Efficient separation of quantum from classical correlations for mixed states with a fixed charge

Christian Carisch1 and Oded Zilberberg2

1Institute for Theoretical Physics, ETH Zürich, CH-8093 Zürich, Switzerland.
2Department of Physics, University of Konstanz, 78464 Konstanz, Germany.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Entanglement is the key resource for quantum technologies and is at the root of exciting many-body phenomena. However, quantifying the entanglement between two parts of a real-world quantum system is challenging when it interacts with its environment, as the latter mixes cross-boundary classical with quantum correlations. Here, we efficiently quantify quantum correlations in such realistic open systems using the operator space entanglement spectrum of a mixed state. If the system possesses a fixed charge, we show that a subset of the spectral values encode coherence between different cross-boundary charge configurations. The sum over these values, which we call "configuration coherence", can be used as a quantifier for cross-boundary coherence. Crucially, we prove that for purity non-increasing maps, e.g., Lindblad-type evolutions with Hermitian jump operators, the configuration coherence is an entanglement measure. Moreover, it can be efficiently computed using a tensor network representation of the state's density matrix. We showcase the configuration coherence for spinless particles moving on a chain in presence of dephasing. Our approach can quantify coherence and entanglement in a broad range of systems and motivates efficient entanglement detection.

Quantum systems can become far more correlated than their classical counterparts. These correlations, called entanglement, are the key resource for present-day and future quantum technologies. However, it is extremely difficult to quantify entanglement in realistic quantum systems because they tend to correlate with their environment. As a result, the open system shows both classical and quantum correlations. In this work, we are able to separate the classical from quantum correlations when assuming an additional fixed charge symmetry in the system. To this end, we define an easy-to-compute quantity, dubbed the configuration coherence, and prove that it is an entanglement quantifier for a broad range of realistic quantum systems. Finally, we provide an algorithm to efficiently calculate the configuration coherence for one-dimensional systems.

► BibTeX data

► References

[1] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. 10.1017/​CBO9780511976667.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[2] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. Characterizing quantum supremacy in near-term devices. Nature Physics, 14 (66): 595–600, Jun 2018. ISSN 1745-2481. 10.1038/​s41567-018-0124-x.
https:/​/​doi.org/​10.1038/​s41567-018-0124-x

[3] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, H. Neven, and J. M. Martinis. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science, 360 (6385): 195–199, Apr 2018. 10.1126/​science.aao4309.
https:/​/​doi.org/​10.1126/​science.aao4309

[4] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574 (77797779): 505–510, Oct 2019. ISSN 1476-4687. 10.1038/​s41586-019-1666-5.
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[5] Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K. Wootters. Mixed-state entanglement and quantum error correction. Phys. Rev. A, 54: 3824–3851, Nov 1996. 10.1103/​PhysRevA.54.3824.
https:/​/​doi.org/​10.1103/​PhysRevA.54.3824

[6] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo. Experimental quantum error correction. Phys. Rev. Lett., 81: 2152–2155, Sep 1998. 10.1103/​PhysRevLett.81.2152.
https:/​/​doi.org/​10.1103/​PhysRevLett.81.2152

[7] Philipp Schindler, Julio T. Barreiro, Thomas Monz, Volckmar Nebendahl, Daniel Nigg, Michael Chwalla, Markus Hennrich, and Rainer Blatt. Experimental repetitive quantum error correction. Science, 332 (6033): 1059–1061, May 2011. 10.1126/​science.1203329.
https:/​/​doi.org/​10.1126/​science.1203329

[8] Christian Kraglund Andersen, Ants Remm, Stefania Lazar, Sebastian Krinner, Nathan Lacroix, Graham J. Norris, Mihai Gabureac, Christopher Eichler, and Andreas Wallraff. Repeated quantum error detection in a surface code. Nature Physics, 16 (8): 875–880, Aug 2020. ISSN 1745-2481. 10.1038/​s41567-020-0920-y.
https:/​/​doi.org/​10.1038/​s41567-020-0920-y

[9] Sebastian Krinner, Nathan Lacroix, Ants Remm, Agustin Di Paolo, Elie Genois, Catherine Leroux, Christoph Hellings, Stefania Lazar, Francois Swiadek, Johannes Herrmann, Graham J. Norris, Christian Kraglund Andersen, Markus Müller, Alexandre Blais, Christopher Eichler, and Andreas Wallraff. Realizing repeated quantum error correction in a distance-three surface code. Nature, 605 (7911): 669–674, May 2022. ISSN 1476-4687. 10.1038/​s41586-022-04566-8.
https:/​/​doi.org/​10.1038/​s41586-022-04566-8

[10] Luca Pezzé and Augusto Smerzi. Entanglement, nonlinear dynamics, and the heisenberg limit. Phys. Rev. Lett., 102: 100401, Mar 2009. 10.1103/​PhysRevLett.102.100401.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.100401

[11] Rafał Demkowicz-Dobrzaóski, Jan Kołodyński, and Mădălin Guţă . The elusive heisenberg limit in quantum-enhanced metrology. Nature Communications, 3 (11): 1063, Sep 2012. ISSN 2041-1723. 10.1038/​ncomms2067.
https:/​/​doi.org/​10.1038/​ncomms2067

[12] Sisi Zhou, Mengzhen Zhang, John Preskill, and Liang Jiang. Achieving the heisenberg limit in quantum metrology using quantum error correction. Nature Communications, 9 (11): 78, Jan 2018. ISSN 2041-1723. 10.1038/​s41467-017-02510-3.
https:/​/​doi.org/​10.1038/​s41467-017-02510-3

[13] Gui-lu Long, Fu-guo Deng, Chuan Wang, Xi-han Li, Kai Wen, and Wan-ying Wang. Quantum secure direct communication and deterministic secure quantum communication. Frontiers of Physics in China, 2 (3): 251–272, Jul 2007. ISSN 1673-3606. 10.1007/​s11467-007-0050-3.
https:/​/​doi.org/​10.1007/​s11467-007-0050-3

[14] Jian-Yong Hu, Bo Yu, Ming-Yong Jing, Lian-Tuan Xiao, Suo-Tang Jia, Guo-Qing Qin, and Gui-Lu Long. Experimental quantum secure direct communication with single photons. Light: Science & Applications, 5 (99): e16144–e16144, Sep 2016. ISSN 2047-7538. 10.1038/​lsa.2016.144.
https:/​/​doi.org/​10.1038/​lsa.2016.144

[15] Wei Zhang, Dong-Sheng Ding, Yu-Bo Sheng, Lan Zhou, Bao-Sen Shi, and Guang-Can Guo. Quantum secure direct communication with quantum memory. Phys. Rev. Lett., 118: 220501, May 2017. 10.1103/​PhysRevLett.118.220501.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.220501

[16] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter, and Anton Zeilinger. Experimental quantum teleportation. Nature, 390 (66606660): 575–579, Dec 1997. ISSN 1476-4687. 10.1038/​37539.
https:/​/​doi.org/​10.1038/​37539

[17] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik. Unconditional quantum teleportation. Science, 282 (5389): 706–709, Oct 1998. 10.1126/​science.282.5389.706.
https:/​/​doi.org/​10.1126/​science.282.5389.706

[18] M. A. Nielsen, E. Knill, and R. Laflamme. Complete quantum teleportation using nuclear magnetic resonance. Nature, 396 (67066706): 52–55, Nov 1998. ISSN 1476-4687. 10.1038/​23891.
https:/​/​doi.org/​10.1038/​23891

[19] M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt. Deterministic quantum teleportation with atoms. Nature, 429 (69936993): 734–737, Jun 2004. ISSN 1476-4687. 10.1038/​nature02570.
https:/​/​doi.org/​10.1038/​nature02570

[20] Ph. Nozières and Annie Blandin. Kondo effect in real metals. Journal de Physique, 41 (3): 193–211, 1980. 10.1051/​jphys:01980004103019300.
https:/​/​doi.org/​10.1051/​jphys:01980004103019300

[21] Jun Kondo. The Physics of Dilute Magnetic Alloys. Cambridge University Press, 2012. 10.1017/​CBO9781139162173.
https:/​/​doi.org/​10.1017/​CBO9781139162173

[22] D. M. Basko, I. L. Aleiner, and B. L. Altshuler. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Annals of Physics, 321 (5): 1126–1205, 2006. ISSN 0003-4916. 10.1016/​j.aop.2005.11.014.
https:/​/​doi.org/​10.1016/​j.aop.2005.11.014

[23] Rahul Nandkishore and David A. Huse. Many-body localization and thermalization in quantum statistical mechanics. Annual Review of Condensed Matter Physics, 6 (1): 15–38, 2015. 10.1146/​annurev-conmatphys-031214-014726.
https:/​/​doi.org/​10.1146/​annurev-conmatphys-031214-014726

[24] Horst L. Stormer, Daniel C. Tsui, and Arthur C. Gossard. The fractional quantum hall effect. Rev. Mod. Phys., 71: S298–S305, Mar 1999. 10.1103/​RevModPhys.71.S298.
https:/​/​doi.org/​10.1103/​RevModPhys.71.S298

[25] Adolfo Avella and Ferdinando Mancini. Strongly Correlated Systems: Theoretical Methods. Springer, Berlin Heidelberg, 01 2012. ISBN 978-3-642-21830-9. 10.1007/​978-3-642-21831-6.
https:/​/​doi.org/​10.1007/​978-3-642-21831-6

[26] Henrik Bruus and Karsten Flensberg. Many-body quantum theory in condensed matter physics: an introduction. OUP Oxford, 2004. ISBN 978-0-19-856633-5.

[27] Iacopo Carusotto and Cristiano Ciuti. Quantum fluids of light. Rev. Mod. Phys., 85: 299–366, Feb 2013. 10.1103/​RevModPhys.85.299.
https:/​/​doi.org/​10.1103/​RevModPhys.85.299

[28] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80: 885–964, Jul 2008. 10.1103/​RevModPhys.80.885.
https:/​/​doi.org/​10.1103/​RevModPhys.80.885

[29] Gabriele Campagnano, Oded Zilberberg, Igor V. Gornyi, Dmitri E. Feldman, Andrew C. Potter, and Yuval Gefen. Hanbury brown–twiss interference of anyons. Phys. Rev. Lett., 109: 106802, Sep 2012. 10.1103/​PhysRevLett.109.106802.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.106802

[30] Hassan Shapourian, Ken Shiozaki, and Shinsei Ryu. Partial time-reversal transformation and entanglement negativity in fermionic systems. Phys. Rev. B, 95: 165101, Apr 2017. 10.1103/​PhysRevB.95.165101.
https:/​/​doi.org/​10.1103/​PhysRevB.95.165101

[31] T. M. R. Wolf, J. L. Lado, G. Blatter, and O. Zilberberg. Electrically tunable flat bands and magnetism in twisted bilayer graphene. Phys. Rev. Lett., 123: 096802, Aug 2019. 10.1103/​PhysRevLett.123.096802.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.096802

[32] Tobias M. R. Wolf, Oded Zilberberg, Gianni Blatter, and Jose L. Lado. Spontaneous valley spirals in magnetically encapsulated twisted bilayer graphene. Phys. Rev. Lett., 126: 056803, Feb 2021. 10.1103/​PhysRevLett.126.056803.
https:/​/​doi.org/​10.1103/​PhysRevLett.126.056803

[33] J. L. Lado and Oded Zilberberg. Topological spin excitations in harper-heisenberg spin chains. Phys. Rev. Research, 1: 033009, Oct 2019. 10.1103/​PhysRevResearch.1.033009.
https:/​/​doi.org/​10.1103/​PhysRevResearch.1.033009

[34] Antonio Štrkalj, Elmer V. H. Doggen, Igor V. Gornyi, and Oded Zilberberg. Many-body localization in the interpolating aubry-andré-fibonacci model. Phys. Rev. Research, 3: 033257, Sep 2021. 10.1103/​PhysRevResearch.3.033257.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.033257

[35] Andisheh Khedri, Antonio Štrkalj, Alessio Chiocchetta, and Oded Zilberberg. Luttinger liquid coupled to ohmic-class environments. Phys. Rev. Research, 3: L032013, Jul 2021. 10.1103/​PhysRevResearch.3.L032013.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.L032013

[36] Michael S. Ferguson, Leon C. Camenzind, Clemens Müller, Daniel E. F. Biesinger, Christian P. Scheller, Bernd Braunecker, Dominik M. Zumbühl, and Oded Zilberberg. Quantum measurement induces a many-body transition. arXiv:2010.04635 [cond-mat], Oct 2020. 10.48550/​ARXIV.2010.04635.
https:/​/​doi.org/​10.48550/​ARXIV.2010.04635
arXiv:2010.04635

[37] Michael Sven Ferguson, Oded Zilberberg, and Gianni Blatter. Open quantum systems beyond fermi's golden rule: Diagrammatic expansion of the steady-state time-convolutionless master equations. Phys. Rev. Research, 3: 023127, May 2021. 10.1103/​PhysRevResearch.3.023127.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.023127

[38] Yaodong Li, Xiao Chen, and Matthew P. A. Fisher. Quantum zeno effect and the many-body entanglement transition. Phys. Rev. B, 98: 205136, Nov 2018. 10.1103/​PhysRevB.98.205136.
https:/​/​doi.org/​10.1103/​PhysRevB.98.205136

[39] M. Szyniszewski, A. Romito, and H. Schomerus. Entanglement transition from variable-strength weak measurements. Phys. Rev. B, 100: 064204, Aug 2019. 10.1103/​PhysRevB.100.064204.
https:/​/​doi.org/​10.1103/​PhysRevB.100.064204

[40] Yuhan Liu, Ramanjit Sohal, Jonah Kudler-Flam, and Shinsei Ryu. Multipartitioning topological phases by vertex states and quantum entanglement. Phys. Rev. B, 105: 115107, Mar 2022. 10.1103/​PhysRevB.105.115107.
https:/​/​doi.org/​10.1103/​PhysRevB.105.115107

[41] Mohan Sarovar, Akihito Ishizaki, Graham R. Fleming, and K. Birgitta Whaley. Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics, 6 (66): 462–467, Jun 2010. ISSN 1745-2481. 10.1038/​nphys1652.
https:/​/​doi.org/​10.1038/​nphys1652

[42] Filippo Caruso, Alex W. Chin, Animesh Datta, Susana F. Huelga, and Martin B. Plenio. Entanglement and entangling power of the dynamics in light-harvesting complexes. Phys. Rev. A, 81: 062346, Jun 2010. 10.1103/​PhysRevA.81.062346.
https:/​/​doi.org/​10.1103/​PhysRevA.81.062346

[43] Akihito Ishizaki and Graham R Fleming. Quantum superpositions in photosynthetic light harvesting: delocalization and entanglement. New Journal of Physics, 12 (5): 055004, may 2010. 10.1088/​1367-2630/​12/​5/​055004.
https:/​/​doi.org/​10.1088/​1367-2630/​12/​5/​055004

[44] Evert van Nieuwenburg and Oded Zilberberg. Entanglement spectrum of mixed states. Phys. Rev. A, 98: 012327, Jul 2018. 10.1103/​PhysRevA.98.012327.
https:/​/​doi.org/​10.1103/​PhysRevA.98.012327

[45] Lidia Stocker, Stefan H. Sack, Michael S. Ferguson, and Oded Zilberberg. Entanglement-based observables for quantum impurities. Phys. Rev. Res., 4: 043177, Dec 2022. 10.1103/​PhysRevResearch.4.043177.
https:/​/​doi.org/​10.1103/​PhysRevResearch.4.043177

[46] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac. Matrix product state representations. arXiv:quant-ph/​0608197, May 2007. 10.48550/​ARXIV.QUANT-PH/​0608197.
https:/​/​doi.org/​10.48550/​ARXIV.QUANT-PH/​0608197
arXiv:quant-ph/0608197

[47] U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77: 259–315, Apr 2005. 10.1103/​RevModPhys.77.259.
https:/​/​doi.org/​10.1103/​RevModPhys.77.259

[48] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326 (1): 96–192, Jan 2011. ISSN 00034916. 10.1016/​j.aop.2010.09.012.
https:/​/​doi.org/​10.1016/​j.aop.2010.09.012

[49] Rajibul Islam, Ruichao Ma, Philipp M. Preiss, M. Eric Tai, Alexander Lukin, Matthew Rispoli, and Markus Greiner. Measuring entanglement entropy in a quantum many-body system. Nature, 528 (75807580): 77–83, Dec 2015. ISSN 1476-4687. 10.1038/​nature15750.
https:/​/​doi.org/​10.1038/​nature15750

[50] Leonid Gurvits. Classical deterministic complexity of edmonds’ problem and quantum entanglement. arXiv:quant-ph/​0303055, Mar 2003. 10.48550/​arXiv.quant-ph/​0303055.
https:/​/​doi.org/​10.48550/​arXiv.quant-ph/​0303055
arXiv:quant-ph/0303055

[51] Sevag Gharibian. Strong np-hardness of the quantum separability problem. arXiv:0810.4507 [quant-ph], Dec 2009. 10.48550/​ARXIV.0810.4507.
https:/​/​doi.org/​10.48550/​ARXIV.0810.4507
arXiv:0810.4507

[52] G. Vidal and R. F. Werner. Computable measure of entanglement. Phys. Rev. A, 65: 032314, Feb 2002. 10.1103/​PhysRevA.65.032314.
https:/​/​doi.org/​10.1103/​PhysRevA.65.032314

[53] Pasquale Calabrese, John Cardy, and Erik Tonni. Entanglement negativity in quantum field theory. Phys. Rev. Lett., 109: 130502, Sep 2012. 10.1103/​PhysRevLett.109.130502.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.130502

[54] Pasquale Calabrese, John Cardy, and Erik Tonni. Entanglement negativity in extended systems: a field theoretical approach. Journal of Statistical Mechanics: Theory and Experiment, 2013 (02): P02008, Feb 2013. ISSN 1742-5468. 10.1088/​1742-5468/​2013/​02/​P02008.
https:/​/​doi.org/​10.1088/​1742-5468/​2013/​02/​P02008

[55] Elisabeth Wybo, Michael Knap, and Frank Pollmann. Entanglement dynamics of a many-body localized system coupled to a bath. Phys. Rev. B, 102: 064304, Aug 2020. 10.1103/​PhysRevB.102.064304.
https:/​/​doi.org/​10.1103/​PhysRevB.102.064304

[56] Shengqi Sang, Yaodong Li, Tianci Zhou, Xiao Chen, Timothy H. Hsieh, and Matthew P. A. Fisher. Entanglement negativity at measurement-induced criticality. PRX Quantum, 2: 030313, Jul 2021. 10.1103/​PRXQuantum.2.030313.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.030313

[57] Matthias Christandl and Andreas Winter. “squashed entanglement”: An additive entanglement measure. Journal of Mathematical Physics, 45 (3): 829–840, 2004. 10.1063/​1.1643788.
https:/​/​doi.org/​10.1063/​1.1643788

[58] Souvik Dutta and Thomas Faulkner. A canonical purification for the entanglement wedge cross-section. Journal of High Energy Physics, 2021 (3): 178, Mar 2021. ISSN 1029-8479. 10.1007/​JHEP03(2021)178.
https:/​/​doi.org/​10.1007/​JHEP03(2021)178

[59] Zhanyu Ma, Cheolhee Han, Yigal Meir, and Eran Sela. Symmetric inseparability and number entanglement in charge-conserving mixed states. Phys. Rev. A, 105: 042416, Apr 2022. 10.1103/​PhysRevA.105.042416.
https:/​/​doi.org/​10.1103/​PhysRevA.105.042416

[60] Paolo Zanardi. Entanglement of quantum evolutions. Phys. Rev. A, 63: 040304(R), Mar 2001. 10.1103/​PhysRevA.63.040304.
https:/​/​doi.org/​10.1103/​PhysRevA.63.040304

[61] TomažProsen and Iztok Pižorn. Operator space entanglement entropy in a transverse ising chain. Phys. Rev. A, 76: 032316, Sep 2007. 10.1103/​PhysRevA.76.032316.
https:/​/​doi.org/​10.1103/​PhysRevA.76.032316

[62] Iztok Pižorn and TomažProsen. Operator space entanglement entropy in $xy$ spin chains. Phys. Rev. B, 79: 184416, May 2009. 10.1103/​PhysRevB.79.184416.
https:/​/​doi.org/​10.1103/​PhysRevB.79.184416

[63] Hui Li and F. D. M. Haldane. Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states. Phys. Rev. Lett., 101: 010504, Jul 2008. 10.1103/​PhysRevLett.101.010504.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.010504

[64] J Dubail. Entanglement scaling of operators: a conformal field theory approach, with a glimpse of simulability of long-time dynamics in 1 + 1d. Journal of Physics A: Mathematical and Theoretical, 50 (23): 234001, may 2017. 10.1088/​1751-8121/​aa6f38.
https:/​/​doi.org/​10.1088/​1751-8121/​aa6f38

[65] Evert P. L. van Nieuwenburg and Sebastian D. Huber. Classification of mixed-state topology in one dimension. Phys. Rev. B, 90: 075141, Aug 2014. 10.1103/​PhysRevB.90.075141.
https:/​/​doi.org/​10.1103/​PhysRevB.90.075141

[66] Eyal Cornfeld, Moshe Goldstein, and Eran Sela. Imbalance entanglement: Symmetry decomposition of negativity. Phys. Rev. A, 98: 032302, Sep 2018. 10.1103/​PhysRevA.98.032302.
https:/​/​doi.org/​10.1103/​PhysRevA.98.032302

[67] Katarzyna Macieszczak, Emanuele Levi, Tommaso Macrì, Igor Lesanovsky, and Juan P. Garrahan. Coherence, entanglement, and quantumness in closed and open systems with conserved charge, with an application to many-body localization. Phys. Rev. A, 99: 052354, May 2019. 10.1103/​PhysRevA.99.052354.
https:/​/​doi.org/​10.1103/​PhysRevA.99.052354

[68] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Rev. Mod. Phys., 81: 865–942, Jun 2009. 10.1103/​RevModPhys.81.865.
https:/​/​doi.org/​10.1103/​RevModPhys.81.865

[69] Gilad Gour, Markus P. Müller, Varun Narasimhachar, Robert W. Spekkens, and Nicole Yunger Halpern. The resource theory of informational nonequilibrium in thermodynamics. Physics Reports, 583: 1–58, 2015. ISSN 0370-1573. https:/​/​doi.org/​10.1016/​j.physrep.2015.04.003.
https:/​/​doi.org/​10.1016/​j.physrep.2015.04.003

[70] Alexander Streltsov, Hermann Kampermann, Sabine Wölk, Manuel Gessner, and Dagmar Bruß. Maximal coherence and the resource theory of purity. New Journal of Physics, 20 (5): 053058, may 2018. 10.1088/​1367-2630/​aac484.
https:/​/​doi.org/​10.1088/​1367-2630/​aac484

[71] Daniel Manzano. A short introduction to the lindblad master equation. AIP Advances, 10 (2): 025106, Feb 2020. 10.1063/​1.5115323.
https:/​/​doi.org/​10.1063/​1.5115323

[72] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac. Matrix product density operators: Simulation of finite-temperature and dissipative systems. Phys. Rev. Lett., 93: 207204, Nov 2004. 10.1103/​PhysRevLett.93.207204.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.207204

[73] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. The itensor software library for tensor network calculations. SciPost Phys. Codebases, page 4, 2022. 10.21468/​SciPostPhysCodeb.4.
https:/​/​doi.org/​10.21468/​SciPostPhysCodeb.4

[74] Adil A. Gangat, Te I, and Ying-Jer Kao. Steady states of infinite-size dissipative quantum chains via imaginary time evolution. Phys. Rev. Lett., 119: 010501, Jul 2017. 10.1103/​PhysRevLett.119.010501.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.010501

[75] Mark H Fischer, Mykola Maksymenko, and Ehud Altman. Dynamics of a many-body-localized system coupled to a bath. Phys. Rev. Lett., 116: 160401, Apr 2016. 10.1103/​PhysRevLett.116.160401.
https:/​/​doi.org/​10.1103/​PhysRevLett.116.160401

[76] EPL van Nieuwenburg, J Yago Malo, AJ Daley, and MH Fischer. Dynamics of many-body localization in the presence of particle loss. Quantum Science and Technology, 3 (1): 01LT02, dec 2017. 10.1088/​2058-9565/​aa9a02.
https:/​/​doi.org/​10.1088/​2058-9565/​aa9a02

[77] Zala Lenarčič, Ori Alberton, Achim Rosch, and Ehud Altman. Critical behavior near the many-body localization transition in driven open systems. Phys. Rev. Lett., 125: 116601, Sep 2020. 10.1103/​PhysRevLett.125.116601.
https:/​/​doi.org/​10.1103/​PhysRevLett.125.116601

[78] Christopher David White, Michael Zaletel, Roger S. K. Mong, and Gil Refael. Quantum dynamics of thermalizing systems. Phys. Rev. B, 97: 035127, Jan 2018. 10.1103/​PhysRevB.97.035127.
https:/​/​doi.org/​10.1103/​PhysRevB.97.035127

[79] Daniel Jaschke, Simone Montangero, and Lincoln D Carr. One-dimensional many-body entangled open quantum systems with tensor network methods. Quantum Science and Technology, 4 (1): 013001, nov 2018. 10.1088/​2058-9565/​aae724.
https:/​/​doi.org/​10.1088/​2058-9565/​aae724

[80] Maxime Dupont, Nicholas E. Sherman, and Joel E. Moore. Spatiotemporal crossover between low- and high-temperature dynamical regimes in the quantum heisenberg magnet. Phys. Rev. Lett., 127: 107201, Aug 2021. 10.1103/​PhysRevLett.127.107201.
https:/​/​doi.org/​10.1103/​PhysRevLett.127.107201

[81] Alessio Lerose, Michael Sonner, and Dmitry A. Abanin. Influence matrix approach to many-body floquet dynamics. Phys. Rev. X, 11: 021040, May 2021. 10.1103/​PhysRevX.11.021040.
https:/​/​doi.org/​10.1103/​PhysRevX.11.021040

[82] Michael Sonner, Alessio Lerose, and Dmitry A. Abanin. Influence functional of many-body systems: Temporal entanglement and matrix-product state representation. Annals of Physics, 435: 168677, 2021. ISSN 0003-4916. https:/​/​doi.org/​10.1016/​j.aop.2021.168677.
https:/​/​doi.org/​10.1016/​j.aop.2021.168677

[83] Alexander Lukin, Matthew Rispoli, Robert Schittko, M. Eric Tai, Adam M. Kaufman, Soonwon Choi, Vedika Khemani, Julian Léonard, and Markus Greiner. Probing entanglement in a many-body-localized system. Science, 364 (6437): 256–260, 2019. 10.1126/​science.aau0818.
https:/​/​doi.org/​10.1126/​science.aau0818

[84] Tiff Brydges, Andreas Elben, Petar Jurcevic, Benoît Vermersch, Christine Maier, Ben P. Lanyon, Peter Zoller, Rainer Blatt, and Christian F. Roos. Probing rényi entanglement entropy via randomized measurements. Science, 364 (6437): 260–263, 2019. 10.1126/​science.aau4963.
https:/​/​doi.org/​10.1126/​science.aau4963

[85] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2: 79, August 2018. ISSN 2521-327X. 10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[86] Michael Brooks. Beyond quantum supremacy: the hunt for useful quantum computers. Nature, 574 (7776): 19–21, Oct 2019. 10.1038/​d41586-019-02936-3.
https:/​/​doi.org/​10.1038/​d41586-019-02936-3

[87] Eric Carlen. Trace inequalities and quantum entropy: an introductory course. Contemp. Math., 529: 73–140, 2010. 10.1090/​conm/​529/​10428.
https:/​/​doi.org/​10.1090/​conm/​529/​10428

[88] Chandler Davis. A schwarz inequality for convex operator functions. Proceedings of the American Mathematical Society, 8 (1): 42–44, 1957. ISSN 00029939, 10886826. https:/​/​doi.org/​10.2307/​2032808.
https:/​/​doi.org/​10.2307/​2032808

Cited by

[1] Christian Carisch, Alessandro Romito, and Oded Zilberberg, "Quantifying measurement-induced quantum-to-classical crossover using an open-system entanglement measure", Physical Review Research 5 4, L042031 (2023).

[2] Tatiana Vovk and Hannes Pichler, "Quantum trajectory entanglement in various unravelings of Markovian dynamics", Physical Review A 110 1, 012207 (2024).

[3] Gabriele Bellomia, Carlos Mejuto-Zaera, Massimo Capone, and Adriano Amaricci, "Quasilocal entanglement across the Mott-Hubbard transition", Physical Review B 109 11, 115104 (2024).

[4] Cheolhee Han, Yigal Meir, and Eran Sela, "Realistic Protocol to Measure Entanglement at Finite Temperatures", Physical Review Letters 130 13, 136201 (2023).

[5] Lidia Stocker, Stefan H. Sack, Michael S. Ferguson, and Oded Zilberberg, "Entanglement-based observables for quantum impurities", Physical Review Research 4 4, 043177 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-07-15 11:35:14) and SAO/NASA ADS (last updated successfully 2024-07-15 11:35:14). The list may be incomplete as not all publishers provide suitable and complete citation data.