Time-marching based quantum solvers for time-dependent linear differential equations
1Department of Mathematics, University of California, Berkeley, CA 94720, USA
2Simons Institute for the Theory of Computing, University of California, Berkeley, CA 94720, USA
3Challenge Institute for Quantum Computation, University of California, Berkeley, CA 94720, USA
4Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
5Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA
Published: | 2023-03-20, volume 7, page 955 |
Eprint: | arXiv:2208.06941v2 |
Doi: | https://doi.org/10.22331/q-2023-03-20-955 |
Citation: | Quantum 7, 955 (2023). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
The time-marching strategy, which propagates the solution from one time step to the next, is a natural strategy for solving time-dependent differential equations on classical computers, as well as for solving the Hamiltonian simulation problem on quantum computers. For more general homogeneous linear differential equations $\frac{\mathrm{d}}{\mathrm{d} t} |\psi(t)\rangle = A(t) |\psi(t)\rangle, |\psi(0)\rangle = |\psi_0\rangle$, a time-marching based quantum solver can suffer from exponentially vanishing success probability with respect to the number of time steps and is thus considered impractical. We solve this problem by repeatedly invoking a technique called the uniform singular value amplification, and the overall success probability can be lower bounded by a quantity that is independent of the number of time steps. The success probability can be further improved using a compression gadget lemma. This provides a path of designing quantum differential equation solvers that is alternative to those based on quantum linear systems algorithms (QLSA). We demonstrate the performance of the time-marching strategy with a high-order integrator based on the truncated Dyson series. The complexity of the algorithm depends linearly on the amplification ratio, which quantifies the deviation from a unitary dynamics. We prove that the linear dependence on the amplification ratio attains the query complexity lower bound and thus cannot be improved in the worst case. This algorithm also surpasses existing QLSA based solvers in three aspects: (1) $A(t)$ does not need to be diagonalizable. (2) $A(t)$ can be non-smooth, and is only of bounded variation. (3) It can use fewer queries to the initial state $|\psi_0\rangle$. Finally, we demonstrate the time-marching strategy with a first-order truncated Magnus series, which simplifies the implementation compared to high-order truncated Dyson series approach, while retaining the aforementioned benefits. Our analysis also raises some open questions concerning the differences between time-marching and QLSA based methods for solving differential equations.
Popular summary
► BibTeX data
► References
[1] A. Ambainis. Variable time amplitude amplification and quantum algorithms for linear algebra problems. In Leibniz Int. Proc. Informatics, LIPIcs, volume 14, pages 636–647, 2012. doi:10.4230/LIPIcs.STACS.2012.636.
https://doi.org/10.4230/LIPIcs.STACS.2012.636
[2] D. An, D. Fang, S. Jordan, J.-P. Liu, G. H. Low, and J. Wang. Efficient quantum algorithm for nonlinear reaction-diffusion equations and energy estimation, 2022. URL: http://arxiv.org/abs/2205.01141, arXiv:2205.01141, doi:10.48550/ARXIV.2205.01141.
https://doi.org/10.48550/ARXIV.2205.01141
arXiv:2205.01141
[3] D. An, D. Fang, and L. Lin. Time-dependent unbounded Hamiltonian simulation with vector norm scaling. Quantum, 5:1–49, may 2021. URL: https://doi.org/10.22331/q-2021-05-26-459, arXiv:2012.13105, doi:10.22331/Q-2021-05-26-459.
https://doi.org/10.22331/q-2021-05-26-459
arXiv:2012.13105
[4] D. An, D. Fang, and L. Lin. Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics and Superconvergence for Schrödinger Equation. Quantum, 6:690, apr 2022. doi:10.22331/q-2022-04-15-690.
https://doi.org/10.22331/q-2022-04-15-690
[5] D. An and L. Lin. Quantum Linear System Solver Based on Time-optimal Adiabatic Quantum Computing and Quantum Approximate Optimization Algorithm. ACM Trans. Quantum Comput., 3(2):1–28, 2022. arXiv:1909.05500, doi:10.1145/3498331.
https://doi.org/10.1145/3498331
arXiv:1909.05500
[6] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510–1523, 1997. doi:10.1137/S0097539796300933.
https://doi.org/10.1137/S0097539796300933
[7] D. Berry, A. M. Childs, Y. Su, X. Wang, and N. Wiebe. Time-dependent Hamiltonian simulation with $L^{1}$-norm scaling. Quantum, 4:254, 2020. doi:10.22331/q-2020-04-20-254.
https://doi.org/10.22331/q-2020-04-20-254
[8] D. W. Berry. High-order quantum algorithm for solving linear differential equations. Journal of Physics A: Mathematical and Theoretical, 47(10):105301, feb 2014. doi:10.1088/1751-8113/47/10/105301.
https://doi.org/10.1088/1751-8113/47/10/105301
[9] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders. Efficient quantum algorithms for simulating sparse hamiltonians. Commun. Math. Phys., 270(2):359–371, 2007. arXiv:0508139, doi:10.1007/s00220-006-0150-x.
https://doi.org/10.1007/s00220-006-0150-x
arXiv:0508139
[10] D. W. Berry and A. M. Childs. Black-box hamiltonian simulation and unitary implementation. Quantum Inf. Comput., 12(1-2):29–62, 2012. arXiv:0910.4157, doi:10.26421/QIC12.1-2.
https://doi.org/10.26421/QIC12.1-2
arXiv:0910.4157
[11] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. Exponential improvement in precision for simulating sparse Hamiltonians. In Proc. Annu. ACM Symp. Theory Comput., pages 283–292, 2014. arXiv:1312.1414, doi:10.1145/2591796.2591854.
https://doi.org/10.1145/2591796.2591854
arXiv:1312.1414
[12] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. Simulating hamiltonian dynamics with a truncated taylor series. Phys. Rev. Lett., 114(9):90502, 2015. arXiv:1412.4687, doi:10.1103/PhysRevLett.114.090502.
https://doi.org/10.1103/PhysRevLett.114.090502
arXiv:1412.4687
[13] D. W. Berry, A. M. Childs, and R. Kothari. Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters. Proc. - Annu. IEEE Symp. Found. Comput. Sci. FOCS, 2015-December:792–809, 2015. arXiv:1501.01715, doi:10.1109/FOCS.2015.54.
https://doi.org/10.1109/FOCS.2015.54
arXiv:1501.01715
[14] D. W. Berry, A. M. Childs, A. Ostrander, and G. Wang. Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Communications in Mathematical Physics, 356(3):1057–1081, 2017. doi:10.1007/s00220-017-3002-y.
https://doi.org/10.1007/s00220-017-3002-y
[15] D. W. Berry, R. Cleve, and S. Gharibian. Gate-efficient discrete simulations of continuous-time quantum query algorithms. Quantum Inf. Comput., 14(1-2):1–30, 2014. doi:10.26421/qic14.1-2-1.
https://doi.org/10.26421/qic14.1-2-1
[16] D. W. Berry and P. C. S. Costa. Quantum algorithm for time-dependent differential equations using dyson series, 2022. URL: https://arxiv.org/abs/2212.03544, doi:10.48550/ARXIV.2212.03544.
https://doi.org/10.48550/ARXIV.2212.03544
arXiv:2212.03544
[17] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estimation. Contemp. Math., 305:53–74, 2002. arXiv:0005055, doi:10.1090/conm/305/05215.
https://doi.org/10.1090/conm/305/05215
arXiv:0005055
[18] F. Brauer and J. A. Nohel. The Qualitative Theory of Ordinary Differential Equations: An Introduction. Dover Books on Mathematics. Dover Publications, 2012. URL: https://books.google.com/books?id=9qPsbRl7hBkC.
https://books.google.com/books?id=9qPsbRl7hBkC
[19] R. L. Burden, J. D. Faires, and A. C. Reynolds. Numerical analysis. Brooks Cole, 2000.
[20] E. Campbell. Random Compiler for Fast Hamiltonian Simulation. Phys. Rev. Lett., 123(7):70503, 2019. arXiv:1811.08017, doi:10.1103/PhysRevLett.123.070503.
https://doi.org/10.1103/PhysRevLett.123.070503
arXiv:1811.08017
[21] S. Chakraborty, A. Gilyén, and S. Jeffery. The power of block-encoded matrix powers: Improved regression techniques via faster Hamiltonian simulation. Leibniz Int. Proc. Informatics, LIPIcs, 132, 2019. arXiv:1804.01973, doi:10.4230/LIPIcs.ICALP.2019.33.
https://doi.org/10.4230/LIPIcs.ICALP.2019.33
arXiv:1804.01973
[22] R. Chao, D. Ding, A. Gilyen, C. Huang, and M. Szegedy. Finding Angles for Quantum Signal Processing with Machine Precision. 2020. URL: http://arxiv.org/abs/2003.02831, arXiv:2003.02831, doi:10.48550/arXiv.2003.02831.
https://doi.org/10.48550/arXiv.2003.02831
arXiv:2003.02831
[23] C.-F. Chen, Hsin-Yuan, Huang, R. Kueng, and J. a. Tropp. Concentration for random product formulas. arXiv:2008.11751, page 25, 2020. URL: http://arxiv.org/abs/2008.11751, arXiv:2008.11751, doi:10.1103/PRXQuantum.2.040305.
https://doi.org/10.1103/PRXQuantum.2.040305
arXiv:2008.11751
[24] Y. H. Chen, A. Kalev, and I. Hen. Quantum Algorithm for Time-Dependent Hamiltonian Simulation by Permutation Expansion. PRX Quantum, 2(3):30342, sep 2021. URL: https://doi.org/10.1103/PRXQuantum.2.030342, arXiv:2103.15334, doi:10.1103/PRXQuantum.2.030342.
https://doi.org/10.1103/PRXQuantum.2.030342
arXiv:2103.15334
[25] A. M. Childs, R. Kothari, and R. D. Somma. Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput., 46(6):1920–1950, 2017. arXiv:1511.02306, doi:10.1137/16M1087072.
https://doi.org/10.1137/16M1087072
arXiv:1511.02306
[26] A. M. Childs and J. P. Liu. Quantum Spectral Methods for Differential Equations. Commun. Math. Phys., 375(2):1427–1457, 2020. arXiv:1901.00961, doi:10.1007/s00220-020-03699-z.
https://doi.org/10.1007/s00220-020-03699-z
arXiv:1901.00961
[27] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su. Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. U. S. A., 115(38):9456–9461, 2018. arXiv:1711.10980, doi:10.1073/pnas.1801723115.
https://doi.org/10.1073/pnas.1801723115
arXiv:1711.10980
[28] A. M. Childs, A. Ostrander, and Y. Su. Faster quantum simulation by randomization. Quantum, 3:182, 2019. arXiv:1805.08385, doi:10.22331/q-2019-09-02-182.
https://doi.org/10.22331/q-2019-09-02-182
arXiv:1805.08385
[29] A. M. Childs and Y. Su. Nearly Optimal Lattice Simulation by Product Formulas. Phys. Rev. Lett., 123(5):50503, 2019. arXiv:1901.00564, doi:10.1103/PhysRevLett.123.050503.
https://doi.org/10.1103/PhysRevLett.123.050503
arXiv:1901.00564
[30] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu. Theory of Trotter Error with Commutator Scaling. Phys. Rev. X, 11(1):11020, 2021. doi:10.1103/PhysRevX.11.011020.
https://doi.org/10.1103/PhysRevX.11.011020
[31] A. M. Childs and N. Wiebe. Hamiltonian simulation using linear combinations of unitary operations. Quantum Inf. Comput., 12(11-12):901–924, nov 2012. URL: http://dx.doi.org/10.26421/QIC12.11-12, arXiv:1202.5822, doi:10.26421/qic12.11-12-1.
https://doi.org/10.26421/QIC12.11-12
arXiv:1202.5822
[32] P. C. Costa, D. An, Y. R. Sanders, Y. Su, R. Babbush, and D. W. Berry. Optimal scaling quantum linear-systems solver via discrete adiabatic theorem. PRX Quantum, 3:040303, Oct 2022. URL: https://doi.org/10.1103/PRXQuantum.3.040303, doi:10.1103/PRXQuantum.3.040303.
https://doi.org/10.1103/PRXQuantum.3.040303
[33] P. C. S. Costa, S. Jordan, and A. Ostrander. Quantum algorithm for simulating the wave equation. Physical Review A, 99(1):012323, 2019. arXiv:1711.05394. doi:10.1103/PhysRevA.99.012323.
https://doi.org/10.1103/PhysRevA.99.012323
arXiv:1711.05394
[34] I. Y. Dodin and E. A. Startsev. On applications of quantum computing to plasma simulations. Physics of Plasmas, 28(9):092101, 2021. doi:10.1063/5.0056974.
https://doi.org/10.1063/5.0056974
[35] Y. Dong, X. Meng, K. B. Whaley, and L. Lin. Efficient phase-factor evaluation in quantum signal processing. Phys. Rev. A, 103(4), 2021. arXiv:2002.11649, doi:10.1103/PhysRevA.103.042419.
https://doi.org/10.1103/PhysRevA.103.042419
arXiv:2002.11649
[36] A. Engel, G. Smith, and S. E. Parker. Linear embedding of nonlinear dynamical systems and prospects for efficient quantum algorithms. Physics of Plasmas, 28(6):062305, 2021. arXiv:2012.06681. doi:10.1063/5.0040313.
https://doi.org/10.1063/5.0040313
arXiv:2012.06681
[37] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. arXiv preprint arXiv:1806.01838, 2018. doi:10.48550/arXiv.1806.01838.
https://doi.org/10.48550/arXiv.1806.01838
arXiv:1806.01838
[38] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proc. 51st Annu. ACM SIGACT Symp. Theory Comput., pages 193–204, 2019. doi:10.1145/3313276.3316366.
https://doi.org/10.1145/3313276.3316366
[39] D. Gottlieb and C.-W. Shu. On the Gibbs phenomenon and its resolution. SIAM Rev., 39(4):644–668, 1997. doi:10.1137/S0036144596301390.
https://doi.org/10.1137/S0036144596301390
[40] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx, Mar. 2014.
http://cvxr.com/cvx
[41] J. Haah. Product decomposition of periodic functions in quantum signal processing. Quantum, 3:190, 2019. arXiv:1806.10236, doi:10.22331/q-2019-10-07-190.
https://doi.org/10.22331/q-2019-10-07-190
arXiv:1806.10236
[42] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (Springer Series in Computational Mathematics), volume 31. Springer, 2006.
[43] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations I. nonstiff problems, volume 29. Springer, 1987. doi:10.1016/0378-4754(87)90083-8.
https://doi.org/10.1016/0378-4754(87)90083-8
[44] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 103(15):150502, 2009. doi:10.1103/PhysRevLett.103.150502.
https://doi.org/10.1103/PhysRevLett.103.150502
[45] S. Jin and N. Liu. Quantum algorithms for computing observables of nonlinear partial differential equations, 2022. arXiv:2202.07834. doi:10.48550/arXiv.2202.07834.
https://doi.org/10.48550/arXiv.2202.07834
arXiv:2202.07834
[46] I. Joseph. Koopman-von Neumann approach to quantum simulation of nonlinear classical dynamics. Physical Review Research, 2(4):043102, 2020. arXiv:2003.09980. doi:10.1103/PhysRevResearch.2.043102.
https://doi.org/10.1103/PhysRevResearch.2.043102
arXiv:2003.09980
[47] M. Kieferová, A. Scherer, and D. W. Berry. Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series. Phys. Rev. A, 99(4), apr 2019. URL: http://dx.doi.org/10.1103/PhysRevA.99.042314, arXiv:1805.00582, doi:10.1103/PhysRevA.99.042314.
https://doi.org/10.1103/PhysRevA.99.042314
arXiv:1805.00582
[48] H. Krovi. Improved quantum algorithms for linear and nonlinear differential equations, 2022. URL: http://arxiv.org/abs/2202.01054, arXiv:2202.01054, doi:10.48550/ARXIV.2202.01054.
https://doi.org/10.48550/ARXIV.2202.01054
arXiv:2202.01054
[49] L. Lin and Y. Tong. Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems. Quantum, 4:361, 2020. doi:10.22331/q-2020-11-11-361.
https://doi.org/10.22331/q-2020-11-11-361
[50] N. Linden, A. Montanaro, and C. Shao. Quantum vs. classical algorithms for solving the heat equation. Comm. Math. Phys., 395(2):601–641, 2022. doi:10.1007/s00220-022-04442-6.
https://doi.org/10.1007/s00220-022-04442-6
[51] J.-P. Liu, H. Ø. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa, and A. M. Childs. Efficient quantum algorithm for dissipative nonlinear differential equations. Proceedings of the National Academy of Sciences, 118(35), 2021. arXiv:2011.03185. doi:10.1073/pnas.2026805118.
https://doi.org/10.1073/pnas.2026805118
arXiv:2011.03185
[52] S. Lloyd, G. De Palma, C. Gokler, B. Kiani, Z.-W. Liu, M. Marvian, F. Tennie, and T. Palmer. Quantum algorithm for nonlinear differential equations, 2020. arXiv:2011.06571. doi:10.48550/arXiv.2011.06571.
https://doi.org/10.48550/arXiv.2011.06571
arXiv:2011.06571
[53] G. H. Low. Hamiltonian simulation with nearly optimal dependence on spectral norm. In Proc. Annu. ACM Symp. Theory Comput., pages 491–502, 2019. arXiv:1807.03967, doi:10.1145/3313276.3316386.
https://doi.org/10.1145/3313276.3316386
arXiv:1807.03967
[54] G. H. Low and I. L. Chuang. Hamiltonian simulation by uniform spectral amplification. arXiv:1707.05391, 2017. doi:10.48550/arXiv.1707.05391.
https://doi.org/10.48550/arXiv.1707.05391
arXiv:1707.05391
[55] G. H. Low and I. L. Chuang. Optimal Hamiltonian Simulation by Quantum Signal Processing. Phys. Rev. Lett., 118(1):10501, 2017. arXiv:1606.02685, doi:10.1103/PhysRevLett.118.010501.
https://doi.org/10.1103/PhysRevLett.118.010501
arXiv:1606.02685
[56] G. H. Low and I. L. Chuang. Hamiltonian simulation by qubitization. Quantum, 3:163, 2019. arXiv:1610.06546, doi:10.22331/q-2019-07-12-163.
https://doi.org/10.22331/q-2019-07-12-163
arXiv:1610.06546
[57] G. H. Low and N. Wiebe. Hamiltonian Simulation in the Interaction Picture. arXiv:1805.00675, 2018. URL: http://arxiv.org/abs/1805.00675, arXiv:1805.00675, doi:10.48550/arXiv.1805.00675.
https://doi.org/10.48550/arXiv.1805.00675
arXiv:1805.00675
[58] Y. Subaşl, R. D. Somma, and D. Orsucci. Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing. Phys. Rev. Lett., 122(6):60504, 2019. arXiv:1805.10549, doi:10.1103/PhysRevLett.122.060504.
https://doi.org/10.1103/PhysRevLett.122.060504
arXiv:1805.10549
[59] S. Takahira, A. Ohashi, T. Sogabe, and T. S. Usuda. Quantum algorithm for matrix functions by cauchy's integral formula. Quantum Inf. Comput., 20(1-2):14–36, 2020. arXiv:2106.08075, doi:10.26421/qic20.1-2-2.
https://doi.org/10.26421/qic20.1-2-2
arXiv:2106.08075
[60] Y. Tong, V. V. Albert, J. R. McClean, J. Preskill, and Y. Su. Provably accurate simulation of gauge theories and bosonic systems, 2021. URL: https://arxiv.org/abs/2110.06942, doi:10.48550/ARXIV.2110.06942.
https://doi.org/10.48550/ARXIV.2110.06942
arXiv:2110.06942
[61] Y. Tong, D. An, N. Wiebe, and L. Lin. Fast inversion, preconditioned quantum linear system solvers, fast Green's-function computation, and fast evaluation of matrix functions. Phys. Rev. A, 104(3), 2021. doi:10.1103/PhysRevA.104.032422.
https://doi.org/10.1103/PhysRevA.104.032422
[62] L. N. Trefethen. Approximation Theory and Approximation Practice, Extended Edition, volume 164. SIAM, 2019. doi:10.1137/1.9781611975949.
https://doi.org/10.1137/1.9781611975949
[63] L. N. Trefethen and J. A. Weideman. The exponentially convergent trapezoidal rule. SIAM Rev., 56(3):385–458, 2014. doi:10.1137/130932132.
https://doi.org/10.1137/130932132
[64] C. Tronci and I. Joseph. Koopman wavefunctions and Clebsch variables in Vlasov-Maxwell kinetic theory, 2021. doi:10.1017/S0022377821000805.
https://doi.org/10.1017/S0022377821000805
[65] J. Wang, Y. Dong, and L. Lin. On the energy landscape of symmetric quantum signal processing. Quantum, 6:850, Nov. 2022. doi:10.22331/q-2022-11-03-850.
https://doi.org/10.22331/q-2022-11-03-850
[66] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and M. Troyer. Solving strongly correlated electron models on a quantum computer. Phys. Rev. A - At. Mol. Opt. Phys., 92(6):62318, 2015. arXiv:1506.05135, doi:10.1103/PhysRevA.92.062318.
https://doi.org/10.1103/PhysRevA.92.062318
arXiv:1506.05135
[67] N. Wiebe, D. Berry, P. Høyer, and B. C. Sanders. Higher order decompositions of ordered operator exponentials. J. Phys. A Math. Theor., 43(6), 2010. arXiv:0812.0562, doi:10.1088/1751-8113/43/6/065203.
https://doi.org/10.1088/1751-8113/43/6/065203
arXiv:0812.0562
[68] L. Ying. Stable factorization for phase factors of quantum signal processing. Quantum, 6:842, Oct. 2022. doi:10.22331/q-2022-10-20-842.
https://doi.org/10.22331/q-2022-10-20-842
[69] B. Şahinoğlu and R. D. Somma. Hamiltonian simulation in the low-energy subspace. npj Quantum Inf., 7(1), 2021. arXiv:2006.02660, doi:10.1038/s41534-021-00451-w.
https://doi.org/10.1038/s41534-021-00451-w
arXiv:2006.02660
Cited by
[1] Kaoru Mizuta and Keisuke Fujii, "Optimal Hamiltonian simulation for time-periodic systems", Quantum 7, 962 (2023).
[2] Hari Krovi, "Improved quantum algorithms for linear and nonlinear differential equations", Quantum 7, 913 (2023).
[3] Shi Jin, Nana Liu, and Yue Yu, "Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial differential equations", Journal of Computational Physics 487, 112149 (2023).
[4] Yulong Dong, Lin Lin, Hongkang Ni, and Jiasu Wang, "Infinite quantum signal processing", arXiv:2209.10162, (2022).
[5] Óscar Amaro and Diogo Cruz, "A Living Review of Quantum Computing for Plasma Physics", arXiv:2302.00001, (2023).
The above citations are from Crossref's cited-by service (last updated successfully 2023-06-09 11:35:21) and SAO/NASA ADS (last updated successfully 2023-06-09 11:35:22). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.