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Isometry operations encode the quantum information of the input system
to a larger output system, while the corresponding decoding operation would
be an inverse operation of the encoding isometry operation. Given an encod-
ing operation as a black box from a d-dimensional system to a D-dimensional
system, we propose a universal protocol for isometry inversion that constructs
a decoder from multiple calls of the encoding operation. This is a probabilistic
but exact protocol whose success probability is independent of D. For a qubit
(d = 2) encoded in n qubits, our protocol achieves an exponential improve-
ment over any tomography-based or unitary-embedding method, which cannot
avoid D-dependence. We present a quantum operation that converts multiple
parallel calls of any given isometry operation to random parallelized unitary
operations, each of dimension d. Applied to our setup, it universally compresses
the encoded quantum information to a D-independent space, while keeping the
initial quantum information intact. This compressing operation is combined
with a unitary inversion protocol to complete the isometry inversion. We also
discover a fundamental difference between our isometry inversion protocol and
the known unitary inversion protocols by analyzing isometry complex conjuga-
tion and isometry transposition. General protocols including indefinite causal
order are searched using semidefinite programming for any improvement in the
success probability over the parallel protocols. We find a sequential “success-
or-draw” protocol of universal isometry inversion for d = 2 and D = 3, thus
whose success probability exponentially improves over parallel protocols in the
number of calls of the input isometry operation for the said case.

1 Introduction
Universal transformations of quantum states have played an essential role in the funda-
mental understanding of quantum information theory and its applications [1]. Recently,
higher-order quantum transformations, namely, universal transformations of quantum op-
erations given as black boxes, have been studied in the contexts of processing unitary
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operations [2–24], non-Markovian quantum process [25–37], and dynamical resource the-
ory [38–52]. They can also be interpreted as quantum functional programming [53, 54].
The concept of higher-order quantum transformation was initially introduced as single-
input quantum supermaps [55], and a multiple-input version was introduced as quantum
combs [56], which are realizable by quantum circuits with a fixed ordering of input opera-
tions. A similar concept was studied as channels with memory [57] and quantum strategies
[58].

In particular, higher-order quantum transformations of unitary operations have been
extensively studied for aiming to utilize in quantum information processing (e.g., estima-
tion of group transformations [2], quantum learning of unitary operations [3–6], cloning
of unitary operations [7–12], process tomography [13, 14], unitary complex conjugation
[15], unitary inversion [16–20] and unitary controllization [22–24]). Isometry operations
are also frequently used in quantum protocols, as they preserve information of the input
state similarly to unitary operations. For instance, encoding of quantum information is
represented by an isometry operation [1]. In addition, many quantum algorithms use fixed
auxiliary states and such algorithms can also be considered to be utilizing isometry op-
erations (e.g., Harrow-Hassidim-Lloyd (HHL) algorithm [59]). Despite their importance,
higher-order quantum transformations of isometry operations are not well investigated yet.

In this work, we study one of the fundamental higher-order quantum transformation
tasks for isometry operations, namely, isometry inversion. Isometry inversion is a task
to implement the inverse map of an input isometry operation, interpreted as retrieving
quantum information encoded by the isometry operation. Such a retrieval of quantum
information is widely studied in the context of quantum error correction [1], quantum
secret sharing [60], quantum communication [61], and uncomputation [62, 63]. Such studies
usually assume that the complete descriptions of encoding operations are given. Contrary,
this work considers a universal protocol without knowing the descriptions except for the
dimensions of the input system and the output system. The universal protocol implements
the inverse operation probabilistically but exactly.

The special case of probabilistic exact isometry inversion, namely probabilistic exact
unitary inversion [18, 19], is known. This implementation relies on the existence of two
protocols: (deterministic exact) unitary complex conjugation [15] and (probabilistic exact)
unitary transposition [19]. However, this strategy is not directly applicable for isometry
inversion. The key idea for unitary complex conjugation protocol presented in Ref. [15] is
to utilize the knowledge of representation theory of the unitary group, but this idea cannot
be applied to isometry complex conjugation since the set of isometry operations does not
form a group. In fact, we show below a no-go theorem for isometry complex conjugation.

The most trivial way to implement isometry inversion in the black box setting is to
obtain a classical description of the isometry operation by quantum process tomography [1]
and then implement the inverse map based on the description, namely, using the “measure-
and-prepare” strategy [3, 64]. However, known quantum process tomography protocols [65]
require a D-dependent number of experiments to obtain an approximate description of an
isometry operation Ṽd,D from a d-dimensional system to a D-dimensional system (see the
discussion in Section 3.4). Another straightforward way is to embed an isometry opera-
tion Ṽd,D in a D-dimensional unitary operation and then apply a universal probabilistic
exact unitary inversion protocol [18]. However, the success probability of such a protocol
cannot avoid the dependence on D, either. In particular, for isometry operations encoding
quantum information of a qudit (a d-dimensional system) into n qudits (a dn-dimensional
system), the exponential cost in n due to the dimensionality of D = dn may seem to be
inevitable for implementing isometry inversion.
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Nevertheless, we present a probabilistic but exact protocol for isometry inversion of
which success probability does not depend on D. Due to this property, our protocol can
significantly outperform the protocols based on the two strategies mentioned above. To
compare with the protocol based on unitary inversion, we consider an isometry operation
that encodes a qubit into five qubits, i.e., d = 2 and D = 25. The unitary inversion requires
at least D − 1 = 31 calls to obtain a non-zero success probability [18], but our protocol
achieves a success probability p = 87% by 20 calls. Compared with the protocol based
on quantum process tomography, our protocol can implement isometry inversion approxi-
mately within a fixed error ε by aD-independent number of calls. This comparison exhibits
the potential power of a higher-order quantum transformation that directly transforms a
black box operation without evaluating its classical description.

We also clarify a crucial difference between the unitary inversion protocols presented
in Ref. [18] and the isometry inversion protocol. Reference [18] presents a systematic
construction of unitary inversion protocols concatenating unitary transposition [19] and
unitary complex conjugation [15]. The unitary complex conjugation protocol utilizes the
fact that the complex conjugate representation of the unitary group is unitarily equivalent
to the antisymmetric subspace of the tensor representation of the unitary group [15]. The
unitary transposition protocol presented in Ref. [19] uses a variant of the gate telepor-
tation [66] or the probabilistic port-based teleportation [67, 68]. However, we show that
isometry inversion cannot be implemented by concatenating the corresponding tasks since
no probabilistic exact isometry complex conjugation is possible for D ≥ 2d. We also show
that any isometry inversion protocol transposing a “pseudo complex conjugate” map (see
Section 4.2) of an isometry operation by a variant of gate teleportation [66] is less efficient
than our protocol.

The key idea of our isometry inversion protocol is a quantum operation that universally
compresses the D-dimensional output spaces of the isometry operations into d-dimensional
quantum systems. We first extend the irreducible decomposition of the tensor product of
unitary operators known as the Schur-Weyl duality to isometry operators. We show that
the tensor product of isometry operators also admits a block diagonal decomposition, de-
spite the isometry operators not forming a group. This decomposition identifies relevant
and irrelevant components to retrieve quantum information encoded by the isometry oper-
ation. The compressing quantum operation discards the irrelevant component. We utilize
the compressing quantum operation to convert unitary inversion protocols to isometry
inversion protocols avoiding the D-dependence of the success probability and the no-go
theorem for isometry complex conjugation.

Our isometry inversion protocol uses input operations in parallel. Such parallel proto-
cols form an essential class of higher-order quantum transformation because parallelization
is a common technique to reduce the circuit depth [69]. However, more general proto-
cols than parallel ones can be helpful to improve the success probability. In this work,
we consider sequential protocols using input operations in a fixed ordering and general
protocols including indefinite causal order [70–76] in addition to parallel ones. To see the
performance improvement in our setting, we conduct semidefinite programming (SDP) to
obtain the optimal success probability of parallel, sequential, and general protocols.

The rest of this paper is organized as follows. Section 2 states the problem setting
for implementing isometry transposition, isometry complex conjugation, and isometry in-
version. Section 3 presents the main result of this paper, constructing a parallel protocol
for isometry inversion by investigating the compressing quantum operation. Section 4 dis-
cusses the difference between our isometry inversion protocol and the previous work on
unitary inversion. Section 5 shows numerical results on the optimal success probability
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of parallel, sequential, and general protocols including indefinite causal order for isometry
inversion, isometry (pseudo) complex conjugation, and isometry transposition. Section 6
concludes the paper.

2 Problem Setting
2.1 Inverse maps of isometry operations
A d-dimensional quantum system is represented by a Hilbert space H = Cd and a state of
the system is represented by a density operator (a positive semi-definite operator with unit
trace) ρ on H. A state is called pure if its density operator has rank 1, i.e., ρ = |ψ〉〈ψ| for
|ψ〉 ∈ H. The set of linear operators onH is denoted by L(H) and the set of linear operators
from H to H′ is denoted by L(H → H′). When we explicitly specify the dimension of the
set of linear operators, we denote the corresponding sets by L(Cd) and L(Cd → CD),
respectively, for H = Cd and H′ = Cd. We only consider quantum systems represented by
finite-dimensional Hilbert spaces in this paper.

An isometry operation transforms a pure input state in a d-dimensional system H = Cd
to a pure output state in a D-dimensional system H′ = CD with D ≥ d where the
transformation preserves the inner product of two input states. An isometry operation is
regarded to encode (and spread for the case of d < D) quantum information represented by
a d-dimensional quantum state into a D-dimensional state. Unitary operations are special
cases of isometry operations with d = D.

Formally, an isometry operation Ṽ : L(H) → L(H′) for H = Cd and H′ = CD is a
completely positive trace preserving (CPTP) map given as Ṽ(ρ) = V ρV † in terms of an
isometry operator V : H → H′, an element of the set of isometry operators Viso(d,D)
defined by

Viso(d,D) := {V ∈ L(Cd → CD)|V †V = 1d}, (1)

where 1d is the identity operator on H = Cd, and V † : H′ → H is the adjoint of V . In
this notation, the tilde symbol on top of V represents a linear map1. We denote a set of
d-dimensional unitary operators by U(d), which is equivalent to Viso(d, d), and a unitary
operation corresponding to a unitary operator U by Ũ .

We define the most general map which can decode the states encoded by an isometry
operation Ṽ. We consider a completely positive (CP) map Ṽinv : L(H′) → L(H) that
satisfies

Ṽinv ◦ Ṽ = 1̃d, (2)

for an isometry operation Ṽ corresponding to V ∈ Viso(d,D), where 1̃d is the identity
operation on L(H), which is defined by 1̃d(ρ) = ρ for all density matrices ρ of a d-
dimensional system. We refer to a map Ṽinv satisfying Eq. (2) as an inverse map of Ṽ.
Note that Ṽinv is not necessarily a trace preserving map, while the composition of Ṽinv and
Ṽ is trace preserving. An inverse map is not necessarily the adjoint map Ṽ† defined as
Ṽ†(ρ) = V †ρV , either. For instance, a CP map Ṽ ′α defined by

Ṽ ′α(ρ) := V †ρV + α
Id
d

Tr
[
Π(ImV )⊥ρ

]
(3)

1This convention is adopted from Ref. [19].
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is also an inverse map of Ṽ for α ≥ 0, where Π(ImV )⊥ is a projector onto the orthogonal
subspace of the image of V : H → H′ denoted by ImV := V (H). The map Ṽ ′α is not trace
preserving for α 6= 1, but the composition of Ṽ and Ṽ ′α is trace preserving because the
second term of Eq. (3) vanishes for all ρ ∈ L(ImV ).

2.2 Higher-order quantum transformations of isometry operations: parallel protocols
for probabilistic exact tasks

In this paper, we present a probabilistic but universal and exact protocol to construct an
inverse map Ṽinv from finite calls of an unknown isometry operation Ṽ given as a black box.
Such a protocol can be regarded as implementing a higher-order quantum transformation of
an isometry operation, similarly to the preceding works considered higher-order quantum
transformations of a unitary operation [18, 19], of which formulation is based on the notion
of quantum supermaps and superinstrument [55].

We first introduce the notations of quantum supermaps [55] describing higher-order
deterministic quantum transformations. A quantum supermap is a linear completely CPTP
preserving transformation from an input map to an output map. We consider a k-input
supermap ˜̃C that transforms k input maps Λ̃(i)

in : L(Ii) → L(Oi) for i ∈ {1, · · · , k}, where
Ii and Oi represent the input Hilbert space and the output Hilbert space of the i-th input
map Λ̃(i)

in , respectively, to an output map Λ̃out : L(P) → L(F), where P and F represent
the input Hilbert space (also referred to as the past space) and the output Hilbert space
(also referred to as the future space), respectively, of Λ̃out. The double tilde symbol on top
of C represents a linear supermap (or a linear superinstrument, which will be introduced
in the next paragraph)2.

Figure 1: A quantum circuit representation of a parallel superinstrument {˜̃Ca} defined in Eq. (4), where
Λ̃(i)

in (i ∈ {1, · · · , k}) are input maps, Ẽ is a CPTP map, and {D̃a} is a quantum instrument. A wire
corresponds to a Hilbert space and a box corresponds to an operation. The double line in this figure
represents the classical outcome of the measurement.

Since we mainly focus on probabilistic parallel protocols, we introduce the notions of a
parallel superinstrument representing a higher-order probabilistic quantum transformation
where all input maps are called in parallel [19]. For a parallel protocol, it is convenient
to define the joint input Hilbert space I :=

⊗k
i=1 Ii and the joint output Hilbert space as

O :=
⊗k
i=1Oi, as well as the joint input map Λ̃in :=

⊗k
i=1 Λ̃(i)

in . Using these notations, a
parallel superinstrument is a set of k-input supermaps {˜̃Ca} : [L(I)→ L(O)]→ [L(P)→
L(F)] given by

˜̃Ca(Λ̃in) = D̃a ◦
(
Λ̃in ⊗ 1̃A

)
◦ Ẽ , (4)

2This convention is also adopted from Ref. [19].
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where Ẽ : L(P) → L(I ⊗ A) is a CPTP map, {D̃a} : L(O ⊗ A) → L(F) is a quantum
instrument3 and A is an auxiliary Hilbert space (see Figure 1). We note that a parallel
protocol using k copies of an input isometry operation does not require the k copies to be
available simultaneously during the protocol. We may substitute by using a single black
box isometry operation repeatedly k times.

This work also considers constructions of probabilistic exact parallel protocols for the
complex conjugate map and the transposition map of an isometry operation to compare the
protocol with that of unitary inversion. For this sake, we introduce a notation of general
higher-order probabilistic quantum transformation of an isometry operation Ṽ to another
map which is a function of Ṽ denoted as f̃(V ) 4. Note that the function f is not necessarily
linear in terms of a single Ṽ , but has to be linear in terms of Ṽ⊗k, and not necessary to
be trace preserving either.

A probabilistic exact parallel protocol of a higher-order quantum transformation of k
calls of an unknown isometry operation Ṽ to f̃(V ) is formulated as follows. Let { ˜̃S , ˜̃F} :
[L(I) → L(O)] → [L(P) → L(F)] be a parallel superinstrument, where ˜̃S denotes the
successful transformation and ˜̃F denotes the failure transformation. We say that a parallel
protocol ˜̃S is a probabilistic exact protocol to implement f̃(V ) from k calls of Ṽ if

˜̃S (Ṽ⊗k) = psuccf̃(V ) (∀V ∈ Viso(d,D)) (5)

holds. We require that psucc is independent of the input isometry operation Ṽ and the input
quantum state ρin, and call it the success probability of f̃(V ) for the following reasons. Note
that the probability to obtain the successful measurement outcome is psuccTr[f̃(V )(ρin)],
where ρin is the input state. The probability to obtain the successful measurement can
be divided into two terms; one is the success probability of the protocol denoted by psucc,
and the other is the success probability of the map f̃(V ) denoted by Tr[f̃(V )(ρin)]. For
the case of f̃(V ) = Ṽinv (isometry inversion), psucc coincides with the probability to obtain
the successful measurement outcome when the input quantum state is in the image ImṼ,
since Ṽinv ◦ Ṽ is trace preserving. Then, the success probability psucc for isometry inversion
represents the probability to obtain the quantum state ρ when the input state is Ṽ(ρ).

We summarize a list of f̃(V ) discussed in this paper. Isometry inversion (1) is the main
topic of this work, and other tasks (2, 3, 4) are analyzed to compare isometry inversion
with the previous works [18, 19] on unitary inversion.

1. Isometry inversion: f̃(V ) = Ṽinv,
such that Ṽinv ◦ Ṽ = 1̃d.

2. Isometry complex conjugation: f̃(V ) = Ṽ∗,
where Ṽ∗(ρ) = V ∗ρ(V ∗)†. Here, V ∗ denotes the complex conjugate of V in the
computational basis.

3. Isometry pseudo complex conjugation (see Section 4.2): f̃(V ) = Ṽpcc,

such that ṼTpcc ◦ Ṽ = 1̃d, where the transposed map Λ̃T for a CP map Λ̃ given by
its action as Λ̃(ρ) =

∑
kKkρK

†
k in terms of the Kraus operators {Kk} is defined as

Λ̃T (ρ) :=
∑
kK

T
k ρ(KT

k )†.

3A quantum instrument {Ψ̃a} is a set of CP maps such that
∑

a
Ψ̃a is a CPTP map [61].

4We write the argument of the function f as V instead of Ṽ to avoid a duplicate use of a tilde.
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4. Isometry transposition: f̃(V ) = ṼT ,
where ṼT (ρ) = V Tρ(V T )†. Here, V T denotes the transpose of V in the computational
basis.

In quantum circuits shown in the figures in the rest of the paper, we sometimes write
V ∈ Viso(d,D) as Vd,D to represent the dimensions of its input and output Hilbert spaces
explicitly in quantum circuits. To illustrate the dimensions of the Hilbert spaces repre-
sented by the wires of quantum circuits in the figures, we use the following color coding of
wires: a red wire corresponds to a d-dimensional Hilbert space, a blue wire corresponds to
a D-dimensional Hilbert space, and a black wire corresponds to a Hilbert space with an
arbitrary dimension. The dual lines in the quantum circuits represent classical information
transmissions.

3 The parallel isometry inversion protocol
3.1 Main result: Parallel isometry inversion with D-independent success probability
We present our main theorem on the optimal success probability of the probabilistic exact
parallel protocol for isometry inversion. The success probability only depends on the
dimension of the input Hilbert space of the isometry, and thus significantly outperforms
the probabilistic exact parallel protocols based on unitary inversion (see Figure 6 (b)).

Theorem 1. The optimal success probability of probabilistic parallel protocols that trans-
form k calls of an isometry operation Ṽ : L(Cd) → L(CD) into its inverse map Ṽinv does
not depend on D. Moreover, a parallel protocol shown in Figure 2 (a) achieves a success
probability psucc = bk/(d− 1)c/[d2 + bk/(d− 1)c − 1], which is optimal for d = 2.

Before proceeding the proof of Theorem 1 and showing the detail of the protocol shown
in Figure 2 (a), we show how an isometry inversion protocol is implemented in the case of
k = d− 1 calls, as the protocol is shown by a quantum circuit represented in Figure 2 (b).
In the quantum circuit, |Ad〉 ∈ I ⊗ F = (Cd)⊗d is the totally antisymmetric state defined
by

|Ad〉 :=
∑

~j∈{1,··· ,d}d

ε~j√
d!
|j1j2 · · · jd〉, (6)

where {|ji〉} (i = 1, · · · , d) is an orthonormal basis of Cd and ε~j is the antisymmetric tensor
with rank d. The POVMM is a projective measurement {Π1 = Πa.s.,Π0 = IPO − Πa.s.},
where Πa.s. is the orthogonal projector on P⊗O1⊗· · ·⊗Od−1 = (CD)⊗d onto the subspace
spanned by the totally antisymmetric states. This protocol succeeds when the measurement
outcome ofM = {Πa} is a = 1. This quantum circuit implements an isometry inversion
protocol as shown in the following theorem. See Appendix G for the proof.

Theorem 2. A parallel protocol shown in Figure 2 (b) transforms d−1 calls of an isometry
operation Ṽ corresponding to V ∈ Viso(d,D) into its inverse map Ṽinv with a success
probability psucc = 1/d2. Moreover, this protocol implements the inverse map Ṽinv = Ṽ ′
given by

Ṽ ′(ρin) := V †ρinV + 1dTr
[
Π(ImV )⊥ρin

]
, (7)

where Π(ImV )⊥ is the orthogonal projector onto the orthogonal complement (ImV )⊥ of
ImV ⊂ CD.
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(a) (b)

Figure 2: (a) A quantum circuit representation of a parallel delayed input-state protocol for isometry
inversion that achieves the success probability psucc = bk/(d − 1)c/[d2 + bk/(d − 1)c − 1]. In the
quantum circuit, m(d − 1) calls of the input isometry operation Ṽd,D for m = bk/(d − 1)c are used,
and the rest k −m(d − 1) calls of Ṽd,D are discarded (not shown in the figure). The CPTP map Ψ̃
is defined in Eq. (22). The quantum state |φ(d)

PBT〉 and the POVM M = {Γ(d)
a }k

a=0 are the optimal
resource state and the POVM for the probabilistic port-based teleportation [67, 68], which are defined in
Eqs. (100) and (101), respectively. The conditional CPTP map Λ̃a is the post-processing operation used
in port-based teleportation defined in Eq. (111), which selects the quantum state in Aa corresponding
to the measurement outcome a of M as the output state for a 6= 0. The isometry operator V a.s.

represents an encoding of quantum information on a totally antisymmetric state defined in Eq. (62).
This protocol succeeds when the measurement outcome a is a 6= 0. (b) The isometry inversion
protocol shown in (a) reduces to the circuit shown in this figure for m = 1, i.e., k = d − 1. The
quantum state |Ad〉 is the totally antisymmetric state defined in Eq. (6) and the POVM M is a
projective measurement {Π1 = Πa.s.,Π0 = 1PO − Πa.s.}, where Πa.s. is the orthogonal projector on
P ⊗O1 ⊗ · · · ⊗ Od−1 = (CD)⊗d onto the subspace spanned by the totally antisymmetric states. This
protocol implements the inverse map Ṽinv = Ṽ ′ of V defined in Eq. (7) when the measurement outcome
ofM = {Πa} is a = 1.

Theorem 2 states the existence of a parallel isometry inversion protocol whose success
probability does not depend on D for k = d − 1. Now, we go back to Theorem 1, which
is a generalization of Theorem 2. The first part of Theorem 1 states the D-independence
of the optimal success probability of parallel isometry inversion. In general, an isometry
operation V ∈ Viso(d,D′) can be embedded in Viso(d,D) for D ≥ D′ ≥ d. Using this
embedding, we can show the optimal success probability of parallel isometry inversion
using k calls of the input isometry operation V ∈ Viso(d,D), denoted by popt(d,D, k), is
monotonically non-increasing in the output dimension D of V , i.e.,

popt(d,D′, k) ≥ popt(d,D, k) (8)

holds for all d, k, D, and D′ such that D ≥ D′ ≥ d. We present a proof of this statement
for D′ = d in the proof of Theorem 1 (see Figure 5 (b)) and a similar construction is
possible for any D ≥ D′ ≥ d. Thus, it is enough to show the converse of Eq. (8) given by

popt(d, d, k) ≤ popt(d,D, k). (9)

We show this relation by constructing a CPTP map compressing the output space of isom-
etry operations to d-dimensional spaces. Using this CPTP map, we show the construction
of a parallel isometry inversion protocol of V ∈ Viso(d,D) from a corresponding parallel
unitary inversion protocol of U ∈ U(d)(= Viso(d, d)). The second part shows the series of
parallel isometry inversion protocols withD-independent success probability approaching 1
for k →∞. This asymptotic behavior is natural since one can perform the process tomog-
raphy of V ∈ Viso(d,D) to construct the inverse operation deterministically for k → ∞.
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We note that the optimality of the success probability shown in Theorem 1 is still open
since the optimal parallel protocol for unitary inversion is not analytically known except
for the case of d = 2.

3.2 Construction of isometry inversion protocol from a given parallel delayed-input state
protocol for unitary inversion

We consider a subclass of parallel protocols to proceed the proof of Theorem 1. We say
that a superinstrument is realized by a parallel delayed input-state protocol if an input
state is inserted after applying black box operations similarly to the one given by the
quantum circuit shown in Figure 2 (a) (see Ref. [19] for the detail). As shown in the
following Lemma, an isometry inversion protocol can be constructed from a given parallel
delayed-input state protocol for unitary inversion.

Since the input quantum state in the Hilbert space P and the output state of Ṽ⊗kd,D in
the Hilbert space O =

⊗k
i=1Oi are available at some point of the parallel delayed input-

state protocol, we can apply a CPTP map Ψ̃ on P ⊗O. Using this idea, we construct an
isometry inversion protocol (see the proof of Lemma 3). Note that this construction is not
valid for a general (i.e., non delayed input-state) parallel protocol since the input quantum
state in the Hilbert space P is not available after applying the input isometry operation
(see Figure 1).

Lemma 3. Suppose we are given a parallel delayed input-state protocol that transforms
k calls of a unitary operation Ũ : L(Cd) → L(Cd) into its inverse map Ũ† with a success
probability p′succ. Then, we can construct a parallel delayed input-state protocol that trans-
forms k calls of an isometry operation Ṽ : L(Cd)→ L(CD) into its inverse map Ṽinv with
the same success probability psucc = p′succ.

Proof. We construct a CPTP map Ψ̃ transforming k + 1 parallel calls of isometry V ∈
Viso(d,D) into parallel calls of a random unitary U ∈ U(d) (see Eq. (23)). This CPTP map
Ψ̃ compresses the output state of isometry operations on d-dimensional systems keeping the
relevant component to retrieve the input state, which contributes to the D- independence
of the success probability. Then, we construct an isometry inversion protocol by inserting
the CPTP map Ψ̃ into a given unitary inversion protocol (see Figure 5 (a)). In the
following, we derive Ψ̃ and show the protocol and the achievability of psucc.

We first introduce a parallel delayed input-state k-input superinstrument {˜̃S ′, ˜̃F ′} :
[L(I)→ L(O′)]→ [L(P ′)→ L(F)] defined by

˜̃S ′(Λ̃in)(·) =
[
D̃′S ◦

(
1̃P ′ ⊗ Λ̃in ⊗ 1̃A

)]
(· ⊗ φ′IA), (10)˜̃F ′(Λ̃in)(·) =

[
D̃′F ◦

(
1̃P ′ ⊗ Λ̃in ⊗ 1̃A

)]
(· ⊗ φ′IA), (11)

where the joint Hilbert space are defined by I :=
⊗k

i=1 Ii and O′ :=
⊗k
i=1O′i, A is an

auxiliary system, φ′IA ∈ L(I ⊗ A) is a quantum state and {D̃′S , D̃′F } : L(P ′ ⊗O′ ⊗A)→
L(F) is a quantum instrument (see the left panel of Figure 5 (a)). Note that a prime is
added on the quantum state φ′, the quantum instrument {D̃′S , D̃′F }, and the Hilbert spaces
O′i and P ′ to distinguish {˜̃S ′, ˜̃F ′} from another superinstrument { ˜̃S , ˜̃F} defined later (see
Eqs. (13) and (14)). Suppose P ′ = Cd, F = Cd, Ii = Cd and O′i = Cd for i ∈ {1, · · · , k}.
We assume that the superinstrument {˜̃S ′, ˜̃F ′} implements unitary inversion with a success
probability p′succ, i.e., ˜̃S ′(Ũ⊗k) = p′succ Ũ† (∀U ∈ U(d)). (12)
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Figure 3: Left panel: A quantum circuit representation of a parallel delayed input-state protocol { ˜̃S , ˜̃F}.
This protocol succeeds when the successful measurement outcome is obtained (a = “S”). Right panel:
The condition that the parallel delayed input-state protocol { ˜̃S , ˜̃F} shown in the left panel implements
isometry inversion with the success probability psucc is equivalent to the condition that the output state
of the quantum circuit shown in the right panel retrieves the input state ρ with the success probability
psucc. This protocol succeeds when the successful measurement outcome is obtained (a = “S”).

Next, we consider the condition that a parallel delayed input-state superinstrument
{ ˜̃S , ˜̃F} implements isometry inversion. Suppose P = Cd and Oi = CD for i ∈ {1, · · · , k}
and define the joint Hilbert space by O :=

⊗k
i=1Oi. We consider a parallel delayed

input-state superinstrument { ˜̃S , ˜̃F} : [L(I)→ L(O)]→ [L(P)→ L(F)] given by

˜̃S (Λ̃in)(·) =
[
D̃S ◦

(
1̃P ⊗ Λ̃in ⊗ 1̃A

)]
(· ⊗ φIA), (13)˜̃F (Λ̃in)(·) =

[
D̃F ◦

(
1̃P ⊗ Λ̃in ⊗ 1̃A

)]
(· ⊗ φIA), (14)

where A is an auxiliary system, φIA ∈ L(I ⊗ A) is a quantum state and {D̃S , D̃F } :
L(P ⊗ O ⊗ A) → L(F) is a quantum instrument (see the left panel of Figure 3). The
condition that superinstrument { ˜̃S , ˜̃F} implements isometry inversion with the success
probability psucc is given by

˜̃S (Ṽ) = psuccṼinv (∀V ∈ Viso(d,D)). (15)

By definition of the inverse map Ṽinv, this condition is equivalent to the condition given
by

˜̃S (Ṽ) ◦ Ṽ = psucc1̃d, (16)

i.e., [
D̃S ◦

(
Ṽ⊗k+1
P ′′I→PO ⊗ 1̃A

)]
(ρP ′′ ⊗ φIA) = psuccρF (17)

for all V ∈ Viso(d,D) and ρ ∈ L(P ′′) (see the right panel of Figure 3). Here, the Hilbert
space P ′′ is given by P ′′ = Cd. This condition means that we have to retrieve the quantum
state ρ after applying the tensor product of an isometry operation Ṽ⊗k+1.

We show the decomposition of the tensor product V ⊗k+1 of an isometry operator V
to consider how to retrieve the quantum state ρ after the application of V ⊗k+1. The joint
Hilbert spaces P ′′ ⊗ I = (Cd)⊗k+1, P ′ ⊗ O′ = (Cd)⊗k+1 and P ⊗ O = (CD)⊗k+1 can be
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decomposed as

P ′′ ⊗ I =
⊕
µ`k+1

U (d)
µ,P ′′I ⊗ S

(k+1)
µ,P ′′I , (18)

P ′ ⊗O′ =
⊕
µ`k+1

U (d)
µ,P ′O′ ⊗ S

(k+1)
µ,P ′O′ , (19)

P ⊗O =
⊕
µ`k+1

U (D)
µ,PO ⊗ S

(k+1)
µ,PO . (20)

by the Schur-Weyl duality , where µ is a Young diagram with k + 1 boxes, denoted by
µ ` k + 1 (see Appendix B for the detail). Let {|µ, uµ, sµ〉} be the orthonormal basis of
U (d)
µ,P ′O′⊗S

(k+1)
µ,P ′O′ for each µ and we call {|µ, uµ, sµ〉} the Schur basis (see also Appendix B).

We define the change of basis USch
P ′O′ transforming the computational basis for P ′ ⊗O′ to

the Schur basis, and suppose |µ〉, |uµ〉 and |sµ〉 are stored in the Hilbert spaces MP ′O′ ,
UP ′O′ and SP ′O′ , respectively. The unitary operator USch

P ′O′ is called the quantum Schur
transform [77–79]. Using the decomposition of Hilbert spaces given by Eqs. (18) and (20),
we can decompose the tensor product V ⊗k+1 : P ′′ ⊗ I → P ⊗O of an isometry operator
V ∈ Viso(d,D) as

V ⊗k+1 =
⊕
µ`k+1
l(µ)≤d

Vµ ⊗ IS(k+1)
µ,P′′I→S

(k+1)
µ,PO

, (21)

where l(µ) is the number of rows of a Young diagram µ, Vµ ∈ L(U (d)
µ,P ′′I → U

(D)
µ,PO) is an

isometry operator depending on the isometry V and IS(k+1)
µ,P′′I→S

(k+1)
µ,PO

is the isomorphism

between irreducible representations S(k+1)
µ,P ′O′ and S

(k+1)
µ,PO . We prove this decomposition in

Appendix B (see Eq. (89)). This decomposition shows that the quantum information
encoded in S(k+1)

µ,P ′′I is unchanged by the action of the parallel calls of any isometry operator
V ∈ Viso(d,D), while the quantum information encoded in U (d)

µ,P ′′I is affected by a V -
dependent action. In addition, the Hilbert space U (D)

µ,PO ⊗S
(k+1)
µ,PO for l(µ) > d is out of the

image ImV ⊗k+1. From these observations, the quantum information relevant to retrieve
the quantum state ρ after the application of Ṽ⊗k+1 is considered to be encoded in the
Hilbert space S(k+1)

µ,PO for l(µ) ≤ d. Then, we can “compress” the output state of Ṽ⊗k+1 to
a smaller Hilbert space whose dimension is independent of D by a CPTP map Ψ̃ defined
in the next paragraph.

We define a key element for constructing an isometry inversion protocol, a CPTP map
Ψ̃ : L(P ⊗O)→ L(P ′ ⊗O′), by

Ψ̃PO→P ′O′(ρ)

:=
⊕
µ`k+1
l(µ)≤d

1U(d)
µ,P′O′

dU(d)
µ

⊗
[
ĨS(k+1)

µ,PO→S
(k+1)
µ,P′O′

TrU(D)
µ,PO

(Πµ,POρ)
]

+ 1P ′O′

dP ′O′
×

∑
µ`k+1
l(µ)>d

Tr(Πµ,POρ),

(22)

where Πµ,PO is a projector on the Hilbert space P ⊗O onto its subspace U (D)
µ,PO ⊗ S

(k+1)
µ,PO .

The CPTP map Ψ̃ “extracts” the quantum information encoded in S(k+1)
µ,PO for l(µ) ≤ d from

P ⊗ O by “discarding” U (D)
µ,PO and “embeds” it onto P ′ ⊗ O′. More precisely, the CPTP

Accepted in Quantum 2023-02-23, click title to verify. Published under CC-BY 4.0. 11



If

else

Figure 4: Implementation of the CPTP map Ψ̃ by using the quantum Schur transform [77–79] and the
“measure-and-prepare” strategy [3, 64]. The projective measurement is applied on the Hilbert space
MPO after the quantum Schur transform. Depending on the measurement outcome µ, we replace a
quantum state by a fixed quantum state and apply the inverse of quantum Schur transform to obtain
the output state. The wire between SPO and SP′O′ represents the identity map.

map Ψ̃ can be implemented by using the quantum Schur transform and the “measure-
and-prepare” strategy [3, 64] as follows (see Figure 4). First, we apply the quantum
Schur transform USch

PO on P ⊗O and measure |µ〉. If l(µ) ≤ d, we replace |uµ〉 by the dU(d)
µ

-
dimensional maximally mixed state and apply the inverse of the quantum Schur transform
USch†
P ′O′ on P ′ ⊗ O′ to obtain the output state. Otherwise, we replace the entire quantum

state by the dP ′O′-dimensional maximally mixed state to obtain the output state.
The CPTP map Ψ̃ satisfies the following lemma, which will play a crucial role to

construct a parallel isometry inversion protocol.

Lemma 4. For any isometry operation Ṽ corresponding to V ∈ Viso(d,D),

Ψ̃ ◦ Ṽ⊗k+1 =
∫

dU Ũ⊗k+1 (23)

holds, where Ũ is a unitary operation corresponding to U ∈ U(d), and dU is the Haar
measure on U(d).

This Lemma shows the transformation from k+1 parallel calls of an isometry operation
Ṽ corresponding to V ∈ Viso(d,D) into k + 1 parallel calls of a d-dimensional randomly
(and independently of the isometry operator V ) chosen unitary operation. Note that, for
D = d, the action of the CPTP map Ψ̃ matches parallel calls of a randomly chosen unitary
operation, i.e.,

Ψ̃ =
∫

dU Ũ⊗k+1. (24)

Then, Lemma 4 reduces to a well-known relation for the Haar measure dU on the unitary
group U(d) given by (∫

dU Ũ⊗k+1
)
◦ Ũ ′⊗k+1 =

∫
dU Ũ⊗k+1 (25)

for all U ′ ∈ U(d). In a sense, the CPTP map Ψ̃ extends this relation to an arbitrary D
while keeping the independence on D on the right hand side, which may be of independent
interest. See Appendix H for the proof of Lemma 4.
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(a)

isometry inversionunitary inversion

(b)

unitary inversionisometry inversion

Figure 5: (a) Left panel: Parallel delayed input-state protocol ˜̃S ′ for unitary inversion of Ud ∈ U(d) using
a quantum state φ′ and a quantum instrument {D̃′S , D̃′F } (see also Eq. (10)). Right panel: Construction
of a parallel protocol for isometry inversion of Vd,D ∈ Viso(d,D) using a parallel delayed input-state
protocol ˜̃S ′ for unitary inversion of Ud ∈ U(d) and the CPTP map Ψ̃ defined in Eq. (22). This protocol
achieves the same success probability as the parallel delayed-input state protocol for unitary inversion
of Ud ∈ U(d) shown in the left panel. (b) Left panel: The parallel protocol ˜̃S opt for isometry inversion
of Vd,D ∈ Viso(d,D) achieving the optimal success probability can be implemented using a CPTP
map Ẽ and a quantum instrument {D̃S , D̃F } (see also Eq. (36)). Right panel: Construction of a
parallel protocol for unitary inversion of Ud ∈ U(d) using the optimal parallel protocol ˜̃S opt for isometry
inversion of Vd,D ∈ Viso(d,D) and the embedding isometry operator V embed defined in Eq. (38). This
protocol achieves the same success probability as the optimal parallel protocol for isometry inversion
shown in the left panel.

Using the CPTP map Ψ̃, we derive a parallel delayed input-state protocol for isometry
inversion protocol as follows. We define a parallel delayed input-state superinstrument
{ ˜̃S , ˜̃F} : [L(I)→ L(O)]→ [L(P)→ L(F)] by inserting the CPTP map Ψ̃ to the parallel
delayed input-state superinstrument {˜̃S ′, ˜̃F ′} for unitary inversion as

˜̃S (Λ̃in)(·) =
[
D̃′S ◦

(
Ψ̃⊗ 1̃A

)
◦
(
1̃PA ⊗ Λ̃in

)]
(· ⊗ φ′IA), (26)˜̃F (Λ̃in)(·) =

[
D̃′F ◦

(
Ψ̃⊗ 1̃A

)
◦
(
1̃PA ⊗ Λ̃in

)]
(· ⊗ φ′IA), (27)

where the quantum state φ′ and the quantum instrument {D̃′S , D̃′F } are in the superin-
strument {˜̃S ′, ˜̃F ′} for unitary inversion (see Eqs. (10), (11), and Figure 5 (a)). Note that
the CPTP map Ψ̃ can be inserted since {˜̃S ′, ˜̃F ′} is a parallel delayed-input state protocol.
If the input state of the parallel delayed-input state protocol ˜̃S is ρin = Ṽ(ρ), the output
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state is calculated as˜̃S (Ṽ⊗k)(ρin) = [ ˜̃S (Ṽ⊗k) ◦ Ṽ](ρ) (28)

=
[
D̃′S ◦

(
Ψ̃ ◦ Ṽ⊗k+1 ⊗ 1̃A

)]
(ρ⊗ φ′IA) (29)

=
∫

dU
[
D̃′S ◦

(
Ũ⊗k+1 ⊗ 1̃A

)]
(ρ⊗ φ′IA) (30)

=
∫

dU
[˜̃S ′(Ũ⊗k) ◦ Ũ] (ρ) (31)

= p′succ

∫
dU

(
Ũ† ◦ Ũ

)
(ρ) (32)

= p′succρ (33)
= p′succṼinv(ρin). (34)

from Eqs. (12) and (23). Therefore, the quantum superinstrument { ˜̃S , ˜̃F} implements an
isometry inversion protocol and its success probability is p′succ when the input quantum
state ρin is in the image ImṼ of the input isometry operation Ṽ.

3.3 Proof of the main result
Proof of Theorem 1. We show the first part of Theorem 1, i.e., the optimal success prob-
ability of parallel isometry inversion of V ∈ Viso(d,D) coincides with the optimal success
probability of parallel unitary inversion of U ∈ U(d). The achievability is shown by
constructing an isometry inversion protocol using Lemma 3. The optimality is shown
by constructing a d-dimensional unitary inversion protocol from a given isometry inver-
sion protocol by embedding U(d) to Viso(d,D). The second part of Theorem 1 states
the existence of a parallel isometry inversion protocol achieving the success probability
psucc = bk/(d − 1)c/[d2 + bk/(d − 1)c − 1] and its optimality for d = 2. The existence
is shown by constructing an isometry inversion protocol from a corresponding parallel
delayed input-state protocol for unitary inversion of U ∈ U(d) with a success probability
psucc = bk/(d − 1)c/[d2 + bk/(d − 1)c − 1] using Lemma 3. Since this parallel unitary
inversion protocol is known to be optimal for d = 2, this success probability of parallel
isometry inversion protocol is optimal for d = 2 (see Appendix D and Ref. [18]). We prove
the achievability and the optimality of the success probability of isometry inversion as
follows.

(Achievability) The optimal success probability p′opt = popt(d, d, k) of parallel unitary
inversion of U ∈ U(d) is shown to be achieved by a delayed input-state protocol in Ref. [19].
Using the delayed input-state protocol achieving the optimal success probability p′opt with
Lemma 3, we show the existence of a parallel protocol for isometry inversion of V ∈
Viso(d,D) with the success probability p′opt.

(Optimality) We show the existence of a parallel protocol for unitary inversion of
U ∈ U(d) with the same success probability as the optimal parallel protocol for isometry
inversion of V ∈ Viso(d,D) to complete the proof of the first part of Theorem 1. We
consider Hilbert spaces P = CD, F = Cd, Ii = Cd and Oi = CD for i ∈ {1, · · · , k} and
the joint Hilbert spaces I and O defined as I :=

⊗k
i=1 Ii and O :=

⊗k
i=1Oi, respectively.

Suppose { ˜̃S opt,
˜̃F opt} : [L(I) → L(O)] → [L(P) → L(F)] be a k-input parallel superin-

strument implementing isometry inversion of V ∈ Viso(d,D) with the optimal success
probability popt = popt(d,D, k), i.e.,

˜̃S opt(Ṽ⊗k)(ρin) = poptṼinv(ρin) (∀V ∈ Viso(d,D),∀ρin ∈ L(ImV )). (35)
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The parallel superinstrument { ˜̃S opt,
˜̃F opt} can be written as

˜̃S opt(Λ̃in) = D̃S ◦
(
Λ̃in ⊗ 1̃A

)
◦ Ẽ , (36)˜̃F opt(Λ̃in) = D̃F ◦

(
Λ̃in ⊗ 1̃A

)
◦ Ẽ , (37)

where A is an auxiliary Hilbert space, Ẽ : L(P)→ L(I⊗A) is a CPTP map, and {D̃S , D̃F }
is a quantum instrument (see the left panel of Figure 5 (b)).

We construct a parallel protocol for unitary inversion of U ∈ U(d) with the same
success probability popt as the parallel protocol for isometry inversion of Vd,D ∈ Viso(d,D)
as follows. We consider Hilbert spaces P ′ = Cd and O′i = Cd for i ∈ {1, · · · , k} and the
joint Hilbert space O′ :=

⊗k
i=1O′i. We define the embedding isometry operator V embed :

Cd → CD as

V embed :=
d−1∑
i=0
|i〉CD〈i|Cd , (38)

where {|i〉}d−1
i=0 and {|i〉}D−1

i=0 are the computational bases of Cd and CD, respectively. By
defining {˜̃S ′, ˜̃F ′} : [L(I)→ L(O′)]→ [L(P ′)→ L(F)] as

˜̃S ′(Λ̃in) :=D̃S ◦
[(

k⊗
i=1
Ṽembed
O′i→Oi

◦ Λ̃in

)
⊗ 1̃A

]
◦ Ẽ ◦ Ṽembed

P ′→P , (39)

˜̃F ′(Λ̃in) :=D̃F ◦
[(

k⊗
i=1
Ṽembed
O′i→Oi

◦ Λ̃in

)
⊗ 1̃A

]
◦ Ẽ ◦ Ṽembed

P ′→P , (40)

{˜̃S ′, ˜̃F ′} is a parallel superinstrument as shown in Figure 5 (b). Since V embedU is an
isometry operator for all U ∈ U(d), we obtain

˜̃S ′(Ũ⊗k) = popt(Ṽembed ◦ Ũ)inv ◦ Ṽembed (41)

for all U ∈ U(d) from Eq. (35). Since the inverse operation of an isometry operation is
defined as Eq. (2),

˜̃S ′(Ũ⊗k) ◦ Ũ = popt(Ṽembed ◦ Ũ)inv ◦ Ṽembed ◦ Ũ (42)
= popt1̃d, (43)

i.e.,

˜̃S ′(Ũ⊗k) = poptŨ† (44)

holds for all U ∈ U(d). Therefore, the parallel superinstrument {˜̃S ′, ˜̃F ′} implements
unitary inversion of U ∈ U(d) with the success probability popt. This completes the proof
of the first part of Theorem 1. As stated in the first paragraph of the proof, the second
part (achievability of the success probability psucc = bk/(d− 1)c/[d2 + bk/(d− 1)c− 1]) of
Theorem 1 follows from the combination of the first part and a parallel delayed input-state
protocol for unitary inversion shown in Appendix D and Ref. [18].
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unitary inversion

(a)

Parallel protocol shown in FIG. 2 (a)

Unitary embedding strategy

(b)

Figure 6: (a) Unitary embedding strategy for isometry inversion. By inverting a unitary operation
UV satisfying V |ψ〉 = UV (|ψ〉 ⊗ |aux〉), we obtain the inverse map of an isometry operation Ṽ. (b)
Comparison of the success probability of the two protocols for isometry inversion using k calls of
V ∈ Viso(2, 25) or UV ∈ U(25): the parallel protocol shown in Figure 2 (a) (blue line) and the strategy
based on the embedding of the input isometry operation V in a unitary operation UV (red dotted line).

3.4 Analysis of other related settings
3.4.1 Unitary embedding strategy

for D = dd′, any isometry operator V ∈ Viso(d,D) can be embedded in an appropriate
unitary operation UV ∈ U(D) by adding a fixed auxiliary system |aux〉 ∈ Cd′ and seeking
UV satisfying

V |ψ〉 = UV (|ψ〉 ⊗ |aux〉) (45)

for all |ψ〉 ∈ Cd (see Figure 6 (a)). Assuming that the black box implementing UV and
the fixed auxiliary state are given, we can implement an inverse map of Ṽ by applying
the unitary inversion protocol. Any D-dimensional unitary inversion protocol needs at
least D− 1 calls of an input unitary operation to be successful with a non-zero probability
[18]. In contrast, our direct isometry inversion protocol using k parallel calls of an input
isometry operation Ṽ corresponding to V ∈ Viso(d,D) implements the inverse map Ṽinv
with a success probability psucc = bk/(d − 1)c/[d2 + bk/(d − 1)c − 1]. We compare these
success probabilities for d = 2, D = 25 and 1 ≤ k ≤ 20 (see Figure 6 (b)). The isometry
inversion protocol achieves a success probability psucc ≈ 87% at k = 20, while probabilistic
unitary inversion is impossible for any k ≤ 30.

3.4.2 Process tomography strategy

Approximate isometry inversion can be achieved by approximating the classical description
of V ∈ Viso(d,D) by quantum process tomography first [1, 65], and then applying the in-
verse map calculated from the classical description. Quantum process tomography consists
of three steps: preparing a quantum state called a probe state, applying a black box quan-
tum operation to a probe state, and performing a measurement on the output state. By
repeating this procedure, we obtain a probability distribution of measurement outcomes to
estimate a black box operation. An isometry operator V ∈ Viso(d,D) is uniquely specified
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by 2Dd − d2 + d − 1 = Ω(Dd) real parameters5, and Ω(ε−2 ln(1/(1 − p))) measurements
are necessary to estimate each parameter with at most error ε and at least probability p
[65]. Therefore, we need Ω(Ddε−2 ln(1/(1 − p))) calls of an isometry operation Ṽ for the
process tomography of V . On the other hand, since we can achieve the success probability
psucc = bk/(d−1)c/[d2 +bk/(d−1)c−1] by k parallel calls of an isometry operation Ṽ, the
success probability becomes psucc for k = (d− 1)(d2 − 1)/(1− psucc) = O(d3/(1− psucc)).6
The isometry inversion protocol outperforms the strategy based on process tomography
at two points. First, the isometry inversion protocol can implement the inverse operation
without error (ε = 0) using finite calls of Ṽ, while the process tomography needs Ω(ε−2)
calls to achieve the error below ε. Second, the isometry inversion protocol can be done
with a D-independent number of calls of Ṽ, while the process tomography requires a D-
dependent number of calls. Though the scaling of the number of calls in our protocol with
respect to psucc is polynomial, we also find a protocol with k = O(ln(1/(1− psucc))) using
a “success-or-draw” protocol for d = 2 and D = 3, whose existence is shown numerically
(see Section 5).

4 Difference between isometry inversion protocols and unitary inversion
protocols

The parallel unitary inversion protocol presented in Ref. [18] consists of a concatenation
of unitary complex conjugation and unitary transposition. The implementation of unitary
complex conjugation shown in Ref. [15] relies on the fact that the complex conjugate rep-
resentation of U(d) is unitarily equivalent to the antisymmetric subspace in the tensor rep-
resentation of U(d) on (Cd)⊗d−1. The unitary transposition protocol presented in Ref. [19]
utilizes a variant of gate teleportation [66] or the probabilistic port-based teleportation
[67, 68]. In contrast, we show that isometry inversion protocols cannot be decomposed
into isometry complex conjugation and isometry transposition. We can consider another
similar strategy by considering “isometry pseudo complex conjugation”, but this strategy
is shown to be inefficient. We first investigate protocols for isometry complex conjugation
and isometry pseudo complex conjugation, and then analyze the difference between isom-
etry inversion and unitary inversion in this section. Isometry transposition is investigated
in Appendix E.

4.1 The no-go theorem for isometry complex conjugation
We prove that any isometry inversion protocol cannot be decomposed into isometry com-
plex conjugation and isometry transposition by showing a no-go theorem for isometry
complex conjugation.

To state the no-go theorem properly, we introduce the notion of general superinstrument
including the ones with an indefinite causal order [70–76], which describes the most general
higher-order probabilistic transformation where the order of the use of the input maps is
not pre-determined. Using the same notations of the Hilbert spaces and the input maps
introduced for a superinstrument in Section 2.2, a general superinstrument is a set of k-
input supermaps {˜̃Ca} : [L(I) → L(O)] → [L(P) → L(F)] such that a set of output
maps {˜̃Ca ⊗ ˜̃1(Λ̃in)}a is a quantum instrument for any set of input CPTP maps {Λ̃(i)

in }ki=1,

5We say f(x) = Ω(g(x)) if lim supx→∞ |f(x)/g(x)| > 0.
6We say f(x) = O(g(x)) if lim supx→∞ |f(x)/g(x)| < ∞.
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)b()a(

Figure 7: (a) The left hand side shows an illustration of a general superinstrument {˜̃Ca} as a purple
box with windows where input maps Λ̃(i)

in (i ∈ {1, · · · , k}) are plugged. The right hand side is the
output map of a general superinstrument {˜̃Ca} for input maps Λ̃(i)

in . (b) A hypothetical protocol using a
general superinstrument { ˜̃S , ˜̃F} for isometry complex conjugation to prove Lemma 6 by contradiction.
The wire between Ii and Oi (i ∈ {1, · · · , k}) represent the identity map and ξ is an arbitrary quantum
state.

where ˜̃1 is the identity supermap defined by ˜̃1(Λ̃) = Λ̃. This definition of a general
superinstrument {˜̃Ca} states that a set of output maps is a quantum instrument even if
the superinstrument acts on a subsystem of input CPTP maps. Note that the condition
that ˜̃Ca ⊗ ˜̃1(Λ̃in) is a quantum instrument for any input CPTP maps {Λ̃(i)

in }ki=1, is strictly
stronger than the relaxed condition that (b) ˜̃Ca(Λ̃in) is a quantum instrument for any
input CPTP maps {Λ̃(i)

in }ki=1, which is similar to the distinction between positive maps and
completely positive maps.

A general superinstrument {˜̃Ca} is not necessarily represented by a quantum circuit,
which requires to fix a causal ordering of the use of the input maps. To illustrate a protocol
using a general supermap in a similar manner of quantum circuits, we use a notation of
a general supermap represented by a box with windows for plugging input maps (see
Figure 7 (a)). As the windows of the box are not causally ordered, the box represents a
general supermap, a transformation of input maps with unspecified order to the output
map7.

Using the notion of general superinstrument, we can state the following no-go theorem
for isometry complex conjugation.

Theorem 5. If D ≥ 2d, it is impossible to transform finite calls of an isometry operation
Ṽ : L(Cd)→ L(CD) into its complex conjugate map Ṽ∗ with a non-zero success probability
using any general superinstrument.

Note that this no-go theorem states the impossibility of isometry complex conjugation
from finite calls even if we can implement a general superinstrument, which is beyond the
quantum circuit model. To prove this no-go theorem, we first show the impossibility for
D is a multiple of d.

Lemma 6. Let d′ be a natural number greater than 1. If D = dd′, it is impossible
to transform finite calls of an isometry operation Ṽ : L(Cd) → L(CD) into its complex
conjugate map Ṽ∗ with a non-zero success probability using any general superinstrument.

7This notation is adopted from Ref. [75].
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Proof. We prove this Lemma by contradiction. Probabilistic exact state complex conjuga-
tion of |φ〉 is shown to be possible by applying probabilistic isometry complex conjugation
to an isometry operator V|φ〉, which joints an auxiliary quantum state |φ〉 to an input state.
If probabilistic isometry complex conjugation can be implemented with a non-zero success
probability, probabilistic exact state complex conjugation is also possible with a non-zero
success probability, which contradicts the no-go theorem of state complex conjugation8

[80]. See Figure 7 (b) for a hypothetical protocol using a general superinstrument to prove
this Lemma by contradiction.

We consider a k-input general superinstrument { ˜̃S , ˜̃F} : [L(I) → L(O)] → [L(P) →
L(F)], where the Hilbert spaces are given by P = Cd, Ii = Cd, F = CD = Cdd′ , Oi = CD =
Cdd′ for i ∈ {1, · · · , k}, and I and O are the joint Hilbert spaces defined by I :=

⊗k
i=1 Ii

and O :=
⊗k
i=1Oi, respectively. We assume that the general superinstrument { ˜̃S , ˜̃F}

implements an isometry complex conjugation protocol with a non-zero success probability
psucc > 0, i.e.,

˜̃S (Ṽ⊗k) = psuccṼ∗ (∀V ∈ Viso(d, dd′)). (46)

To construct the hypothetical protocol shown in Figure 7 (b), we decompose the Hilbert
space Oi as Oi = O′i⊗O′′i , where O′i = Cd and O′′i = Cd′ . We take the computational basis
of Oi as {|j′〉O′i ⊗ |j

′′〉O′′i }, where {|j
′〉O′i} and {|j

′′〉O′′i } are the computational basis of O′i
and O′′i , respectively. Similarly, we decompose the Hilbert space F as F = F ′⊗F ′′,where
F ′ = Cd and F ′′ = Cd′ and choose the computational basis of F as {|j′〉F ′ ⊗ |j′′〉F ′′},
where {|j′〉F ′} and {|j′′〉F ′′} are the computational basis of F ′ and F ′′, respectively.

We define an isometry operator V|φ〉 ∈ Viso(d, dd′) by V|φ〉|ψ〉 := |ψ〉 ⊗ |φ〉, where
|φ〉 ∈ Cd′ and |ψ〉 ∈ Cd. Inserting k calls of the isometry operation Ṽ|φ〉 corresponding to
V|φ〉 into ˜̃S , we obtain

˜̃S (Ṽ⊗k|φ〉 ) = psuccṼ|φ〉∗ . (47)

Next, inserting an arbitrary quantum state |ξ〉 ∈ P into ˜̃S (Ṽ⊗k|φ〉 ) and discarding F ′, we
obtain

TrF ′
[ ˜̃S (Ṽ⊗k|φ〉 ) (|ξ〉〈ξ|)

]
= psuccTrF ′

[
Ṽ|φ〉∗(|ξ〉〈ξ|)

]
(48)

= psucc|φ∗〉〈φ∗|. (49)

We define S̃ ′ :
⊗k
i=1 L(O′′i )→ L(F ′) by

S̃ ′
(

k⊗
i=1

ρ(i)
)

:= TrF ′
[˜̃S ( k⊗

i=1
Λ̃ρ(i)(|ξ〉〈ξ|)

)]
, (50)

where Λ̃ρ : L(Cd) → L(Cdd′) is a CPTP map defined by Λ̃ρ(σ) = σ ⊗ ρ. By defining
F̃ ′ :

⊗k
i=1 L(O′′i )→ L(F ′) similarly, {S̃ ′, F̃ ′} is a quantum instrument. From Eq. (49), we

obtain

S̃ ′(|φ〉〈φ|⊗k) = psucc|φ∗〉〈φ∗| (∀|φ〉 ∈ Cd
′). (51)

8The impossibility of probabilistic exact state complex conjugation |φ〉⊗k 7→ |φ∗〉 can be easily under-
stood for k = 1. Since |φ∗〉〈φ∗| = |φ〉〈φ|T holds due to the hermicity of |φ〉〈φ|, a quantum instrument
{S̃ ′, F̃ ′} satisfies S̃ ′(|φ〉〈φ|) = psucc|φ∗〉〈φ∗| if and only if S̃ ′(ρ) = psuccρ

T for any ρ ∈ L(H). However,
since transposition of a state is not completely positive, any quantum instrument {S̃ ′, F̃ ′} does not achieve
non-zero success probability.
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However, this contradicts the fact that probabilistic exact quantum state complex conju-
gation is impossible using finite copies of quantum states [80].

Proof of Theorem 5. We show this no-go theorem by contradiction. We first show that,
for any D ≥ D′ ≥ d, if probabilistic exact isometry complex conjugation of V ∈ Viso(d,D)
is possible, we can implement probabilistic exact isometry complex conjugation of V ∈
Viso(d,D′) with the same success probability by embedding Viso(d,D′) to Viso(d,D). Then,
if probabilistic exact isometry complex conjugation is possible with a non-zero success
probability for D ≥ 2d, it is possible for D = 2d, which contradicts Lemma 6.

We consider Hilbert spaces P = Cd, F = CD, Ii = Cd and Oi = CD for i ∈ {1, · · · , k}
and the joint Hilbert spaces I and O defined as I :=

⊗k
i=1 Ii and O :=

⊗k
i=1Oi, re-

spectively. Suppose { ˜̃S , ˜̃F} : [L(I) → L(O)] → [L(P) → L(F)] be a k-input general
superinstrument implementing isometry inversion of V ∈ Viso(d,D) with a non-zero suc-
cess probability psucc > 0, i.e.,˜̃S (Ṽ⊗k) = psuccṼ∗ (∀V ∈ Viso). (52)

To construct a parallel protocol of isometry complex conjugation of V ∈ Viso(d,D′), we first
introduce Hilbert spaces F ′ = CD′ and O′i = CD′ for i ∈ {1, · · · , k} and the joint Hilbert
space O′ :=

⊗k
i=1O′i. We define the embedding isometry operator V embed : CD′ → CD

similarly to Eq. (38) and the CPTP map Ξ̃ : L(F)→ L(F ′) as

Ξ̃(ρ) :=
D′−1∑
i,j=0

|i〉〈j|F ′〈i|ρ|j〉+
D−1∑
i=D′

1D′

D′
Tr(|i〉〈i|ρ), (53)

where {|i〉}D′−1
i=0 and {|i〉}D−1

i=0 are the computational bases of F ′ and F , respectively. The
CPTP map Ξ̃ is an inverse map of V embed, i.e.,

Ξ̃ ◦ Ṽembed = Ĩd. (54)

By defining {˜̃S ′, ˜̃F ′} : [L(I)→ L(O′)]→ [L(P)→ L(F ′)] as

˜̃S ′(Λ̃in) := Ξ̃F ′→F ◦ ˜̃S
(

k⊗
i=1
Ṽembed
O′i→Oi

◦ Λ̃in

)
, (55)

˜̃F ′(Λ̃in) := Ξ̃F ′→F ◦ ˜̃F
(

k⊗
i=1
Ṽembed
O′i→Oi

◦ Λ̃in

)
, (56)

{˜̃S ′, ˜̃F ′} is a k-input general superinstrument. Since V embedVd,D′ is an isometry operator
for all Vd,D′ ∈ Viso(d,D′), we obtain˜̃S ′(Ṽd,D′) = psuccΞ̃ ◦ (Ṽembed ◦ Ṽd,D′)∗ (57)

for all Vd,D′ ∈ Viso(d,D′) from Eq. (52). Since V embed∗ = V embed holds (see Eq. (38)) and
the CPTP map Ξ̃ is an inverse map of V embed (see Eq. (54)), we obtain˜̃S ′(Ṽd,D′) = psuccΞ̃ ◦ Ṽembed ◦ Ṽ∗d,D′ (58)

= psuccṼ∗d,D′ (59)

for all Vd,D′ ∈ Viso(d,D′). Thus, the general superinstrument {˜̃S ′, ˜̃F ′} implements isome-
try complex conjugation with the success probability psucc. However, Lemma 6 immedi-
ately shows that probabilistic exact isometry complex conjugation with a non-zero success
probability is impossible for D = 2d. Therefore, probabilistic exact isometry complex
conjugation with a non-zero success probability is impossible for D ≥ 2d.
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4.2 Any isometry inversion protocol concatenating isometry pseudo complex conjuga-
tion and the gate teleportation is inefficient

Due to the no-go theorem for isometry complex conjugation, isometry inversion cannot
be decomposed into isometry complex conjugation and isometry transposition. However,
we can consider another similar strategy to construct isometry inversion since the inverse
map Ṽinv of an isometry operation Ṽ is not necessarily the adjoint map Ṽ†. We consider
“isometry pseudo complex conjugation”, which is a task to implement the transposed map
of Ṽinv, which we call the pseudo complex conjugate map. In other words, we say that a CP
map Ṽpcc : L(Cd) → L(CD) is a pseudo complex conjugate map of an isometry operation
Ṽ : L(Cd) → L(CD) if and only if ṼTpcc ◦ Ṽ(ρ) = ρ for all ρ ∈ L(Cd). If isometry pseudo
complex conjugation is implementable, isometry inversion can be obtained by transposing
the pseudo complex conjugate map using the gate teleportation [66]. We show that such
a protocol is possible but not as efficient as the protocol proposed in Section 3.

For V ∈ Viso(d,D), we define a CP map Ṽ ′′ : L(Cd)→ L(CD) as

Ṽ ′′(ρin) = V ∗ρin(V ∗)† + Π∗(ImV )⊥Tr(ρin). (60)

Then, Ṽ ′′ is a pseudo complex conjugate map of Ṽ since Ṽ ′ := Ṽ ′′T is an inverse operation
of Ṽ given by

Ṽ ′(ρin) = V †ρinV + 1dTr
[
Π(ImV )⊥ρin

]
. (61)

The pseudo complex conjugate map Ṽ ′′ is implementable with a certain number of calls of
Ṽ using the protocol shown by Figure 8.

In the protocol shown by Figure 8, the Hilbert spaces are given by P = Cd, Ii = Cd,
F = CD, and Oi = CD for i ∈ {1, · · · , d − 1}. We also define the joint Hilbert spaces
of (d − 1)-input spaces and (d − 1)-output spaces by I :=

⊗d−1
i=1 Ii and O :=

⊗d−1
i=1 Oi,

respectively. The isometry operator V a.s. encodes quantum information of ρin on P = Cd
into the d-dimensional totally antisymmetric subspace of I and is given by

V a.s. :=
∑

~k∈{0,··· ,d−1}d

ε~k√
(d− 1)!

|k1 · · · kd−1〉〈kd|, (62)

where ε~k is the antisymmetric tensor with rank d and {|k〉}d−1
k=0 is the computational basis

of P and Ii. The CPTP map Λ̃ : L(O)→ L(F) decodes quantum information encoded in
the d-dimensional subspace of O into F = CD and given by

Λ̃(ρ) := 1
D − d+ 1

∑
0≤j1<···<jd≤D−1

A~jρA
†
~j

+ 1D

D
Tr[(1O −Πa.s.

O )ρ], (63)

where A~j : O → F is defined by

A~j :=
∑

~k∈{1,···d}d

ε~k√
(d− 1)!

|jkd〉〈jk1 · · · jkd−1 | (64)

and {|j〉}D−1
j=0 is the computational basis of F and Oi. The operator Πa.s.

O is the orthogonal
projector onto the antisymmetric subspace of O =

⊗d−1
i=1 Oi.

The protocol presented above implements isometry pseudo complex conjugation as
shown in the following Theorem.
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Figure 8: A quantum circuit representation of a probabilistic parallel protocol to implement the pseudo
complex conjugate map Ṽ ′′. The isometry operator V a.s. and the CPTP map Λ̃ are defined in Eqs. (62)
and (63), respectively.

Theorem 7. A parallel protocol shown in Figure 8 transforms d− 1 calls of an isometry
operation Ṽ corresponding to V ∈ Viso(d,D) into its pseudo complex conjugate map Ṽ ′′
with a success probability psucc = 1/(D − d+ 1).

Note that the success probability psucc is less than 1 for D > d while the protocol is
composed of deterministic operations, because Ṽ ′′ is a trace increasing map for D > d (see
Eq. (5) for the definition of psucc). See Appendix I for the proof.

Next, we consider a variant of gate teleportation [66] given by Figure 9, which is able
to probabilistically implement the transposed map in terms of the computational basis of
any CPTP map Λ̃in, denoted by Λ̃Tin. The transposed map Λ̃Tin for a CPTP map Λ̃in given
by its action as Λ̃in(ρ) =

∑
kKkρK

†
k in terms of the Kraus operators {Kk} is defined as

Λ̃Tin(ρ) :=
∑
k

KT
k ρ(KT

k )†. (65)

In this variant of the gate teleportation, the Hilbert spaces are given by P = CD, O1 = CD,
F = Cd, I1 = Cd, and |φ′PBT〉 in the protocol for general k is reduced to a maximally
entangled state in Cd ⊗ Cd defined by

|Φ+
d 〉 := 1√

d

d−1∑
i=0
|i〉 ⊗ |i〉 ∈ I1 ⊗F . (66)

The POVMM is reduced to the Bell measurement defined as the projective measurement
on the basis {(X−iD Z−jD ⊗1O1)|Φ+

D〉PO1}
D−1,D−1
i=0,j=0 , where XD :=

∑D−1
j=0 |j ⊕ 1〉〈j| is the shift

operator and ZD :=
∑D−1
j=0 e2πj

√
−1/D|j〉〈j| is the clock operator. The protocol succeeds

only when the outcome is given by (i, j) = (0, 0). The difference from the standard gate
teleportation protocol is the Hilbert space where the input operation is applied, namely on
I1, instead of F in standard gate teleportation [66]. The property of the maximally entan-
gled state given by (1d ⊗ A)|Φ+

d 〉 = (AT ⊗ 1d)|Φ+
d 〉 for any A ∈ L(Cd) allows teleporting

the state transformed by the transposed CPTP map, instead of the CPTP map.
Concatenating the protocol for the pseudo complex conjugate map Ṽ ′′ and the variant

of gate teleportation shown in Figure 9, we obtain an isometry inversion protocol, whose
success probability is psucc = 1/[Dd(D− d+ 1)]. This success probability is less than that
of a protocol shown in Figure 2 (c). In general, the success probability of any isometry
inversion protocol that is a concatenation of an isometry pseudo complex conjugation
protocol and the variant of the gate teleportation shown in Figure 9 is bounded by psucc ≤
1/(Dd) since the success probability of the variant of the gate teleportation is 1/(Dd).
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Figure 9: The gate teleportation circuit implements the transposed map Λ̃T
in for any CPTP map Λ̃in

with a success probability psucc = 1/(Dd). The quantum state |Φ+
d 〉 is a maximally entangled state

|Φ+
d 〉 := d−1/2∑d−1

i=0 |i〉⊗|i〉 and the POVMM is the Bell measurement. This protocol succeeds when
the measurement outcome ofM is (i, j) = (0, 0).

5 Numerical optimization of success probabilities by semidefinite pro-
gramming

In the preceding sections, we analytically investigated the success probability of parallel
protocols for higher-order quantum transformations of isometry operations. Though par-
allel protocol is efficient in terms of the circuit depth compared to other protocols such
as sequential ones, more general strategies than parallel protocols can possibly improve
the success probability by utilizing the temporal resource. To analyze this possibility, we
perform a numerical optimization of the success probability of isometry inversion, isometry
(pseudo) complex conjugation, and isometry transposition by semidefinite programming
(SDP) in the same way as presented in Ref. [19] (see Appendix F for the detail). In addi-
tion to parallel protocols, we also consider sequential protocols shown in Figure 10 (a) and
the most general protocols, which include the cases with an indefinite causal order [70–76].

To construct efficient sequential protocols for isometry inversion, we also consider the
“success-or-draw” version [81] of an isometry inversion protocol shown in Figure 10 (b). As
we define in Section 2.2, we say that a superinstrument { ˜̃S , ˜̃F} implements a probabilistic
isometry inversion protocol if the element for the success case ˜̃S satisfies

˜̃S (Ṽ⊗k) = pṼinv, (67)

or equivalently,

˜̃S (Ṽ⊗k) ◦ Ṽ = p1̃d (68)

for all V ∈ Viso(d,D). No extra condition is required for the element for the fail case ˜̃F as
long as { ˜̃S , ˜̃F} forms a superinstrument. In general, if the protocol fails, namely, obtaining
the outcome corresponding to the fail case ˜̃F , the input state ρin is destroyed. Therefore
this type of “success-or-fail” probabilistic protocols cannot be repeated or sequentially
combined with another protocol.

For the “success-or-draw” version of an isometry inversion protocol, we impose an ad-
ditional condition on ˜̃F given by

˜̃F (Ṽ⊗k) ◦ Ṽ = (1− p)Ṽ (69)

for all V ∈ Viso(d,D). This condition means that even after the protocol fails, we recover
the original input state as the output of the protocol if the input state is in the image ImV of
the input isometry operator V ∈ Viso(d,D). Such a type of failure is called a draw because
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(a)

(b)

Figure 10: (a) A quantum circuit representation of a sequential superinstrument, where Λ̃(i)
in (i ∈

{1, · · · , k}) are input maps, Ẽ(i) (i ∈ {1, · · · , k}) are CPTP maps, and {D̃a} is a quantum instrument.
(b) A quantum circuit representation of a sequential “success-or-draw” protocol for isometry inversion
of V ∈ Viso(2, 3). For the input quantum state ρin ∈ L(ImV ), we obtain the output quantum state
given by Ṽinv(ρin) after success or the output quantum state given by ρin after a draw. The optimal
success probability p ≈ 0.33 is obtained by the SDP for d = 2, D = 3 and k = 2.

the protocol can be repeated after failure. By repeating the “success-or-draw” protocol
until success at most m times, we can achieve the probability given by psucc = 1−(1−p)m.
In other words, the failure probability 1 − psucc decreases exponentially with the number
k′ = mk of calls of an input isometry operation. Therefore, the number of calls of an
input isometry operation scales logarithmically with respect to the success probability, i.e.,
k′ = O(ln(1/(1−psucc))). We perform the SDP to obtain such a “success-or-draw” protocol
for isometry inversion in a similar way as presented in Ref. [81] (see Appendix F for the
detail).

Table 1 and Figure 10 (b) show the results of the SDP optimization. Table 2 shows the
optimal success probability of unitary inversion, which was already obtained in Ref. [18], for
the comparison with that of isometry inversion. We implement the SDP code in MATLAB
[82] by modifying the SDP code [83] accompanied Refs. [18, 19], originally designed to
obtain the optimal success probability of unitary inversion and unitary transposition. The
interpreters CVX [84, 85] and YALMIP [86, 87] are used with the solvers SDPT3 [88–90],
SeDuMi [91], MOSEK [92] and SCS [93] to perform the SDP. The code also uses functions
in QETLAB [94]. All codes to obtain the results shown in Table 1 and Figure 10 (b) are
available at Ref. [95] under the MIT license [96].

First, we consider isometry inversion. Theorem 1 shows that the optimal success proba-
bility of probabilistic parallel isometry inversion protocols using k calls of an input isometry
operation corresponding to V ∈ Viso(d,D) is equal to that of probabilistic parallel unitary
inversion protocols using k calls of an input unitary operation corresponding to U ∈ U(d).
This statement can be also checked numerically for d = 2, D = 3 and k ∈ {1, 2} by
comparing Table 1 with Table 2. Comparison of Table 1 with Table 2 also shows that
the optimal success probability of sequential isometry inversion is the same as that of se-
quential unitary inversion for d = 2, D = 3 and k = 2. This numerical result implies the
possibility that the optimal success probability of k-input sequential protocols for isometry
inversion of V ∈ Viso(d,D) does not depend on D.

We also numerically confirmed the existence of a sequential “success-or-draw” protocol
for isometry inversion for d = 2, D = 3 and k = 2 by the SDP (see Figure 10 (b)). By
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isometry inversion
d = 2, D = 3 parallel sequential general

k = 1 0.25 0.25 0.25

k = 2 0.4 0.4286 ≈ 3/7 0.4286 ≈ 3/7

isometry complex conjugation
d = 2, D = 3 parallel sequential general

k ≤ 3 0 0 0

isometry pseudo complex conjugation
d = 2, D = 3 parallel sequential general

k = 1 0.5000 ≈ 1/2 0.5000 ≈ 1/2 0.5000 ≈ 1/2
k = 2 0.5453 0.5453 0.5453

d = 2, D = 4 parallel sequential general
k = 1 0.3333 ≈ 1/3 0.3333 ≈ 1/3 0.3333 ≈ 1/3

isometry transposition
d = 2, D = 3 parallel sequential general

k = 1 1/6 1/6 1/6

k = 2 0.2857 ≈ 2/7 0.3077 0.3333 ≈ 1/3
d = 2, D = 4 parallel sequential general

k = 1 0.125 0.125 0.125

k = 2 0.22 ≈ 2/9 - -

Table 1: The optimal success probabilities of isometry inversion, (pseudo) complex conjugation, and
transposition using k calls of an input isometry operation Ṽ corresponding to V ∈ Viso(d,D). The
bold values are obtained analytically.

repeating this “success-or-draw” protocol, we can implement a sequential protocol for isom-
etry inversion with the success probability scaling as psucc = 1− exp[−O(k)]. In contrast,
we can show the upper bound of the success probability of any parallel protocol for isome-
try inversion given by psucc ≤ 1−O(k−1) from the same upper bound for unitary inversion
presented in Ref. [18]. Thus an exponential improvement of the success probability of a
sequential protocol for isometry inversion compared to a parallel protocol for d = 2 and
D = 3 is exhibited. However, a further general protocol does not improve the success
probability of isometry inversion compared to a sequential protocol for d = 2, D = 3 and
k = 2 as shown numerically in Table 1, whereas an improvement with a general protocol
was observed for the case of d = 2 and k = 2 unitary inversion as shown in Table 2.

Next, we consider isometry complex conjugation. Theorem 5 shows that it is impossible
to transform finite calls of an isometry operation Ṽ : L(Cd) → L(CD) into its complex
conjugate map Ṽ∗ with a non-zero success probability for D ≥ 2d. In addition to this
theorem, the numerical result in Table 1 indicates that it is also impossible for d = 2, D = 3
and k ∈ {1, 2, 3}, although D ≥ 2d is not satisfied. This result implies the possibility that
probabilistic isometry complex conjugation is impossible even for d < D < 2d.

Then, we consider isometry pseudo complex conjugation. The numerical result shown
in Table 1 indicates that the optimal success probability of isometry pseudo complex con-
jugation is equal to the success probability psucc = 1/(D − d + 1) of a parallel protocol
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unitary inversion
d = 2 parallel sequential general
k = 1 0.25 0.25 0.25

k = 2 0.4 0.4286 ≈ 3/7 0.4444 ≈ 4/9

Table 2: The optimal success probability of unitary inversion using k calls of an input unitary operation
Ũ corresponding to U ∈ U(d) derived in Ref. [18].

shown in Figure 8 for d = 2, D ∈ {3, 4} and k = d − 1 = 1. The numerical result also
shows that a parallel protocol achieves the optimal success probability of isometry pseudo
complex conjugation among general protocols including indefinite causal order for d = 2,
D = 3 and k = 2.

Finally, we consider isometry transposition (see also Appendix E). The numerical re-
sult shown in Table 1 indicates that the optimal success probability of parallel isometry
transposition is equal to the success probability psucc = k/(Dd+k−1) of a protocol shown
in Figure 12 for d = 2, D ∈ {3, 4} and k = 2. This result implies the possibility that a
protocol shown in Figure 12 achieves the optimal success probability for any choice of d, D
and k. The numerical result also shows that a sequential protocol and a general protocol
can improve the success probability of isometry transposition in contrast to the case of
isometry inversion.

We present a conjecture and open problems obtained from the discussion for the SDP
optimization results.

Conjecture: The optimal success probability of probabilistic parallel protocols that
transform k calls of an isometry operation Ṽ corresponding to V ∈ Viso(d,D) into its
transposed map ṼT is psucc = k/(Dd+ k − 1), which is achieved by the protocol shown in
Figure 12.

Open problem 1: Does the optimal success probability of sequential isometry inversion
depend on D?

Open problem 2: Does indefinite causal order improve the success probability of isom-
etry inversion?

Open problem 3: Is it possible to transform finite calls of an isometry operation Ṽ
corresponding to V ∈ Viso(d,D) into its complex conjugate map Ṽ∗ with a non-zero success
probability for d < D < 2d?

6 Conclusion
We presented a probabilistic exact parallel protocol for isometry inversion that constructs
a decoder from multiple calls of a black box encoder implementing an unknown isometry
operation transforming a d-dimensional system to a D-dimensional system for D > d. The
success probability of this protocol is independent of D. Thus, this protocol significantly
outperforms other isometry inversion protocols that use D-dimensional unitary inversion
protocols or quantum process tomography of isometry operations for D � d. This shows
a potential of our protocol for applications in quantum information processing involving
encoding and decoding with black boxes. In particular, we consider a typical example of an
encoding black box represented by an isometry operation to spread quantum information
of a qudit (a d-dimensional system) into a n-qudit system (a dn-dimensional system). It
may seem that inverting the function from a black box function is difficult due to the
exponential dimensionality of dn of isometry operations, but our result shows that such an
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implementation is easy whenever d is small enough.
We developed a new technique to construct isometry inversion protocols, since the

strategy for unitary inversion used in the previous work [18] is not applicable to isometry
inversion. This is because the probabilistic exact isometry complex conjugation is impos-
sible for D ≥ 2d, and the concatenation of isometry pseudo complex conjugation and a
variant of the gate teleportation is inefficient. Then, we showed the decomposition of the
tensor product of an isometry and invent a CPTP map Ψ̃ that can be implemented by the
quantum Schur transform [77–79] and the “measure-and-prepare” strategy [3, 64]. This
CPTP map transforms k + 1 parallel calls of an isometry operation into the Haar integral
of k + 1 tensor product of unitary operations as shown in Eq. (23) of Lemma 4, which
contributes to keeping the dimension dependence of the success probability to d and inde-
pendent of D. This technique provides a new application of the quantum Schur transform,
which is known to have various applications to quantum information processing [77].

We also performed the SDP to investigate the improvement of the success probability
of a sequential protocol or a protocol with indefinite causal order for isometry inversion,
isometry complex conjugation and isometry transposition compared to a parallel protocol.
From the numerical calculation, we found a “success-or-draw” isometry inversion protocol
for d = 2 and D = 3. By repeating this protocol, we can obtain a sequential protocol for
isometry inversion with a failure probability decreasing exponentially with the number of
calls of the input isometry operation. This result exhibits an exponential improvement of
the success probability of a sequential protocol for isometry inversion for d = 2 and D = 3
compared to a parallel protocol.
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A Higher-order quantum transformations
Choi-Jamiolkowski (CJ) isomorphism is a useful tool for treating linear maps as operators
called Choi operators by “lowering” the order of transformations. Similarly, the CJ isomor-
phism is used for describing higher-order quantum transformations by Choi operators of
higher-order quantum transformation. We summarize the formulation of linear maps and
higher-order quantum transformations using the Choi operators.

Any linear map Λ̃ : L(I) → L(O) can be represented uniquely by the Choi operator
defined by

JΛ̃ :=
∑
i,j

|i〉〈j|I ⊗ Λ̃(|i〉〈j|)O ∈ L(I ⊗ O), (70)

where {|i〉} is an orthonormal basis in I. The map Λ̃ can be obtained from JΛ̃ as

Λ̃(ρI) = TrI [JΛ̃(ρTI ⊗ 1O)], (71)
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where ρTI is the transposition of an input quantum state ρI in the computational basis.
A CPTP map Λ̃ can be characterized in terms of its Choi operator. First, we consider

a CP map Λ̃ and let {Kk} : I → O be its Kraus operators, i.e., Λ̃(ρ) =
∑
kKkρK

†
k. Then,

its Choi operator is given by

JΛ̃ =
∑
k

|Kk〉〉〈〈Kk|, (72)

where |Kk〉〉 is a vector representing a rank-1 Choi vector defined as |Kk〉〉 :=
∑
i |i〉I ⊗

(Kk|i〉)O ∈ I ⊗ O, also referred to as a dual ket vector. Since JΛ̃ is represented by a sum
of rank-1 positive operators, it is a positive operator. Conversely, if JΛ̃ is positive, JΛ̃ can
be written in the form of Eq. (72). Then, Λ̃(ρ) =

∑
kKkρK

†
k, which means that Λ̃ is a

CP map. Therefore, Λ̃ is CP if and only if its Choi operator JΛ̃ is positive. Next, a map
Λ̃ is TP if and only if TrOΛ̃(|i〉〈j|) = δi,j for all i, j. Therefore, Λ̃ is TP if and only if
TrOJΛ̃ = II . Similarly, a quantum instrument is represented by a set of CP maps {Λ̃a}
and it can be also characterized by the corresponding set of Choi operators {JΛ̃a

}.
The composition of two maps can be represented by a link product denoted by ?. Let

X ∈ L(X ⊗ Y) and Y ∈ L(Y ⊗ Z). The link product of X and Y is defined as

Y ? X := TrH[(1X ⊗ Y )(XTY ⊗ 1Z)], (73)

where XTY is the partial transpose of X on Y. We consider two maps Λ̃1 : L(I1)→ L(I2)
and Λ̃2 : L(I2)→ L(O1). The Choi operator of Λ̃2 ◦ Λ̃1 is obtained by

JΛ̃2◦Λ̃1
= JΛ̃2

? JΛ̃1
. (74)

Similarly to CPTP maps and quantum instruments, higher order-quantum transforma-
tions can be represented by Choi operators. In particular, we use the Choi operator rep-
resentation of a single-input superinstrument for the analysis in this paper. A single-input
superinstrument {˜̃Ca} can be characterized by the corresponding set of Choi operators
{Ca} as

Ca ≥ 0, (75)

TrFC = TrFOC ⊗
1O
dO

, (76)

TrFOIC = TrC ⊗ 1P
dP

, (77)

TrC = dPdO, (78)

where C is defined as C :=
∑
aCa [55]. The Choi operators {Ca} are related to the

corresponding single-input superinstrument {˜̃Ca} as
Ca ? JΛ̃in

= J˜̃Ca(Λ̃in)
. (79)

See Ref. [97] for the characterization of k-input superinstruments.

B Extension of the Schur-Weyl duality to the decomposition of the ten-
sor product of isometry operators

We first review the Schur-Weyl duality. We consider Hilbert spaces Xi = Cd for i ∈
{1, · · · , k} and define the joint Hilbert space by X :=

⊗k
i=1Xi. We consider representations
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of the unitary group U(d) and the symmetric group Sk defined as

U(d)→L(X ); U 7→ U⊗k, (80)
Sk →L(X ); σ 7→ Pσ, (81)

where Pσ is the permutation operator defined by

Pσ

(
k⊗
i=1
|ψi〉

)
=

k⊗
i=1
|ψσ−1(i)〉. (82)

These representations can be decomposed as

X =
⊕
µ`k
U (d)
µ,X ⊗ S

(k)
µ,X , (83)

U⊗k =
⊕
µ`k

Uµ ⊗ 1S(k)
µ,X
, (84)

Pσ =
⊕
µ`k

1U(d)
µ,X
⊗ Pσ,µ, (85)

where the summands are indexed by the Young diagrams µ with k boxes, U(d) 3 U 7→
Uµ ∈ L(U (d)

µ,X ) are irreducible representations of U(D), Sk 3 σ 7→ Pσ,µ ∈ L(S(k)
µ,X ) are

irreducible representations of Sk and 1S(k)
µ,X

and 1U(d)
µ,X

are the identity operators on S(k)
µ,X

and U (d)
µ,X , respectively [98]. The dimension of U (d)

µ,X is non-zero if and only if µ has at most

k rows, and U (d)
µ,X and S(k)

µ,X are spanned by bases called the Gel’fand-Zetlin basis and the
Young orthonormal basis [79, 99], respectively. Each element in the Gel’fand-Zetlin basis
and the Young orthonormal basis is labeled by a semi-standard tableau uµ and a standard
tableau sµ whose frame is µ, respectively. In total, the Hilbert space X is spanned by the
set of vectors {|µ, uµ, sµ〉}, which is called the Schur basis.

We extend the Schur-Weyl duality to show the decomposition of the tensor product of
isometry operators. We consider Hilbert spaces Yi = CD for i ∈ {1, · · · , k} and define the
joint Hilbert space Y by Y :=

⊗k
i=1 Yi. We consider the tensor product V ⊗k : X → Y of

an isometry operator V ∈ Viso(d,D). We decompose V ⊗k in the Schur basis as

V ⊗k =
⊕
µ,µ′`k

l(µ)≤d,l(µ′)≤D

∑
α

Aαµ,µ′ ⊗Bα
µ,µ′ , (86)

where l(µ) is the number of rows of a Young diagram µ, {Aαµ,µ′} is a basis of the set of

linear operators L(U (d)
µ,X → U

(D)
µ′,Y) and Bα

µ,µ′ is a linear operator Bα
µ,µ′ : S(k)

µ,X → S
(k)
µ′,Y . Since

V ⊗k is invariant under the action of the symmetric group Sk, i.e.,

P †σ,YV
⊗kPσ,X = V ⊗k (87)

holds for all σ ∈ Sk,

P †σ,µ′B
α
µ,µ′Pσ,µ = Bα

µ,µ′ (88)

holds for all µ, µ′ ` k and σ ∈ Sk. From Schur’s lemma, if µ = µ′ (i.e., the irreducible
representations S(k)

µ,X and S(k)
µ′,Y are unitarily equivalent), Bα

µ,µ′ is the isomorphism between

the irreducible representations S(k)
µ,X and S(k)

µ′,Y , and if µ 6= µ′, Bα
µ,µ′ = 0. Note that the
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isomorphism between the irreducible representations of the symmetric group is unique up
to a constant multiplication. Thus, we obtain the decomposition of V ⊗k given by

V ⊗k =
⊕
µ`k
l(µ)≤d

Vµ ⊗ IS(k)
µ,X→S

(k)
µ,Y
, (89)

where Vµ ∈ L(U (d)
µ,X → U (D)

µ,Y ) is a linear operator and IS(k)
µ,X→S

(k)
µ,Y

is the isomorphism

between irreducible representations S(k)
µ,X and S(k)

µ,Y , which transforms a basis vector of S(k)
µ,X

corresponding to a standard tableau into a basis vector of S(k)
µ,Y corresponding to the same

standard tableau. Since V ⊗k and IS(k)
µ,X→S

(k)
µ,Y

are isometry operators, Vµ is also an isometry
operator.

Note that the decomposition of the tensor product of isometric extension VΛ̃ : A → B⊗E
of a quantum channel Λ̃ : L(A) → L(B) is discussed in Ref. [77]. Reference [77] uses the
basis of the input space A⊗k as the Schur basis, and the basis of the output space (B⊗E)⊗k
as the tensor product of the Schur bases of B⊗k and E⊗k to represent the tensor product
V ⊗k

Λ̃
. However, the expression of V ⊗k

Λ̃
is not block diagonal in that basis. In contrast, we

show the block diagonal decomposition of the tensor product V ⊗k of an isometry operator
V as shown in Eq. (89).

C Haar measure on the unitary group
The Haar measure dU is the uniform measure defined on the set of unitary operators U(d).
More precisely, it is uniquely determined by the following properties [100]:∫

dU = 1, (90)

d(U ′UU ′′) = dU (∀U ′, U ′′ ∈ U(D)). (91)

We consider the action of the Haar random unitary operations on a quantum state.
Suppose Xi = Cd for i ∈ {1, · · · , k} and define the joint Hilbert space by X =

⊗k
i=1Xi.

For a quantum state ρ ∈ L(X ), we define a quantum state ρ′ ∈ L(X ) by

ρ′ :=
∫

dUU⊗kρU †⊗k, (92)

where dU is the Haar measure on U(d). From Eq. (91), we obtain

[U⊗k, ρ′] = 0 (∀U ∈ U(D)), (93)

where [A,B] := AB −BA is a commutator. By Schur’s lemma, the operator ρ′ satisfies

ρ′ =
⊕
µ`k

IU(d)
µ,X

dU(d)
µ

⊗XS(k)
µ,X
, (94)
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Figure 11: A quantum circuit representation of a parallel protocol for unitary inversion from k = m(d−1)
calls of Ud ∈ U(d) [18]. Each wire corresponds to a d-dimensional system. The quantum state |φ(d)

PBT〉
and the POVM M = {Γ(d)

a }k
a=0 are the optimal resource state and the POVM for the probabilistic

port-based teleportation [67, 68], which are defined in Eqs. (100) and (101), respectively. The isometry
operator V a.s. represents an encoding of quantum information on a totally antisymmetric state defined
in Eq. (62). The conditional CPTP map Λ̃a is the operation to select the quantum state in Aa

corresponding to the measurement outcome a ofM as the output state for a 6= 0, which is defined in
Eq. (111). This protocol succeeds when the measurement outcome a is a 6= 0.

where XS(k)
µ,X

is a positive operator on S(k)
µ,X . The operator XS(k)

µ,X
is calculated as

XS(k)
µ,X

= TrU(d)
µ,X

(Πµ,Xρ
′) (95)

=
∫

dUTrU(d)
µ,X

{
Πµ,X

[
Ũµ ⊗ 1̃S(k)

µ,X
(ρ)
]}

(96)

=
∫

dUTrU(d)
µ,X

{[
Ũ†µ ⊗ 1̃S(k)

µ,X
(Πµ,X )

]
ρ

}
(97)

=
∫

dUTrU(d)
µ,X

(Πµ,Xρ) (98)

= TrU(d)
µ,X

(Πµ,Xρ), (99)

where Πµ,X is a projector from the Hilbert space X to its subspace U (d)
µ,X ⊗ S

(k)
µ,X .

D The parallel unitary inversion protocol
We show a quantum circuit representation of a k-input unitary inversion protocol presented
in Ref. [18] (See Figure 11). This protocol achieves a success probability psucc = bk/(d −
1)c/[d2 + bk/(d− 1)c− 1]. In Figure 11, each wire corresponds to a d-dimensional system.
We define the joint Hilbert spaces by A :=

⊗m
i=1Ai, B :=

⊗m
i=1 Bi, C :=

⊗m
i=1 Ci and

Ca :=
⊗
i 6=a Ci for a ∈ {1, · · · ,m}. The quantum state |φ(d)

PBT〉 ∈ A ⊗ B and the POVM
M = {Γ(d)

a }ka=0 are the optimal resource state and the POVM for the probabilistic port-
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based teleportation [67, 68], respectively, which are defined by

|φ(d)
PBT〉 := (X ′

1
2
B ⊗ 1A)|Φ+

dk
〉BA, (100)

Γ(d)
a := (1P ⊗X

′− 1
2

C )
(
|Φ+
d 〉〈Φ

+
d |PCa ⊗Θ′Ca

)
(1P ⊗X

′− 1
2

C ), (101)

where Θ′Ca and X ′B are defined similarly to Eqs. (107) and (108) as

Θ′Ca :=
∑

α`m−1

dm+1gd(m)dU(d)
α

mdS(m−1)
α

Πα,Ca , (102)

X ′B :=
∑
µ`m

dmgd(m)dU(d)
µ

dS(m)
µ

Πµ,B, (103)

and |Φ+
dk
〉 and |Φ+

d 〉 are the maximally entangled states defined in Eqs. (106) and (66).
The conditional CPTP map Λ̃a and the isometry operator V a.s. are defined in Eqs. (111)
and (62), respectively.

E Parallel isometry transposition
E.1 Construction of parallel isometry transposition protocol
We can construct a parallel protocol for isometry transposition similarly to unitary transpo-
sition [19] based on the port-based teleportation [67, 68] and obtain the success probability
of the protocol as stated in the following Theorem.

Theorem 8. A parallel protocol shown in Figure 12 transforms k calls of an isometry
operation Ṽ corresponding to V ∈ Viso(d,D) into its transposed map ṼT with a success
probability psucc = k/(Dd+ k − 1).

In Figure 12, the Hilbert spaces are given by F = Cd, Ii = Cd, Ai = Cd, P = CD,
and Oi = CD for i ∈ {1, · · · , k}. We define the joint Hilbert spaces by I :=

⊗k
i=1 Ii,

O :=
⊗k
i=1Oi, Oa :=

⊗
i 6=aOi and A :=

⊗k
i=1Ai. The quantum state |φ′PBT〉, the POVM

M, and the conditional CPTP map Λ̃a are defined as follows.
To define |φ′PBT〉 ∈ I ⊗ A, we firstly define an operator YI by

YI := 1∑
µ`k dU(d)

µ
dU(D)

µ

∑
µ`k

dkdU(D)
µ

dS(k)
µ

Πµ,I , (104)

where d
U(d′)
µ

and dS(k)
µ

are the dimensions of U (D)
µ,Cd′⊗k and S(k)

µ,CD⊗k for d′ ∈ {d,D}, respec-

tively, and Πµ,I is the orthogonal projector on I onto its subspace U (d′)
µ,I ⊗ S

(k)
µ,I . Then, we

define |φ′PBT〉 ∈ I ⊗ A by

|φ′PBT〉 :=(Y
1
2
I ⊗ IA)|Φ+

dk
〉IA, (105)

where |Φ+
dk
〉IA is the maximally entangled state given by

|Φ+
dk
〉IA := 1√

dk

dk−1∑
i=0
|i〉 ⊗ |i〉 ∈ I ⊗ A (106)
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Figure 12: A quantum circuit representation of a probabilistic parallel protocol for isometry transposi-
tion. The quantum state |φ′PBT〉 is a modified state of the optimal resource state for the probabilistic
port-based teleportation [67, 68] defined in Eq. (105). The POVMM = {Γ(D)

a }k
a=0 is also the optimal

POVM for the probabilistic port-based teleportation, which is defined in Eq. (110). The conditional
CPTP map Λ̃a is the operation to select the quantum state in Aa corresponding to the measurement
outcome a ofM as the output state for a 6= 0, which is defined in Eq. (111). This protocol succeeds
when the measurement outcome a is a 6= 0.

in terms of the computational basis {|i〉} of I and A. The state |φ′PBT〉 is a modified
state of the optimal resource state |φ(d)

PBT〉 for the probabilistic port-based teleportation of
a d-dimensional quantum state [67, 68] (see Appendix D for the definition of |φ(d)

PBT〉).
The POVM M = {Γ(D)

a }ka=0 is defined as follows. We define operators ΘOa and XO
by

ΘOa :=
∑

α`k−1

Dk+1gD(k)dU(D)
α

kdS(k−1)
α

Πα,Oa , (107)

XO :=
∑
µ`k

DkgD(k)dU(D)
µ

dS(k)
µ

Πµ,O, (108)

where dU(D)
α

and d
S

(k−1)
α

are defined similarly to dU(D)
µ

and dS(k)
µ

, respectively, gD(k) is
defined by

gD(k) :=

∑
µ`k

(
dU(D)

µ

)2
−1

(109)

and Πα,Oa and Πµ,O are orthogonal projectors defined similarly to Πµ,I . Using ΘOa and

XO, we define an operator Γ(D)
a (a ∈ {1, · · · , k}) on P ⊗O by

Γ(D)
a := (1P ⊗X

− 1
2

O )
(
|Φ+
D〉〈Φ

+
D|POa ⊗ΘOa

)
(1P ⊗X

− 1
2

O ). (110)

The set of operators {Γ(D)
a }ka=1 satisfies Γ(D)

a ≥ 0 for a ∈ {1, · · · , k} and
∑k
a=1 Γ(D)

a ≤ 1PO

[68]. Thus, by defining Γ(D)
0 := 1PO −

∑k
a=1 Γ(D)

a , a set of operators {Γ(D)
a }ka=0 forms

a POVM. The POVM {Γ(D)
a }ka=0 is the optimal POVM for the probabilistic port-based

teleportation of a D-dimensional quantum state [67, 68].
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The conditional CPTP map Λ̃a : L(A) → L(F) for the outcome a ∈ {1, · · · , k} ofM
is defined by

Λ̃a(ρA) =
∑
j,j′

|j〉〈j′|F 〈j|TrAaρA|j
′〉, (111)

where {|j〉} is the computational basis of Hilbert spaces Aa and F . This conditional
CPTP map represents the operation to select the quantum state in Aa corresponding to
the measurement outcome a as the output state. The conditional CPTP map corresponding
to the measurement outcome a = 0 is not needed since our protocol only succeeds for a 6= 0
and the output state is aborted if a = 0, the failure case.

The protocol presented above is shown to implement isometry transposition with the
success probability psucc = k/(Dd+ k − 1).

Proof of Theorem 8. First, we show the equality

(V ⊗kI→O ⊗ 1A)|φ′PBT〉IA =

√√√√√
∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

(1O ⊗ V T⊗k
B→A)|φ(D)

PBT〉OB, (112)

where the joint Hilbert space B is defined by B :=
⊗k
i=1 Bi for Bi = CD, and the quan-

tum state |φ(D)
PBT〉 ∈ O ⊗ B is the optimal resource state for the probabilistic port-based

teleportation of a D-dimensional quantum state [67, 68] defined by

|φ(D)
PBT〉 := (X

1
2
O ⊗ 1B)|Φ+

Dk
〉OB (113)

using XO given in Eq. (108) and the maximally entangled state |Φ+
Dk
〉. To show this

equality, we define the maximally entangled state for each µ denoted as |φ+
d,µ〉 ∈ (U (d)

µ,I ⊗
S(k)
µ,I)⊗ (U (d)

µ,A ⊗ S
(k)
µ,A) given by

|φ+
d,µ〉IA := 1√

dU(d)
µ
dS(k)

µ

∑
uµ,sµ

|µ, uµ, sµ〉I ⊗ |µ, uµ, sµ〉A, (114)

where {|µ, uµ, sµ〉} is the Schur basis. Similarly, we define the maximally entangled state
for each µ denoted as |φ+

D,µ〉 ∈ (U (D)
µ,O ⊗ S

(k)
µ,O) ⊗ (U (D)

µ,B ⊗ S
(k)
µ,B). Then, the quantum state

|φ′PBT〉 defined in Eq. (105) can be written as

|φ′PBT〉

=
∑
µ`k

√√√√√ dkdU(D)
µ

dS(k)
µ

∑
ν`k dU(d)

ν
dU(D)

ν

(Πµ,I ⊗ 1A)|Φ+
dk
〉IA (115)

=
∑
µ`k

√√√√√ dkdU(D)
µ

dS(k)
µ

∑
ν`k dU(d)

ν
dU(D)

ν

(Πµ,I ⊗ 1A)
∑
ν`k

√
dU(d)

ν
dS(k)

ν

dk
(USch†
I ⊗ USch†

A )|φ+
d,ν〉IA (116)

=
∑
µ`k

pµ[1I ⊗ USch†
A (USch†

A )t]|φ+
d,µ〉IA, (117)

where USch is the quantum Schur transforms defined above Lemma 4, pµ is a positive
value given by
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pµ :=

√√√√ dU(d)
µ
dU(D)

µ∑
ν`k dU(d)

ν
dU(D)

ν

, (118)

and Xt denotes the transpose of X in the Schur basis. Similarly, |φ(D)
PBT〉 is calculated as

|φ(D)
PBT〉OB =

∑
µ`k

qµ[1I ⊗ USch†
B (USch†

B )t]|φ+
D,µ〉OB, (119)

where qµ is a positive value given by

qµ :=
dU(D)

µ√∑
ν`k(dU(D)

ν
)2
. (120)

Since a tensor product V ⊗k of an isometry operator V ∈ Viso(d,D) can be decomposed in
the irreducible representation form as Eq. (89), we obtain

(V ⊗kI→O ⊗ 1A)|φ′PBT〉IA =
∑
µ

pµ(V ⊗kI→O ⊗ 1A)[1I ⊗ USch†
A (USch†

A )t]|φ+
d,µ〉IA (121)

=
∑
µ

pµ

[
Vµ ⊗ IS(k)

µ,I→S
(k)
µ,O
⊗ USch†

A (USch†
A )t

]
|φ+
d,µ〉IA (122)

=
∑
µ

rµ[1O ⊗ USch†
A (USch†

A )t]
(
Vµ ⊗ IS(k)

µ,A→S
(k)
µ,B

)t
|φ+
D,µ〉OB, (123)

where rµ is a positive value given by

rµ := pµ

√√√√√dU(D)
µ

dU(d)
µ

=
dU(D)

µ√∑
ν`k dU(d)

ν
dU(D)

ν

. (124)

For X : A → B, the transpose Xt in the Schur basis can be converted to the transpose
XT in the computational basis as

XT = USch†
A (USch

B XA→BU
Sch†
A )tUSch

B (125)

= USch†
A (USch†

A )tXt
B→A(USch

B )tUSch
B . (126)

Using this relation, we proceed the calculation in Eq. (123) as

(V ⊗kI→O ⊗ 1A)|φ′PBT〉IA =
∑
µ

rµ

{
1O ⊗

[(
Vµ ⊗ IS(k)

µ,A→S
(k)
µ,B

)T
USch†
B (USch†

B )t
]}
|φ+
D,µ〉OB.

(127)

From Eqs. (119), (120), (124) and (127), we obtain Eq. (112).
Let ρ′out,a ∈ L(Aa) be the output state after obtaining the outcome a of the POVM

M = {Γ(D)
a } given by Eq. (110), but before applying the correction Λ̃a given by Eq. (111).

For a 6= 0, the output state ρ′out,a multiplied by the probability to obtain the measurement
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outcome a, denoted by ρout,a, is calculated as

ρout,a

= TrPOAa
(
(Γa,PO ⊗ 1A)

{
ρin,P ⊗

[
Ṽ⊗kI→O ⊗ 1̃A(|φ′PBT〉〈φ′PBT|IA)

]})
(128)

=

∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

TrPOAa
(
(Γa,PO ⊗ 1A)

{
ρin,P ⊗

[
1̃O ⊗ ṼT⊗kB→A(|φPBT〉〈φPBT|OB)

]})
(129)

=

∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

TrPOAa

(
(Γa,PO ⊗ 1A)

{
ρin,P ⊗

[
X̃

1
2
O ⊗ Ṽ

T⊗k
B→A(|Φ+

Dk
〉〈Φ+

Dk
|OB)

]})
(130)

=

∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

× TrPOAa

([
1̃P ⊗ X̃

† 1
2
O (Γa,PO)⊗ 1A

] {
ρin,P ⊗

[
1̃O ⊗ ṼT⊗kB→A(|Φ+

Dk
〉〈Φ+

Dk
|OB)

]})
.

(131)

Since XO = X†O holds and the definition of Γa is given by Eq. (110), we obtain(
1̃P ⊗ X̃

† 1
2
O

)
(Γa,PO) = |Φ+

D〉〈Φ
+
D|POa ⊗ΘOa . (132)

Therefore, ρout,a is further calculated as

ρout,a

=

∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

× TrPOAa
(
(|Φ+

D〉〈Φ
+
D|POa ⊗ΘOa ⊗ 1A)

{
ρin,P ⊗

[
1̃O ⊗ ṼT⊗kB→A(|Φ+

Dk
〉〈Φ+

Dk
|OB)

]})
(133)

=

∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

Tr
{

(ΘOa ⊗ 1Aa)
[
1̃Oa ⊗ Ṽ

T⊗k−1
Ba→Aa

(|Φ+
Dk−1〉〈Φ+

Dk−1 |OaBa)
]}

× TrPOa
{

(|Φ+
D〉〈Φ

+
D|POa ⊗ 1Ba→Aa)

[
1̃POa ⊗ ṼTBa(ρin,P ⊗ |Φ+

D〉〈Φ
+
D|OaBa)

]}
(134)

=

∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

dk−1

Dk+1 Tr
{

(ΘOa ⊗ 1Aa)
[
Ṽ⊗k−1
Ia→Oa

⊗ 1̃Aa(|Φ+
dk−1〉〈Φ+

dk−1 |IaAa)
]}

× ṼTBa ◦ 1̃P→Ba(ρin,P). (135)

The final successful output state ρ′out is obtained by applying the conditional CPTP map
Λ̃a on ρ′out,a for a ∈ {1, · · · , k}, which corrects the index of the Hilbert space from Aa to
F . Let ρout be the final successful output state ρ′out multiplied by the probability that
the measurement outcome a satisfies a 6= 0. Namely, from the definition of the successful
output state, ρout is written by

ρout =
k∑
a=1

ρout,a = psuccṼT (ρin), (136)
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where the success probability psucc is given by

psucc =
k∑
a=1

∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

dk−1

Dk+1 Tr
{

(ΘOa ⊗ 1Aa)
[
Ṽ⊗k−1
Ia→Oa

⊗ 1̃Aa(|Φ+
dk−1〉〈Φ+

dk−1 |IaAa)
]}
.

(137)

The success probability psucc is calculated as

psucc =
k∑
a=1

∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

1
Dk+1 Tr(ΘOaV

⊗k−1V †⊗k−1) (138)

=
k∑
a=1

∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

1
Dk+1 Tr(ΘOaΠImV ⊗k−1) (139)

=
k∑
a=1

∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

∑
α`k−1

gD(k)dU(D)
α

kdS(k−1)
α

Tr(Πα,OaΠImV ⊗k−1) (140)

=
k∑
a=1

∑
µ`k(dU(D)

µ
)2∑

µ`k dU(d)
µ
dU(D)

µ

∑
α`k−1

gD(k)dU(D)
α
dU(d)

α

k
(141)

=
∑
α`k−1 dU(d)

α
dU(D)

α∑
µ`k dU(d)

µ
dU(D)

µ

, (142)

where Eq. (141) follows from the relation Tr(Πα,OaΠImV ⊗k−1) = dU(d)
α
dS(k−1)

α
, which is

obtained by the isomorphism ImV ⊗k−1 =
⊕
α`k−1 U

(d)
α ⊗ S(k−1)

α .
We further calculate the success probability psucc using techniques similar to those

presented in Ref. [68]. Let χd′,k be the character of the representation Pσ of Sk on
(Cd′)⊗k and χµ be the irreducible character of the representation µ of Sk. Then, we have

χd′,k =
∑
µ`k

d
U(d′)
µ
χµ. (143)

We define an inner product of two characters χ, χ′ by

〈χ, χ′〉 := 1
|Sk|

∑
σ∈Sk

χ(σ)χ′∗(σ). (144)

Then, 〈χµ, χν〉 = δµ,ν for irreducible representations µ, ν ` k. Therefore,

〈χd,k, χD,k〉 =
∑
µ`k

dU(d)
µ
dU(D)

µ
. (145)

holds. By definition of the inner product, we obtain∑
µ`k

dU(d)
µ′
dU(D)

µ
= 1
|Sk|

∑
σ∈Sk

χd,k(σ)χ∗D,k(σ). (146)

Let l(σ) be the minimum number n such that σ is written as a product of n permutations
σ = τ1 · · · τn. Then, we have χd′,k(σ) = d′l(σ). Therefore, we obtain

∑
µ`k

dU(d)
µ′
dU(D)

µ
= 1
k!

∑
σ∈Sk

(dD)l(σ). (147)
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A permutation σ ∈ Sk can be written uniquely as σ = (ak)τ using a ∈ {1, · · · , k} and
τ ∈ Sk−1), and l(σ) can be calculated inductively by the relation given by

l(σ) =
{
l(τ) + 1 (a = k)
l(τ) (a 6= k)

. (148)

Therefore, we finally obtain
∑
µ`k

dU(d)
µ
dU(D)

µ
= 1
k!

∑
σ∈Sk

(dD)l(σ) (149)

= dD + k − 1
k!

∑
τ∈Sk−1

(dD)l(τ) (150)

= dD + k − 1
k

∑
α`k−1

dU(d)
α
dU(D)

α
, (151)

which leads to

psucc =
∑
α`k−1 dU(d)

α
dU(D)

α∑
µ`k dU(d)

µ
dU(D)

µ

(152)

= k

Dd+ k − 1 . (153)

E.2 Optimality of the parallel isometry transposition for k = 1
We show that this isometry transposition protocol is optimal for k = 1 from the uniqueness
of isometry transposition similarly to the case of unitary transposition where the uniqueness
of transposition implies the optimality of the parallel protocol [101].

Theorem 9. The optimal success probability of probabilistic protocols that transform a
single call of an isometry operation Ṽ : L(Cd) → L(CD) into its transposed map ṼT is
popt = 1/(Dd).

First, we show the following Lemma on the uniqueness of isometry transposition.

Lemma 10. If a single-input superinstrument { ˜̃S , ˜̃F} implements a probabilistic exact
isometry transposition protocol, i.e.,

˜̃S (Ṽ) = psuccṼT (∀V ∈ Viso(d,D)), (154)

the Choi operator S of ˜̃S is uniquely given by

S = psuccDd|Φ+
D〉〈Φ

+
D|PO1 ⊗ |Φ+

d 〉〈Φ
+
d |I1F . (155)

Moreover, ˜̃S (Λ̃) = psuccΛ̃T holds for any map Λ̃ : L(Cd)→ L(CD).

Proof. We choose a set σ = {σ1, · · · , σd} ⊂ {1, · · · , D} such that σ1 < · · · < σd. Let the
dimensions of the Hilbert spaces as P ′,O′1 = Cd. We also define Wσ :=

∑
i |i〉〈σi| and

Accepted in Quantum 2023-02-23, click title to verify. Published under CC-BY 4.0. 38



Πσ := W †σWσ. We define operators S′ ∈ L(P ′⊗I1⊗O′1⊗F) and S′′ ∈ L(P⊗I1⊗O′1⊗F)
by

S′ :=
(
W̃σ,P→P ′ ⊗ W̃σ,O1→O′1 ⊗ 1̃I1F

)
(S), (156)

S′′ :=
(
W̃σ,O1→O′1 ⊗ 1̃PI1F

)
(S). (157)

From Eq. (154), we obtain

S ? |V 〉〉〈〈V | = psucc|V T 〉〉〈〈V T | (∀V ∈ Viso(d,D)). (158)

Then, for U ∈ U(D), we have

S′′ ? |U〉〉〈〈U |I1O′1 = S ?
[(
1̃I1 ⊗ W̃T

σ,O′1→O1

)
(|U〉〉〈〈U |I1O′1)

]
(159)

= S ? |V 〉〉〈〈V |I1O1 (160)
= psucc|V T 〉〉〈〈V T |PF , (161)

where V := W T
σ U is an isometry operator. Then, we obtain

S′ ? |U〉〉〈〈U |I1O′1 = psucc|UT 〉〉〈〈UT |P ′F , (162)

[S′′ − W̃†σ,P ′→P ⊗ 1̃I1O′1F (S′)] ? |U〉〉〈〈U |I1O′1 = 0. (163)

From Eq. (162) and the uniqueness of unitary transposition [101], we obtain

S′ = pd2|Φ+
d 〉〈Φ

+
d |P ′O′1 ⊗ |Φ

+
d 〉〈Φ

+
d |I1F . (164)

From Eq. (163) and the fact that span{|U〉〉〈〈U |I1O′1} = I1 ⊗O′1 holds, we obtain

S′′ =
(
W̃†σ,P ′→P ⊗ 1̃I1O′1F

)
(S′). (165)

We define Sσ := Π̃O1,σ ⊗ 1̃PI1F (S). Then, Sσ is calculated as

Sσ =
(
W̃†σ,O′1→O1

⊗ 1̃PI1F
)

(S′′) (166)

=
(
W̃†σ,P ′→P ⊗ W̃

†
σ,O′1→O1

⊗ 1̃I1F
)

(S′′) (167)

= psuccd
2|Φ′+σ 〉〈Φ′+σ |PO1 ⊗ |Φ+

d 〉〈Φ
+
d |I1F , (168)

where |Φ′+σ 〉PO1 is defined as

|Φ′+σ 〉PO1 := 1√
d

d∑
i=1
|σiσi〉PO1 . (169)

In other words, for im ∈ {1, · · · , D} and jm, km, lm ∈ {1, · · · , d} for m ∈ {1, 2}, the matrix
elements of S are given by

〈i1j1σk1 l1|S|i2j2σk2 l2〉 = 〈i1j1σk1 l1|Sσ|i2j2σk2 l2〉 (170)
= psuccδi1,σk1

δj1,l1δi2,σk2
δj2,l2 . (171)

Since this holds for any σ, we obtain

〈i1j1k1l1|S|i2j2k2l2〉 = psuccδi1,k1δj1,l1δi2,k2δj2,l2 . (172)
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for im, km ∈ {1, · · · , D} and jm, lm ∈ {1, · · · , d} for m ∈ {1, 2}. Thus, S is uniquely
determined as

S = psuccDd|Φ+
D〉〈Φ

+
D|PO1 ⊗ |Φ+

d 〉〈Φ
+
d |I1F . (173)

Moreover, for K ∈ L(I1 → O1), we obtain

S ? |K〉〉〈〈K|I1O1 = psucc|KT 〉〉〈〈KT |PF . (174)

Thus, we show ˜̃S (Λ̃) = pΛ̃T for any map Λ̃ : L(Cd)→ L(CD).

Proof of Theorem 9. Let { ˜̃S , ˜̃F} be a single-input superinstrument which implements a
probabilistic exact isometry transposition protocol with a success probability psucc. Let
the Choi operator of ˜̃S and ˜̃F be S, F ∈ L(P ⊗ I1 ⊗ O1 ⊗ F), respectively, and we set
an operator C := S + F . From Lemma 10, the Choi operator S is obtained by Eq. (155).
Since { ˜̃S , ˜̃F} is a single-input superinstrument, the conditions for C

C ≥ S, (175)

TrFC = TrO1FC ⊗
1O1

dO1
, (176)

TrI1O1FC = dO11P . (177)

have to be satisfied. Then, we obtain

TrI1FC = TrI1O1FC ⊗
1O1

dO1
= 1P ⊗ 1O1 . (178)

Since TrI1FC ≥ TrI1FS = psuccDd|Φ+
D〉〈Φ

+
D|PO1 holds, we have

psuccDd|Φ+
D〉〈Φ

+
D|PO1 ≤ 1P ⊗ 1O1 . (179)

Thus, we obtain psucc ≤ 1/(Dd), namely popt = 1/(Dd).

F SDP to obtain the maximal success probability of isometry inversion,
(pseudo) complex conjugation, and transposition

Using the Choi representation of a supermap introduced in Appendix 2.2, a superin-
strument { ˜̃S , ˜̃F} :

⊗k
i=1[L(Ii) → L(Oi)] → [L(P) → L(F)] can be represented by

S, F ∈ L(P ⊗ I ⊗ O ⊗ F), where I :=
⊗k

i=1 Ii and O :=
⊗k

i=1Oi. The Choi opera-
tors {S, F} of a k-input parallel/sequential/general superinstrument is characterized by

S, F ≥ 0, (180)
C := S + F is a parallel/sequential/general superchannel, (181)

where the second condition (181) is composed of the positivity of C and linear constraints
on C (see Section II of Ref. [19]).

This Appendix shows how to formulate the problem of finding the optimal success
probability of isometry inversion, isometry (pseudo) complex conjugation, isometry trans-
position, and “success-or-draw” isometry inversion as SDP using the Choi representation.
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F.1 Isometry inversion

The superinstrument { ˜̃S , ˜̃F} implements isometry inversion with the success probability p
if and only if

˜̃S (Ṽ⊗k) ◦ Ṽ = p1̃d (182)

holds for all V ∈ Viso(d,D). This condition can be written in the Choi representation as

S ? |V 〉〉〈〈V |⊗kIO ? |V 〉〉〈〈V |P ′P = p|1d〉〉〈〈1d|P ′F , (183)

where P ′ = Cd and |V 〉〉 :=
∑
i |i〉 ⊗ V |i〉 for the computational basis {|i〉} of Cd. Since

Tr[|V 〉〉〈〈V |⊗k+1] = dk+1 is constant for all V ∈ Viso(d,D), this condition is equivalent to
the following condition:

S ? |V 〉〉〈〈V |⊗kIO ? |V 〉〉〈〈V |P ′P = p|1d〉〉〈〈1d|P ′F ×
Tr[|V 〉〉〈〈V |⊗k+1]

dk+1 , (184)

Due to the linearity of Eq. (184) with respect to |V 〉〉〈〈V |⊗k+1, Eq. (184) holds for all
V ∈ Viso(d,D) if and only if it holds for finite set of isometries {Vi}i ⊂ Viso(d,D) forming
the basis {|Vi〉〉〈〈Vi|⊗k+1}i of the linear space Hk+1 := span{|V 〉〉〈〈V |⊗k+1|V ∈ Viso(d,D)}.

Therefore, the optimal success probability of isometry inversion in parallel/sequential/general
protocols can be found as a solution of the following SDP:

max p (185)
s.t. S, F ∈ L(P ⊗ I ⊗O ⊗F), (186)

S, F ≥ 0, (187)
S ? |Vi〉〉〈〈Vi|⊗kIO ? |Vi〉〉〈〈Vi|P ′P = p|1d〉〉〈〈1d|P ′F ∀i, (188)
C := S + F is a parallel/sequential/general superchannel, (189)

where {Vi}i is a finite set of isometries forming the basis {|Vi〉〉〈〈Vi|⊗k+1}i of the linear space
Hk+1 := span{|V 〉〉〈〈V |⊗k+1|V ∈ Viso(d,D)}.

F.2 Isometry pseudo complex conjugation

The superinstrument { ˜̃S , ˜̃F} implements isometry inversion with the success probability p
if and only if

[ ˜̃S (Ṽ⊗k)]T ◦ Ṽ = p1̃d (190)

holds for all V ∈ Viso(d,D). For any linear map Λ̃ : L(I) → L(O), the Choi operator of
the transposed map Λ̃T is expressed as the Choi operator of Λ̃ since

JΛ̃T =
∑
i,j

|i〉〈j|O ⊗ Λ̃T (|i〉j)I (191)

=
∑
i′,j′

Λ̃(|i′〉〈j′|)O ⊗ |i′〉〈j′|I (192)

= JΛ̃ (193)

holds for the computational bases {|i〉} and {|i′〉} of O and I, respectively. Then, the
condition (190) can be written in the Choi representation as

S ? |V 〉〉〈〈V |⊗kIO ? |V 〉〉〈〈V |F ′F = p|1d〉〉〈〈1d|F ′P , (194)
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where F ′ = Cd. Similarly to the case with isometry inversion, Eq. (194) holds for all
V ∈ Viso(d,D) if and only if it holds for finite set of isometries {Vi}i ⊂ Viso(d,D) forming
the basis {|Vi〉〉〈〈Vi|⊗k+1}i of the linear space span{|V 〉〉〈〈V |⊗k+1|V ∈ Viso(d,D)}.

Therefore, the optimal success probability of isometry pseudo complex conjugation in
parallel/sequential/general protocols can be found as a solution of the following SDP:

max p (195)
s.t. S, F ∈ L(P ⊗ I ⊗O ⊗F), (196)

S, F ≥ 0, (197)
S ? |Vi〉〉〈〈Vi|⊗kIO ? |Vi〉〉〈〈Vi|F ′F = p|1d〉〉〈〈1d|F ′P ∀i, (198)
C := S + F is a parallel/sequential/general superchannel, (199)

where {Vi}i is a finite set of isometries forming the basis {|Vi〉〉〈〈Vi|⊗k+1}i of the linear space
Hk+1 := span{|V 〉〉〈〈V |⊗k+1|V ∈ Viso(d,D)}.

F.3 Isometry complex conjugation and isometry transposition

The superinstrument { ˜̃S , ˜̃F} implements isometry complex conjugation or isometry trans-
position with the success probability p if and only if˜̃S (Ṽ⊗k) = pf̃(V ) (200)

holds for all V ∈ Viso(d,D), where f̃(V ) = Ṽ∗ or f̃(V ) = ṼT . This condition can be
written in the Choi representation as

S ? |V 〉〉〈〈V |⊗kIO = p|f(V )〉〉〈〈f(V )|PF , (201)

where f(V ) = V ∗ or f(V ) = V T . The mapping |V 〉〉〈〈V | 7→ |f(V )〉〉〈〈f(V )| is linear for
f(V ) = V ∗ or f(V ) = V T since

|V T 〉〉 =
∑
i

|i〉 ⊗ V T |i〉 =
∑
i

V |i〉 ⊗ |i〉 = |V 〉〉, (202)

|V ∗〉〉〈〈V ∗| = |V 〉〉〈〈V |∗ = |V 〉〉〈〈V |T , (203)

hold, where the hermicity of |V 〉〉〈〈V | is used to derive Eq. (203). Similarly to the case with
isometry inversion, Eq. (201) can be rewritten as

S ? |V 〉〉〈〈V |⊗kIO = p|f(V )〉〉〈〈f(V )|PF ×
Tr[|V 〉〉〈〈V |⊗k−1]

dk−1 . (204)

Due to the linearity of Eq. (204) with respect to |V 〉〉〈〈V |⊗k, the condition (204) holds for all
V ∈ Viso(d,D) if and only if it holds for finite set of isometries {Vj}j ⊂ Viso(d,D) forming
the basis {|Vj〉〉〈〈Vj |⊗k}j of the linear space Hk := span{|V 〉〉〈〈V |⊗k|V ∈ Viso(d,D)}.

Therefore, the optimal success probability of isometry complex conjugation or transpo-
sition in parallel/sequential/general protocols can be found as a solution of the following
SDP:

max p (205)
s.t. S, F ∈ L(P ⊗ I ⊗O ⊗F), (206)

S, F ≥ 0, (207)
S ? |Vj〉〉〈〈Vj |⊗kIO = p|f(Vj)〉〉〈〈f(Vj)|PF ∀j, (208)
C := S + F is a parallel/sequential/general superchannel, (209)

where f(V ) = V ∗ or f(V ) = V T , and {Vj}j is a finite set of isometries forming the basis
{|Vj〉〉〈〈Vj |⊗k}j of the linear space Hk := span{|V 〉〉〈〈V |⊗k|V ∈ Viso(d,D)}.
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F.4 “Success-or-draw” isometry inversion

The superinstrument { ˜̃S , ˜̃F} implements “success-or-draw” isometry inversion with the
success probability p if and only if˜̃S (Ṽ⊗k) ◦ Ṽ = pṼembed, (210)˜̃F (Ṽ⊗k) ◦ Ṽ = pṼ, (211)

holds for all V ∈ Viso(d,D), where V embed is a natural embedding of Cd to CD defined in
Eq. (38). Note that V embed is introduced to adjust the dimension of the output space F of
the supermap ˜̃S to that of the supermap ˜̃F . These conditions can be written in the Choi
representation as

S ? |V 〉〉〈〈V |⊗kIO ? |V 〉〉〈〈V |P ′P = p|V embed〉〉〈〈V embed|P ′F , (212)
F ? |V 〉〉〈〈V |⊗kIO ? |V 〉〉〈〈V |P ′P = (1− p)|V 〉〉〈〈V |P ′F , (213)

where P ′ = Cd. Due to the linearity of the conditions (212) and (213) with respect to
|V 〉〉〈〈V |⊗k+1, the conditions (212) and (213) hold for all V ∈ Viso(d,D) if and only if they
hold for finite set of isometries {Vi}i ⊂ Viso(d,D) forming the basis {|Vi〉〉〈〈Vi|⊗k+1}i of the
linear space Hk+1 := span{|V 〉〉〈〈V |⊗k+1|V ∈ Viso(d,D)}.

Therefore, the optimal success probability of “success-or-draw” isometry inversion in
parallel/sequential/general protocols can be found as a solution of the following SDP:

max p (214)
s.t. S, F ∈ L(P ⊗ I ⊗O ⊗F), (215)

S, F ≥ 0, (216)
S ? |Vi〉〉〈〈Vi|⊗kIO ? |Vi〉〉〈〈Vi|P ′P = p|V embed〉〉〈〈V embed|P ′F ∀i, (217)
F ? |Vi〉〉〈〈Vi|⊗kIO ? |Vi〉〉〈〈Vi|P ′P = (1− p)|Vi〉〉〈〈Vi|P ′F ∀i, (218)
C := S + F is a parallel/sequential/general superchannel, (219)

where V embed is a natural embedding of Cd to CD defined in Eq. (38), and {Vi}i is a
finite set of isometries forming the basis {|Vi〉〉〈〈Vi|⊗k+1}i of the linear space Hk+1 :=
span{|V 〉〉〈〈V |⊗k+1|V ∈ Viso(d,D)}.

G Proof of Theorem 2
By linearity, it is sufficient to consider a pure input state ρin = |ψin〉〈ψin| ∈ L(P) = L(CD)
for the isometry inversion protocol of V ∈ Viso(d,D). We decompose |ψin〉 as

|ψin〉 = |ψ‖〉+ |ψ⊥〉, (220)

where |ψ‖〉 ∈ ImV and |ψ⊥〉 ∈ (ImV )⊥ can be unnormalized. For the computational basis
of Cd given by {|i〉}d−1

i=0 , a set of vectors {V |i〉}d−1
i=0 ⊂ CD satisfies

〈i|V †V |j〉 = 〈i|j〉 = δi,j , (221)
〈ψ⊥|V |i〉 = 0, (222)

for i, j ∈ {0, · · · , d− 1}, where δi,j is Kronecker’s delta given by

δi,j :=
{

1 (i = j)
0 (i 6= j)

. (223)
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Therefore, there exists an orthonormal basis {|v(i)〉}D−1
i=0 of P = CD such that the first

d+ 1 elements satisfy

|v(i)〉 = V |i〉 (i ∈ {0, · · · , d− 1}), (224)
|v(d)〉 ‖ |ψ⊥〉. (225)

Then, the remaining part of the orthonormal basis {|v(i)〉}D−1
i=0 , namely, each |v(i)〉 for all

i ∈ {d+ 1, · · · , D − 1} satisfies

〈v(i)|ψin〉 = 0. (226)

For 0 ≤ j1 < · · · < jd ≤ D − 1 and ~j = (j1, · · · , jd), we define a totally antisymmetric
state |av~j 〉 ∈ P ⊗O = (CD)⊗d by

|av~j 〉 :=
∑

~k∈{1,··· ,d}d

ε~k√
d!
|v(jk1) · · · v(jkd)〉, (227)

where ε~k is the antisymmetric tensor with rank d. The projector Πa.s.
PO on P ⊗

⊗d−1
i=1 Oi

onto its subspace spanned by totally antisymmetric states satisfies

Πa.s.
PO =

∑
0≤j1<···<jd≤D−1

|av~j 〉〈a
v
~j
|. (228)

We calculate the output state ρ′out ∈ L(F) = L(Cd) after obtaining the measurement
outcome a = 1 ofM and the probability pa=1 to obtain the measurement outcome a = 1.
To this end, we calculate the unnormalized operator ρout = pa=1ρ

′
out. First, we obtain

ρout = TrPO(|φ′〉〈φ′|POF ), (229)

where |φ′〉 is defined by

|φ′〉 := Πa.s.
PO ⊗ 1F

[
|ψin〉P ⊗ (V ⊗d−1

I→O ⊗ 1F )|Ad〉IF
]
. (230)

The vector |φ′〉 is calculated as

|φ′〉 =
∑
~j

|av~j 〉〈a
v
~j
|PO ⊗ 1F

{
|ψin〉P ⊗

[
(V ⊗d−1
I→O ⊗ 1F )|Ad〉IF

]}
(231)

=
∑
~j,~k,~k′

|av~j 〉PO ⊗
ε~kε~k′

d! δjk2 ,k
′
1
· · · δjkd ,k′d−1

|k′d〉F 〈v(jk1)|ψin〉, (232)

where the summation is taken over 0 ≤ j1 < · · · < jd ≤ D − 1, ~k ∈ {1, · · · , d}d and
~k′ ∈ {0, · · · , d − 1}d. Since the summand in Eq. (232) is non-zero only for (j1, · · · , jd) =
(0, · · · , d− 1) or (j1, · · · , jd) = (0, · · · , j− 1, j+ 1, · · · , d) for j ∈ {0, · · · , d− 1}, we obtain

|φ′〉 = |av0···d−1〉PO ⊗
d−1∑
j=0

(−1)d

d
|j〉F 〈v(j)|ψin〉+

d−1∑
j=0
|av0···j−1j+1···d〉PO ⊗

(−1)d

d
|j〉F 〈v(d)|ψin〉

(233)

= |av0···d−1〉PO ⊗
(−1)d

d
V †P→F |ψin〉P +

d−1∑
j=0
|av0···j−1j+1···d〉PO ⊗

(−1)d

d
|j〉F 〈v(d)|ψin〉.

(234)
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Since {|av~j 〉} are orthogonal to each other, the successful output state multiplied by the
probability to obtain the measurement outcome a = 1, denoted by ρout, can be calculated
as

ρout = TrPO(|φ′〉〈φ′|POF ) (235)

= 1
d2V

†|ψin〉〈ψin|V + 1
d2

d−1∑
j=0
|j〉〈j| |〈v(d)|ψin〉|2 (236)

= 1
d2V

†|ψin〉〈ψin|V + πd
d

Tr
[
Π(ImV )⊥ |ψin〉〈ψin|

]
(237)

= 1
d2 Ṽ

′(|ψin〉〈ψin|), (238)

by defining a CPTP map Ṽ ′ : L(CD)→ L(Cd) as Ṽ ′(ρin) := V †ρinV +IdTr(Π(ImV )⊥ρin).
Thus, a protocol shown in Figure 2 (c) implements a pseudo complex conjugate map Ṽ ′
with a success probability psucc = 1/d2.

H Proof of Lemma 4
Suppose P = CD, P ′ = Cd, P ′ = Cd, Ii = Cd, Oi = CD, and O′i = Cd for i ∈ {1, · · · , k}
and define the joint Hilbert space by I :=

⊗k
i=1 Ii, O :=

⊗k
i=1Oi, and O′ :=

⊗k
i=1Oi. For

V ∈ Viso(d,D), we define Λ̃V : L(P ′′ ⊗ I)→ L(P ′ ⊗O′′) by

Λ̃V (ρ) :=
(
Ψ̃PO→P ′O′ ◦ Ṽ⊗k+1

P ′′I→PO

)
(ρ) (239)

using the CPTP map Ψ̃ given by Eq. (22). From Eqs. (89) and (22), we obtain

Λ̃V (ρ) =
⊕
µ`k+1

1U(d)
µ,P′O′

dU(d)
µ

⊗
{
ĨS(k+1)
PO →S(k+1)

P′O′

(
TrU(D)

µ,PO

{
Πµ,PO

[
Ṽµ ⊗ 1̃S(k+1)

µ,PO
(ρ)
]})}

(240)

=
⊕
µ`k+1

1U(d)
µ,P′O′

dU(d)
µ

⊗
{
ĨS(k+1)
P′′I →S

(k+1)
P′O′

[
TrU(d)

µ,P′′I
(Πµ,P ′′Iρ)

]}
. (241)

On the other hand, we define Λ̃U : L(P ′′ ⊗ I)→ L(P ′ ⊗O′′) by

Λ̃U (ρ) =
∫

dUU⊗k+1
P ′′I→P ′O′(ρ), (242)

where dU is the Haar measure on U(D). From Eqs. (94), (99) and (241), we obtain
Λ̃V = Λ̃U .

I Proof of Theorem 7
For ~j = (j1, · · · , jd) ∈ {0, · · · , D − 1}d, we define totally antisymmetric states in (CD)⊗d
as

|a~j〉 :=
∑

~k∈{1,··· ,d}d

ε~k√
d!
|jk1 · · · jkd〉, (243)

|av∗~j 〉 :=
∑

~k∈{1,··· ,d}d

ε~k√
d!
|v(jk1)∗ · · · v(jkd)

∗〉, (244)
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where |v(j)〉 is defined in Appendix G and |v(j)∗〉 is the complex conjugate of |v(j)〉 in
terms of the computational basis. For simplicity, we introduce short-hand notations

|~jd−1〉 := |j1〉 ⊗ · · · ⊗ |jd−1〉, (245)
|j~kd−1

〉 := |jk1〉 ⊗ · · · ⊗ |jkd−1〉, (246)

|v(j~kd−1
)〉 := |v(jk1)〉 ⊗ · · · ⊗ |v(jkd−1)〉, (247)

|v(j~k)
∗〉 := |v(jk1)∗〉 ⊗ · · · ⊗ |v(jkd)

∗〉, (248)

where the vectors are defined by ~jd−1 = (j1, · · · , jd−1), ~kd−1 = (k1, · · · , kd−1) and ~k =
(k1, · · · , kd).

First, we calculate the Choi operator of Λ̃ as

JΛ̃ = c
∑

~jd−1,~j
′
d−1,

~j′′

|~jd−1〉〈~j′d−1|O ⊗A~j′′ |~jd−1〉〈~j′d−1|A
†
~j′′

+ (1O −Πa.s.
O )⊗ 1F

D
(249)

= c
∑

~j′′,~k,~k′

ε~kε~k′

(d− 1)! |j
′′
~kd−1
〉〈j′′~k′

d−1
|O ⊗ |j′′kd〉〈j

′′
k′
d
|F + (1O −Πa.s.

O )⊗ 1F
D

(250)

= cd
∑

0≤j1<···<jd≤D−1
|a~j〉〈a~j |OF + (1O −Πa.s.

O )⊗ 1F
D

(251)

= cdΠa.s.
OF + (1O −Πa.s.

O )⊗ 1F
D
, (252)

where a coefficient c is given by c := 1/(D − d+ 1) and the summation in Eqs. (249) and
(250) are taken over ~jd−1,~j

′
d−1 ∈ {0, · · · , D − 1}d−1, 0 ≤ j′′1 < · · · < j′′d ≤ D − 1 and

~k,~k′ ∈ {1, · · · , d}d. Since Πa.s. is invariant under the tensor product U⊗d of a unitary
operator U ∈ U(D), we obtain

JΛ̃ = cd
∑

0≤j1<···<jd≤D−1
|av∗~j 〉〈a

v∗
~j
|OF + (1O −Πa.s.

O )⊗ 1F
D

(253)

= c
∑

~j′′,~k,~k′

ε~kε~k′

(d− 1)! |v(j′′~k )∗〉〈v(j′′~k′)
∗|OF + (1O −Πa.s.

O )⊗ 1F
D
, (254)

where the summation in Eq. (254) is taken over 0 ≤ j′′1 < · · · < j′′d ≤ D − 1 and ~k,~k′ ∈
{1, · · · , d}d.

Then, the output state ρout ∈ L(F) of the pseudo complex conjugation protocol is
calculated as

ρout

= JΛ̃ ?
[(
Ṽ⊗d−1
I→O ◦ Ṽ

a.s.
P→I

)
(ρin)

]
(255)

= c
∑
~j,~k,~k′

ε~kε~k′

(d− 1)!Tr
{
|v(j~k′

d−1
)〉〈v(j~kd−1

)|O
[(
Ṽ⊗d−1
I→O ◦ Ṽ

a.s.
P→I

)
(ρin)

]}
|v(jkd)

∗〉〈v(jk′
d
)∗|F

(256)

= c
∑
~j,~k,~k′

ε~kε~k′

(d− 1)!Tr
{[(
Ṽ†a.s.I→P ◦ Ṽ

†⊗d−1
O→I

) (
|v(j~k′

d−1
)〉〈v(j~kd−1

)|O
)]
ρin

}
|v(jkd)

∗〉〈v(jk′
d
)∗|F ,

(257)
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where the summation is taken over 0 ≤ j1 < · · · < jd ≤ D − 1 and ~k,~k′ ∈ {1, · · · , d}d.
Since the summand in Eq. (257) is non-zero only when{

~j = (0, · · · , d− 1) or
~j = (0, · · · , l − 1, l + 1, · · · , d− 1,m) (l ∈ {0, · · · , d− 1},m ∈ {d, · · · , D − 1})

,

(258)

we obtain

ρout = c
∑

~j,~j′∈{0,··· ,d−1}d

ε~jε~j′

(d− 1)!Tr
{[
Ṽ†a.s.I→P

(
|~j′d−1〉〈~jd−1|I

)]
ρin
}
|v(jd)∗〉〈v(j′d)∗|F

+ c
d−1∑
l=0

D−1∑
m=d

∑
~kd−1,~k

′
d−1∈{1,··· ,d−1}d−1

ε~kd−1
ε~k′
d−1

(d− 1)! Tr
{[
Ṽ†a.s.I→P

(
|j~k′

d−1
〉〈j~kd−1

|I
)]
ρin

}

× |v(m)∗〉〈v(m)∗|F , (259)

where (j1, · · · , jd−1) in the second term is (j1, · · · , jd−1) = (0, · · · , l − 1, l + 1, · · · , d− 1).
Then, we proceed the calculation as

ρout = c
∑

~j,~j′∈{0,··· ,d−1}d

1
[(d− 1)!]2 Tr

[
|j′d〉〈jd|Pρin

]
|v(jd)∗〉〈v(j′d)∗|F

+ c
d−1∑
l=0

D−1∑
m=d

∑
~kd−1,~k

′
d−1∈{1,··· ,d−1}d−1

1
[(d− 1)!]2 Tr[|l〉〈l|Pρin]|v(m)∗〉〈v(m)∗|F (260)

= c
d−1∑

jd,j
′
d
=0

Tr[|j′d〉〈kd|Pρin]|v(jd)∗〉〈v(j′d)∗|F + c
d−1∑
l=0

D−1∑
m=d

Tr[|l〉〈l|Pρin]|v(m)∗〉〈v(m)∗|F

(261)

= c
d−1∑

jd,j
′
d
=0
|v(jd)∗〉〈jd|ρin|j′d〉〈v(j′d)∗|+ c

D−1∑
m=d

d−1∑
l=0
|v(m)∗〉〈v(m)∗|〈l|ρin|l〉 (262)

= c
[
V ∗ρin(V ∗)† + Π∗(ImV )⊥Tr(ρin)

]
(263)

= 1
D − d+ 1 Ṽ

′′(ρin). (264)

Therefore, the protocol shown in Figure 8 implements an pseudo complex conjugate map
Ṽ ′′ with a success probability psucc = 1

D−d+1 .
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