
Time-marching based quantum solvers for time-
dependent linear differential equations
Di Fang1,2,3, Lin Lin1,4,3, and Yu Tong5,1

1Department of Mathematics, University of California, Berkeley, CA 94720, USA
2Simons Institute for the Theory of Computing, University of California, Berkeley, CA 94720, USA
3Challenge Institute for Quantum Computation, University of California, Berkeley, CA 94720, USA
4Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA
94720, USA

5Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA

The time-marching strategy, which propagates the solution from one time step
to the next, is a natural strategy for solving time-dependent differential equations
on classical computers, as well as for solving the Hamiltonian simulation problem
on quantum computers. For more general homogeneous linear differential equa-
tions d

dt |ψ(t)〉 = A(t)|ψ(t)〉, |ψ(0)〉 = |ψ0〉, a time-marching based quantum solver
can suffer from exponentially vanishing success probability with respect to the
number of time steps and is thus considered impractical. We solve this problem
by repeatedly invoking a technique called the uniform singular value amplifica-
tion, and the overall success probability can be lower bounded by a quantity that
is independent of the number of time steps. The success probability can be further
improved using a compression gadget lemma. This provides a path of designing
quantum differential equation solvers that is alternative to those based on quan-
tum linear systems algorithms (QLSA). We demonstrate the performance of the
time-marching strategy with a high-order integrator based on the truncated Dyson
series. The complexity of the algorithm depends linearly on the amplification ra-
tio, which quantifies the deviation from a unitary dynamics. We prove that the
linear dependence on the amplification ratio attains the query complexity lower
bound and thus cannot be improved in the worst case. This algorithm also sur-
passes existing QLSA based solvers in three aspects: (1) A(t) does not need to be
diagonalizable. (2) A(t) can be non-smooth, and is only of bounded variation. (3)
It can use fewer queries to the initial state |ψ0〉. Finally, we demonstrate the time-
marching strategy with a first-order truncated Magnus series, which simplifies the
implementation compared to high-order truncated Dyson series approach, while
retaining the aforementioned benefits. Our analysis also raises some open ques-
tions concerning the differences between time-marching and QLSA based methods
for solving differential equations.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

20
8.

06
94

1v
2

 [
qu

an
t-

ph
]

 1
5

M
ar

 2
02

3

https://quantum-journal.org/?s=Time-marching%20based%20quantum%20solvers%20for%20time-dependent%20linear%20differential%20equations&reason=title-click
https://quantum-journal.org/?s=Time-marching%20based%20quantum%20solvers%20for%20time-dependent%20linear%20differential%20equations&reason=title-click

Contents
1 Introduction 3

1.1 Related works . 4
1.2 Contribution . 5
1.3 Challenges in designing time marching based quantum solvers 7
1.4 Organization . 8

2 Overview of the method 8
2.1 Main idea . 8
2.2 Input Model . 10
2.3 Uniform singular value amplification . 11
2.4 Amplitude amplification using compression gadget 14

3 High-order truncated Dyson series approach 16
3.1 Short time evolution . 17
3.2 Block encoding of the long time evolution operator 17
3.3 Success probability and main result for Dyson series approach 19
3.4 Application to sparse matrix input model . 21

4 Optimality of the query complexity with respect to Q 21

5 Simplified implementation and first-order truncated Magnus series 23
5.1 Short-time evolution description . 24
5.2 Time discretization error . 24
5.3 Algorithm for implementing eA . 27
5.4 Short-time complexity of the first-order integrator 28
5.5 Block encoding of the long-time evolution operator 30
5.6 Success probability and main result paired with first-order integrator 31

6 Discussion 32

A Notations 37

B Block encoding and quantum singular value transformation 38

C Convex optimization based method for uniform singular value amplification 38

D The compression gadget 39

E Bounding the error due to the coefficient matrix 40

F Bounding numerical integration error using the total variation 40

G Circuit construction of the contour integral formulation 41
G.1 Block encoding the inverse of a matrix . 41
G.2 Evaluating contour integrals using the trapezoidal rule 43
G.3 Block encoding of Ξ . 43

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 2

G.4 Block encoding of Ξ−1 . 44
G.5 Using LCU to block encode eA . 44

1 Introduction
In modern science and engineering, mathematical descriptions of “real-world” problems often
lead to differential equations, which play a prominent role in many disciplines such as physics,
chemistry, biology and economics. Efficient simulation of large scale differential equations
has therefore served as one of the core tasks in many scientific applications. Recent advances
of quantum algorithms indicate that quantum computers may significantly accelerate the
simulation of such differential equations, particularly for those defined in high dimensional
spaces. Let N be the number of degrees of freedom (e.g., the number of discretized points
in a high dimensional space) which can be very large. For certain tasks, quantum computers
can store and manipulate vectors of size N at a cost that scales only as polylog(N), which
leads to potentially significant advantages over classical computers.

In this paper, we focus on the initial value problem of the system of homogeneous linear
ordinary differential equations (ODEs)

d
dt |ψ(t)〉 = A(t) |ψ(t)〉 , |ψ(0)〉 = |ψ0〉 , (1)

where t ∈ [0, T] ⊂ R+ is the independent variable with T as the final time, the vector
|ψ(t)〉 ∈ CN is the dependent variable, the coefficient matrix A(t) ∈ CN×N is a matrix-valued
function in t, and |ψ0〉 ∈ CN is the initial condition. We assume the differential equation
has a well-posed solution, which can be implied by, e.g., A(t) being piecewise continuous.
The coefficients can have jump discontinuity and are not required to be smooth in t. More
precisely, we only need to assume that A(t) is of bounded variation, i.e., the total variation
V T

0 (A) (see Eq. (10) for definition) is finite. The task for quantum differential equation solvers
is to prepare a quantum state that is proportional to the final solution |ψ(T)〉 with certain
precision.

One prominent example is the Hamiltonian simulation problem, which is a homogeneous
linear differential equation governed by A(t) = −iH(t) and H(t) is a Hermitian matrix.
Recent years have witnessed remarkable progresses on designing new algorithms as well as
establishing improved theoretical complexity estimate of existing algorithms for both time-
independent Hamiltonian simulation [9–13, 15, 20, 23, 27–30, 53, 55, 57, 60, 69] and time-
dependent ones [3, 4, 7, 24, 47, 57, 66, 67]. These quantum algorithms can be applied, when
the underlying dynamics is unitary or can be converted into a unitary dynamics (see e.g.,
[33]). Compared to the Hamiltonian simulation problem whose dynamics is unitary, quantum
algorithms for the general linear differential equations are considerably less explored. Such
algorithms produce a quantum state representing the solution of the differential equation.
This is different from having the solution stored in classical memory, but we can still extract
information from the quantum state that may not be efficiently obtainable from classical
computation (see e.g., [26]). Unless otherwise specified, we do not consider the special case
when A(t) = A is time-independent, in which setting we may directly encode the propagator
(i.e., the matrix function eAT) using the quantum singular value transformation (QSVT) [38]
when A is Hermitian or anti-Hermitian, or using a contour integral based strategy for a general
A (see [59, 61], as well as Section 5.3).

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 3

The time-marching strategy is a natural strategy solving time-dependent differential equa-
tions, and is adopted by nearly all classical differential equation solvers (see e.g., [42, 43]).
The idea is to divide the entire time interval [0, T] into a number of short line segments sepa-
rated by the temporal mesh points 0 = t0 < t1 < · · · < tL = T , and to calculate the solution
information at the next time step using the solution information from previous k time steps.
Methods with k = 1 are called one-step methods (e.g., Runge-Kutta methods). Methods
with k > 1 are called multi-step methods (e.g., Adams methods). Multi-step methods require
multiple copies of the solution from previous steps, and cannot be directly implemented on
quantum computers due to the obstruction of the no-cloning theorem. For non-unitary dy-
namics, even one-step methods lead to severe challenges in the design of quantum algorithms,
mainly due to potentially diminishing success probability. In Section 1.3, we use an illustra-
tive example with the simplest one-step integrator (the forward Euler method) to demonstrate
such challenges. As a result, the time-marching strategy has not been viewed as a practical
route for designing quantum differential equation solvers beyond the Hamiltonian simulation
problem.

1.1 Related works
The prevailing strategy for designing quantum differential equation solvers to date is to con-
struct a large linear system recording states during the entire history of the evolution, and
then to apply the quantum linear systems algorithms (QLSA) [1, 5, 25, 32, 44, 49, 58] to solve
the resulting linear systems of equations. One may perform certain amplification procedures
to boost the success probability of getting the final solution. This QLSA-based strategy was
first proposed by Berry [8], which successfully avoids the pitfall in Section 1.3. It has been
adopted by various quantum linear differential equation solvers [14, 26, 48, 50], and has been
applied to solve nonlinear differential equations using linearization techniques [2, 34, 36, 45,
46, 51, 52, 64].

The work [8] uses multi-step integrators, and the analysis is applicable to time-independent
A that is diagonalizable as A = V DV −1 with eigenvalues λj = Djj satisfying

|arg(−λj)| ≤ θ0, 0 < θ0 < π/2, ∀j. (2)

The query complexity of the algorithms scales polynomially in T , the spectral norm ‖A‖, the
inverse precision ε−1, and the condition number of the eigenvector matrix κV := ‖V ‖

∥∥V −1∥∥.
For time-independent A, the work [14] combines a QLSA-based solver with the truncated
Taylor series method, and the assumption in Eq. (2) was relaxed to A being dissipative (i.e.,
Re(λj) ≤ 0,∀j). The complexity of this algorithm is also improved to be Õ(Td ‖A‖κV qpolylog(ε−1)),
where d is the sparsity of the matrixA, κV is the condition number of V , and q = supt∈[0,T] ‖|ψ(t)〉‖ / ‖|ψ(T)〉‖.
For time-dependent linear differential equations, [26] combines a QLSA-based solver with
a Chebyshev pseudospectral method. It assumes that A(t) is diagonalizable as A(t) =
V (t)D(t)V (t)−1 and dissipative for all t ∈ [0, T], and the underlying solution is sufficiently
smooth in t. The complexity of the algorithm is Õ(TακV qdpolylog(g′g−1ε−1)), where d is
the sparsity of A(t), α = supt∈[0,T] ‖A(t)‖, κV = supt∈[0,T] ‖κV (t)‖, g = ‖|ψ(T)〉‖, g′ =
maxt∈[0,T] maxn∈N

∥∥∥|ψ(n+1)(t)〉
∥∥∥, and q = supt∈[0,T] ‖|ψ(t)〉‖ / ‖|ψ(T)〉‖. The smoothness of

the solution implicitly requires that A(t) should be sufficiently smooth (e.g., analytic in t).
When the coefficient matrix A(t) is not sufficiently smooth, the polylogarithmic dependence
on g′ no longer holds, and the complexity of the algorithm depends polynomially on ε−1.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 4

In all the analysis above, the complexity depends explicitly on the condition number of
the eigenvector matrix κV , which can be difficult to estimate and may lead to significant
overestimation of the cost. The recent work by Krovi [48] replaces the dependence on κV by

the dependence on supt∈[0,T]

∥∥∥eAt∥∥∥. This is a significant improvement due to the inequality

sup
t∈[0,T]

∥∥∥eAt∥∥∥ ≤ sup
t∈[0,T]

∥∥∥eDt∥∥∥κV .
For instance, consider

A =
(

1 1
0 1 + δ

)
= V DV −1, with V =

(
1 1

δ
0 1

)
, D =

(
1 0
0 1 + δ

)
. (3)

Then ‖eA‖ = O(1), but κV is Ω(δ−2) which diverges as δ → 0. However, the technique in [48]
is only applicable when A is time-independent.

1.2 Contribution
In this work, we propose that the time-marching method can become an efficient strategy
for solving linear differential equations. Our main technical tool (Theorem 4) is a method to
implement a sequence of non-unitary operations without incurring an exponential overhead.
Theorem 4 has two main ingredients. The first is the uniform singular value amplification
procedure, which was first developed in [54] and was refined in [38]. It allows us to amplify
the success probability in each time step in a way that is oblivious to the quantum state.
We find that in our context, the degree of the polynomial used by the uniform singular value
amplification procedure in [38] exhibits a very large preconstant. We use a convex optimization
based method to reduce the preconstant by orders of magnitude. Theorem 4 also proposes a
useful tool called the compression gadget (which improves upon the result developed in [57])
to coherently combine short-time evolution operators into a long-time one without duplicating
ancilla qubits. Combined with amplitude amplification [17], this leads to a further quadratic
speedup in terms of the query complexity.

Consider a temporal mesh 0 = t0 < t1 < · · · < tL = T . Using the time-marching
strategy and the high-order truncated Dyson series algorithms [12, 47, 57] for short time
evolution, we propose an algorithm to solve Eq. (1), which requires Õ(Q(αT)2 log(ε−1)) queries
to the coefficient matrix A(t), and O(Q) queries to the initial state |ψ0〉 (Theorem 8). Here
α = supt∈[0,T] ‖A(t)‖, and

Q =
∏L
l=1 ‖T e

∫ tl
tl−1

A(t)dt
‖

‖ |ψ(T)〉 ‖ , (4)

as a central quantity of this work, is the amplification ratio. It quantifies the non-unitarity of
the dynamics (e.g., Q = 1 for unitary dynamics).

Compared to the state-of-the-art results based on the QLSA in [26] and [48], our algorithm
has several advantages, which we summarize in Table 1. First, our method does not require
the diagonalizability of A(t), and the complexity is independent of the condition number κV .
This generalizes the result of [48] to equations with time-dependent matrix coefficients.

Second, our algorithm also has lower regularity requirement for the coefficient matrix A(t)
and the solution |ψ(t)〉. In [26] the query complexity depends on the high-order derivatives of

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 5

the solution (g′ = maxt∈[0,T] maxn∈N
∥∥∥|ψ(n+1)(t)〉

∥∥∥ in [26, Theorem 1]), and if the solution is

not smooth, the spectral method loses the desirable exponential accuracy. Remarkably, in our
method, exponential accuracy is achieved even when the coefficient matrix A(t) is not smooth,
thus allowing |ψ(t)〉 to be non-smooth. The results in both Theorem 8 and Theorem 14
are insensitive to the roughness in the coefficients A(t). Note that A(t) being of bounded
variation is a very weak regularity condition, and in particular V T

0 (A) =
∫ T

0 ‖A′(t)‖dt when A
is differentiable. This also allows for the existence of jump discontinuities in the coefficients.

Third, our algorithm may use fewer queries to the initial state, which is advantageous if
the initial state preparation is an important factor. To simplify the discussion, let us focus on
the dependence on T and assume all other quantities such as α,Q to be constants. In order
to achieve the scaling in [26, Theorem 1] (for other QLSA based differential equation solvers
discussed in Section 1.1, the situation is similar), the quantum solver must employ a quantum
linear system solver with near optimal query complexities. In other words, the complexity of
the linear system solver should scale as Õ(κpolylog(ε−1)), and κ is the condition number of
the linear system. Moreover, the near optimal quantum algorithms also need to query the
initial state for Õ(κ) times. Such a dependence is most clearly seen from the perspective of
adiabatic based near-optimal quantum linear system solvers [5, 32, 49]. This is because the
construction of the adiabatic Hamiltonian corresponding to the linear system uses the initial
state, and thus each query to the adiabatic Hamiltonian also queries the initial state. As a
result, the quantum differential equation solvers in both [26, 48] need to query the initial state
for Õ(κ) = Õ(T) times. The relation between κ and T is rooted in the no-fast-forwarding
theorem and cannot be generally improved. Our time-marching based algorithm does not
rely on such adiabatic constructions, and the query complexity to the initial states does not
explicitly depend on T . In the case where the time evolution is almost unitary, i.e., Q = O(1),
and where T is large, this feature can offer significant advantage.

Our method (Theorem 8) also has two drawbacks. The first is that the T dependence in the
number of queries to A(t) is sub-optimal. The direct reason is that the uniform singular value
amplification procedure becomes increasingly costly as T increases. The second is that the
cost of our algorithm depends on Q defined in Eq. (4), while previous QLSA based algorithms

depends on q = maxt∈[0,T]
‖|ψ(t)〉‖
‖|ψ(T)〉‖ , which satisfies q ≤ Q. We prove in Theorem 10 that the

O(Q) dependence attains the query lower bound and cannot be improved in the worst case.
There exists instances that Q can significantly (even exponentially) overestimate q, as will be
discussed at the end of Section 4. However, qκV and Q may not be directly related in general.

Finally, the implementation of the high-order truncated Dyson series algorithm requires
complicated quantum control logic for handling time-ordering operators. To simplify the
implementation, we combine the time-marching strategy with a first-order truncated Magnus
series, whose implementation does not require the complex time-clocking quantum control
logics. Though the cost of the resulting algorithm depends on higher powers of T and ε−1

comparing to the high-order integrators, it retains the aforementioned advantages compared
to QLSA based solvers. Interestingly, this algorithm also exhibits a commutator scaling for
differential equations in the high precision limit (see Theorem 14), which can be desirable
when the norm of the commutator αcomm = sups,τ∈[0,T] ‖[A(s), A(τ)]‖ is much smaller than
α.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 6

Algorithms κV depen-
dence

Requiring
smooth A(t)

Queries to A Queries to |ψ0〉

This work (Theorem 8) No No Õ(T 2Qα2) O(Q)

[26, Theorem 1] Yes Yes Õ (TqκV α log (g′/g)) Õ (TqκV α log (g′/g))

[48, Theorem 10] No - Õ(Tqα sup
t∈[0,T]

∥∥∥eAt∥∥∥) Õ(Tqα sup
t∈[0,T]

∥∥∥eAt∥∥∥)
Table 1: Comparison with state-of-the-art high-order algorithms. We compare the high-order algorithms in
terms of whether they require smooth A(t), have κV dependence, and the T scaling in the number of queries
to A(t) and to the initial state in the case when A(t) is smooth. Here α = supt∈[0,T] ‖A(t)‖, Q is defined
as (4), κV = maxt∈[0,T] κV (t) is a uniform upper bound of the condition number of V (t) diagonalizing
A(t) = V (t)Λ(t)V −1(t) when A(t) is diagonalizable for all time t ∈ [0, T], q = maxt∈[0,T]

‖|ψ(t)〉‖
‖|ψ(T)〉‖ ,

g = ‖|ψ(T)〉‖, g′ = maxt∈[0,T] maxn∈N
∥∥|ψ(n+1)(t)〉

∥∥, where |ψ(n+1)(t)〉 denotes the (n+ 1)-th derivative
of |ψ(t)〉 and N is the set of natural numbers. The algorithm in [48, Theorem 10] on the last row is designed
only for the time-independent case.

1.3 Challenges in designing time marching based quantum solvers
The most straightforward way of solving the ODE (1) is arguably the (forward) Euler method.
For simplicity we consider the time-independent case, i.e., A(t) = A, and the time step sizes
are chosen to be uniform: tl−tl−1 = T/L. We further assume A is a normal matrix and can be
unitarily diagonalized. Starting from |ψ0〉, at each time step l, we go from |ψl−1〉 ≈ |ψ(tl−1)〉
to |ψl〉 ≈ |ψ(tl)〉 via

|ψl〉 = (I +A(tl − tl−1)) |ψl−1〉 . (5)

We will show that a direct implementation of this method on a quantum computer leads to
severe challenges despite its simple appearance. Let us first look at how we should implement
Ξ̄l = I + A(tl − tl−1) on a quantum computer. Generally we can assume that A is given
through a block encoding (see Appendix B for a short introduction of block encoding and
QSVT), with which we can construct a block encoding of Ξ̄l denoted by Ul through a linear
combination of unitaries. This construction, if performed directly using [38, Lemma 29],
involves a subnormalization factor of 1 + ‖A‖(tl − tl−1) = 1 + ‖A‖T/L. Going from |ψl−1〉
to |ψl〉, we apply the block encoding Ul, and measure the ancilla qubits. The success of the
procedure depends on the measurement outcome, and the success probability is

1
(1 + ‖A‖T/L)2 ×

‖ |ψl〉 ‖2

‖ |ψl−1〉 ‖2
, (6)

where the first factor comes from the subnormalization factor discussed above. Since the
success at each time step is independent, the total success probability of implementing Euler’s
method for L steps is

1
(1 + ‖A‖T/L)2L ×

L∏
l=1

‖ |ψl〉 ‖2

‖ |ψl−1〉 ‖2
≈ e−2‖A‖T ‖ |ψL〉 ‖2

‖ |ψ0〉 ‖2
.

For this method to yield a meaningful result, we need |ψL〉 ≈ |ψ(T)〉, and consequently

‖ |ψL〉 ‖ ≈ ‖ |ψ(T)〉 ‖. The success probability is therefore approximately e−2‖A‖T ‖|ψ(T)〉‖2

‖|ψ(0)〉‖2 ,

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 7

and it takes

e2‖A‖T ‖ |ψ(0)〉 ‖2

‖ |ψ(T)〉 ‖2

trials for the procedure to succeed with Ω(1) probability.
To see why this is not a reasonable scaling, let us consider the case where A is anti-

Hermitian, which yields the Schrödinger equation, and we have ‖ |ψ(T)〉 ‖ = ‖ |ψ(0)〉 ‖. The
number of trials needed is therefore e2‖A‖T , despite the fact that the usual Hamiltonian
simulation algorithms generally succeed in one run!

The problem becomes even worse if we want to implement the time step eAT/L with
high accuracy, rather than approximating it with I + AT/L. For example, we may consider
implementing eAT/L through QSVT, if A is either Hermitian or anti-Hermitian. But the
subnormalization factor that comes from QSVT has an extra factor of 2, becoming 2‖eAT/L‖,
due to the summation of the even and odd parts [37, Theorem 56] or the real and imaginary

parts [37, Theorem 58]. In the end the number of trials required becomes 4L‖eAT ‖2 ‖|ψ(0)〉‖2

‖|ψ(T)〉‖2 ,

which increases exponentially with respect to the number of segments L even for a finite
T . In the anti-Hermitian case, we can use the oblivious amplitude amplification (OAA) [38,
Theorem 15] to solve this problem, or use the algorithm in [55] to avoid this problem entirely,
but both methods work only because of the unitarity of the exact time evolution. For non-
unitary dynamics, as OAA is not applicable, we need a different strategy to implement a
time-marching based method.

1.4 Organization
The rest of the paper is organized as follows: in Section 2 we provide an overview of the
method, presenting our method (Theorem 4) to link up short-time evolutions into a long-
time evolution while keeping the success probability from decaying faster than necessary. In
Section 3 we will discuss how to implement short-time evolution using the truncated Dyson
series algorithm, leading to our first algorithm in Theorem 8. The amplification ratio Q
dependence in this algorithm is shown to be optimal in Section 4. In Section 5 we demonstrate
the performance of the time-marching based method with a first-order truncated Magnus
series, which simplifies the implementation and also exhibits a commutator scaling in the
high precision limit.

2 Overview of the method
2.1 Main idea
Let us first revisit the challenge of implementing the Euler method in Section 1.3. The
reason that we end up with the exponential overhead e2‖A‖T is that each time step involves
a subnormalization factor 1 + ‖A‖T/L. Now let us consider, what if the subnormalization
factor is ‖I+AT/L‖ rather than 1 +‖A‖T/L? The subnormalization factor cannot be better
than this because we need to encode I +AT/L into a unitary matrix that has spectral norm
1. Again assume A is a normal matrix. If the subnormalization factor is indeed ‖I +AT/L‖,
then the e2‖A‖T overhead is replaced by

‖I +AT/L‖2L = ‖(I +AT/L)L‖2 ≈ ‖eTA‖2.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 8

This is a far more reasonable scaling. For instance, if A is anti-Hermitian, then ‖eTA‖ = 1,
rather than exponentially growing with time.

From the above discussion, we can see that the seemingly subtle difference between the
subnormalization factors 1 + ‖A‖T/L and ‖I + AT/L‖ is in fact crucial. To implement
(I +AT/L) |φl−1〉 using linear combination of unitaries as discussed in Section 1.3 involves a
success probability as described in (6), which can be much smaller than the intrinsic success
probability :

1
‖I +AT/L‖2

× ‖ |ψl〉 ‖2

‖ |ψl−1〉 ‖2
. (7)

The ratio between the intrinsic success probability and Eq. (6) is

γ2 =
(1 + ‖A‖T/L
‖I +AT/L‖

)2
, (8)

which comes from excessive subnormalization due to the construction of the block encoding.
This excessive factor can be removed through a technique called the uniform singular value
amplification [38, Theorem 17]. In a nutshell, the uniform singular value amplification uses an
odd polynomial P (x) to approximate a linear function f(x) = γx in an interval [−γ−1, γ−1]
for γ defined in Eq. (8), and satisfies the norm constraint |P (x)| ≤ 1 for all x ∈ [−1, 1]. The
norm constraint is a crucial requirement for applying QSVT with the polynomial P . The
effect of the uniform singular value amplification is that it approximately multiplies a factor γ
to the encoded operator, which nearly exactly cancels the excessive subnormalization factor.
One important feature of the uniform singular value amplification is that it is oblivious to
the quantum state we want to act on, i.e., |ψl−1〉. This means we do not need to repeatedly
prepare quantum states from previous time steps in this amplification procedure, and this is
the key to avoiding an exponential overhead. After repeated usage of the uniform singular
value amplification, the subnormalization factor scales as ‖eTA‖ instead of eT‖A‖. The same
technique also solves the problem with the subnormalization factor being much larger than 1
as discussed in Section 1.3.

As discussed above, for the time-independent case, assuming ‖ |ψ(0)〉 ‖ = 1, we need to
run the algorithm for ‖eAT ‖2/‖ |ψ(T)〉 ‖2 times to achieve Ω(1) overall success probability. In
the time-dependent case, this factor takes a slightly more complicated form,

Q2 =
∏L
l=1 ‖T e

∫ tl
tl−1

A(t)dt
‖2

‖ |ψ(T)〉 ‖2 ,

where 0 = t0 < t1 < · · · < tL = T are determined by our choice of the temporal mesh. This
gives the definition of Q in Eq. (4)

Because this Q dependence comes from the number of trials needed in order to complete
the whole procedure successfully with high probability, a natural question is whether the de-
pendence can be improved from O(Q2) to O(Q) using amplitude amplification [17]. However,
a direct application of amplitude amplification comes at a price. As mentioned above, at each
time step, we need to perform measurements on the ancilla qubits, and we need to ensure
that the measurement results from all the time steps are correct. The direct application of
amplitude amplification requires the usage of different ancilla qubits for each time step, and
the number of ancilla qubits needed will scale linearly with respect to the number of time

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 9

steps. To reduce the number of ancilla qubits, we employ a simplified version of the com-
pression gadget introduced in [57] to coherently record the success or failure of each time
step. This method ensures that the number of ancilla qubits needed to implement amplitude
amplification scales only logarithmically in the number of time steps.

2.2 Input Model
To solve the ODE (1), we need to store the information of the coefficient matrix A(t) and the
initial state |ψ(0)〉 in the quantum computer. We assume that we have access to a unitary
circuit Uinit to prepare the initial state, i.e., Uinit |0n〉 = |ψ(0)〉, where n is the number of
qubits and 2n = N . For A(t) this requires some explanation, in particular because we need
not just a single matrix but a family of matrices on the time interval [0, T].

A similar problem is encountered in the setting of time-dependent Hamiltonian simulation
problem, where a time-dependent matrix encoding was proposed in [57] to encode the time-
dependent Hamiltonian. We adopt essentially the same idea, and extend it to the non-
Hermitian case.

Definition 1 (Time-dependent matrix encoding). An (nq,m, a, b, α, ε)-MAT is a unitary that
acts on three registers, each containing nq, m, and n qubits respectively. It satisfies

(Inq ⊗ 〈0m| ⊗ In)MAT(Inq ⊗ |0m〉 ⊗ In) =
2nq−1∑
γ=0
|γ〉 〈γ| ⊗

Ã
(
(b− a) γ

2nq + a
)

α
, (9)

where ‖Ã(t)−A(t)‖ ≤ ε for t ∈ [a, b]. This unitary MAT is called the time-dependent matrix
encoding of A(t) on the time interval [a, b].

Here n is the number of qubits corresponding to the system (2n = N), m is the number of
ancilla qubits for block encoding, and nq qubits are used to store the index of the quadrature
points. There are 2nq quadrature points in total.

The total variation of A(t) on the interval [a, b], denoted V b
a (A), is defined as follows:

V b
a (A) = sup

R∈N
sup

a=t0<t1<···<tR=b

R−1∑
j=0
‖A(tj+1)−A(tj)‖. (10)

The set of all functions of bounded variation is denoted by

BV ([a, b]) := {A | V b
a (A) <∞} . (11)

Our algorithm only requires that the total variation V T
0 (A) of the coefficient matrix A(t) is

finite, i.e., A ∈ BV ([0, T]).
We need to choose nq to achieve the required accuracy for performing numerical quadra-

ture, and this will be discussed in detail in Section 3.1. We note that for the sparse matrix
input model, which is used in other quantum differential equation solvers [8, 14, 26, 48] and
time-dependent Hamiltonian simulation algorithms [7], one can construct an efficient time-
dependent matrix encoding. Thus, our algorithms also apply to the case of sparse matrices,
which will be discussed in more details in Section 3.4.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 10

2.3 Uniform singular value amplification
For a given temporal mesh 0 = t0 < t1 < · · · < tL = T , the short time integrator at step l
can be abstractly written as

|ψl〉 = Ξ̄l |ψl−1〉 , l = 1, . . . , L, (12)

where Ξ̄l is an operator approximating the exact evolution operator Ξl = T e
∫ tl
tl−1

A(t)dt
. We

require that Ξ̄l is consistent with Ξl to precision εl‖Ξl‖, i.e.,

‖Ξl − Ξ̄l‖ ≤ εl‖Ξl‖. (13)

We assume that Ξ̄l is implemented with its (αl,m, 0)-block encoding denoted by Ul, i.e.,

αl(〈0m| ⊗ In)Ul(|0m〉 ⊗ In) = Ξ̄l. (14)

Due to Eq. (13), Ul can also be viewed as an (αl,ml, εl‖Ξl‖)-block encoding of Ξl.
In this section we discuss how to approximately implement a series of non-unitary oper-

ations Ξ1, Ξ2, . . . , ΞL sequentially, and boost the success probability using uniform singular
value amplification, which is developed in [38, Theorem 17]. The idea is to linearly amplify

the singular values of Ξ̄l/αl by a factor that is approximately γ′ = αl/
∥∥∥Ξ̄l∥∥∥. For simplicity,

we first assume Ξ̄l = Ξl (i.e., Ul block encodes the exact short time integrator), and study
how this technique can help us boost the success probability of a single operation.

Lemma 2 (Uniform singular value amplification, [38, Theorem 17]). Let U be an (α,m, 0)-
block encoding of Ξ. We can construct a (‖Ξ‖1−δ ,m + 1, ε‖Ξ‖)-block encoding Ũ of Ξ, using
O(α

δ‖Ξ‖ log(α
‖Ξ‖ε)) applications of (controlled-) U and its inverse.

Proof. Consider the singular value decomposition Ξ = WΣV †, where Σ = diag(σ1, σ2, . . . , σN).
Applying QSVT with an odd polynomial gives us the block encoding Ũ of a new matrix, which
up to rescaling is Ξ̃ = W Σ̃V †, where Σ̃ = diag(σ̃1, σ̃2, . . . , σ̃N). We choose the odd polyno-
mial in the same way as in [38, Theorem 17], and we choose γ = α(1−δ)

‖Ξ‖ . By these choices all
singular values of Ξ are contained in the interval [0, γ′−1] = [0, 1−δ

γ]. If we choose the rescaling
factor of Ξ̃ so that

Ξ̃ = ‖Ξ‖
1− δ (〈0m+1| ⊗ In)Ũ(|0m+1〉 ⊗ In),

then by [38, Theorem 17], ∣∣∣ σ̃j
σj
− 1

∣∣∣ ≤ ε,
which implies

‖Ξ̃− Ξ‖ = ‖Σ̃− Σ‖ ≤ ε‖Σ‖ = ε‖Ξ‖.

Therefore Ũ is a (‖Ξ‖1−δ ,m + 1, ε‖Ξ‖)-block encoding Ũ of Ξ. By [38, Theorem 17] it requires
O(α

δ‖Ξ‖ log(α
‖Ξ‖ε)) applications of (controlled-) U and its inverse.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 11

We can now use Lemma 2 to address the problem discussed in Section 1.3, and for now
neglect all errors in the block encodings. The error analysis with the block encoding errors
taken into account will be analyzed in Theorem 4. If we directly apply Ul and post-select
the measurement results, through the procedure described in Figure 1 without the uniform
singular value amplification, then the success probability will be

‖ΞL · · ·Ξ2Ξ1 |ψ(0)〉 ‖2

(α1α2 · · ·αL)2 . (15)

For each l, ‖Ξl‖ ≤ αl, and the cumulative difference between α1α2 · · ·αL and ‖ΞL‖ · · · ‖Ξ2‖‖Ξ1‖
can be quite significant, as discussed for the case of Euler’s method in Section 1.3.

With the block encodings Ũl given by the uniform singular value amplification, we can
implement Ξ̃L · · · Ξ̃2Ξ̃1 as depicted in Figure 1. We apply each Ũl sequentially, measuring
the ancilla qubits after each application, only proceeding when the measurement result is all
0, and otherwise aborting the procedure. The operator Ξ̃L · · · Ξ̃2Ξ̃1 thus implemented will
approximate the operator ΞL · · ·Ξ2Ξ1, which is our goal. With with the choice δ = 1/L, we
have

(1− δ)L ≥ e−
δL

1−δ = Ω(1).

Therefore the success probability is, up to a constant factor,

‖ΞL · · ·Ξ2Ξ1 |ψ(0)〉 ‖2

‖ΞL‖2 · · · ‖Ξ2‖2‖Ξ1‖2
. (16)

By turning the success probability from (15) to (16) using Lemma 2, we address the problem
of the vanishing success probability discussed in Section 1.3.

Ancilla
Ũ1 Ũ2

· · ·
ŨL

State · · ·

Figure 1: Implementing Ξ̃L · · · Ξ̃2Ξ̃1. After we apply each Ũl, we measure the ancilla qubits, and only
proceed when the measurement result is all 0, and otherwise abort the procedure.

The uniform singular value amplification procedure was first proposed in [54, Theorem
5]. However, it only constructs an (2‖Ξ‖,m + 1, ε‖Ξ‖)-block encoding of Ξ, and the extra
factor 2 means that the overall success probability of the procedure in Fig. 1 will still decrease
exponentially fast as O(4−L). This is not acceptable in the context of this paper. Therefore we
adopt the version in [38, Theorem 17], which refines the analysis so that the subnormalization
factor is ‖Ξ‖/(1− δ).

In the abstract form, one needs a polynomial that approximates γ′x on the desired interval
I = [−γ′−1, γ′−1]. Such a polynomial has been constructed by [38, Theorem 17], which we
examine in more detail. It first constructs an even polynomial q(x) that approximates an
even “rectangular function” defined as

Rect(x) = 1
2(sgn(γ′−1 − |x|) + 1), sgn(x) =


1, x > 0
−1, x < 0
0, x = 0

.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 12

(a) Polynomial approximation to
(1 − δ)XRect(x)

(b) Polynomial from convex opti-
mization

(c) Error of polynomial approxi-
mation to (1 − δ)XRect(x)

(d) Error of polynomial from con-
vex optimization

(e) Comparison of convergence
speed

Figure 2: Comparison of the polynomials used for uniform singular value amplification procedure. (a)
Polynomial approximating (1 − δ)XRect(x) used in [38, Theorem 17]; (b) Near-optimal polynomial ap-
proximation obtained via convex optimization (see Appendix C); (c) (d) Errors of the two methods on the
interval I = [−γ′−1

, γ′
−1] with γ′ = 5, δ = 0.05; (e) Comparison of the convergence speed of the two

methods, measured by the L∞ error maxx∈I |p(x)− (1− δ)XRect(x)|.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 13

The desired odd polynomial is p(x) = γ′xq(x), which approximates XRect(x) := γ′x ·Rect(x),
and agrees with the linear function γ′x on the interval [−γ′−1, γ′−1]. The polynomial p(x)
should also satisfy the norm constraint : |p(x)| ≤ 1 for all x ∈ [−1, 1] due to the requirement of
QSVT (see [38, Corollary 5]). However, the function XRect(x) is discontinuous at x = γ′−1,
and therefore a polynomial approximation to XRect(x) exhibits the Gibbs phenomenon, which
states that p(x) always overshoots around x = γ′−1, even as the polynomial degree increases
to infinity (see e.g., [39] and [62, Chapter 9]). An example of the Gibbs phenomenon is shown
in the inset of Fig. 2 (a), where the polynomial approximation overshoots XRect(x). As a
result, instead of approximating XRect(x), we can only find a polynomial that approximates
the function (1 − δ)XRect(x) to satisfy the norm constraint. It is worth mentioning that
although the construction above leads to the desired asymptotic scaling in Lemma 2, the
preconstant can be quite large, which leads to high polynomial degrees even for moderate
values of the parameters α, δ, ε. Fig. 2 (a) shows that for γ′ = 5, δ = 0.05, ε = 0.01, the
required polynomial degree is already as large as 2001. Reducing to a smaller value δ = 0.01
would require a polynomial degree of around 104, which may be too large to be practically
useful.

To address this issue, we notice that the uniform singular value amplification only requires
us to find a polynomial p(x) that approximates γ′x on the desired interval I = [−γ′−1, γ′−1].
Outside this interval I, the value of p(x) can be arbitrary, as long as the norm constraint is
satisfied. In particular, p(x) does not need to approximate XRect(x), which vanishes outside
I. This allows us to construct a convex optimization based procedure to numerically identify
the near-optimal polynomial approximation for the uniform singular value amplification. The
procedure is detailed in Appendix C. For the same parameter setting γ′ = 5, δ = 0.05, ε = 0.01,
the polynomial approximation is given in Fig. 2 (b) and the polynomial degree is merely 21.
Fig. 2 (e) further shows that as fixing γ′, δ, both methods converge exponentially with respect
to the increase of the polynomial degrees. However, the convergence rate of the convex
optimization based method is significantly faster, which reduces the number of queries to Ul
by orders of magnitude.

2.4 Amplitude amplification using compression gadget
Since the main concern of running the algorithm in Fig. 1 is its success probability, it is natural
to consider the usage of amplitude amplification [17] to reduce the number of repetitions
needed to obtain a successful outcome. With the current procedure in Fig. 1, however, this
results in a large space overhead. Directly applying Ũl (and hence Ξ̃l) sequentially involves
intermediate measurements to determine whether each Ξ̃l is applied successfully. We need to
record the measurement outcome of each of the L steps, and this means we need to duplicate
the ancilla register L times to implement amplitude amplification. To avoid this overhead, we
need to replace the procedure with a fully coherent one, with measurement performed only
at the end. This allows us to reduce the Q dependence from O(Q2) to O(Q).

Let us first formulate the problem in a more abstract way. We have unitaries V1, V2, . . . , VL,
each of which is a (α′l,m′l, 0)-block encoding of a potentially non-unitary operation Γl. The
goal is to implement ΓL · · ·Γ2Γ1 with amplitude amplification, and without duplicating the
ancilla registers.

This goal can be achieved using the compression gadget in Fig. 3, following the idea in
Ref. [57]. In fact we are using a simplified version of the compression gadget in Ref. [57], as the

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 14

problem we are trying to solve is in some way easier. The main idea is to use a counter register
to keep track of how many Γl’s have been applied successfully in a coherent way. This allows
us to post-select on the counter register to ensure that all Γl’s have been applied successfully.
This result is summarized in the following lemma. Its proof is given in Appendix D.

Lemma 3 (Compression gadget). Suppose we are given unitaries V1, V2, . . . , VL, each of which
is a (α′l,m′l, 0)-block encoding of Γl. Then we can construct a (αcomp,mcomp, 0)-block encoding
of ΓL · · ·Γ2Γ1, where

αcomp = α′1α
′
2 · · ·α′L, mcomp = max

l
m′l + dlog2(L)e+ 1,

using one application of each Vl.

Counter ADDL ADD† ADD† · · · ADD†

Ancilla
V1 V2 VL

State

Figure 3: The simplified compression gadget for coherently applying ΓL · · ·Γ2Γ1. The counter register,
containing dlog2(L)e+ 1 qubits, is used for keeping track of whether each Γl has been applied successfully;
the ancilla register, containing maxlm′l qubits, is for the ancilla qubits needed in Vl’s; the state register
stored the quantum state on which we want to apply ΓL · · ·Γ2Γ1. ADD implements addition by 1 modulo
the smallest power of 2 that is larger than or equal to 2L. Here each controlled ADD† is controlled on the
state |0mmax〉.

We can now use Lemma 3 to obtain the following result, taking into account the uniform
singular value amplification procedure:

Theorem 4 (Coherent implementation of long-time integrator). Suppose we are given Ξl
through its (αl,ml, εl‖Ξl‖)-block encoding Ul, for l = 1, 2, . . . , L, and ∑l εl ≤ 1/2, then for
any 0 < ε′ ≤ 1/(2L), we can construct an (αcomp,mcomp, εcomp)-block encoding of ΞL · · ·Ξ2Ξ1,
where ∏L

l=1 ‖Ξl‖
2(1− δ)L ≤ αcomp ≤

e1/2∏L
l=1 ‖Ξl‖

(1− δ)L , (17)

and

mcomp = max
l
ml + dlog2(L)e+ 2, εcomp = e1/2

(
Lε′ +

∑
l

εl

)
L∏
l′=1
‖Ξl′‖. (18)

using O(αl
δ‖Ξl‖ log(αl

‖Ξl‖ε′)) applications of each (controlled-) Ul and its inverse.

Proof. We denote by Ξ̄l the matrix that is exactly encoded in each Ul as in Eq. (14). Using
Lemma 2, we first construct a (‖Ξ̄l‖1−δ ,ml + 1, ε′‖Ξ̄l‖)-block encoding Ũl of each Ξ̄l. Each Ξ̄l
uses Ul O(αl

δ‖Ξl‖ log(αl
‖Ξl‖ε′)) times. Here we have used the fact that ‖Ξ̄l‖ = Θ(‖Ξl‖) because

of Eq. (13). We denote by Ξ̃l the matrix that is exactly encoded in Ũl, i.e.,

‖Ξ̄l‖
1− δ (〈0ml+1| ⊗ In)Ũl(|0ml+1〉 ⊗ In) = Ξ̃l.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 15

Then
‖Ξ̄l − Ξ̃l‖ ≤ ε′‖Ξ̄l‖. (19)

Next, we use Lemma 3 to combine Ũl’s into a block encoding of ΞL · · ·Ξ2Ξ1. Directly
applying Lemma 3 yields an (αcomp,mcomp, 0)-block encoding of Ξ̃L · · · Ξ̃2Ξ̃1, which we denote
by Ucomp, where

αcomp =
∏L
l=1 ‖Ξ̄l‖

(1− δ)L , mcomp = max
l
ml + dlog2(L)e+ 2.

Noting the fact that

L∏
l=1

(1− εl) ≥ 1−
∑
l

εl ≥ 1/2,
L∏
l=1

(1 + εl) ≤ e
∑

l
εl ≤ e1/2,

we can get the upper and lower bounds for αcomp through∏L
l=1 ‖Ξl‖

∏L
l=1(1− εl)

(1− δ)L ≤ αcomp ≤
∏L
l=1 ‖Ξl‖

∏L
l=1(1 + εl)

(1− δ)L

To bound the error between Ξ̃L · · · Ξ̃2Ξ̃1 and ΞL · · ·Ξ2Ξ1, we have

‖ΞL · · ·Ξ2Ξ1 − Ξ̃L · · · Ξ̃2Ξ̃1‖
≤‖ΞL · · ·Ξ2Ξ1 − Ξ̄L · · · Ξ̄2Ξ̄1‖+ ‖Ξ̄L · · · Ξ̄2Ξ̄1 − Ξ̃L · · · Ξ̃2Ξ̃1‖

≤
L∑
l=1

L∏
l′=l+1

‖Ξl′‖
l−1∏
r=1
‖Ξ̄r‖‖Ξl − Ξ̄l‖+

L∑
l=1

L∏
l′=l+1

‖Ξ̄l′‖
l−1∏
r=1
‖Ξ̃r‖‖Ξ̄l − Ξ̃l‖

≤
∑
l

εl

L∏
l′=1

(‖Ξl′‖(1 + εl)) + Lε′
L∏
l′=1

(‖Ξ̄l‖(1 + ε′))

≤e1/2
(∑

l

εl
∏
l′

‖Ξl′‖+ Lε′
∏
l

‖Ξl‖
)
,

where for the second inequality we have used Eqs. (13) and (19), and for the last inequality
we have used

∏L
l=1(1 + εl) ≤ e

∑
l
εl ≤ e1/2 as well as (1 + ε′)L ≤ eLε′ ≤ e1/2. Therefore we can

choose εcomp as in the statement of the corollary.

With a coherent implementation of the long-time integrator given as a block encoding in
Theorem 4, we can readily apply the standard amplitude amplification to boost the success
probability and yield a quadratic speedup in terms of the query complexity.

3 High-order truncated Dyson series approach
In this section, we analyze the method described in Section 2, when the short time integrator
is implemented using the high-order truncated Dyson series. In Section 3.1 we discuss how to
implement the short time integrator developed in Ref. [57]. Then we use the tools developed in

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 16

Sections 2.3 and 2.4 to link different segments of short time evolution into long time evolution
in Section 3.2. We analyze the success probability in Section 3.3. Our time-marching based
strategy can be combined with any input models such as the sparse matrix model [7, 26, 48, 57]
and the linear combination of unitaries (LCU) model [7, 57]. We discuss in particular the
implementation with a sparse matrix input model in Section 3.4.

3.1 Short time evolution

The truncated Dyson series method implements Ξ = T e
∫ b
a
A(s)ds through

T e
∫ b
a
A(s)ds ≈

K−1∑
k=0

∫ b

a
ds1

∫ s1

a
ds2 · · ·

∫ sk−1

a
dskA(s1)A(s2) · · ·A(sk).

This infinite series can be truncated at orderK, and the error is upper bounded by (
∫ b
a ‖A(s)‖ds)K/K!.

Therefore if we choose a and b so that
∫ b
a ‖A(s)‖ds = O(1), we can achieve high accuracy

with only a few terms.
In order to be robust against error in the coefficient matrix, we need an additional step

in the error analysis of the algorithm. If A(t) is accessed through an (nq,m, a, b, α, ε)-MAT
as discussed in Section 2.2, then the above approach will yield a block encoding of a different

time evolution operator Ξ̄ ≈ T e
∫ b
a
Ã(t)dt, where Ã(t) is the time-dependent matrix encoded in

MAT exactly, as defined in Eq. (9). By Lemma 16, and assume that (b− a)α = O(1), then

‖Ξ− Ξ̄‖ ≤ e(b−a) maxu∈[a,b]{‖A(u)‖,‖Ã(u)‖}
∫ b

a
‖Ã(u)−A(u)‖du = O(ε(b− a)).

With this additional step, using the same algorithm as in [57, Theorem 3], we can encode
Ξ with the following costs:

Lemma 5 (Short-time evolution through truncated Dyson series). Suppose A ∈ BV ([a, b]),
and is accessed through an (nq,m, a, b, α, ε)-MAT as defined in Definition 1 for some ε ≤
ε′/(2(b − a)). b − a ≤ (2α)−1, 2nq = Θ(1

ε′ ((b − a)V b
a (A) + 1)), where V b

a (A) is the total
variation of A(t) on the interval [a, b]. Then we can construct an (α′,m′, ε′)-block encoding of
Ξ = T e

∫ b
a
A(t)dt using O(log(ε′−1)

log log(ε′−1)) queries to MAT. Here α′ = O(1) and m′ = O(m + nq).
We also use O(m+ nq + polylog(αε′−1)) additional elementary gates.

In [57, Theorem 3], nq is chosen to satisfy

2nq = Θ
(

1
ε′

(
(b− a)

∫ b

a
‖Ȧ(t)‖dt+ (b− a)2 max

t∈[a,b]
‖A(t)‖2

))
.

The discussion on the numerical quadrature error in Appendix F shows that we can further
relax the regularity condition so that

∫ b
a ‖Ȧ(t)‖dt can be replaced by V b

a (A) defined in Eq. (10).

3.2 Block encoding of the long time evolution operator
We choose tl’s so that tl − tl−1 ≤ (2α)−1. Consequently the total number of segments are
L = Θ(αT). For each segment [tl−1, tl], we construct a time-dependent matrix encoding of

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 17

A(t) using the sparse matrix oracles in (27), and then implement the short time evolution

operator Ξl = T e
∫ tl
tl−1

A(t)dt
. By Lemma 5, this procedure yields an (αl,ml, εl‖Ξl‖)-block

encoding of Ξl, which we denote by Ul. Since

e−1/2 ≤ e
−
∫ tl
tl−1

‖A(t)‖dt
≤ ‖Ξl‖ ≤ e

∫ tl
tl−1

‖A(t)‖dt
≤ e1/2,

the number of queries MAT is O
(

log(‖Ξl‖−1ε−1
l

)
log log(‖Ξl‖−1ε−1

l
)

)
= O

(
log(ε−1

l
)

log log(ε−1
l

)

)
. Each αl = O(1), and

each ml satisfies

ml = O
(
m+ max

l
log

(1
εl

(
(tl − tl−1)V tl

tl−1
(A) + 1

)))
≤ O

(
m+ max

l
log

(1
εl

(
V T

0 (A)/α+ 1
)))

.

We need O
(
m+ maxl log

(
1
εl

(
V T

0 (A)/α+ 1
)))

additional elementary gates and additional

m′ = O
(
m+ maxl log

(
1
εl

(
V T

0 (A)/α+ 1
)))

ancilla qubits as a working register. The working

register starts in state |0m′〉 and will be returned to |0m′〉 at each time step, and can therefore
be reused.

We introduce the shorthand notation

P =
L∏
l=1
‖Ξl‖, (20)

and use Theorem 4 to piece together the short time integrators into a block encoding approxi-

mating the long time evolution T e
∫ T

0 A(t)dt = ΞL · · ·Ξ2Ξ1. This yields an (αcomp,mcomp, εcomp)-
block encoding of T e

∫ T
0 A(t)dt, where

P

2(1− δ)L ≤ αcomp ≤
e1/2P

(1− δ)L ,

mcomp = dlog2(L)e+O
(
m+ max

l
log

(1
εl

(
V T

0 (A)/α+ 1
)))

,

and

εcomp = e1/2
(
Lε′ +

∑
l

εl

)
P. (21)

In this block encoding we use each Ul O
(

1
δ log

(
1
ε′

))
times.

We now choose δ = 1/(2L), and εl = O(εcomp/(LP)), ε′ = O(εcomp/(LP)). Also recall
that L = O(αT). With this choice of parameters we have

αcomp = Θ(P) = Θ
(

L∏
l=1
‖Ξl‖

)
, (22)

and

mcomp = dlog2(αT)e+O
(
m+ log

(
(V T

0 (A) + α)TP
εcomp

))
. (23)

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 18

Each Ul is used O
(
αT log

(
αTP
εcomp

))
times. Given the fact that each Ul uses queries to MAT

O
(

log(ε−1
l

)
log log(ε−1

l
)

)
times, and that there are L = O(αT) of them, the total number of queries to

MAT are

O
(
α2T 2 log(αT

∏L
l′=1 ‖Ξl′‖/εcomp)

log log(αT
∏L
l′=1 ‖Ξl′‖/εcomp)

)
. (24)

We summarize the result of the construction of the block encoding for the long-time
evolution using truncated Dyson series as follows.

Theorem 6 (Block encoding of long-time Dyson series evolution). We assume A ∈ BV ([0, T]),
and V T

0 (A) is its total variation on [0, T]. Suppose A is accessed through an (nq,m, a, b, α, ε)-
MAT as defined in Definition 1. Let 0 = t0 < t1 < · · · < tL = T satisfy tl − tl−1 ≤ 1/(2α).
We denote

Ξl = T e
∫ tl
tl−1

A(t)dt
, P =

L∏
l=1
‖Ξl‖.

Then we can construct an (αcomp,mcomp, εcomp)-block encoding of T e
∫ T

0 A(t)dt, where αcomp,
mcomp and εcomp are given in Eqs. (21) to (23), respectively. In this block encoding the number
of times we need to use:

• queries to MAT as given by Eq. (24);

• m′ = O
(
m+ polylog(V T

0 (A)dTPε−1
comp)

)
additional ancilla qubits that start in, and will

be returned to |0m′〉;

• O
(
α2T 2

(
m+ polylog(V T

0 (A)dTPε−1
comp)

))
additional elementary gates.

3.3 Success probability and main result for Dyson series approach
We can now apply the block encoding to an initial state |ψ(0)〉 to get the final state |ψ(T)〉 =
T e
∫ T

0 A(t)dt |ψ(0)〉. We assume that ‖ |ψ(0)〉 ‖ = 1. Directly applying the block encoded time
evolution operator will introduce an error, and we want to control the resulting error in the
final normalized state. This can be done through the following lemma:

Lemma 7. If ‖ |ψ〉 − |φ〉 ‖ ≤ 1
2‖ |ψ〉 ‖, then∥∥∥∥ |ψ〉‖ |ψ〉 ‖

− |φ〉
‖ |φ〉 ‖

∥∥∥∥ ≤ 4‖ |ψ〉 − |φ〉 ‖
‖ |ψ〉 ‖

.

Proof. Let |R〉 = |ψ〉 − |φ〉. Then∥∥∥∥ |ψ〉‖ |ψ〉 ‖
− |φ〉
‖ |φ〉 ‖

∥∥∥∥ ≤ ‖ |ψ〉 − |φ〉 ‖‖ |ψ〉 ‖
+ ‖ |φ〉 ‖

∣∣∣ 1
‖ |ψ〉 ‖

− 1
‖ |φ〉 ‖

∣∣∣
≤ ‖ |R〉 ‖
‖ |ψ〉 ‖

+ (‖ |ψ〉 ‖+ ‖ |R〉 ‖)‖ |R〉 ‖
‖ |ψ〉 ‖(‖ |ψ〉 ‖ − ‖ |R〉 ‖)

≤ 4‖ |R〉 ‖
‖ |ψ〉 ‖

.

(25)

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 19

We first use Theorem 6 to construct an (αcomp,mcomp, εcomp)-block encoding of Ξ =
T e
∫ T

0 A(t)dt. We denote this block encoding by W . Let Ξ̃ be the time evolution operator
that is exactly encoded in W . Then if we successfully prepare the state |ψ̃(T)〉 = Ξ̃ |ψ(0)〉 by
applying the block encoding and measuring the ancilla qubits, the error will be

‖ |ψ(T)〉 − |ψ̃(T)〉 ‖ ≤ ‖Ξ− Ξ̃‖ ≤ εcomp.

Therefore, by Lemma 7, in order to ensure that the error in the normalized state is upper
bounded by ε, i.e., ∥∥∥∥∥ |ψ(T)〉

‖ |ψ(T)〉 ‖ −
|ψ̃(T)〉
‖ |ψ̃(T)〉 ‖

∥∥∥∥∥ ≤ ε, (26)

it suffices to choose εcomp = O(ε‖ |ψ(T)〉 ‖).
Upon measuring the ancilla qubits, if all measurement outcomes are 0, then we have

successfully prepared the state |ψ̃(T)〉 that approximates the exact solution |ψ(T)〉. This
happens with probability that is at least ‖ |ψ̃(T)〉 ‖2/α2

comp. Using the scaling of αcomp in

Eq. (22), and the fact that ‖ |ψ̃(T)〉 ‖ = (1+O(ε))‖ |ψ(T)〉 ‖, the success probability is Ω(Q−2),
where

Q =
∏L
l=1 ‖Ξl‖
‖ |ψ(T)〉 ‖

is the same as that defined in Eq. (4). Suppose that the initial state |ψ(0)〉 can be prepared
using a unitary circuit Uinit, then we can boost the success probability to 2/3 with O(Q)
rounds of amplitude amplification. With the above analysis, we can determine the cost of our
algorithm, which we state in the following corollary.

Theorem 8 (Time-marching based solver using truncated Dyson series). Let |ψ(t)〉 be the
solution to the problem in Eq. (1). Suppose we have a unitary circuit Uinit that satisfies
Uinit |0n〉 = |ψ(0)〉. For coefficient matrix A ∈ BV ([0, T]), suppose 0 = t0 < t1 < . . . < tL =
T . For each segment [tl−1, tl] we have a time-dependent matrix encoding of A(t) denoted as
MATl that is an (nq,m, tl−1, tl, α, ε

′′)−MAT as defined in Definition 1 for some ε′′ < ε/(2TQ),
and tl− tl−1 ≤ (2α)−1 for all l. Then we can prepare, with probability at least 2/3, a quantum
state |ψ̃(T)〉 that satisfies ∥∥∥∥∥ |ψ(T)〉

‖ |ψ(T)〉 ‖ −
|ψ̃(T)〉
‖ |ψ̃(T)〉 ‖

∥∥∥∥∥ = O(ε),

using

O
(
α2T 2Q log(αTQ) log(αTQε−1)

log log(αTQε−1)

)
queries to all MATl, and O(Q) applications of (controlled-) Uinit and its inverse. Here
Q is defined in Eq. (4). In total we use O(n + m + polylog(V T

0 (A)αTQε−1)) qubits, and
Õ(α2T 2Q(m + polylog(V T

0 (A)αTQε−1))) additional elementary gates. Success is flagged by
the measurement result of a qubit.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 20

3.4 Application to sparse matrix input model
In this section, we discuss the complexity of our time-marching strategy using the sparse
matrix input model. The same input model has also been used in other QLSA-based dif-
ferential equation solvers [8, 14, 26, 48] as well as time-dependent Hamiltonian simulation
algorithms [7]. We assume that A(t) is a d-sparse matrix with ‖A(t)‖ ≤ 1, and that the lo-
cations of non-zero elements are time-independent. The information of A(t) is given through
the following oracles:

Urow |j, s〉 = |j, row(j, s)〉 ,
Ucol |j, s〉 = |j, col(j, s)〉 ,
Uval |t, j, k, z〉 = |t, j, k, z ⊕Ajk(t)〉 .

(27)

Here row(j, s) is the row index of the sth nonzero element in the jth column, col(j, s) is the
column index of the sth nonzero element in the jth row. We can use [37, Lemma 48] to
construct MAT in Definition 1 using the sparse matrix oracles in Eq. (27). To construct a
(nq,m, a, b, α, ε)-MAT we need a single query to both Urow and Ucol, and two queries to Uval.
The precision parameter ε can be made arbitrarily small, but to keep the error below ε we
need O(n + log5/2(dε−1)) additional elementary gates and O(nb + log5/2(dε−1)) additional
ancilla qubits are needed, where nb is the number of bits to encode the binary Ajk(t). These
additional ancilla qubits can be reused.

Corollary 9 (Time-marching based solver using truncated Dyson series with sparse matrix
input model). Under the same assumptions in Theorem 8, together with the assumption that
A(t) is a d-sparse coefficient matrix given by unitaries Urow, Ucol, and Uval in Eq. (27)we can
prepare, with probability at least 2/3, a quantum state |ψ̃(T)〉 solving the problem in Eq. (1)
that satisfies ∥∥∥∥∥ |ψ(T)〉

‖ |ψ(T)〉 ‖ −
|ψ̃(T)〉
‖ |ψ̃(T)〉 ‖

∥∥∥∥∥ = O(ε),

using O
(
d2T 2Q log(dTQ) log(dTQε−1)

log log(dTQε−1)

)
applications of (controlled-) Urow, Ucol, and Uval and

their inverses, and O(Q) applications of (controlled-) Uinit and its inverse. In total we use
O(n+polylog(V T

0 (A)dTQε−1)) qubits, and Õ(d2T 2Q(n+polylog(V T
0 (A)dTQε−1))) additional

elementary gates. Success is flagged by the measurement result of a qubit.

4 Optimality of the query complexity with respect to Q

In this section we show that the time-marching based solver using the high-order truncated
Dyson series achieves the nearly optimal query complexity with respect to the amplification
ratio Q. The optimality is guaranteed by the following lower bound result. Although we
state this lower bound result in terms of a time-independent ODE, it automatically provides
a lower bound for the harder problem of solving a time-dependent ODE in Eq. (1). The block
encoding of the coefficient matrix A also automatically provides a time-dependent matrix
encoding needed in Theorem 8.

Theorem 10. For any given N , there exists a matrix A ∈ CN×N that can be accessed
through its (1,m, 0)-block encoding UA, a target time T = O(log(N)), and an initial state
|ψ(0)〉 ∈ CN×N with ‖ |ψ(0)〉 ‖ = 1 such that the following statement holds: Let |ψ(t)〉 be the

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 21

solution of the ODE d
dt |ψ(t)〉 = A |ψ(t)〉 with 0 ≤ t ≤ T , i.e., |ψ(T)〉 = eAT |ψ(0)〉. Then

for any θ > 0, there is no quantum algorithm that can prepare a quantum state ρ (allowed to
be a mixed state) with D(|ψ(T)〉 , ρ) ≤ 1/2, which uses O(Q1−θpoly(T)) queries to UA. Here
D(·, ·) denotes the trace distance between two quantum states and

Q = sup
L

sup
0=t0<t1<···<tL=T

∏L−1
l=0 ‖eA(tl+1−tl)‖
‖ |ψ(T)〉 ‖ . (28)

Proof. We assume towards contradiction that such an algorithm exists. Now we apply this
hypothetical algorithm to solve the unstructured search problem, in which we are asked to
find a marked binary string targ of length n. We denote N = 2n. The target targ is marked
by the following oracle Utarg:

Utarg |targ〉 = − |targ〉
Utarg |x〉 = |x〉 , x 6= targ.

Here x is any binary string of length n that is different from targ.
We let A = −Utarg, then −Utarg is an (1, 0, 0)-block encoding of A. Solving the ODE up

to time T yields us a (unnormalized) state

|ψ(T)〉 = 1√
N

 ∑
x 6=targ

e−T |x〉+ eT |targ〉

 .
Note that in this quantum state, the amplitude corresponding to the marked element targ
is amplified, while the amplitudes corresponding to all other elements are suppressed. Con-
sequently, the probability getting targ when measuring the state in the computational basis
increases with time. At time T , this probability is

Pr|ψ(T)〉(targ) = | 〈ψ(T)|targ〉 |2

〈ψ(T)|ψ(T)〉 = 1
(N − 1)e−4T + 1 .

If we set T = 1
4 log(3(N−1)), then the above probability will be 3/4. Suppose we can prepare

a state ρ with D(ρ, |ψ(T)〉) ≤ 1/2, then

Prρ(targ) ≥ Pr|ψ(T)〉(targ)−D(ρ, |ψ(T)〉) ≥ 3/4− 1/2 = 1/4.

As a result, once we prepare a copy of ρ, we can measure in the computational basis, and with
probability at least 1/4 we will get the marked element targ. We can use one application of
Utarg to check whether the measurement output is targ. Therefore in order to find targ with
probability 2/3, we only need O(1) copies of ρ.

Let us then look at the cost of preparing ρ. With the hypothetical algorithm for solving
the ODE, we can prepare ρ using O(Q1−θpoly(T)) queries to UA. Here T = 1

4 log(3(N − 1))
as chosen above, and in this scenario

Q = sup
L

sup
0=t0<t1<···<tL=T

∏L−1
l=0 ‖eA(tl+1−tl)‖
‖ |ψ(T)〉 ‖ = ‖eTA‖

‖ |ψ(T)〉 ‖ =
√

N

(N − 1)e−4T + 1 =

√
4N
3 .

Therefore, we need O(N
1−θ

2 polylog(N)) = o(
√
N) queries to prepare a single copy of ρ.

Since only O(1) copies are needed, we would then be able to solve the unstructured search
problem using only o(

√
N) queries to the oracle Utarg. This contradicts the lower bound for

the unstructured search problem [6, Corollary 3.5].

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 22

It is worth noting that the lower bound result in Theorem 10 does not imply that the
dependence on Q cannot be improved for specific instances of A. For example, consider the
following 2× 2 non-diagonalizable matrix

A =
(
i 1
0 i

)
. (29)

Direct calculation shows that
∥∥∥eAT ∥∥∥, and therefore ‖|ψ(T)〉‖ grows linearly in T . However,

sup
L

sup
0=t0<t1<···<tL=T

L−1∏
l=0
‖eA(tl+1−tl)‖ (30)

grows exponentially in T , and so is Q in Eq. (28). Applying the result of [48], we know that
the cost of the optimal solver should grow as poly(T) for any T . Therefore our time-marching
based algorithm is suboptimal in this case. Note that if A is a normal matrix, the quantity

in Eq. (30) is equal to
∥∥∥eAT ∥∥∥, and this issue does not arise.

5 Simplified implementation and first-order truncated Magnus series
The time-marching strategy can be paired with any reasonable short-time integrators. The
implementation of the high-order truncated Dyson series algorithms requires complicated
quantum control logic for handling time-ordering operators. In this section, we investigate
the performance of time-marching based algorithms with low-order integrators that can be
implemented without the explicit treatment of time-ordering operators. The simplest example
is a first-order truncated Dyson series algorithm:

Ξ = T e
∫ tj+1
tj

A(s)ds
≈ I +

∫ tj+1

tj

A(s)ds. (31)

We can approximate the integral using numerical quadrature as in the implementation of the
high-order truncated Dyson series.

A closely related first-order integrator takes the form

Ξ = T e
∫ tj+1
tj

A(s)ds
≈ e

∫ tj+1
tj

A(s)ds
, (32)

i.e., we perform the matrix exponentiation of the time-independent matrix
∫ tj+1
tj A(s)ds di-

rectly without further Taylor expansion. This is the first-order truncated Magnus series for
approximating the time-ordered integration. In the context of Hamiltonian simulation, this
strategy gives rise to the quantum highly oscillatory protocol (qHOP) [4], which exhibits
commutator scaling in high-precision limit, can be insensitive to the norm and the variation
of A(t), and can lead to second-order convergence (i.e., superconvergence) for certain A(t).
The rest of the section analyzes the scheme (32) for solving the ODE (1). We verify that
this scheme also exhibits the desired commutator scaling. An extreme example where this is
useful is when A(t) commutes with itself at any time, then (32) becomes exact, which leads
to improved accuracy and poly-logarithmic dependence in the query complexity on the pre-
cision. For general non-commuting case, we can use higher order truncation of the Magnus
series to improve the accuracy dependence while keeping the commutator scaling. However,
the implementation of the quantum circuit can be more complicated.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 23

5.1 Short-time evolution description
For each short time evolution, the time-ordered evolution operator is approximated by trun-
cating its first-order Magnus expansion (32), which is equivalent to directly ignoring the
time-ordering operator. The integral can be further approximated using standard Riemann
sum with M quadrature points (M = 2nq) as

∫ b

a
A(s)ds ≈ b− a

M

M−1∑
k=0

A (a+ k(b− a)/M) . (33)

The short-time first-order Magnus evolution operator, denoted as Ξ̄ is thus given as

Ξ̄ = e
b−a
M

∑M−1
k=0 A(a+k(b−a)/M). (34)

The implementation of the short-time first-order Magnus evolution operator in two steps.
The first step is to construct the block encoding of (33) via applying ⊗qHAD on the nq qubits
where HAD represents the single qubit Hadamard gate, applying MAT and then uncomputing,
namely (

〈0|m ⊗ 〈0|q
)

(Im ⊗ (⊗qHAD)⊗ In) MATj (Im ⊗ (⊗qHAD)⊗ In)
(
|0〉m ⊗ |0〉q

)
= 1
Mα

M−1∑
k=0

A (a+ k(b− a)/M) . (35)

The quantum circuit of implementing Eq. (35) is described in Fig. 4.
The second step is to implement the time-independent matrix exponential via a contour

integral formulation combined with QSVT, as detailed in Appendix G. The observation is
that for general A that are not normal, the singular value transformation no longer agrees
with the eigenvalue transformation. Nevertheless, the matrix exponential can be applied by
exploring the contour integral formulation proposed in [61]. The idea is to express eA as a
contour integral:

eA = 1
2πi

∮
Γ
ez(z −A)−1 dz, (36)

where Γ is a contour in the complex plane that contains all the eigenvalues of A in its interior.
We then discretize the integral using numerical quadrature. This procedure turns the matrix
exponential into a linear combination of (zj − A)−1, which can be efficiently calculated as
matrix inversion problems that does not require the matrix being normal. Here zj ’s are some
constants determined by the numerical quadrature, which is detailed in Section 5.3. We also
remark that there are certain cases of A where eA admits a simpler implementation using
QSVT via polynomial approximations of the exponential function [37, Corollary 64]. Ref. [59]
also developed a method to apply a more general class of matrix functions using the contour
integral, but they did not consider how to construct a block encoding, instead focusing on
preparing the output state.

5.2 Time discretization error
We now analyze the time-discretization error for the short-time evolution.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 24

Ancilla

MATjControl ⊗qHAD ⊗qHAD

State

Figure 4: Quantum circuit of implementing a block encoding of the Hamiltonian formulated in Eq. (35).
Here HAD represents the single qubit Hadamard gate.

Lemma 11 (Time discretization errors of the first-order Magnus integrator). Let Ξ = T e
∫ b
a
A(t)dt

denote the exact evolution operator on the time interval [a, b], and Ξ̄ denote the first-order
Magnus operator defined in Eq. (34). Then we have

∥∥∥Ξ− Ξ̄
∥∥∥ ≤ 1

2

∫ b

a
dτ
∥∥∥∥[∫ τ

a
A(s)ds,A(τ)

]∥∥∥∥ e∫ ba ‖A(s)‖ds

+ b− a
M

V b
a (A)e

∫ b
a
‖A(s)ds‖+ b−a

M
V ba (A). (37)

Proof. The errors come from two parts: one from dropping the time-ordering operator, while
the other from the numerical quadrature. To estimate the error, we introduce the notations
of the exact evolution from time a to t as

V(t, a) := T e
∫ t
a
A(s)ds,

so that Ξ = V(b, a), and the matrix after dropping the time-ordering operator as

Ṽ (t, a) = e
∫ t
a
A(s)ds. (38)

We first study the approximation error between the two. For any t ∈ [a, b], by differentiating
Ṽ (t, a) with respect to t, we have

∂tṼ (t, a) =
∫ 1

0
e
β
∫ t
tj
A(s)ds

A(t)e
(1−β)

∫ t
tj
A(s)ds

dβ. (39)

The difference between Ṽ and V satisfies the differential equation

∂t
(
Ṽ − V

)
= A(t)

(
Ṽ − V

)
+
∫ 1

0
eβ
∫ t
a
L(s)dsA(t)e(1−β)

∫ t
a
A(s)dsdβ −A(t)Ṽ , (40)

and by the variation of parameter formula [18], we have

Ṽ (t, a)− V(t, a) =
∫ t

a
V(t, τ)g(τ)dτ, (41)

where

g(τ) :=
∫ 1

0
eβ
∫ τ
a
A(s)dsA(τ)e(1−β)

∫ τ
a
A(s)dsdβ −A(τ)e

∫ τ
a
A(s)ds

=
∫ 1

0
g0(β; τ)− g0(0; τ)dβ,

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 25

and
g0(β; τ) := eβ

∫ τ
a
A(s)dsA(τ)e(1−β)

∫ τ
a
A(s)ds.

Applying the fundamental theorem of calculus in terms of β yields that

‖g(τ)‖ =
∥∥∥∥∥
∫ 1

0

∫ β

0
∂γg0(γ; τ)dγdβ

∥∥∥∥∥
=
∥∥∥∥∥
∫ 1

0

∫ β

0
eγ
∫ τ
a
L(s)ds

[∫ τ

a
A(s)ds,A(τ)

]
e(1−γ)

∫ τ
a
A(s)dsdγdβ

∥∥∥∥∥
≤
∫ 1

0

∫ β

0
eγ‖
∫ τ
a
A(s)ds‖

∥∥∥∥[∫ τ

a
A(s)ds,A(τ)

]∥∥∥∥ e(1−γ)‖
∫ τ
a
A(s)ds‖dγdβ

≤1
2

∥∥∥∥[∫ τ

a
A(s)ds,A(τ)

]∥∥∥∥ e∫ τa ‖A(s)‖ds.

Note that the exponential factor here is bounded quite loose, and in fact one can get a sharper
bound by using the logarithmic norm. But here for our purposes, it is sufficient to estimate
at the level of ‖A(s)‖. Another useful fact is∥∥∥∥∥T e

∫ β2
β1

A(s)ds
∥∥∥∥∥ ≤ e

∫ β2
β1
‖A(s)‖ds

, (42)

which can be shown by applying the Gronwall’s inequality in terms of β2 to

‖Φ(β2, β1)‖ ≤ 1 +
∫ β2

β1
‖A(s)‖ ‖Φ(s, β1)‖ds,

where Φ(β2, β1) := T e
∫ β2
β1

A(s)ds is the fundamental matrix. Thus, the approximation error of
the first part can be summarized as∥∥∥Ṽ (b, a)− Ξ

∥∥∥ =
∥∥∥Ṽ (b, a)− V(b, a)

∥∥∥ ≤ ∫ b

a
dτ
∥∥∥∥[∫ τ

a
A(s)ds,A(τ)

]∥∥∥∥ e∫ ba ‖A(s)‖ds. (43)

We now estimate the error induced by the numerical quadrature using the total variation.
Following the result in Appendix F, we have

‖E(b, a)‖ :=
∥∥∥∥∥
∫ b

a
A(s)ds− b− a

M

M−1∑
k=0

L(a+ k(b− a)/M)
∥∥∥∥∥ ≤ b− a

M
V b
a (A), (44)

where we recall that V b
a (A) is the total variation of A(t) on the interval [a, b]. Furthermore,

the variation of parameter formula gives that for square matrices B and E,

eB+E − eB =
∫ 1

0
dβeB(1−β)Ee(B+E)β,

which implies that ∥∥∥eB+E − eB
∥∥∥ ≤ ‖E‖ e‖B‖+‖E‖. (45)

Therefore, ∥∥∥Ṽ (b, a)− Ξ̄
∥∥∥ ≤ b− a

M
V b
a (A)e

∫ b
a
‖A(s)‖ds+ b−a

M
V ba (A). (46)

Combining (43) and (46) yields the desired result.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 26

5.3 Algorithm for implementing eA

In order to discuss the complexity of implementing the short-time first-order Magnus evolution
operator, we first briefly discuss in this section how to implement a matrix exponential of a
general time-independent matrix, namely to implement f(A) = eA, when A is given through
its (α,m, 0)-block encoding. The details are laid out in Appendix G.

The main idea is to use the contour integral representation of a matrix function

f(A) = 1
2πi

∫
Γ
ez(z −A)−1dz, (47)

where Γ is a unit circle with radius β: Γ = {z = βeiθ : θ ∈ R}. This contour integral can be
discretized as

fK(A) = 1
K

K−1∑
k=0

ezkzk(zk −A)−1, (48)

for zk = βei2πk/K . The error that comes from this discretization can be analyzed using Lemma
18, which is modified from [63, Theorem 18.1] and [59, Proposition 5]. We choose β = 2α,
R = 4α, and by Lemma 18 we have

‖f(A)− fK(A)‖ = O(e4α2−K). (49)

Our goal is to construct a block encoding of eA using (48). We will proceed as follows: we
first construct a block encoding of

Ξ =
K−1∑
k=0
|k〉 〈k| ⊗ (zk −A), (50)

where zk = βei2πk/K . Inverting Ξ using QSVT gives us

Ξ−1 =
K−1∑
k=0
|k〉 〈k| ⊗ (zk −A)−1. (51)

Now suppose we can prepare quantum states |COEFint〉, |COEF′int〉 that satisfy

|COEFint〉 ∝
∑
k

√
ezkzk |k〉 , |COEF′int〉 ∝

∑
k

(
√
ezkzk)∗ |k〉 ,

then we obtain the desired block encoding

(〈COEF′int| ⊗ In)Ξ−1(|COEFint〉 ⊗ In) ∝ fK(A) ≈ f(A). (52)

Here for a complex number z ∈ C,
√
z can be any w ∈ C such that w2 = z.

To construct this block encoding we need additional ancilla qubits. The entire circuit acts
on five different registers, as shown in Figure 6. The first register contains one qubit and
is used for matrix inversion through QSVT. The second register contains log2(K) qubits to
encode the k coefficients ezkzk in the amplitude. The third register contains one qubit and is
used in the block encoding of each zk −A. The fourth register contains m qubits, and this is
the ancilla register used in the block encoding UA. The fifth register contains n qubits and is
the qubits that A acts on. We will use Ir to denote the identity operator acting on r qubits.

The cost of this implementation can be summarized in the following lemma, whose proof
is laid out in Appendix G.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 27

Lemma 12 (Matrix exponentiation). Given a (α,m, 0)-block encoding UA of A, we can con-
struct a (4A/(3α),m+O(log(α) + log log(ε−1)), ε)-block encoding of eA, with O(α+ log(ε−1))
applications of (controlled-) UA and its inverse, and O(α2 + log2(ε−1)) additional elementary
gates. Here

A = 2α
K

K∑
k=0
|ezk |,

where zk = 2αei2πk/K .

5.4 Short-time complexity of the first-order integrator
The cost of constructing a block encoding of the short-time first-order Magnus evolution
operator is given by the following lemma.

Lemma 13 (Short-time evolution through the first-order Magnus integrator). Suppose A ∈
BV ([a, b]), and is accessed through an (nq,m, a, b, α, ε)-MAT as defined in Definition 1 for
some ε ≤ ε′/(3(b− a)). Let

1
2

∫ b

a
dτ
∥∥∥∥[∫ τ

a
A(s)ds,A(τ)

]∥∥∥∥ ≤ β0,

and b− a ≤ min
{
(2α)−1, (2ε)−1}. Choose

M = 2nq = Θ
(

(b− a)V b
a (A)

β0

)
,

where V b
a (A) is the total variation of A(t) on the interval [a, b]. Then we can construct an

(α′,m′, δ′)-block encoding of Ξ = T e
∫ b
a
A(t)dt, with

α′ = O
(4A

3α(b− a)

)
= O(1), A = 2α(b− a)

K

K∑
k=0

e2α(b−a) cos(2πk/K) = Θ(α(b− a))

m′ = m+ nq +O
(
log(α(b− a)) + log log(1/ε′)

)
, δ′ = ε′ + 4β0.

This requires

• O (α(b− a) + log(1/ε′)) queries to MAT,

• O(α(b− a)nq + nq log(1/ε′)) additional elementary gates.

Proof. MAT is a time-dependent matrix encoding of A(t) with precision ε, and is hence a
time-dependent matrix encoding of Ã(t) with precision 0 by Definition 1.

We first consider the cost of constructing the block encoding of

S̃ := b− a
M

M−1∑
k=0

Ã (a+ k(b− a)/M) .

Let nq = log2M . As depicted in (35), one can construct a (α(b− a),m+ nq, 0) block encoding
of S̃, using 1 query to MAT and nq additional one-qubit gates.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 28

We then use QSVT and contour integral formulation Lemma 12 to implement eS̃ . Then
we obtain the following(4A

3α(b− a) ,m+ nq +O
(
log(α(b− a)) + log log(1/ε′)

)
,
3− e

3 ε′
)

block encoding of eS̃ , where

A = 2α(b− a)
K

K∑
k=0

e2α(b−a) cos(2πk/K) = Θ(α(b− a)).

This usesO (α(b− a)) + log(1/ε′)) queries to the block encoding of Ã and henceO (α(b− a)) + log(1/ε′))
queries to MAT. The additional elementary gates needed for this procedure is

O
(
α2(b− a)2 + nq log(1/ε′) + nqα(b− a)

)
= O

(
nq log(1/ε′) + nqα(b− a)

)
.

We now control the error between eS̃ and Ξ = T e
∫ b
a
A(t)dt. Denote

S := b− a
M

M−1∑
k=0

A (a+ k(b− a)/M) .

We first consider the error between eS̃ and eS . Notice that∥∥∥S̃ − S∥∥∥ ≤ (b− a)ε ≤ 1/2,
∥∥∥S̃∥∥∥ ≤ (b− a)α ≤ 1/2.

By (45), we have ∥∥∥eS̃ − eS∥∥∥ ≤ ∥∥∥S̃ − S∥∥∥ e‖S̃‖+‖S̃−S‖ ≤ e(b− a)ε < e

3ε
′

Choose
M = Θ

(
(b− a)V b

a (A)
β0

)
so that

b− a
M

V b
a (A) = Θ (β0) .

Thanks to Lemma 11, the error∥∥∥eÃ − Ξ
∥∥∥ ≤ β0e

∫ b
a
‖A(s)‖ds

(
1 + e

1
2

∫ b
a

dτ‖[
∫ τ
a
A(s)ds,A(τ)]‖

)
.

By our choice of a and b we have that the right-hand-side is bounded by 4β0, as

1
2

∫ b

a
dτ
∥∥∥∥[∫ τ

a
A(s)ds,A(τ)

]∥∥∥∥ ≤ 1
2(b− a)2α2 ≤ 1

8 .

Therefore, we get a(4A
3α(b− a) ,m+ nq +O(log(α(b− a)) + log log(1/ε′), ε′ + 4β0

)
block encoding of Ξ.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 29

5.5 Block encoding of the long-time evolution operator
For simplicity, we choose a uniform temporal mesh. Let tl = lT/L so that 0 = t0 < t1 < · · · <
tl < · · · < tL = T where L is the number of time steps. We perform the short-time first-order
Magnus evolution on each interval [tl, tl+1] and multiply all the evolution together.

By Lemma 13, each short-time first-order Magnus evolution on [tl, tl+1] yields a (αl,ml, εl ‖Ξl‖)-

block encoding (denoted Ul) of Ξl = T e
∫ tl+1
tl

A(s)ds
, where

αl = O(1), ml = m+ nq,l +O (log(α(tl+1 − tl)) + log log(1/δ)) , εl ‖Ξl‖ = δ + 4βl,

and βl is an upper bound of

1
2

∫ tl+1

tl

dτ
∥∥∥∥[∫ τ

tl

A(s)ds,A(τ)
]∥∥∥∥ .

The construction uses O (α(tl+1 − tl) + log(1/δ)) queries to MATl and O(αl(tl+1 − tl)nq,l +

nq,l log(1/δ)) additional elementary gates with nq,l = O
(

log(
(tl+1−tl)V

tl+1
tl

(A)
βl

)
)

.

Applying Theorem 4, we get a (αcomp,mcomp, εcomp)-block encoding of T e
∫ T

0 A(t)dt with

P

2(1− δ)L ≤ αcomp ≤
e1/2P

(1− δ)L .

Here

mcomp = dlog2(L)e+m+ max
l
nq,l + max

l
O (log(αl(tl+1 − tl)) + log log(1/εl)) ,

and
εcomp = e1/2 (Lε′ + Lδ + 4βcomp

)
P, (53)

where βcomp =
∑
l βl is an upper bound of

1
2

L−1∑
l=0

∫ tl+1

tl

dτ
∥∥∥∥[∫ τ

tl

A(s)ds,A(τ)
]∥∥∥∥ ≤ 1

4 sup
s,τ∈[0,T]

‖[A(s), A(τ)]‖ T
2

L
.

In this block encoding we use O
(

1
δ log

(
1
ε′

))
applications of each Ul.

Denote the upper bound of the time average L1-scaling
∫ T

0 ‖A(s)‖ ds/T as α. Thanks to
our choice of tl’s, each βl can be upper bounded by α2T 2/L2. Choose

ε′ = O
(
εcomp
LP

)
, δ = O

(
εcomp
LP

)
, L = O

(
max

{
αcommT

2P

εcomp
, αT

})
, δ = 1

2L,

where
αcomm := sup

s,τ∈[0,T]
‖[A(s), A(τ)]‖ . (54)

With this choice of parameters we have

αcomp = Θ(P) = Θ
(

L∏
l=1
‖Ξl‖

)
, (55)

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 30

and
mcomp = m+O

(
log2(V T

0 (A)αTPε−1
comp)

)
. (56)

Each Ul is used

O
(
L log

(
LP

εcomp

))
= O

(
max

{
αcommT

2P

εcomp
, αT

}
log

(
max {αcomm, α}

TP

εcomp

))

times. Given the fact that each Ul uses queries to MATl O (α(tl+1 − tl) + log (max {αcomm, α}TP/εcomp))
times, and that there are L of them, the total number of queries to all MAT are

O
(
L−1∑
l=0

L log
(
LP

εcomp

)(
α(tl+1 − tl) + log

(
max {αcomm, α}

TP

εcomp

)))

=O
((

αT max
{
αcommT

2P

εcomp
, αT

}
+ max

{
αcommT

2P

εcomp
, αT

}2

log
(

max {αcomm, α}
TP

εcomp

))
×

(57)

× log
(

max {αcomm, α}
TP

εcomp

))
. (58)

Note that when αcomm = 0, this first-order truncated series implementation in fact has the
same complexity scaling as the high-order truncated Dyson series. We remark that it is
also possible to get the L1 scaling α = 1

T

∫ T
0 ‖A(s)‖ds, by varying time step sizes in the

propagation according to the average performance of the Hamiltonian as in [4, 7]: Let 0 =
t0 < t1 < · · · < tl < · · · < tL = T where L is the number of time steps and t1, · · · , tL−1 are
chosen such that∫ t1

0
‖A(s)‖ ds = · · · =

∫ tl+1

tl

‖A(s)‖ ds = 1
L

∫ T

0
‖A(s)‖ ds, 0 ≤ l ≤ L− 1, (59)

which we shall not discuss more details here.

5.6 Success probability and main result paired with first-order integrator
The success probability of the first-order Magnus method follows a similar argument as the
Dyson series approach as detailed in Section 3.3. It suffices to choose εcomp = O(ε‖ |ψ(T)〉 ‖)
and the success probability is at least Ω(Q−2). Suppose that the initial state |ψ(0)〉 can
be prepared using a unitary circuit Uinit, then we can boost the success probability to 2/3
with O(Q) rounds of amplitude amplification. We can conclude the result when pairing the
time-marching strategy with the first-order Magnus-type integrator for long time evolution as
follows.

Theorem 14 (The time-marching differential equation solver paired with the first-order
Magnus integrator). Let |ψ(t)〉 be the solution to the ODE d

dt |ψ(t)〉 = A(t) |ψ(t)〉. Suppose
we have a unitary circuit Uinit that satisfies Uinit |0n〉 = |ψ(0)〉. For a coefficient matrix A ∈
BV ([0, T]), suppose 0 = t0 < t1 < . . . < tL = T , and for each segment [tl−1, tl] we have a time-
dependent matrix encoding of A(t) denoted as MATl that is an (nq,m, tl−1, tl, α, ε

′′) −MAT
as defined in Definition 1 for some ε′′ < ε/(2TQ). Let V T

0 (A) be the total variation of A on

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 31

[0, T] as defined in (10). We can prepare, with probability at least 2/3, a quantum state |ψ̃(T)〉
that satisfies ∥∥∥∥∥ |ψ(T)〉

‖ |ψ(T)〉 ‖ −
|ψ̃(T)〉
‖ |ψ̃(T)〉 ‖

∥∥∥∥∥ = O(ε),

using

O
((

αT max
{
αcommT

2Q

ε
, αT

}
+ max

{
αcommT

2Q

ε
, αT

}2

log
(

max {αcomm, α}
TQ

ε

))
×

× log
(

max {αcomm, α}
TQ

ε

))
.

total number of queries to all MATl, and O(Q) applications of (controlled-) Uinit and its
inverse. In particular, in the high-precision limit given a non-zero αcomm, the total number of
queries to all MATl can be simplified as

O
(
α2

commT
4Q3

ε2
log2

(max{αcomm, α}TQ
ε

))
.

In total we use O(n + m + polylog(V T
0 (A)αTQε−1)) qubits. Here Q is defined as (4), and

αcomm is defined in Eq. (54). Success is flagged by the measurement result of a qubit.

6 Discussion
We revisit the time-marching strategy for solving the ODE (1), and demonstrate that it can
be a useful alternative to QLSA based quantum differential equation solvers. On a technical
level, our time-marching based algorithm achieves the following tasks for the first time: (1) It
has provable performance guarantees for non-diagonalizable, and time-dependent dynamics.
(2) It retains high-order accuracy for non-smooth A(t). (3) It can use few queries to the initial
state. For inhomogeneous linear differential equations d

dt |ψ(t)〉 = A(t) |ψ(t)〉+ |b(t)〉, we may
use the variation of constants to express the solution as

|ψ(t)〉 = T e
∫ t

0 A(s)ds |ψ0〉+
∫ t

0
T e
∫ t
t′ A(s)ds |b(t′)〉 dt′. (60)

After discretization of the integration with respect to t′, this is reduced to a series of homo-
geneous linear differential equations that can be implemented by the time-marching method.
The analysis for the inhomogeneous case can thus be similar using the tools developed in this
paper.

At a high level, time-marching based methods and QLSA based methods simply amount to
two different ways of rearranging the same identities of the form |ψl〉 = Ξ̄l |ψl−1〉 , l = 1, . . . , L.
However, there are many differences between these two classes of algorithms, and we do not
know whether the gaps can be closed with further improvements, or are intrinsic to each type
of the method. For instance, it is possible to refine the complexity analysis of QLSA based
algorithms so that the cost does not directly depend on the condition number κV , or to improve
the algorithm so that it achieves high-order accuracy for non-smooth A(t) [16]. However, it

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 32

is unclear whether the number of queries to the initial state of any QLSA based algorithm
can be independent of T . For time-marching based algorithms, though the dependence on the
precision is near-optimal and scales as polylog(1/ε), the dependence of the query complexity
to the input matrix is O(T 2). We do not know whether the O(T 2) scaling in the query
complexity to the matrix can be improved, or whether the dependence on Q can be weakened

to Q̄ = ‖T e
∫ T

0
A(t)dt‖

‖|ψ(T)〉‖ . It is also possible that another class of algorithms is needed to provide
a unifying perspective to the questions above, and to achieve near-optimal complexity with
respect to all parameters.

Acknowledgments
This work was partially supported by the NSF Quantum Leap Challenge Institute (QLCI)
program under Grant No. OMA-2016245 and NSF DMS-2208416 (D.F.), by the U.S. De-
partment of Energy under the Quantum Systems Accelerator program under Grant No. DE-
AC02-05CH11231 (Y.T.), and by a Google Quantum Research Award (L.L.). L.L. is a Simons
Investigator. We thank Dong An, Dominic Berry, Andrew Childs and Jin-Peng Liu for dis-
cussions.

References
[1] A. Ambainis. Variable time amplitude amplification and quantum algorithms for linear

algebra problems. In Leibniz Int. Proc. Informatics, LIPIcs, volume 14, pages 636–647,
2012. doi:10.4230/LIPIcs.STACS.2012.636.

[2] D. An, D. Fang, S. Jordan, J.-P. Liu, G. H. Low, and J. Wang. Efficient quantum
algorithm for nonlinear reaction-diffusion equations and energy estimation, 2022. URL:
http://arxiv.org/abs/2205.01141, arXiv:2205.01141, doi:10.48550/ARXIV.2205.
01141.

[3] D. An, D. Fang, and L. Lin. Time-dependent unbounded Hamiltonian simulation with
vector norm scaling. Quantum, 5:1–49, may 2021. URL: https://doi.org/10.22331/
q-2021-05-26-459, arXiv:2012.13105, doi:10.22331/Q-2021-05-26-459.

[4] D. An, D. Fang, and L. Lin. Time-dependent Hamiltonian Simulation of Highly Oscil-
latory Dynamics and Superconvergence for Schrödinger Equation. Quantum, 6:690, apr
2022. doi:10.22331/q-2022-04-15-690.

[5] D. An and L. Lin. Quantum Linear System Solver Based on Time-optimal Adiabatic
Quantum Computing and Quantum Approximate Optimization Algorithm. ACM Trans.
Quantum Comput., 3(2):1–28, 2022. arXiv:1909.05500, doi:10.1145/3498331.

[6] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses
of quantum computing. SIAM journal on Computing, 26(5):1510–1523, 1997. doi:
10.1137/S0097539796300933.

[7] D. Berry, A. M. Childs, Y. Su, X. Wang, and N. Wiebe. Time-dependent Hamil-
tonian simulation with L1-norm scaling. Quantum, 4:254, 2020. doi:10.22331/
q-2020-04-20-254.

[8] D. W. Berry. High-order quantum algorithm for solving linear differential equations.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 33

https://doi.org/10.4230/LIPIcs.STACS.2012.636
http://arxiv.org/abs/2205.01141
http://arxiv.org/abs/2205.01141
https://doi.org/10.48550/ARXIV.2205.01141
https://doi.org/10.48550/ARXIV.2205.01141
https://doi.org/10.22331/q-2021-05-26-459
https://doi.org/10.22331/q-2021-05-26-459
http://arxiv.org/abs/2012.13105
https://doi.org/10.22331/Q-2021-05-26-459
https://doi.org/10.22331/q-2022-04-15-690
http://arxiv.org/abs/1909.05500
https://doi.org/10.1145/3498331
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.22331/q-2020-04-20-254
https://doi.org/10.22331/q-2020-04-20-254

Journal of Physics A: Mathematical and Theoretical, 47(10):105301, feb 2014. doi:
10.1088/1751-8113/47/10/105301.

[9] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders. Efficient quantum algorithms for
simulating sparse hamiltonians. Commun. Math. Phys., 270(2):359–371, 2007. arXiv:
0508139, doi:10.1007/s00220-006-0150-x.

[10] D. W. Berry and A. M. Childs. Black-box hamiltonian simulation and unitary im-
plementation. Quantum Inf. Comput., 12(1-2):29–62, 2012. arXiv:0910.4157, doi:
10.26421/QIC12.1-2.

[11] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. Exponential improve-
ment in precision for simulating sparse Hamiltonians. In Proc. Annu. ACM Symp. Theory
Comput., pages 283–292, 2014. arXiv:1312.1414, doi:10.1145/2591796.2591854.

[12] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. Simulating hamil-
tonian dynamics with a truncated taylor series. Phys. Rev. Lett., 114(9):90502, 2015.
arXiv:1412.4687, doi:10.1103/PhysRevLett.114.090502.

[13] D. W. Berry, A. M. Childs, and R. Kothari. Hamiltonian Simulation with Nearly Optimal
Dependence on all Parameters. Proc. - Annu. IEEE Symp. Found. Comput. Sci. FOCS,
2015-December:792–809, 2015. arXiv:1501.01715, doi:10.1109/FOCS.2015.54.

[14] D. W. Berry, A. M. Childs, A. Ostrander, and G. Wang. Quantum algorithm
for linear differential equations with exponentially improved dependence on precision.
Communications in Mathematical Physics, 356(3):1057–1081, 2017. doi:10.1007/
s00220-017-3002-y.

[15] D. W. Berry, R. Cleve, and S. Gharibian. Gate-efficient discrete simulations of continuous-
time quantum query algorithms. Quantum Inf. Comput., 14(1-2):1–30, 2014. doi:10.
26421/qic14.1-2-1.

[16] D. W. Berry and P. C. S. Costa. Quantum algorithm for time-dependent differential
equations using dyson series, 2022. URL: https://arxiv.org/abs/2212.03544, doi:
10.48550/ARXIV.2212.03544.

[17] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and
estimation. Contemp. Math., 305:53–74, 2002. arXiv:0005055, doi:10.1090/conm/
305/05215.

[18] F. Brauer and J. A. Nohel. The Qualitative Theory of Ordinary Differential Equations:
An Introduction. Dover Books on Mathematics. Dover Publications, 2012. URL: https:
//books.google.com/books?id=9qPsbRl7hBkC.

[19] R. L. Burden, J. D. Faires, and A. C. Reynolds. Numerical analysis. Brooks Cole, 2000.
[20] E. Campbell. Random Compiler for Fast Hamiltonian Simulation. Phys. Rev. Lett.,

123(7):70503, 2019. arXiv:1811.08017, doi:10.1103/PhysRevLett.123.070503.
[21] S. Chakraborty, A. Gilyén, and S. Jeffery. The power of block-encoded matrix powers:

Improved regression techniques via faster Hamiltonian simulation. Leibniz Int. Proc.
Informatics, LIPIcs, 132, 2019. arXiv:1804.01973, doi:10.4230/LIPIcs.ICALP.2019.
33.

[22] R. Chao, D. Ding, A. Gilyen, C. Huang, and M. Szegedy. Finding Angles for Quantum
Signal Processing with Machine Precision. 2020. URL: http://arxiv.org/abs/2003.
02831, arXiv:2003.02831, doi:10.48550/arXiv.2003.02831.

[23] C.-F. Chen, Hsin-Yuan, Huang, R. Kueng, and J. a. Tropp. Concentration for random
product formulas. arXiv:2008.11751, page 25, 2020. URL: http://arxiv.org/abs/
2008.11751, arXiv:2008.11751, doi:10.1103/PRXQuantum.2.040305.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 34

https://doi.org/10.1088/1751-8113/47/10/105301
https://doi.org/10.1088/1751-8113/47/10/105301
http://arxiv.org/abs/0508139
http://arxiv.org/abs/0508139
https://doi.org/10.1007/s00220-006-0150-x
http://arxiv.org/abs/0910.4157
https://doi.org/10.26421/QIC12.1-2
https://doi.org/10.26421/QIC12.1-2
http://arxiv.org/abs/1312.1414
https://doi.org/10.1145/2591796.2591854
http://arxiv.org/abs/1412.4687
https://doi.org/10.1103/PhysRevLett.114.090502
http://arxiv.org/abs/1501.01715
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.26421/qic14.1-2-1
https://doi.org/10.26421/qic14.1-2-1
https://arxiv.org/abs/2212.03544
https://doi.org/10.48550/ARXIV.2212.03544
https://doi.org/10.48550/ARXIV.2212.03544
http://arxiv.org/abs/0005055
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://books.google.com/books?id=9qPsbRl7hBkC
https://books.google.com/books?id=9qPsbRl7hBkC
http://arxiv.org/abs/1811.08017
https://doi.org/10.1103/PhysRevLett.123.070503
http://arxiv.org/abs/1804.01973
https://doi.org/10.4230/LIPIcs.ICALP.2019.33
https://doi.org/10.4230/LIPIcs.ICALP.2019.33
http://arxiv.org/abs/2003.02831
http://arxiv.org/abs/2003.02831
http://arxiv.org/abs/2003.02831
https://doi.org/10.48550/arXiv.2003.02831
http://arxiv.org/abs/2008.11751
http://arxiv.org/abs/2008.11751
http://arxiv.org/abs/2008.11751
https://doi.org/10.1103/PRXQuantum.2.040305

[24] Y. H. Chen, A. Kalev, and I. Hen. Quantum Algorithm for Time-Dependent
Hamiltonian Simulation by Permutation Expansion. PRX Quantum, 2(3):30342,
sep 2021. URL: https://link.aps.org/doi/10.1103/PRXQuantum.2.030342, arXiv:
2103.15334, doi:10.1103/PRXQuantum.2.030342.

[25] A. M. Childs, R. Kothari, and R. D. Somma. Quantum algorithm for systems of linear
equations with exponentially improved dependence on precision. SIAM J. Comput.,
46(6):1920–1950, 2017. arXiv:1511.02306, doi:10.1137/16M1087072.

[26] A. M. Childs and J. P. Liu. Quantum Spectral Methods for Differential Equations.
Commun. Math. Phys., 375(2):1427–1457, 2020. arXiv:1901.00961, doi:10.1007/
s00220-020-03699-z.

[27] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su. Toward the first quantum
simulation with quantum speedup. Proc. Natl. Acad. Sci. U. S. A., 115(38):9456–9461,
2018. arXiv:1711.10980, doi:10.1073/pnas.1801723115.

[28] A. M. Childs, A. Ostrander, and Y. Su. Faster quantum simulation by randomization.
Quantum, 3:182, 2019. arXiv:1805.08385, doi:10.22331/q-2019-09-02-182.

[29] A. M. Childs and Y. Su. Nearly Optimal Lattice Simulation by Product Formulas. Phys.
Rev. Lett., 123(5):50503, 2019. arXiv:1901.00564, doi:10.1103/PhysRevLett.123.
050503.

[30] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu. Theory of Trotter Error with
Commutator Scaling. Phys. Rev. X, 11(1):11020, 2021. doi:10.1103/PhysRevX.11.
011020.

[31] A. M. Childs and N. Wiebe. Hamiltonian simulation using linear combinations of unitary
operations. Quantum Inf. Comput., 12(11-12):901–924, nov 2012. URL: http://dx.doi.
org/10.26421/QIC12.11-12, arXiv:1202.5822, doi:10.26421/qic12.11-12-1.

[32] P. C. Costa, D. An, Y. R. Sanders, Y. Su, R. Babbush, and D. W. Berry. Optimal scaling
quantum linear-systems solver via discrete adiabatic theorem. PRX Quantum, 3:040303,
Oct 2022. URL: https://link.aps.org/doi/10.1103/PRXQuantum.3.040303, doi:
10.1103/PRXQuantum.3.040303.

[33] P. C. S. Costa, S. Jordan, and A. Ostrander. Quantum algorithm for simulating the
wave equation. Physical Review A, 99(1):012323, 2019. arXiv:1711.05394. doi:10.
1103/PhysRevA.99.012323.

[34] I. Y. Dodin and E. A. Startsev. On applications of quantum computing to plasma
simulations. Physics of Plasmas, 28(9):092101, 2021. doi:10.1063/5.0056974.

[35] Y. Dong, X. Meng, K. B. Whaley, and L. Lin. Efficient phase-factor evaluation in
quantum signal processing. Phys. Rev. A, 103(4), 2021. arXiv:2002.11649, doi:10.
1103/PhysRevA.103.042419.

[36] A. Engel, G. Smith, and S. E. Parker. Linear embedding of nonlinear dynamical systems
and prospects for efficient quantum algorithms. Physics of Plasmas, 28(6):062305, 2021.
arXiv:2012.06681. doi:10.1063/5.0040313.

[37] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe. Quantum singular value transformation
and beyond: exponential improvements for quantum matrix arithmetics. arXiv preprint
arXiv:1806.01838, 2018. doi:10.48550/arXiv.1806.01838.

[38] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe. Quantum singular value transformation and
beyond: exponential improvements for quantum matrix arithmetics. In Proc. 51st Annu.
ACM SIGACT Symp. Theory Comput., pages 193–204, 2019. doi:10.1145/3313276.
3316366.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 35

https://link.aps.org/doi/10.1103/PRXQuantum.2.030342
http://arxiv.org/abs/2103.15334
http://arxiv.org/abs/2103.15334
https://doi.org/10.1103/PRXQuantum.2.030342
http://arxiv.org/abs/1511.02306
https://doi.org/10.1137/16M1087072
http://arxiv.org/abs/1901.00961
https://doi.org/10.1007/s00220-020-03699-z
https://doi.org/10.1007/s00220-020-03699-z
http://arxiv.org/abs/1711.10980
https://doi.org/10.1073/pnas.1801723115
http://arxiv.org/abs/1805.08385
https://doi.org/10.22331/q-2019-09-02-182
http://arxiv.org/abs/1901.00564
https://doi.org/10.1103/PhysRevLett.123.050503
https://doi.org/10.1103/PhysRevLett.123.050503
https://doi.org/10.1103/PhysRevX.11.011020
https://doi.org/10.1103/PhysRevX.11.011020
http://dx.doi.org/10.26421/QIC12.11-12
http://dx.doi.org/10.26421/QIC12.11-12
http://arxiv.org/abs/1202.5822
https://doi.org/10.26421/qic12.11-12-1
https://link.aps.org/doi/10.1103/PRXQuantum.3.040303
https://doi.org/10.1103/PRXQuantum.3.040303
https://doi.org/10.1103/PRXQuantum.3.040303
https://arxiv.org/abs/1711.05394
https://doi.org/10.1103/PhysRevA.99.012323
https://doi.org/10.1103/PhysRevA.99.012323
https://doi.org/10.1063/5.0056974
http://arxiv.org/abs/2002.11649
https://doi.org/10.1103/PhysRevA.103.042419
https://doi.org/10.1103/PhysRevA.103.042419
https://arxiv.org/abs/2012.06681
https://doi.org/10.1063/5.0040313
https://doi.org/10.48550/arXiv.1806.01838
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366

[39] D. Gottlieb and C.-W. Shu. On the Gibbs phenomenon and its resolution. SIAM Rev.,
39(4):644–668, 1997. doi:10.1137/S0036144596301390.

[40] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx, Mar. 2014.

[41] J. Haah. Product decomposition of periodic functions in quantum signal processing.
Quantum, 3:190, 2019. arXiv:1806.10236, doi:10.22331/q-2019-10-07-190.

[42] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations (Springer Series in Compu-
tational Mathematics), volume 31. Springer, 2006.

[43] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations I. nonstiff
problems, volume 29. Springer, 1987. doi:10.1016/0378-4754(87)90083-8.

[44] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of
equations. Phys. Rev. Lett., 103(15):150502, 2009. doi:10.1103/PhysRevLett.103.
150502.

[45] S. Jin and N. Liu. Quantum algorithms for computing observables of nonlinear partial
differential equations, 2022. arXiv:2202.07834. doi:10.48550/arXiv.2202.07834.

[46] I. Joseph. Koopman-von Neumann approach to quantum simulation of nonlinear classical
dynamics. Physical Review Research, 2(4):043102, 2020. arXiv:2003.09980. doi:10.
1103/PhysRevResearch.2.043102.

[47] M. Kieferová, A. Scherer, and D. W. Berry. Simulating the dynamics of time-
dependent Hamiltonians with a truncated Dyson series. Phys. Rev. A, 99(4), apr
2019. URL: http://dx.doi.org/10.1103/PhysRevA.99.042314, arXiv:1805.00582,
doi:10.1103/PhysRevA.99.042314.

[48] H. Krovi. Improved quantum algorithms for linear and nonlinear differential equations,
2022. URL: http://arxiv.org/abs/2202.01054, arXiv:2202.01054, doi:10.48550/
ARXIV.2202.01054.

[49] L. Lin and Y. Tong. Optimal polynomial based quantum eigenstate filtering with ap-
plication to solving quantum linear systems. Quantum, 4:361, 2020. doi:10.22331/
q-2020-11-11-361.

[50] N. Linden, A. Montanaro, and C. Shao. Quantum vs. classical algorithms for solv-
ing the heat equation. Comm. Math. Phys., 395(2):601–641, 2022. doi:10.1007/
s00220-022-04442-6.

[51] J.-P. Liu, H. Ø. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa, and A. M. Childs.
Efficient quantum algorithm for dissipative nonlinear differential equations. Proceedings
of the National Academy of Sciences, 118(35), 2021. arXiv:2011.03185. doi:10.1073/
pnas.2026805118.

[52] S. Lloyd, G. De Palma, C. Gokler, B. Kiani, Z.-W. Liu, M. Marvian, F. Ten-
nie, and T. Palmer. Quantum algorithm for nonlinear differential equations, 2020.
arXiv:2011.06571. doi:10.48550/arXiv.2011.06571.

[53] G. H. Low. Hamiltonian simulation with nearly optimal dependence on spectral norm.
In Proc. Annu. ACM Symp. Theory Comput., pages 491–502, 2019. arXiv:1807.03967,
doi:10.1145/3313276.3316386.

[54] G. H. Low and I. L. Chuang. Hamiltonian simulation by uniform spectral amplification.
arXiv:1707.05391, 2017. doi:10.48550/arXiv.1707.05391.

[55] G. H. Low and I. L. Chuang. Optimal Hamiltonian Simulation by Quantum Signal

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 36

https://doi.org/10.1137/S0036144596301390
http://cvxr.com/cvx
http://arxiv.org/abs/1806.10236
https://doi.org/10.22331/q-2019-10-07-190
https://doi.org/10.1016/0378-4754(87)90083-8
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/2202.07834
https://doi.org/10.48550/arXiv.2202.07834
https://arxiv.org/abs/2003.09980
https://doi.org/10.1103/PhysRevResearch.2.043102
https://doi.org/10.1103/PhysRevResearch.2.043102
http://dx.doi.org/10.1103/PhysRevA.99.042314
http://arxiv.org/abs/1805.00582
https://doi.org/10.1103/PhysRevA.99.042314
http://arxiv.org/abs/2202.01054
http://arxiv.org/abs/2202.01054
https://doi.org/10.48550/ARXIV.2202.01054
https://doi.org/10.48550/ARXIV.2202.01054
https://doi.org/10.22331/q-2020-11-11-361
https://doi.org/10.22331/q-2020-11-11-361
https://doi.org/10.1007/s00220-022-04442-6
https://doi.org/10.1007/s00220-022-04442-6
https://arxiv.org/abs/2011.03185
https://doi.org/10.1073/pnas.2026805118
https://doi.org/10.1073/pnas.2026805118
https://arxiv.org/abs/2011.06571
https://doi.org/10.48550/arXiv.2011.06571
http://arxiv.org/abs/1807.03967
https://doi.org/10.1145/3313276.3316386
https://doi.org/10.48550/arXiv.1707.05391

Processing. Phys. Rev. Lett., 118(1):10501, 2017. arXiv:1606.02685, doi:10.1103/
PhysRevLett.118.010501.

[56] G. H. Low and I. L. Chuang. Hamiltonian simulation by qubitization. Quantum, 3:163,
2019. arXiv:1610.06546, doi:10.22331/q-2019-07-12-163.

[57] G. H. Low and N. Wiebe. Hamiltonian Simulation in the Interaction Picture.
arXiv:1805.00675, 2018. URL: http://arxiv.org/abs/1805.00675, arXiv:1805.
00675, doi:10.48550/arXiv.1805.00675.

[58] Y. Subaşl, R. D. Somma, and D. Orsucci. Quantum algorithms for systems of linear
equations inspired by adiabatic quantum computing. Phys. Rev. Lett., 122(6):60504,
2019. arXiv:1805.10549, doi:10.1103/PhysRevLett.122.060504.

[59] S. Takahira, A. Ohashi, T. Sogabe, and T. S. Usuda. Quantum algorithm for matrix
functions by cauchy’s integral formula. Quantum Inf. Comput., 20(1-2):14–36, 2020.
arXiv:2106.08075, doi:10.26421/qic20.1-2-2.

[60] Y. Tong, V. V. Albert, J. R. McClean, J. Preskill, and Y. Su. Provably accurate simula-
tion of gauge theories and bosonic systems, 2021. URL: https://arxiv.org/abs/2110.
06942, doi:10.48550/ARXIV.2110.06942.

[61] Y. Tong, D. An, N. Wiebe, and L. Lin. Fast inversion, preconditioned quantum linear sys-
tem solvers, fast Green’s-function computation, and fast evaluation of matrix functions.
Phys. Rev. A, 104(3), 2021. doi:10.1103/PhysRevA.104.032422.

[62] L. N. Trefethen. Approximation Theory and Approximation Practice, Extended Edition,
volume 164. SIAM, 2019. doi:10.1137/1.9781611975949.

[63] L. N. Trefethen and J. A. Weideman. The exponentially convergent trapezoidal rule.
SIAM Rev., 56(3):385–458, 2014. doi:10.1137/130932132.

[64] C. Tronci and I. Joseph. Koopman wavefunctions and Clebsch variables in Vlasov-
Maxwell kinetic theory, 2021. doi:10.1017/S0022377821000805.

[65] J. Wang, Y. Dong, and L. Lin. On the energy landscape of symmetric quantum signal
processing. Quantum, 6:850, Nov. 2022. doi:10.22331/q-2022-11-03-850.

[66] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and M. Troyer. Solving
strongly correlated electron models on a quantum computer. Phys. Rev. A - At. Mol.
Opt. Phys., 92(6):62318, 2015. arXiv:1506.05135, doi:10.1103/PhysRevA.92.062318.

[67] N. Wiebe, D. Berry, P. Høyer, and B. C. Sanders. Higher order decompositions of
ordered operator exponentials. J. Phys. A Math. Theor., 43(6), 2010. arXiv:0812.0562,
doi:10.1088/1751-8113/43/6/065203.

[68] L. Ying. Stable factorization for phase factors of quantum signal processing. Quantum,
6:842, Oct. 2022. doi:10.22331/q-2022-10-20-842.

[69] B. Şahinoğlu and R. D. Somma. Hamiltonian simulation in the low-energy subspace. npj
Quantum Inf., 7(1), 2021. arXiv:2006.02660, doi:10.1038/s41534-021-00451-w.

A Notations
Throughout the paper, ‖A‖ denotes the spectral norm of a matrix A, ‖v‖ denotes 2-norm of
a vector v, and D(·, ·) denotes the trace distance between two quantum states defined as

D(ρ, σ) = 1
2 Tr

(√
(ρ− σ)2

)
.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 37

http://arxiv.org/abs/1606.02685
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
http://arxiv.org/abs/1610.06546
https://doi.org/10.22331/q-2019-07-12-163
http://arxiv.org/abs/1805.00675
http://arxiv.org/abs/1805.00675
http://arxiv.org/abs/1805.00675
https://doi.org/10.48550/arXiv.1805.00675
http://arxiv.org/abs/1805.10549
https://doi.org/10.1103/PhysRevLett.122.060504
http://arxiv.org/abs/2106.08075
https://doi.org/10.26421/qic20.1-2-2
https://arxiv.org/abs/2110.06942
https://arxiv.org/abs/2110.06942
https://doi.org/10.48550/ARXIV.2110.06942
https://doi.org/10.1103/PhysRevA.104.032422
https://doi.org/10.1137/1.9781611975949
https://doi.org/10.1137/130932132
https://doi.org/10.1017/S0022377821000805
https://doi.org/10.22331/q-2022-11-03-850
http://arxiv.org/abs/1506.05135
https://doi.org/10.1103/PhysRevA.92.062318
http://arxiv.org/abs/0812.0562
https://doi.org/10.1088/1751-8113/43/6/065203
https://doi.org/10.22331/q-2022-10-20-842
http://arxiv.org/abs/2006.02660
https://doi.org/10.1038/s41534-021-00451-w

We use the following asymptotic notations besides the usual O notation: we write f = Ω(g)
if g = O(f); f = Θ(g) if f = O(g) and g = O(f); f = Õ(g) if f = O(gpolylog(g)). For
two quantum states |x〉 and |y〉, we sometimes write |x, y〉 to denote |x〉 |y〉. The notations
regarding each short time evolution can be summarized as follows. Note that the same Ul
can be viewed as a block encoding of Ξ` and Ξ̄`, and the difference is only in the error of the
block encoding.

Notation Meaning Corresponding block encoding

Ξ` the exact time evolution operator T e
∫ tl
tl−1

A(t)dt
Ul is an (αl,ml, εl ‖Ξl‖)-block encoding of Ξ`

Ξ̄` an approximation of the exact evolution Ξ` Ul is an (αl,ml, 0)-block encoding of Ξ̄`
Ξ̃` Ξ̄` after uniform singular value amplification Ũl is a (‖Ξ̄`‖1−δ ,ml + 1, 0)-block encoding of Ξ̃`

B Block encoding and quantum singular value transformation
We call a matrix A ∈ C2n×2n an n-qubit matrix or an n-qubit operator. In this work we
extensively use the technique of block encoding [21, 38, 56], which is a way of embedding an
arbitrary matrix as a sub-matrix of a larger unitary matrix. Using a unitary matrix UA to
encode A as a sub-matrix means that there exist a subnormalization factor α > 0 such that

UA =
(
A/α ·
· ·

)
, (61)

where · denotes arbitrary matrix blocks of proper sizes. In general, the matrix that we block
encode may only approximate, but is not exactly equal to, A/α. We use the following notation
to describe such encodings.

Definition 15 (Block encoding, [38]). An (m + n)-qubit unitary operator UA is called an
(α,m, ε)-block encoding of an n-qubit operator A, if ‖A− α(〈0m| ⊗ In)UA(|0m〉 ⊗ In)‖ ≤ ε.

Here m is the number of ancilla qubits for block encoding, and α is called the subnor-
malization factor. With the (α,m, 0)-block encoding UA, we can perform a quantum singular
value transformation (QSVT) of A on a quantum computer using the technique developed
in [38]. More precisely, suppose A has a singular value decomposition A = UσV †, then for
any odd polynomial f(x) with degree d such that |f(x)| ≤ 1 for x ∈ [−1, 1], we can con-
struct a block encoding of Uf(Σ/α)V † , and this block encoding uses UA d times. This is
the main tool for implementing the uniform singular value amplification in Lemma 2. QSVT
requires finding a sequence of phase factors corresponding to the polynomial we want to im-
plement. There are classical algorithms capable of doing this [41] in polynomial time, and
later works developed more efficient methods for high-degree polynomials with high precision
requirements [22, 35, 65, 68].

C Convex optimization based method for uniform singular value amplifica-
tion

In order to approximate an odd target function using an odd polynomial of degree d, we can
express the target polynomial as the linear combination of Chebyshev polynomials with some

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 38

unknown coefficients {ck}:

F (x) =
(d−1)/2∑
k=0

T2k+1(x)ck. (62)

To formulate this as a discrete optimization problem, we first discretize [−1, 1] using M grid
points (e.g., roots of Chebyshev polynomials {xj = − cos jπ

M−1}
M−1
j=0). We define the coefficient

matrix, Ajk = T2k+1(xj), k = 0, . . . , (d− 1)/2. Then the coefficients for approximating the
polynomial used for uniform singular value amplification can be found by solving the following
optimization problem

min
{ck}

max
{

max
xj∈[0,γ′−1]

∣∣F (xj)− (1− δ)γ′xj
∣∣}

s.t. F (xj) =
∑
k

Ajkck, |F (xj)| ≤ c, ∀j = 0, . . . ,M − 1.
(63)

This is a convex optimization problem and can be solved using software packages such as
CVX [40]. The norm constraint |F (x)| ≤ 1 is relaxed to |F (xj)| ≤ c to take into account
that the constraint can only be imposed on the sampled points, and the values of |F (x)| may
slightly overshoot on [−1, 1]\{xj}M−1

j=0 . The effect of this relaxation can be negligible when
we choose c to be sufficiently close to 1 (for instance, c can be max{0.9999, 1− 0.1δ}). Since
Eq. (63) approximately solves a min-max problem, it achieves the near-optimal solution (in
the sense of the L∞ norm) by definition both in the asymptotic and pre-asymptotic regimes.
Once the polynomial F (x) is given, the Chebyshev coefficients can be used as the input to
find the phase factors using QSPPACK 1 with an optimization based method [35].

D The compression gadget
In this section we discuss how to construct the compression gadget that is used in Section
2.4 and prove Lemma 3. We suppose we are given unitaries V1, V2, . . . , VL, each of which is a
(α′l,m′l, 0)-block encoding of a potentially non-unitary operation Γl. Our goal is to construct
a block encoding of ΓL · · ·Γ2Γ1 without duplicating the ancilla registers in each Vl.

To do this we introduce a counter register to count how many times Γl is applied success-
fully. This counter register contains dlog2(L)e+ 1 qubits, and its state encodes a binary that
is used to track successful applications of Γl. We introduce a unitary operator ADD on this
register defined through

ADD |c〉 = |c+ 1 mod 2dlog2(L)e+1〉 .

This operator performs addition modulo 2dlog2(L)e+1. Its inverse perform subtraction. We
initialize the counter register in the state |L〉, and subtract from the number it encodes by
applying ADD† each time Γl is applied successfully. We keep track of success/failure by
applying controlled ADD† so that the whole process is coherent. In the end if all steps are
successful the counter register will be in the state |0〉.

The circuit construction for the above coherent procedure is described in Figure 3. We
denote mmax = maxlm′l, and regard each Vl as acting on two registers, one is the ancilla

1https://github.com/qsppack/QSPPACK

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 39

https://github.com/qsppack/QSPPACK

register containing mmax qubits and the other the state register. If m′l < mmax, then we can
simply let mmax−m′l qubits in the ancilla register remain idle. The circuit in Fig. 3 is in fact
a block encoding of ΓL · · ·Γ2Γ1. In this way we prove Lemma 3, which we restate here.

Lemma (Compression gadget). Suppose we are given unitaries V1, V2, . . . , VL, each of which
is a (α′l,m′l, 0)-block encoding of a potentially non-unitary operation Γl. Then we can construct
an (αcomp,mcomp, 0)-block encoding of ΓL · · ·Γ2Γ1, where

αcomp = α′1α
′
2 · · ·α′L, mcomp = max

l
m′l + dlog2(L)e+ 1.

E Bounding the error due to the coefficient matrix
In this section, we show that small errors in the coefficient matrix can be controlled.

Lemma 16. Let VA(t, s) = T e
∫ t
s
A(u)du, and VB(t, s) = T e

∫ t
s
B(u)du. Then

‖VA(t, s)− VB(t, s)‖ ≤ e(t−s) maxu∈[s,t]{‖A(u)‖,‖B(u)‖}
∫ t

s
‖B(u)−A(u)‖du.

Proof. We observe that

d
dt(VA(t, s)− VB(t, s)) = A(t)(VA(t, s)− VB(t, s)) + (A(t)−B(t))VB(t).

Using Duhamel’s principle we have

VA(t, s)− VB(t, s) =
∫ t

s
VA(t, u)(A(t)−B(u))VB(u, s)du. (64)

Because
‖VA(t, u)‖ ≤ e

∫ t
u
‖A(v)‖dv ≤ e(t−u) maxv∈[u,t] ‖A(v)‖,

‖VB(t, u)‖ ≤ e
∫ u
s
‖B(v)‖dv ≤ e(u−s) maxv∈[s,u] ‖B(v)‖,

Eq. (64) implies

‖VA(t, s)− VB(t, s)‖ ≤
∫ t

s
e(t−u) maxv∈[u,t] ‖A(v)‖+(u−s) maxv∈[s,u] ‖B(v)‖‖B(u)−A(u)‖du.

The lemma can then be proved by observing that

(t− u) max
v∈[u,t]

‖A(v)‖+ (u− s) max
v∈[s,u]

‖B(v)‖ ≤ (t− s) max
u∈[s,t]

{‖A(u)‖, ‖B(u)‖}.

F Bounding numerical integration error using the total variation
In this section, we bound the numerical integration error. The standard numerical quadrature
results typically bound the error by the derivative of the matrix ‖Ȧ‖, and hence the matrix
A needs to be differentiable (see, e.g., [57, Eq. (A11)] or the textbook [19]), Here we bound

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 40

the numerical integration error by the total variation instead to account for non-differentiable
cases.

For large interval [0, T], we can partition the interval into segments 0 = x0 < x1 <
· · ·xK = T , xk − xk−1 = ∆, and the difference between the integral and the Riemann sum
can be bounded through∥∥∥∥∥

∫ T

0
A(s)ds−∆

K−1∑
k=0

A(xk)
∥∥∥∥∥ ≤

K−1∑
k=0

∥∥∥∥∥
∫ ∆

0
A(xk + y)dy −∆A(xk)

∥∥∥∥∥
≤ ∆

K−1∑
k=0

∫ xk+1

xk

‖Ȧ(y)‖dy

= ∆
∫ T

0
‖Ȧ(y)‖dy

Now we obtain similar bounds using the total variation. First for short time∥∥∥∥∥
∫ ∆

0
A(xk + s)ds−∆A(xk)

∥∥∥∥∥ ≤
∫ ∆

0
‖A(xk + s)−A(xk)‖ds ≤ ∆V xk+∆

xk
(A),

where the second inequality is because ‖A(xk + s)−A(xk)‖ ≤ V xk+∆
xk

(A). For long time∥∥∥∥∥
∫ T

0
A(s)ds−∆

K−1∑
k=0

A(xk)
∥∥∥∥∥ ≤

K−1∑
k=0

∥∥∥∥∥
∫ ∆

0
A(xk + y)dy −∆A(xk)

∥∥∥∥∥
≤ ∆

K−1∑
k=0

V
xk+1
xk (A)

= ∆V T
0 (A),

where we have used the fact that

V T
0 (A) =

K−1∑
k=0

V
xk+1
xk (A).

G Circuit construction of the contour integral formulation
In this section, we construct the circuit to implement eA using QSVT and the contour integral
formulation. We devote Appendix G.1 and Appendix G.2 to the preliminary discussions of
the block encoding of the inverse of a matrix and the quadrature discretization errors of the
contour integral formulation, respectively. Appendix G.3-Appendix G.5 discuss the circuit
construction in details and prove Lemma 12.

G.1 Block encoding the inverse of a matrix
This section follows [61, Appendix B]. We will discuss how to build a block encoding of the
inverse of a matrix A, given a block encoding of A.

For an odd function f we define the singular value transformation f� in the following way:
if M = WMΣMV

†
M , then f�(M) = WMf(ΣM)V †M . This transformation can be implemented

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 41

on a quantum computer using the quantum singular value transformation (QSVT) method
developed in Ref. [38]. The matrix inversion can be implemented as a singular value trans-
formation in the following way: when A = WΣV † is invertible, A−1 = V Σ−1W †. Therefore

(A/α)−1 = (f�(A/α))† (65)

where f(x) = x−1. However f(·) here is not bounded by 1 and is in fact singular at x = 0.
Therefore instead of approximating f(x) = x−1 on the whole interval [−1, 1] we consider an
odd polynomial p(x) such that∣∣∣∣p(x)− 3δ

4x

∣∣∣∣ ≤ ε′, ∀x ∈ [−1,−δ] ∪ [δ, 1].

and |p(x)| ≤ 1 for all x ∈ [−1, 1]. The existence of such an odd polynomial of degree
O(1

δ log(1
ε′)) is guaranteed by [38, Corollary 69].

Then [38, Theorem 2] enables us to implement (p�(A/α))† = V p(Σ/α)W †. We have

‖(p�(A/α))† − (3δ/4)(A/α)−1‖ = ‖p(Σ/α)− (3δ/4)(Σ/α)−1‖ ≤ ε′, (66)

if all diagonal elements of Σ/α, i.e. the singular values of A/α, are in the interval [δ, 1].
Therefore we want all singular values of A/α to be at least δ distance away from the origin.
We then use QSVT to block encode (p�(A/α))† given a block encoding of A.

We assume A can be accessed by its (α,m, 0)-block encoding UA. The singular values
of A/α are contained in [1/(α‖A−1‖), ‖A‖/α]. Therefore we choose δ = 1/(α‖A−1‖). Using
QSVT, a (1,m + 1, 0)-block encoding of p�(A/α) can be implemented [38, Theorem 2]. We
denote this block encoding by U . Then by Eq. (66)∥∥∥∥ 4

3δα(〈0m+1 ⊗ I|)U†(|0m+1 ⊗ I〉)−A−1
∥∥∥∥ =

∥∥∥∥ 4
3δα(p�(A/α)†)−A−1

∥∥∥∥ ≤ 4ε′

3δα.

Consequently, by our choice of δ, U† is a (4‖A−1‖/3,m + 1, ε)-block encoding of A−1 where
ε = 4‖A−1‖ε′/3. Because the cost of QSVT scales linearly with respect to the degree of the
polynomial p(x), the total number of queries to to UA and its inverse is

O
(1
δ

log
(1
ε′

))
= O

(
α‖A−1‖ log

(
‖A−1‖
ε

))
.

We summarize the result in the following Lemma:

Lemma 17. We assume A can be accessed by its (α,m, 0)-block encoding UA. Then a
(4‖A−1‖/3,m+ 1, ε)-block encoding of A−1 can be constructed using O

(
α‖A−1‖ log

(
‖A−1‖
ε

))
applications of (controlled-) UA and its inverse.

Note that in the case where ‖A−1‖ is unknown, it can be replaced with an upper bound
of ‖A−1‖.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 42

G.2 Evaluating contour integrals using the trapezoidal rule
In this section we analyze the error that comes from evaluating contour integrals using the
trapezoidal rule. We want to evaluate a matrix function f(A). Because of the fact that A may
not be a Hermitian matrix, we cannot directly apply QSVT. As a workaround, we use contour
integral and linear combination of unitaries (LCU) [31] to implement this matrix function.
By Cauchy’s formula we have

f(A) = 1
2πi

∫
Γ
f(z)(z −A)−1dz, (67)

where Γ is a circle with radius β: Γ = {z = βeiθ : θ ∈ R}, and ‖A‖ < β. We need to discretize
this integral in actual implementation. To do this we use the trapezoidal rule. If we use K
grid points on the unit circle we have

fK(A) = 1
K

K−1∑
k=0

f(zk)zk(zk −A)−1, (68)

for zk = βei2πk/K .
We directly use the result in [63, Theorem 18.1], which has been modified in Ref. [59] to

a form more suitable for our purposes:

Lemma 18. [63, Theorem 18.1], [59, Proposition 5] For a matrix function f(A) and its
discretized version fK(A) in (68), if f(z) is analytic in the disc {z : |z| < R}, then

‖f(A)− fK(A)‖ ≤
sup|z|<R |f(z)|

1− ‖A‖R

 1
1− (‖A‖β)K

(‖A‖
β

)K
+ 1

1− (βR)K

(
β

R

)K . (69)

G.3 Block encoding of Ξ
In this section we will only use the second to the fifth registers. We first define

|COEFk〉 = 1√
β + α

(√zk |0〉+
√
α |1〉), |COEF′k〉 = 1√

β + α
((√zk)∗ |0〉 −

√
α |1〉).

Because |zk| = β these are normalized quantum states. We can then implement using O(K)
gates unitaries PREP and PREP′ such that

PREP |k〉 |0〉 = |k〉 |COEFk〉 , PREP′ |k〉 |0〉 = |k〉 |COEF′k〉 . (70)

These two unitaries will give us the coefficients zk we need in Ξ. Now we can construct a
unitary SEL:

SEL = (PREP′ ⊗ Im+n)†(Ilog2(K) ⊗ cUA)(PREP⊗ Im+n), (71)

where cUA = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ UA is controlled-UA. The circuit is given in Fig. 5. One
can verify that

(Ilog2(K) ⊗ 〈0| ⊗ 〈0m| ⊗ In)SEL(Ilog2(K) ⊗ |0〉 ⊗ |0m〉 ⊗ In) = 1
β + α

Ξ.

Therefore SEL is a (β + α,m + 1, 0)-block encoding of Ξ. Note that SEL uses UA only once
and O(K) additional elementary gates.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 43

|0log2(K)〉
PREP PREP’†

|0〉 •

|0m〉
UM

|0n〉

Figure 5: Quantum circuit of implementing the block encoding of the linear combination for each matrix
inversion problem (zk − U). Here PREP and PREP’ are defined as (70).

G.4 Block encoding of Ξ−1

Now that we have a block encoding of Ξ we will directly apply Lemma 17 to get a block
encoding of Ξ−1. We need to upper bound ‖Ξ−1‖. First we have

‖Ξ−1‖ = max
k
‖(zk −A)−1‖ ≤ max

k
|zk|−1

∞∑
r=0

(‖A‖
|zk|

)r
= max

k

1
|zk| − ‖A‖

≤ α−1,

where we have used the fact that ‖A‖ ≤ α and |zk| = β = 2α. Using this result, and
direct calculation of the other parameters in Lemma 17, it can be seen that we can get a
(4/(3α),m + 2, ε′)-block encoding of Ξ−1 using O(log(α−1ε′−1)) applications of (controlled-)
SEL and its inverse, which translates to the same number of applications of (controlled-) UA
and its inverse. We denote this block encoding of Ξ−1 by SELinv. It acts on all 5 registers of
the circuit, and the first register contains the ancilla qubit needed for QSVT.

G.5 Using LCU to block encode eA

We have now come to the final step in which we construct a block encoding of eA using LCU.
As discussed at the beginning of Section 5.3, we need quantum states |COEFint〉, |COEF′int〉
to encode the coefficients. We specify the normalization factor below:

|COEFint〉 = 1
AK

∑
k

√
ezkzk |k〉 , |COEF′int〉 = 1

AK
∑
k

(
√
ezkzk)∗ |k〉 , (72)

where

A = 1
K

K−1∑
k=0
|ezkzk| =

β

K

K−1∑
k=0
|ezk |.

One can see that 0 < A ≤ 2αe2α. Now we can construct unitaries PREPint and PREP′int that
satisfy

PREPint |0log2(K)〉 = |COEFint〉 , PREP′int |0log2(K)〉 = |COEF′int〉 . (73)

These two unitaries each uses O(K) elementary gates. Then we let

ULCU = (I1 ⊗ PREP′int ⊗ Im+n+1)†SELinv(I1 ⊗ PREPint ⊗ Im+n+1). (74)

The circuit is given by Fig. 6. We can then verify that

(〈0| ⊗ 〈0log2(K)| ⊗ 〈0| ⊗ 〈0m| ⊗ In)ULCU(|0〉 ⊗ |0log2(K)〉 ⊗ |0〉 ⊗ |0m〉 ⊗ In)

= 3α
4AfK(A) +O(αε′) = 3α

4A(fK(A) +O(Aε′)).

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 44

|0〉

SELinv

|0log2(K)〉 PREPint PREP’†int

|0〉

|0m〉

Figure 6: Quantum circuit of implementing the block encoding of the linear combination of the precondi-
tioned matrix inversions. Here PREPint and PREP’int are defined as (73) and the select oracle SELinv is the
standard QSVT circuit for the matrix function as discussed in Appendix G.4.

Therefore ULCU is a (4A/(3α),m + log2(K) + 2,O(Aε′))-block encoding of fK(A). By (49),
it is also a (4A/(3α),m + log2(K) + 2,O(Aε′ + e4α2−K))-block encoding of f(A). In order
to get the error to be below ε we can choose ε′ = Θ(ε/A), and K = O(α + log(ε−1)). In the
whole process (controlled-) UA and its inverse are used O(log(α−1ε′−1)) = O(log(Aα−1ε−1)) =
O(α+ log(ε−1)) times. In sum, we get Lemma 12.

Accepted in Quantum 2023-03-13, click title to verify. Published under CC-BY 4.0. 45

	1 Introduction
	1.1 Related works
	1.2 Contribution
	1.3 Challenges in designing time marching based quantum solvers
	1.4 Organization

	2 Overview of the method
	2.1 Main idea
	2.2 Input Model
	2.3 Uniform singular value amplification
	2.4 Amplitude amplification using compression gadget

	3 High-order truncated Dyson series approach
	3.1 Short time evolution
	3.2 Block encoding of the long time evolution operator
	3.3 Success probability and main result for Dyson series approach
	3.4 Application to sparse matrix input model

	4 Optimality of the query complexity with respect to Q
	5 Simplified implementation and first-order truncated Magnus series
	5.1 Short-time evolution description
	5.2 Time discretization error
	5.3 Algorithm for implementing eA
	5.4 Short-time complexity of the first-order integrator
	5.5 Block encoding of the long-time evolution operator
	5.6 Success probability and main result paired with first-order integrator

	6 Discussion
	A Notations
	B Block encoding and quantum singular value transformation
	C Convex optimization based method for uniform singular value amplification
	D The compression gadget
	E Bounding the error due to the coefficient matrix
	F Bounding numerical integration error using the total variation
	G Circuit construction of the contour integral formulation
	G.1 Block encoding the inverse of a matrix
	G.2 Evaluating contour integrals using the trapezoidal rule
	G.3 Block encoding of
	G.4 Block encoding of -1
	G.5 Using LCU to block encode eA

