prove the validity of the refined effective Hamiltonian as a counterpart of Theorem 7.

Theorem 13. (Refined effective Hamiltonian)
We assume ‖Hm‖ ≤ he−|m|/ζ , and organize the two amplification protocols U lmax

amp1,pbc(t)
and U lmax

amp2,pbc(t) respectively based on Eqs. (102) and (103) with using the refined effective
Hamiltonian H 4lmax

eff,pbc given by Eq. (219). When the truncation order lmax ∈ Θ(ht +
log(1/ε)) is chosen by Eq. (210), they also provide the exact time-evolved state |ψ(t)〉 as∥∥∥∥〈0|U lmax

amp1,pbc(t) |0〉 |ψ(0)〉 − 1
2 |ψ(t)〉

∥∥∥∥ ≤ 11
128(ζ ′)2 ε

3, (221)∥∥∥U lmax
amp2,pbc(t) |0〉 |ψ(0)〉 − |0〉 |ψ(t)〉

∥∥∥ ≤ 33
128(ζ ′)2 ε

3, (222)

for arbitrary initial states |ψ(0)〉 ∈ H. For a allowable error ε sufficiently small compared
to the constant ζ ′, both of the left hand sides are smaller than ε.

Proof.— We prove the theorem as we do for Theorem 7 in Appendix B.2. First, we
evaluate the difference of the transition rates between H 4lmax

eff,pbc and H 4lmax
eff . We replace

the perturbation H̃b(t) by the boundary term H̃b in the proof of Lemma 11 (See Appendix
B.1). We obtain the same result as Eq. (214),∥∥∥∥〈l| e−iH 4lmax

eff,pbc t |l′〉 − 〈l| e−iH
4lmax

eff t |l′〉
∥∥∥∥ ≤ e2βht−(8lmax−|l|−|l′|)/ζ′+2/β. (223)

Once we obtain this bound, we can track the proof of Theorem 7, composed of Eqs.
(184)-(190). First, we evaluate the deviation from U lmax

amp1(t) as

∥∥∥〈0|U 4lmax
amp1,pbc(t)−U 4lmax

amp1 (t) |0〉 |ψ(0)〉
∥∥∥ ≤ ∑

l∈D4lmax ,l′∈Dlmax

e2βht−(8lmax−|l|−|l′|)/ζ′+2/β

4lmax

≤ 1
2ζ
′e2βht−(3lmax−1)/ζ′+2/β ≤ ε3

128(ζ ′)2 . (224)

Since 〈0|U 4lmax
amp1 (t) |0〉 |ψ(0)〉 accurately provides the state |ψ(t)〉 /2 as Eq. (215) according

to Theorem 12, a triangle inequality concludes Eq. (221). Since the oblivious amplitude
amplification generates the error at-most three times larger than Eq. (221) according to
the discussion in Section 5.2, Eq. (222) is immediately derived. �
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C.3.2 Block-encoding

We compose block-encoding of the refined effective Hamiltonian H 4lmax
eff,pbc to implement its

time evolution operator by qubitization.
We begin with describing the assumption on time-periodic Hamiltonians H(t). If we

adopt the one for the main text as Eq. (98), we should have the knowledge about block-
encoding for the infinite series {Hm}m∈Z. To avoid this complexity, we instead consider
time-periodic Hamiltonians H(t) written by

H(t) =
jmax∑
j=1

αj(t)Mj , αj(t+ T ) = αj(t). (225)

with coefficients {αj(t)}jmax
j=1 and operators {Mj}jmax

j=1 . We assume the knowledge of block-
encoding for each operator Mj as

〈Gj |Oj |Gj〉 = Mj , |Gj〉 = Gj |0〉⊗na , (226)

with an oracle state |Gj〉 ∈ C2na and an oracle unitary gate Oj on C2na ⊗ H. We can
always set the denominator in block-encoding by 1 since its absolute value and its phase
can be absorbed respectively into the coefficient αj(t) and the oracle Oj . The Fourier
components are given by

Hm =
jmax∑
j=1

αmj Mj , αmj = 1
T

∫ T

0
dtαj(t)eimωt, (227)

and it is always possible to impose αmj ≥ 0 for every j,m. This is because, when a certain
coefficient αmj is complex, we can divide it into αmj = Reαmj +i Imαmj and redefine Mj with
the signs of Reαmj , Imαmj and the phase i. In other words, adding −Mj , iMj , and −iMj

to the set {Mj}j reproduces the form of Eq. (227) with αmj ≥ 0, where jmax is replaced by
at-most 4lmax. In the following discussion, the oracles Oj and Gj are respectively supposed
to be composed of at-most C elementary gates. In addition, we also assume the access to
the coefficients αmj for m ∈ Dlmax by the oracle unitary gate Glmax

coef as

Glmax
coef |0〉 |0〉 =

∑
m∈Dlmax

jmax∑
j=1

√
αmj
αlmax

|m〉 |j〉 , αlmax =
∑

m∈Dlmax

jmax∑
j=1

αmj . (228)

The oracle state Glmax
coef |0〉 |0〉 ∈ C2lmax+jmax is a O(log lmax + log jmax)-qubit ancillary state,

and its preparation Glmax
coef is supposed to require C lmax elementary gates. The parameter

αlmax is bounded by the whole-system energy scale as

αlmax ≤
∑
m∈Z

jmax∑
j=1

αmj ≡ α. (229)

Although the definition of α is different from that of the main text, it again provides the
bound on the scale of time-dependent terms as

γ ≤
∑
m∈Z

jmax∑
j=1
|αmj | · ‖Mj‖ ≤ α, (230)

where we use ‖Mj‖ ≤ 1 from Eq. (226).
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We move to how we organize an oracle state and oracle unitary gate for the refined
H 4lmax

eff,pbc. Substituting the Fourier components Hm into Eq. (220) results in

H 4lmax
eff,pbc =

∑
m∈D4lmax

jmax∑
j=1

αmj Add4lmax
m ⊗Mj −H 4lmax

LP . (231)

We introduce five kinds of ancillary systems labeled by a, b, c, d, and e. The systems a, b,
and e are respectively described by 2na-, 8lmax-, and 2-dimensional Hilbert spaces, as we
consider in Section 6.2. States of the system c is spanned by {|m〉}m∈D4lmax due to the

absence of mmax. The system d is characterized by {|j〉}jmax
j=1 . The oracle unitary gate for

the refined effective Hamiltonian H 4lmax
eff,pbc is given by

O4lmax
eff = |0〉 〈0|e ⊗OJ ⊗Add4lmax ⊗ Ib − |1〉 〈1|e ⊗ Id ⊗ Ic ⊗ O4lmax

LP ⊗ Ia, (232)

OJ =
jmax∑
j=1
|j〉 〈j|d ⊗Oj , Add4lmax =

∑
m∈D4lmax

|m〉 〈m|c ⊗Add4lmax
m . (233)

Here, the unitary gatesOJ , Add4lmax
m and O4lmax

LP are respectively implemented byO(jmaxC),
O(log lmax), and O(log lmax) elementary gates (the second one represents addition of a vari-
able m ∈ D4lmax [53]). Next, we provide the oracle state |G4lmax

eff 〉 on the auxiliary systems
a, b, c, d, and e by

|G4lmax
eff 〉 = G4lmax

eff |w4lmax〉e (G4lmax
coef |0〉d |0〉c) |a

4lmax〉b |0〉a , (234)

G4lmax
eff = Ie ⊗

jmax∑
j=1
|j〉 〈j|d ⊗ Ic ⊗ Ib ⊗ (Gj)a, (235)

|w4lmax〉e =
√
α4lmax |0〉e +

√
4lmaxω |1〉e√

α4lmax + 4lmaxω
. (236)

We can confirm the relation,

〈G4lmax
eff |O4lmax

eff |G4lmax
eff 〉 =

H 4lmax
eff,pbc

α4lmax + 4lmaxω
, (237)

by directly substituting the above equations. The cost of implementing the oracle state

|G4lmax
eff 〉 from the trivial state |0〉e |0〉d |0〉c |0〉b |0〉a is O

(
jmaxC + C4lmax + log lmax

)
ele-

mentary gates.
Therefore, implementing the time evolution operator exp(−iHeff,pbct) with the qubiti-

zation technique requires the following resources for time-periodic Hamiltonians satisfying
‖Hm‖ ≤ he−|m|/ζ ;

• Number of ancillary qubits; O(log jmax + log lmax)

• Number of overall gates;

O
(
{(α+ lmaxω)t+ o(log(1/ε))}

(
jmaxC + C4lmax + na + log jmax + log lmax

))
.

We replace α4lmax by α based on the inequality, Eq. (229).
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C.4 Algorithm and comparison
The algorithm for computing the time-evolved state for time-periodic Hamiltonian with
‖Hm‖ ≤ he−|m|/ζ is almost the same as those in Section 7. We separately consider
adiabatic-like cases and generic long-time cases. The computational resources are obtained
by replacing γ in Table 1 by h. The query complexity is determined by the coefficients of
jmaxC and C4lmax in the number of overall elementary gates. Their scaling is summarized
as follows;

Adiabatic-like cases.—

The scaling of the query complexity is optimal in the time t and nearly-optimal in the
inverse error 1/ε.

• Number of ancillary qubits; na +O(log jmax + log(γt) + log log(1/ε)).

• Query complexity; O(αt+ log(1/ε)).

• Additional gates per query; O(na + log jmax + log(γt) + log log(1/ε)).

Generic long-time cases.—

The scaling of the query complexity is nearly-optimal in the time t and the inverse error
1/ε. For practical problems up to poly (N)-time, it becomes optimal in the time t.

• Number of ancillary qubits; na +O(log jmax + log(γ/ω) + log log(ωt/ε)).

• Query complexity; O(αt+ ωt log(ωt/ε)).

• Additional gates per query; O(na + log jmax + log(γ/ω) + log log(ωt/ε)).

We note that log log(1/ε) factor in the query complexity is buried by lmax. This
difference from the cases Hm = 0 (|m| > mmax) essentially originates from the form of
the Lieb-Robinson bound dictated by 9. A slightly slow decay in the transition amplitude
results in slightly larger cost for the cases ‖Hm‖ ≤ he−|m|/ζ , compared to the results in the
main text. This leads to the nearly-optimal dependence of the query complexity in 1/ε.
Anyway, since the factor log log(1/ε) is not so large compared to others, the relation to
the quantum algorithms for time-independent and generic time-dependent Hamiltonians,
discussed in Section 7, is maintained. Importantly, in the query complexity, the whole
energy scales αt and γt are separated from the O(log(1/ε)) term; the query complexity
is usually much smaller than that of the truncated Dyson-series algorithm, and close
to that of the qubitization technique. The number of ancillary qubits, which scales as
O(log log(1/ε)) for an allowable error ε, also lies between those for these algorithms.

We also mention about the complexity of the oracles for the cases ‖Hm‖ ≤ he−|m|/ζ . In
contrast to the cases Hm = 0 (|m| > mmax), we require a quantum circuit which embeds
the function αmj to the amplitude of a quantum state with O(jmax(γt+ log(1/ε))) or

O(jmax(γ/ω + log(ωt/ε))) degrees of freedom, by the oracle G4lmax
coef defined by Eq. (228).

While integrable functions are efficiently implemented [54], the number of elementary
gates for the worst cases amounts to the dimension of the quantum state, i.e. C4lmax ∈
O(jmax(γt+ log(1/ε))) or O(jmax(γ/ω + log(ωt/ε))). While the preparation of oracles
is relatively difficult compared to the cases Hm = 0 (|m| > mmax), we emphasize that
it is much easier than that of the truncated Dyson-series algorithm. In the truncated
Dyson-series algorithm, we need more or less an oracle that embeds the information of
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time-dependent Hamiltonians at every discretized time into a quantum state. Such an
oracle is exemplified by Eq. (135) for generic Hamiltonians [19]. For time-dependent LCU
Hamiltonians or sparse-access Hamiltonians, it requires a quantum state holding all the
coefficients αj(t) at every discretized time t as an oracle [20]. The number of elementary
gates per oracle can be proportional to that of the discretized time, O(jmaxωγt/αε), at
the worst case. Therefore, our algorithm also improves the complexity of the oracles as
well as the query complexity, compared to the truncated Dyson-series algorithm.

C.5 Example
For the cases ‖Hm‖ ≤ he−|m|/ζ , we adopt the assumption of block-encoding as Eq. (227),
in contrast to the cases Hm = 0 (|m| > mmax). To show that it is reasonable and versatile
in condensed matter physics and quantum chemistry, we provide a simple example.

We consider an N -site Fermi-Hubbard model HHub, given by Eq. (141). While we
consider an idealized laser light which has a constant amplitude in Section 8.1, we focus
on a rather realistic case where Gaussian wave packets of lights are shone to materials
[69]. Then, if the time scale of the wave packets is sufficiently larger than the light with
the frequency Ω, the external drive Hext(t) is well described by

Hext(t) =

∑
n∈Z

e−(t−(n+1/2)T )2/2τ2 sin Ωt

∑
x,σ

Vxn̂xσ, (238)

where peaks of the wave packets are located at t = (n+1/2)T . The period T is designated
by T = p(2π/Ω) with the number of the waves of the light for each wave packet p ∈ N.

Let us organize the block-encoding required for simulation. By carefully computing
Fourier components of H(t) = HHub +Hext(t), we arrive at H0 = HHub and

Hm = i(−1)p+msgn(m)Am
∑
x,σ

Vxn̂xσ, Am = ωτ√
2π
e−

1
2 (p2+m2)(ωτ)2 sinh

{
p|m|(ωτ)2

}
,

(239)
for m 6= 0. We define sgn(m) by sgn(m) = m/|m| for m 6= 0 and sgn(0) = 0. Since Am ≥
0 rapidly decays as e−O(m2), this Hamiltonian is suitable for our algorithm, satisfying
‖Hm‖ ≤ he−|m|/ζ . This satisfies the assumption of Eq. (227) with non-negative coefficients
αmj by choosing jmax = 3;

M1 = HHub
2∑x εx + UN

, αm1 =
(

2
∑
x

εx + UN

)
δm0, (240)

M2 = +i
∑
x,σ Vxn̂xσ

2∑x Vx
, αm2 = 2

∑
x

VxAmδ(−1)p+msgn(m),+1, (241)

M3 = −i
∑
x,σ Vxn̂xσ

2∑x Vx
, αm3 = 2

∑
x

VxAmδ(−1)p+msgn(m),−1. (242)

The block-encoding for {Mj} can be composed by Eqs. (143)-(146) in Section 8.1. There-
fore, by resorting to our algorithm for the adiabatic-like cases, we can efficiently simulate
the response to a realistic wave packet of laser light with the number of ancillary qubits
and the query complexity provided in Appendix C.4.

D Efficient algorithm for high-frequency regimes with ω ' α, γ

In Section 7.2, we concentrate on the generic long-time regime with the frequency ω ∈
O
(
N0) for the number of sites, while the whole energy scales α, γ are given by poly (N).
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Here, we show its reasonableness by showing that quantum simulation of broad time-
periodic Hamiltonians under the frequency comparable to the whole energy scale can be
almost attributed to that of time-independent Hamiltonians.

As a generic setup for time-periodic Hamiltonians, we assume the locality [= the
system involves at-most O(1)-body interactions] and the extensiveness. The latter one
means that the energy scale per site, represented by λ, is bounded. In our definitions, the
scale λ is approximated by O(α/N, γ/N). When the ratio of the frequency ω to the local
energy scale λ is sufficiently large as ω/λ � 1, we can apply the perturbative expansion
in (ω/λ)−1, called the high-frequency expansion [59, 60, 61, 62, 63]. Recent developments
in generic local and extensive Floquet systems have revealed the accurate upper bound on
the error as follows [60];∥∥∥U(nT )− e−iHl

FMnT
∥∥∥ ≤ C1λNnTe

−C2l0 + C3nN(λT )l+2(l + 1)!. (243)

In the above inequality, C1, C2, and C3 represent some positive constants, and the integer
l0 ∈ O(ω/λ) provides the optimal truncation order of the perturbation theory, while the
actual truncation order l (≤ l0) is optional. The time-independent Hamiltonian H l

FM is
the l-th order Floquet-Magnus expansion, given by

H l
FM =

l∑
l′=0

H
(l′)
FM, H

(0)
FM = H0, H

(1)
FM = 1

2iT

∫ T

0
dt1

∫ t1

0
dt2[H(t1), H(t2)], (244)

where each l′-th order term in ω/λ, represented byH
(l′)
FM, involves l′-fold multi-commutators

of H(t) (See Ref. [60] for the explicit formula).
Based on the above formalism, we see that the long-time dynamics at t = (n+δ)T � T

with n ∈ N and δ ∈ [0, 1) can be computed in a trivial way when ω is comparable to
α, γ ∈ poly (N). In this regime, the integer l0 is O(N) due to the local energy scale λ ∈
O(α/N, γ/N). Then, we simulate the dynamics U(t) = U(δT )U(nT ) with approximating
the latter one U(nT ) by Eq. (243). We choose the truncation order l by O

(
N0). Since

H(t) generally has poly (N) local terms, the Floquet-Magnus expansion H l
FM for such

l ∈ O
(
N0) can be identified with poly (N)-time classical computation, and H l

FM is also
composed of poly (N) local terms. Therefore, we can apply the qubitization technique to

the implementation of exp
(
−iH l

FMnT
)

with the cost designated by Eq. (13). Since the

right hand side of Eq. (243) is bounded by O
(
nN−l−1

)
, the replacement of U(nT ) by

exp
(
−iH l

FMnT
)

with an allowable error ε is valid as long as

n ≤ Const.× εN l+1. (245)

We usually employ a polynomial accuracy ε ∈ O(N−ν1) in quantum computation. The as-
sumption for the frequency, represented by ω ∈ O(Nν2), implies the period T ∈ O(N−ν2).
Therefore, by properly choosing the O

(
N0) truncation order l ≥ ν1 + ν2 − 1, we can

efficiently simulate U(nT ) for arbitrary polynomial time nT ∈ O
(
N l+1−ν1−ν2

)
with the

qubitization technique for time-independent Hamiltonians. The remaining micromotion
U(δT ) can be implemented with our protocol for the adiabatic-like regime (See Section
7.1), but it does not affects the computational cost due to δT � nT .

In short, the dynamics under time-periodic Hamiltonians H(t) with ω ∼ α, γ can be
simulated with the time-independent Hamiltonian approaches. As a result, it is reasonable
to concentrate on the cases where ω is negligible compared to α and γ, as we do in Section
7.2.
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