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Quantum contextual sets have been recognized as resources for universal
quantum computation, quantum steering and quantum communication. There-
fore, we focus on engineering the sets that support those resources and on de-
termining their structures and properties. Such engineering and subsequent
implementation rely on discrimination between statistics of measurement data
of quantum states and those of their classical counterparts. The discriminators
considered are inequalities defined for hypergraphs whose structure and gen-
eration are determined by their basic properties. The generation is inherently
random but with the predetermined quantum probabilities of obtainable data.
Two kinds of statistics of the data are defined for the hypergraphs and six kinds
of inequalities. One kind of statistics, often applied in the literature, turn out to
be inappropriate and two kinds of inequalities turn out not to be noncontextu-
ality inequalities. Results are obtained by making use of universal automated
algorithms which generate hypergraphs with both odd and even numbers of
hyperedges in any odd and even dimensional space—in this paper, from the
smallest contextual set with just three hyperedges and three vertices to arbi-
trarily many contextual sets in up to 8-dimensional spaces. Higher dimensions
are computationally demanding although feasible.

1 Introduction

A series of experiments with state-independent [1] contextual sets has been carried out
recently, using photons [2, 3, 4, 5, 6, 7|, neutrons [8, 9], trapped ions [10], and solid state
molecular nuclear spins [11].

These experiments pave the road for applications of contextual sets in quantum com-
putation [12, 13|, quantum steering [14], and quantum communication [15] by measuring
yes-no outputs of quantum systems and contrasting them with predetermined 0-1 values
of the corresponding classical systems. Such systems might be organized in contextual
sets represented by graphs or hypergraphs and their properties and features are the main
subject of the present paper.

Intuitively speaking, a (hyper)graph is a set of points and a set of subsets of these
points. The points are called the vertices of the (hyper)graph and the subsets are called
the (hyper)edges of the (hyper)graph. Vertices might be represented by vectors, operators,
subsets, or other objects, and (hyper)edges by a relation between vertices contained in them
such as orthogonality, inclusion, or geometry. We follow Berge [16, 17|, Bretto [18], and
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Voloshin [19] in all details except in several restrictions needed for hypergraph description of
contextual sets which we introduce in Sec. 2. Historically, representations used to describe
and depict contextual sets appeared in several different forms and definitions, e.g., partial
Boolean algebra [20], operator and projectors |21, 22|, lists or tables of vectors and their
orthogonalities |23, 24|, Greechie diagrams [25, 26, 27, 28, 29, 30|, Kochen-Specker (KS)
proofs [31], parity proofs [32], MMP diagrams [33, 34|, graphs with cliques [35], node-
context graphs [36, 30|, etc. However, as shown in this paper, when some discrepancies
between these definitions as well as their possible inner limitations are smoothed out, all
of them boil down to hypergraphs and in this paper we provide a hypergraph platform for
major results and achievements in the field of quantum contextual sets.

Connections between contextuality and universal quantum computation [12] and steer-
ing [14] that have recently been established ask for a quantification of properties of con-
textual sets, e.g., robustness to noise [37], size of maximal independent sets of stabilizer
states [12], or suitability for implementation in general. It has been shown that inequal-
ities are an efficient tool for the purpose [35, 1, 38, 39, 40, 41, 42, 43]. Yu, Guo, and
Tong prove [43| that operator formulations of KS contextual sets can always be converted
to state-independent noncontextuality inequalities. The problem with the inequalities in
these references is that either no definite inequality is given or that they were given for
chosen particular contextual sets previously specified via sets of vectors/rays, or that they
have not been formulated for probabilities applicable to genuine YES-NO quantum exper-
iments. As a consequence, while billions of hypergraph-defined contextual sets are known,
a straightforward automated way of generation of operator-based inequalities from them is
missing. On the other hand, there are operator-defined sets, e.g., the Peres-Mermin square
[44, 45|, for which a proper underlying vector set awaits to be defined.

Therefore we broaden the scope of the contextuality so as to cover both operators and
hypergraphs. We compare their features and their inequalities. We define and/or recon-
sider six different kinds of hypergraph inequalities that correspond to the aforementioned
operator inequalities: two are based on hyperedges, two on vertices, and two are mixed;
we compare them with the known operator inequalities.

Hyperedge-based inequalities are well-known (it stems directly from the Kochen-Specker
theorem) and, essentially, they boil down to our impossibility of assigning exactly one ‘1’
to vertices in each hyperedge of a contextual hypergraph. So, there are always fewer
such hyperedges than there are hyperedges altogether in the set, and the inequalities just
confirms this discrepancy [21, 22, 43]. They correspond to the operator noncontextuality
inequalities.

Some vertex and mixed inequalities rely on two different kinds of statistics of the
outcomes of quantum YES-NO measurements: raw data statistics and postprocessed data
statistics. These yield four different kinds of inequalities: the original Grétschel-Lovész-
Schrijver (GLS) inequality, the quantum forms of the GLS inequality, and inequalities that
we call v- and e-inequalities. The original GLS inequality holds for any graph or hypergraph
for variable probabilities within each clique or hyperedge, respectively. However, these
probabilities are not variable but constant within any quantum YES-NO measurements and
under them arbitrary many contextual graphs and hypergraphs violate the GLS inequality,
i.e., the GLS inequality is not a noncontextuality inequality. The v- and e-inequalities are
satisfied for all contextual (hyper)graphs and violated for all noncontextual ones and unlike
the GLS-like inequalities they correspond to the existing operator-based inequalities.

The aforementioned types of inequalities are determined by structural properties of the
hypergraphs that define them. Structural properties we obtain characterize contextual as
well as noncontextual hypergraphs and are relevant for application of contextual sets in
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quantum computation and quantum communication. The properties serve us to
(a) characterize the hypergraphs themselves;

(b) analyze hypergraphs probability and randomness characteristic for obtaining small
contextual sets from big master sets;

(c) obtain hypergraphs from elementary vector components in any odd or even dimen-
sional space (in this paper in 3- to 8-dim spaces);

(d) obtain contextual hypergraphs from noncontextual ones by deleting a certain number
of vertices from them;

(e) establish a correspondence between hypergraph and operator approaches;

(f) obtain state independent hypergraph inequalities where operator approach gives state
dependent ones;

(g) introduce new hypergraph-defined measurements based on multiplicity of vertices
and postprocessing of multiple detection at the ports of the gates;

(h) obtain the smallest critical contextual hypergraph with just 3 edges and 3 vertices;

(i) prove that one of the graphs which are considered to be a source of quantum com-
puter’s power is a subhypergraph of a non-critical KS hypergraph;

(j) derive a vector-hypergraph underlying the 3x3 Peres-Mermin operator square.

An outline of the paper is given by the following organisational flow.

In Sec. 2 we give the definitions of a general hypergraph and of its McKay-Megill-Pavici¢
(MMP) hypergraph restriction; then we introduce notation, language, algorithms, and
programs for MMP hypergraphs and compare them with other notations and formalisms
of contextual sets from the literature.

In Sec. 3.1, we state the Kochen-Specker and Bell theorems and introduce several
generalizations of theirs.

In Sec. 3.2, we present three methods of MMP hypergraph generation we make use of
in this paper.

In Sec. 4.1, we review the operator-based inequalities from the literature some of which
we correlate with our results in subsequent sections.

In Sec. 4.2, we compare the MMP hypergraph and operator approaches to contextual
sets using the example of a 3-dim pentagon set.

In Sec. 4.3, we analyze the structure of MMP hypergraphs and introduce notions and
theorems and lemmas that characterize them; we consider two kinds of quantum statistics:
the raw data and postprocessed data statistics and six kinds of inequality: GLS-like-, v-,
eMaz-, and enn-inequalities; we also compare operator and hypergraph approach to the
introduced notions and features.

In Sec. 4.4, we present several examples of MMP hypergraph structure introduced in
Sec. 4.3.

In Sec. 5, we apply the results and notions obtained in the previous sections to the
MMP hypergraph multiplicity in Sec. 5.1, to the 3-dim MMP hypergraphs in Sec. 5.2,
to chosen 4-dim MMPs in Sec. 5.3, to I' set that has recently been used to prove that
contextuality is the source of quantum computer’s power in Sec. 5.4, to the Peres-Mermin
square Sec. 5.5, and to the 5- to 8-dim contextual MMP hypergraphs in Secs. 5.6, 5.7, and
5.8, respectively.
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In Sec. 6 we consider possible general implementation schemes.

In Sec. 7 we discuss the obtained results.

In the Appendices we give a comparison of historical as well as contemporary hy-
pergraph formalisms from the literature with the MMP hypergraphs language as well as
strings and coordinatizations of bigger MMP hypergraphs to avoid visual clutters in the
main body of the paper.

2 MMP hypergraph language

In this section, we start with a general definition of a hypergraph, which we then narrow
down to the MMP hypergraph. After giving specifics of the MMP hypergraph language
which will be the language of our presentation) we review other formalisms that have been
used for generation of contextual sets in the literature and show that they all reduce to
the MMP hypergraph formalism.

A general hypergraph is defined as follows [16, 17, 19, 18|. Let V' = {v1,v9,..., v} be
a finite set of elements called vertices and let E = {ej,ea,...,e;} be a family of subsets
of V called hyperedges. The pair H = (V, E) is called a hypergraph with vertex set V also
denoted by V(H), and hyperedge set E also denoted by E(H). A hypergraph H may be
drawn as a set of points representing the vertices subsets of which represent hyperedges as
follows: a hyperedge e; is represented by a continuous curve joining two elements if the
cardinality (number of elements, vertices) within the hyperedge is |e;| = 2, by a loop if
lej| = 1, and by a closed curve enclosing the elements if |e;| > 2. Numerically they are
represented by the incidence matrices [17, p. 2,Fig. 1] in which columns are hyperedges
and rows are vertices. Intersection of hyperedge columns with vertex rows contained in
hyperedges are assigned ‘1’ and those not contained are assigned ‘0.

The number of vertices within a hypergraph (k), i.e., the cardinality of V' (|V]), is
called the order of a hypergraph, and the number of hyperedges within a hypergraph (1),
i.e., the cardinality of E (|E]), is called the size of a hypergraph.

To arrive at MMP hypergraphs we restrict the general hypergraphs numerically and
graphically. Numerically, we substitute ASCII characters for vectors, operators, or ele-
ments within tables and matrices from the literature and attach these ASCII characters to
vertices. Mutually related vertices are collected in one-line strings representing hyperedges.
The relation might be orthogonality, inclusion, geometry, etc. Thus, numerically, an MMP
hypergraph, defined in Def. 2.1, is a string of characters corresponding to vertices which
are organized in substrings separated by commas (“)”) corresponding to hyperedges; the
string ends with a period (“.”). Graphically, vertices are dots and hyperedges are lines or
curves connecting vertices by passing through them; we dispense with hyperedges of cardi-
nality 0 and 1 (Jej| = 0, 1) and since each contextuality contradiction occurs within a single
connected set we do not have unconnected subhypergraphs and we do not have hyperedges
attached to the main body of an MMP hypergraph at only one vertex. Also, because the
Hilbert space in which contextual sets reside when equipped with a coordinatization must
have at least 3 dimensions (3-dim), we introduce the hypergraph-dimensionality n > 3.
Thus we arrive at the following formal definition of an MMP hypergraph.

Definition 2.1. An MMP hypergraph is a connected hypergraph H = (V,E) (where
V ={V1,Va,...,Vi} is a set of vertices and E = {E1, Es, ..., E;} sets of hyperedges) of
hypergraph-dimension n > 3 in which

1. Every vertex belongs to at least one hyperedge;

2. Every hyperedge contains at least 2 and at most n vertices;
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3. No hyperedge shares only one vertex with another hyperedge;
4. Hyperedges may intersect each other in at most n — 2 vertices.

5. Graphically, vertices are represented as dots and hyperedges as (curved) lines passing
through them.

Definition 2.2. MMP hypergraph-dimension n is a predefined (for an assumed task
or purpose) mazimal possible number (n) of vertices within a hyperedge even when none
of the actually processed hyperedges include n vertices.

This is operationally requested for any implementation since a full coordinatization of
vertices turn hypergraph-dimension n into a dimension of a Hilbert space determined by
vectors each vertex is assigned to. But until we invoke a coordinatization of an MMP
hypergraph we can handle it solely by means of Defs. 2.1 and 2.2.

Notice that in our previous papers we did not have the condition 3 in the definition
of the MMP hypergraph but all our results in that papers were obtained by excluding
the corresponding hyperedges from the calculations explicitly or implicitly. Therefore, we
need not introduce a different name for the MMP hypergraph from Def. 2.1 and from now
on we shall assume that the condition 3 holds in the definition of the MMP hypergraph.
Another formulation of the condition would be that all hyperedges of an MMP hypergraph
with two or more of hyperedges must share at least two vertices, i.e., that no hyperedge
should be attached to the main body of the MMP hypergraph at just one vertex. A single
hyperedge is therefore an MMP hypergraph, as well as two hyperedges that share two or
more vertices.

We encode MMP hypergraphs with the help of ASCII characters [33, 34]. Vertices are
denoted by one of the following 90 characters: 1 2 ... 9AB ... Zab ... z ! " #
$N& ()*-/:;<=>=>7@[\]" _“{]}~ [33 34]. A91st character ‘+’, is used for
the following purpose: when all aforementioned characters are exhausted, we reuse them
prefixed by ‘4’, then again by ‘++’, and so on (See Appendices). An n-dim contextual
hypergraph with k vertices and [ hyperedges, a hypergraph of order k£ and size I, we denote
as a k-l hypergraph. There is no limit on the size of an MMP hypergraph.

In Fig. 1 we illustrate the difference between the standard and the MMP hypergraph
formalism. In the standard hypergraph formalism, hyperedges between two vertices are
represented by straight lines as taken over from the graph theory (es, e7). Hyperedges con-
taining three or more vertices encircle the vertices (eq, es, e4, eg). Hyperedges containing
only one vertex have two representations: es [19, 18] and eg [16, 17]. In the MMP hy-
pergraph formalism es hyperedge is represented as the line (or curve) connecting vertices
1 and 6: FE3 = 16. Hyperedges ej,e2 and ey are represented as curves (or lines) passing
through vertices they contain: E; = 2345, Fs = 1236, and F,; = 1456, respectively. Ver-
tex corresponding to vertex 10 in Fig. 1(a) does not exist in an MMP representation due
to Def. 2.1.1; the same is with es,eq,eqg due to Def. 2.1.2., and with hyperedges e7,es and
vertices 7,8,9 due to Def. 2.1.1. & Def. 2.1.3.

Taken together, an MMP hypergraph is a special kind of a general hypergraph in which
none of the aforementioned points (1.-5.) holds within its definition.

Graph <+ MMP Hypergraph 2.3. We turn a graph whose every edge contains just two
vertices into an MMP hypergraph so as to substitute hyperedges for (interwoven) cliques
of related vertices and for isolated edges. Conversely, we turn an MMP hypergraph into a
graph so as to substitute a cliques of edges for MMP hyperedges, where vertices within a
clique correspond to three related vertices within a hyperedge, until we exhaust all related
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Figure 1: (a) Representation of a general hypergraph [16, 17, 19, 18]; (b) representation of a corre-
sponding MMP hypergraph whose ASCII string is 16,1236,6541,2354.

triples within the hyperedge; isolated graph edges are substituted for the hypergraphs of
cardinality 2.

We generate, deal with, and handle MMP hypergraphs by means of automated al-
gorithms implemented into the programs ONE, MMPSTRIP, VECFIND, STATESO1, and
others which have MMP strings as their inputs and outputs. In contrast, there are no
such automated algorithms and programs for incidence matrices of the general hypergraph
formalisms known to us. We stress here, that for a k-l n-dim KS hypergraph in a general
hypergraph representation, its incidence matrix contains k vertex rows each [ columns long,
while an MMP hypergraph is represented by a single line containing [ n-tuples of vertices.
E.g., the incidence matrix of the original 4-dim 192-118 Kochen-Specker hypergraph con-
tains 118 hyperedge columns and 192 vertex rows/lines (192 x 118 matrix), while its single
MMP string (one line) contains 118 triples of ASCII characters [46, Supp. Materiall.

MMP hypergraph language has been developed over the last 20 years with the goal of
making handling and generation of contextual sets as efficient as possible. Here we give a
comparison of historical as well as contemporary formalisms with the MMP language.

e Partial Boolean algebra used in [20] generates graphs with cliques whose edges con-
tain only two vertices and whose computer and graphical processing is therefore
more demanding than those of MMP hypergraphs to which they can be straightfor-
wardly reduced; the same problem applies to all other graphs with clique approaches
[35, 47]. Graphical representations of such graphs, especially big ones, are often
unintelligible—compare Figs. 2(b) and 2(c) and Figs. 15(e) and 15(g).

e Operators or projectors used to generate contextual inequalities are mostly con-
structed manually by means of states/vectors/vertices of chosen contextual hyper-
graphs, meaning that they make use of already known hypergraphs [21, 22] which
can serve us to obtain those operators and their inequalities in an automated way.

e A direct treatment of lists or tables of vectors and their orthogonalities [23, 24] as
well as the diagrams of KS-proofs [31] are notoriously cumbersome. A paradigmatic
example is Peres’ 24-24 set [23|. Peres himself tried to obtain smaller sets via a com-
puter program but failed [48, p. 199]. It took three years until Kernaghan obtained
one smaller set [49] and two more years until Cabello, Estebaranz, and Garcia-Alcaine
obtained a second one [50]; a straightforward translation of Peres’ 24-24 set into an
MMP 24-24 hypergraph string [51] immediately enables one to obtain all 1,233 KS
MMP subhypergraphs on any laptop in seconds [52], [53, 22:00]; a graphical repre-
sentation of the MMP 24-24 [51] even enables one to obtain desired subhypergraphs
by hand hand in minutes [53, 24:00].
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e Parity proofs, developed by Aravind and Waegell and applied to contextual sets, read
off particular polytopes [32]. However, they exist only for sets with an odd number
of hyperedges. Still, they are very efficient and fast. Their data lists and tables, for
both even and odd number of hyperedges, can be straightforwardly and automatically
mapped to MMP hypergraph strings via our programs to enable further processing.
Notice that for sets with even number of hyperedges the MMP hypergraph algorithms
remain the only tool.

e MMP diagrams [33, 34| are predecessors of MMP hypergraphs; they required that
all hyperedges have the cardinality equal to the dimension of the space in which the
hypergraph vertices reside.

e Nodes, rays, tests, or vertices in contexts, bases, or edges within set or graph ap-
proaches are introduced in a series of papers but they are vaguely defined and are at
odds with the standard terminology. In 2014 Lisonék, Badziag, Portillo, and Cabello
defined a context as a “subset of jointly measurable tests;” then as a “number of
bases” [36]. They graphically present their set in [36, Fig. 1], and we can recognize
that a context is a (hyper)edge and that a node or a test [4] or a ray is a vertex.
They do make use of the term vertex, but not of the term (hyper)edge. In [21,
Fig. 1] MMP hypergraph (diagram) representation from [33, 34| is being used but
not cited. In [54, Fig. 1| MMP hypergraph (diagram) representation from [33, 34]
are being used but are called a “simplified representation of a graph” where “events
are represented by vertices” and instead of making use of the term hyperedge, they
just write that “sets of pairwise exclusive events are represented by vertices in the
same straight line or circumference rather than by cliques.” Amaral and Cuncha
even mix up graph and MMP hypergraph representations in the same figure [55,
Fig. A.8, p.115]—see Fig. 2(d). In [55, Fig. A.11, p.117] the whole 21-7 6-dim MMP

(©)

Figure 2: (a) General hypergraph representation of the 18-9 KS set found in 1996 by Cabello, Estebaranz
and Garcia-Alcaine [50] as given in [55, Fig. A.7, p.115]; (b) the smallest (18-9) of all exhaustively
generated MMP hypergraphs with the (0,-1,1) coordinatization as given in [33, 34, Fig. 3(a)]; it is
isomorphic to the first 18-9 KS set shown in (a); (c) graph representation of the 18-9 set; (d) mixed
graph-MMP-hypergraph representation of the set as given in [55, Fig. A.8, p.115] (“The dashed edges
correspond to a clique of size 4").

hypergraph is called a “simplified version” of a graph and an MMP hyperedge is said
to “correspond to a clique of size 6” but the term MMP hyperedges is neither men-
tioned nor cited. Budroni, Cabello, Giihne, Kleinmann and Larsson [30] make use of
both terms, graphs and hypergraphs, interchangeably. They state that “contexts can
be represented as graphs, or more generally hypergraphs” [30, p. 30]. Still, they do
not mention any contextual MMP hypergraph paper published in the last ten years
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[56, 52, 57, 58, 59, 41, 60] where billions of contextual 3- to 32-dim MMP hyper-
graphs were generated. Such an approach is deleterious since most known contextual
vector sets in whatever other formalism turn out to be definable by and reducible
to MMP hypergraphs or generated by them and since nothing comparable has been
achieved by any other formalism apart from the parity proofs for the KS sets with
an odd number of hyperedges by Aravind and Waegell in the 4-dim Hilbert spaces
as derived from polytopes and Lie algebras [61, 62, 63, 64, 65]. Disadvantageously,
less than 5% of all known MMP hypergraphs have parity proofs [58].

o Greechie diagrams have recently been used as a name for what are actually MMP
hypergraphs [27, 28, 29, 30]. This is a misnomer since Greechie diagrams—connected
Hasse diagrams—Dbelong to the field of partially ordered sets and can represent nei-
ther graphs, nor general hypergraphs, nor MMP hypergraphs. A Hasse diagram is
a graphical representation of a poset (partially ordered set)—a collection of whose
elements is called a block—where an element y is drawn above an element x if and
only if y > z (y covers z). In a poset with the least element 0 an atom is an el-
ement that covers it. The orthogonality x L y is defined as ¢y > x, where v/ is
an orthocomplement of y; in a 3-atom poset v/ = xVz;, yVy =zVyVz=1;
yAy =z AyAz=0. A Greechie diagram is a shorthand notation for a collection
of connected Hasse diagrams in which atoms within each block are represented as
dots and blocks as lines or smooth curves connecting them. The following conditions
must be satisfied: (o) All blocks share common 0 and 1; (5) If an atom z belongs
to an intersection of blocks and, therefore, to both of them, then the blocks also
share 2’; (0) Blocks contain three or more atoms; (€) Two blocks may not share more
than one atom; (¢) Diagrams cannot contain loops of order 2 or 3 |66, 67, 57|. In
Fig. 3 we give several examples of diagrams that were called Greechie diagrams in the
literature although they are not Greechie diagrams but MMP hypergraphs. Notice

(a) I (b) (¢) Bub33-36 (d) 7 e
& Conway-Kochen
6 2 31-37 2 6
Peres 33-40 o u
) ' Kochen-Specker 0\. ’A ‘
5 4 3 117-118 5 6 5 7 1 3 8

Figure 3: (a) [27, Fig. 2(a)], [29, Fig. 3(a)] is not a Greechie diagram since it violates condition (¢);
(b) “bug” [30, Fig. 2(a)] is not a Greechie diagram since it violates condition j—e.g., block 12 contains
only two atoms; (c) some 3-dim KS sets with vertices that belong to only one hyperedge dropped
[25, 26, 30], are not Greechie diagrams because they violate condition ¢; (d) [28, Fig. 4(a)] is not a
Greechie diagram since it violates conditions § and (—e.g., block 5B contains only two atoms and loop
1-A-7 is of order 3; similarly, the “orthogonality hypergraph” [68, Fig. 1] cannot be said to represent
a “hypergraph introduced by Greechie” [68, Sec. Il] for the same ¢ and ¢ reasons; (e) [28, Fig. 5(a)]
violates conditions 6, €, and (—e.g., block 5B contains only two atoms, blocks 57138 and 72648 share
two atoms (7 and 8), and loops 2-7-A, 1-A-7, and 3-8-4 are of order 3.

that all MMP hypergraphs from Fig. 3 are contextual.

As for Fig. 3(c), note that full 3-dim KS sets, Bub’s 49-36, Conway-Kochen’s 51-37,
Peres’ 57-40, and Kochen-Specker’s 192-118 are all genuine Greechie diagrams [57].

e The term graph of orthogonality has recently been used to rename the MMP hy-
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pergraph or to avoid using it [69, Supp. Material, Figs. 3,7,8,9], while the term
orthogonality hypergraph has been used to denote the MMP hypergraph arguing
that the latter kind of a hypergraph is actually a general hypergraph [18, Sec. 2.4]
“Introduced by Greechie” |70, Sec. 2.3]. For instance, the KS 10-5 MMP criti-
cal hypergraph shown in [33, 34, Fig. 2(b)] Fig. 4(c)—which is equivalent to the
graph Fig. 4(a,b) given in [69, Supp. Material, Fig. 7]—is not referred to in [69].
This set apparently does not have a coordinatization in the 4-dim space. An over-
complicated 6-dim coordinatization from {0, +1,2, +/2,+1/3} components for just
10 vertices in Fig. 4(a-c) is offered in [71, Eq. (7)] and from {0, 1, —% + Z@} in 69,
Supp. Material, Eq. (4)], but it can actually be generated from {0, £1,2} components
(the 6-dim MMP hypergraph itself is shown in Fig. 4(d). The latter components
yield the following coordinatization: 1=(0,0,0,0,0,1),2=(0,0,0,0,1,0),3=(0,1,0,1,0,-1),
4—(0,1,0,0,0,1), 5=(1,0,0,0,-1,0), 6=(0,0,0,1,0,0), 7—=(0,1,0,-1,0,0), 8=(0,0,1,0,0,0),
9-(1,0,1,0,0,0), A=(1,0,-1,0,1,0), B=(0,1,0,0,0,0), ¢=(1,0,0,0,0,0), D=(0,1,0,1,0,2),
E—(1,0,-1,0,0,0), F=(0,-1,0,2,0,1),6=(1,0,0,0,1,0), H#=(0,1,0,0,0,-1), I=(-1,0,1,0,2,0),
J=(0,1,0,1,0,0), K=(1,0,2,0,1,0). Also, the relevance of the recognition of the 10-

Figure 4: (a) Cabello’s graph of orthogonality which he also recognizes as Johnson graph J(5,2) [69,
Supp. Mat., Fig. 7]; (b) the same Johnson graph standardly represented in an automated way (e.g.,
by means of Mathematica's GraphPlot) via circular embedding; (c) the same graph represented as an
MMP hypergraph and first given in [33, 34, Fig. 2(b)] but not referred to neither in [71] nor in [69]; the
set 10-5 apparently does not have a coordinatization; (d) 6-dim 20-5 noncontextual MMP hypergraph
needed to accommodate the 6-dim coordinatization offered in [71, Eq. (7)] and [69, Supp. Mat., Eq. (4)]
to just 10 vertices from the 10-5 set; (e) a 6-dim 21-7 KS MMP hypergraph improperly called a “graph of
orthogonality” in [69, Supp. Mat., Figs. 8,9]; (f) 21-7 graph of the previous 21-7 MMP hypergraph that
should have been used in [69, Supp. Material, Figs. 8,9]; here obtained by Mathematica's GraphPlot.

5 graph (a truncated 20-5 graph) as the Johnson graph J(5,2) should have been
explained.

On the other hand, the graphics presented in |69, Supp. Material, Fig. 3] is called
a “graph of orthogonality” but it is neither a graph nor a hypergraph as explained
in Sec. 7.3.2 and Fig. 11. Finally, in [69, Supp. Material, Figs. 8,9| the 21-7 MMP
hypergraph is shown (Fig 4(e)) but improperly called a “graph of orthogonality.” Its
proper graph is shown in Fig 4(f). The 21-7 is in [69] recognized to be equivalent to
the Johnson graph J(7,2), but it is not clear what is the relevance of this recognition,
since the graph is only one of many from the 216-153 and 834-1609 KS classes [59],
none of which, apart from the 21-7 itself, is a Johnson graph.

As for the “orthogonality hypergraph,” the term unfolds in [68, Secs. ILIII| where
a graphical appearance of Greechie diagrams is offered as a vindication for calling
MMP diagrams “orthogonality hypergraphs” and the MMP language the “hypergraph
nomenclature.” We have already shown in the previous bulleted item above that
not all MMP hypergraphs correspond to Greechie diagrams and that therefore the
Greechie diagrams cannot be used as their substitutes or transliterations.
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The most important aspect of MMP hypergraph representation is not its striking vi-
sualization, but its encoding together with its algorithms and programs that enable their
automated generation, handling, and manipulation. The results obtained with their help
gives the MMP hypergraph language a favorable margin over competitive formalisms.

3 Objectification and generation of contextual sets

As we pointed out in the Introduction, the contextual sets juxtapose measurement outputs
of quantum systems with those of classical ones. We consider them as represented by
MMP hypergraphs and such a representation can be given several different objectifications
starting with the well known Kochen-Specker one, that in turn can be generated by several
methods in any n-dim space as abundant as needed.

3.1 The Kochen-Specker theorem and its Extensions

In this section we consider the Kochen-Specker (KS) theorem, its equivalent operator-
defined Bell theorem, and its three extensions: the KS MMP hypergraph theorem, the
Weakened Bell theorem, and the Non-Binary MMP hypergraph definition.

Theorem 3.1. Kochen-Specker (KS) [20, 72, 73]. In H"™, n > 3, there are sets of
n-tuples of mutually orthogonal vectors to which it is impossible to assign 1s and 0s in
such a way that

(i) No two orthogonal vectors are both assigned the value 1;

(ii) In no n-tuple of mutually orthogonal vectors, all of the vectors are assigned the value
0.

These sets are called KS sets and the vectors KS vectors. Since KS sets are constructive
counterexamples that prove the KS theorem, some authors in the literature call them KS
proofs, e.g., [74, 62, 65, 43].

The first extension of the KS theorem and KS sets is the one which makes use of MMP
hypergraphs whose vertices are not represented by vectors.

Theorem 3.2. KS MMP hypergraphs. There are MMP hypergraphs of hypergraph-
dimension n > 3 (Def. 2.1) to whose vertices it is impossible to assign 1s and 0s in such
a way that

(i') No two vertices from the same hyperedge are both assigned the value 1;

(ii') In no hyperedge, each containing n vertices, all of the vertices are assigned the value

0.

That means that there might be KS MMP hypergraphs that are not KS sets, as e.g.,
1234,4561,2356. |59, Fig. 1|. It is not a KS set because vectors that would represent
its vertices do not exist, i.e., this KS MMP hypergraph does not have a coordinatization
(vector representation). Our algorithms and programs are partly based on Theorem 3.2
meaning that they can detect the contextuality of an MMP hypergraph no matter whether
its coordinatization is given (or even existent) or not. Handling KS MMP hypergraphs
without taking their coordinatization into account give us a computational advantage over
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handling them with a coordinatization because processing bare hypergraphs is faster than
processing them via vectors assigned to their vertices.

In Refs. [35, 37, 41] n-dim contextual sets with hyperedges containing less than n vertices
that still violate the rules (i) and (ii) above are considered. They are not KS sets [5§],
though, since the KS theorem 3.1 assumes that each hyperedge contains n vertices. We
call such sets non-binary MMP hypergraphs (see Def. 3.5).

The original KS theorem holds for vectors and defines a KS set as its constructive proof.
On the other hand, Bell proved the so-called Bell theorem [75] as a corollary to the Gleason
theorem [76] which is a projector formulation of the KS theorem [73, 77].

Theorem 3.3. Bell. In H", n > 3, there is no valuation function v defined on the
projectors P; on the one-dimensional subspaces such that

(i") v(P;) =0 or 1 for each i and
(it") > iepv(P;) =1 for each orthonormal basis B of the space H™.

Fine and Teller gave the following extensions of the Bell theorem for general observables
A and B instead of projectors via the following rules [73].

Theorem 3.4. Weakened Bell. In H", n > 3, there exists no valuation function v
defined on the general observables A, B, ... such that

(i") v(A) is an eigenvalue of A (spectrum rule); and either
(ii"") v(A+ B) = v(A) + v(B), for commuting A and B (finite sum rule), or
(iii"") v(AB) = v(A)v(B), for commuting A and B (finite product rule).

Therefore, the statement by Yu, Guo, and Tong that the rules “are usually called the KS
theorem” [43] seems to be incorrect. On the other hand, they do claim that the operator
formulation of the Kochen-Specker theorem via sum and product rules is more general
than the vector/ray/hypergraph one but they do not give a rigorous proof of the claim,
such as providing us with a sum- or product-rule KS set that cannot be obtained from the
standard KS theorem. In any case, if the Bell theorem were “weakened” by the rules, then
it would cease to be equivalent to the KS theorem and we would possibly lose the universal
0-1 valuation of the valuation function for arbitrary observables of considered contextual
sets.

Since we want to keep the 0-1 valuations for computational purposes, we shall not pursue
the Bell sum/product extension further. Instead, we introduce another extension of KS
sets and MMP hypergraphs based on hypergraph vertices and their 0-1 valuation. That
circumvents the eigenvalue problem and gives us structural properties of MMP hypergraphs
as well as their measures, valuations, and inequalities via automated procedures, in contrast
to many other valuations and inequalities obtained in the literature, mostly by hand, for
particular vectors and projectors.

Our hypergraph extension applies to the MMP hypergraph conditions (') and (ii’) from
Theorem 3.2. It simply consists in allowing particular hyperedges to contain less than n
vertices, as, e.g., those in [78, 35, 41]. Notice that the extension covers both KS and
non-KS MMP hypergraphs. In such extended n-dim MMP hypergraphs, hyperedges need
not always contain n vertices but they might still satisfy or violate the two rules (i) and
(i) from Theorem 3.2. However, then we cannot call them the KS rules. Equally so, we
cannot call their inequalities the KS inequalities. Instead, we consider hypergraphs with
truncated vertices in the following way (cf. [41]).
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Definition 3.5. Non-binary MMP hypergraph. A k-l MMP hypergraph of hypergraph-
dimension n > 3 with k vertices and | hyperedges, whose i-th hyperedge contains k(i) ver-
tices

(2 < k(i) < n, i =1,...,1) to which it is impossible to assign 1s and 0s in such a
way that the following hypergraph rules hold

(i) No two vertices within any of its hyperedges are both assigned the value 1;
(i) In any of its hyperedges, not all of the vertices are assigned the value 0.
is called a non-binary hypergraph (NBMMP hypergraph).

The MMP hypergraph above is defined without a coordinatization, i,e., neither their
vertices nor their hyperedges are related to either vectors or operators. We say that an
MMP hypergraph is in an MMP-hypergraph-n-dim space (we call it an MMP hypergraph
space) when either all its hyperedges contain n vertices or when we add vertices to hyper-
edges so that each contains n vertices. Many of our programs handle MMP hypergraphs
without any reference to either vectors or projectors. In an MMP hypergraph with a co-
ordinatization an n-dim MMP hypergraph space becomes an n-dim Hilbert space spanned
by a maximal number of vectors within hyperedges. Whether we speak about an MMP
hypergraph with or without a coordinatization will be clear from the context.

Definition 3.6. Binary MMP hypergraph An MMP hypergraph to which it is possible
to assign 1s and 0s so as to satisfy the rules (i) and (ii) of Def. 3.5 is called a binary
hypergraph (BMMP hypergraph).

Definition 3.7. Critical MMP hypergraph is a non-binary MMP hypergraph which
1s minimal in the sense that removing any of its hyperedges turns it into a binary MMP
hypergraph.

Critical MMP hypergraphs represent non-redundant blueprints for their implementation
since bigger MMPs that contain them only add orthogonalities that do not change their
non-binary property.

An n-dim non-binary k-I MMP hypergraph H need not have a coordinatization, but
when it does, the vertices in every hyperedge have definite mutually orthogonal vectors
assigned to them. That means that each hyperedge E;, j = 1,...,1 should have not only
k(j) vectors corresponding to its k(i) vertices specified, but also n — k(j) ones that must
exist by the virtue of orthogonality in the n-dim space so as to form an orthogonal basis
of the space. Such an extended H we call a filled H.

In order to handle the pentagon hypergraph 12,23,34,45,51. we first have to assign a
coordinatization of the filled pentagon 162,273,384,495,5A1. so as to be able to imple-
ment the pentagon. Once we determined all its vectors/states we can discard the vertices
6,7,8,9,A from further consideration and processing.

The following Lemma follows straightforwardly.

Lemma 3.8. KS MMP vs. non-binary MMP. An n-dim non-binary MMP hypergraph—
in which each hyperedge contains n vertices—with a coordinatization is a KS MMP hyper-
graph.

In other words, a standard Kochen-Specker set is a non-binary MMP hypergraph in
which the size of each hyperedge is n and in which every one of k vertices corresponds to
a vector /state.
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3.2 Methods of MMP hypergraph generations

To generate NBMMPHs in n-dim spaces we mostly rely on three methods—M1-M3 which
make use of algorithms and programs developed in [58, 41, 60, 46].

M1 consists in an automated dropping of vertices contained in single hyperedges (mul-
tiplicity m = 1; see Def. 4.3) of BMMPHs and a possible subsequent stripping of their
hyperedges. The obtained smaller MMPHs are often NBMMPH although never KS.

M2 consists in an automated random addition of hyperedges to MMPHs so as to obtain
larger ones which then serve us to generate smaller KS MMPHs by stripping hyperedges
randomly again;

M3 consists in combining simple vector components so as to exhaust all possible collec-
tions of n mutually orthogonal n-dim vectors. These collections form big master MMPHs
which consist of single or multiple MMPHs of different sizes. Master MMPHs may or may
not be NBMMPH, what we find out by applying filters to them. NBMMPHSs serve us to
massively generate a class of smaller MMPHs via our algorithms and programs.

The algorithms the methods employ are applicable to any n-dim space but the compu-
tational barrier of the present day supercomputers allowed our programs based on these
algorithms to reach no further than a 32-dim space. In this paper we limit ourselves to
6-dim spaces.

4 Discriminators of the contextuality: Noncontextuality inequalities

In general, the noncontextuality inequality as a distinguisher between contextual and non-
contextual MMP hypergraphs is defined as follows:

Definition 4.1. Noncontextuality inequality defined for an arbitrary MMP hyper-
graph H

A <Q, (1)

where A and Q) are some terms defined on H, is an inequality whose satisfaction implies
that H is a contextual non-binary MMP hypergraph (Def. 3.5), and whose violation:

A>Q, (2)
implies that H is a noncontextual binary MMP hypergraph (Def. 3.6).

Noncontextuality inequalities exist in operator- and hypergraph-based forms.

4.1 Operator-based inequalities

Before we dwell on our hypergraph- and vector-evaluation-based MMP structures and
their inequalities let us first briefly present how the operator-based ones are defined in the
literature. There are three approaches:

(i) hyperedge-based approach considers the operators defined via vertices organized within
hyperedges of MMP hypergraphs; such are the majority of operators in the present
section; noncontextuality inequalities generated by these operators correspond to the
KS MMP hypergraph hyperedge inequalities, abbreviated e-inequalities and defined
by Defs. 4.14 and 4.15 in Sec. 4.3;
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(ii) wvertex-based approach considers the operators defined via vertices of an MMP hy-
pergraph by particular algorithms and independently of the organization of vertices
within hyperedges; see Yu-Oh’s operators below; their contextuality corresponds to
the contextuality of the underlying MMP hypergraph; the inequalities generated by
these operators correspond to the KS MMP hypergraph the o) -inequality given by
Eq. (24);

(iii) direct approach considers operators defined without a reference to either vertices
or their coordinatization; see Peres-Mermin’s operators below; we design a vertex-
hyperedge structure for them in Sec. 5.5.

Most of the operators are defined so as to have eigenvalues 4-1; their classical counterparts
are classical observables with noncontextual values £1. Thus, in the conditions (i) and
(ii) of the KS theorem, the value 1 assigned to vertices/vectors of a KS set corresponds
to an operator-defined variable value 1 (or -1) and value 0 corresponds to value -1 (or 1),
meaning that in (i) and (ii) we would have 1 (or -1) assigned to one of the vertices and -1
(or 1) to all the others.

Cabello defines 4-dim operators by means of KS states/vectors A;; [21, Eq. (2)]

Aij = 2|vig){(vig| — 1 (3)

via vector coordinatization of the 4-dim KS 18-9 hypergraph shown in [21, Fig. 1] and then
he shows that the inequality defined in |21, Eq. (1)]

—(A12A16A17A18) — -+ — (A9 A39As9Agg) < T, (4)

defined on the smallest 4-dim KS set 18-9 [50], is violated by probabilities of the outcomes
of quantum measurements which give 9 at the right hand side of the inequality. Value 7
in the inequality is the maximum value we obtain when we interpret the observables A;;
as classical variables.

Yu and Oh use a similar operator defined for 13 vectors from a 25-16 non-binary MMP
hypergraph (which is a non-KS set, though) and define the following inequality for them
35, Eq. (4)]

13 1 13
Z<Az‘> ~1 ZFij (A;A;) <8 (5)

where T" is a weight function. It is violated by quantum measurements which yield 25/3 =
8.3 for the left hand side of the inequality.

Badziag, Bengtsson, Cabello, and Pitowsky define n-dim operators by means of states/vectors
of a k-1 KS hypergraph (with k vertices and [ hyperedges).

, (6)

where (v v3") = 6 for every 1 < j < 1 [22, Eq. (5)]. They calculate the following
operator expression

l n ) n )
By(n,1) = Z<(Z Al - H<I+Az>>> — (I(n—2)I) = (n - 2), (7)
=1

J =1 =1

Al =T = 2[07") (v

which is the result one obtains by a quantum measurement [22, Eq. (8)]. Classical observ-
ables must satisfy the inequality [22, Eq. (1)]

/Bc(nﬂ l) S l(n - 2) - 27 (8)
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which is violated by the quantum operators. Badzidg, Bengtsson, Cabello, and Pitowsky
then calculate the classical S.(n, 1) for Peres’ 24-24 KS set and obtain Max[3.(4,24)] = 40
which is clearly violated by the quantum mechanical 3,(4,24) = 24(4 — 2) = 48.

Yu, Guo, and Tong define noncontextuality KS inequalities |43, Egs. (3,7,10)] for oper-
ators and projectors which are implicitly defined via vectors of KS sets, but they do not
specify any of them. We can only say that their inequality [43, Eq. (7)] is equivalent to
our ejq-inequality in Def. 4.14.

Peres and Mermin’s [44, 45| set was used [21] to yield noncontextuality inequalities for
operators which are not constructed with the help of vectors/states that might underlie
them. Instead, one makes use of the tensor products of the 2-dim Pauli operators given
by Eq. (32) and defines the noncontextuality inequality as follows. The operators X;,
1 =1,...9, satisfy the equation

Y= 139X3 + Xy X¥5¥e + XrXgXg + X13437 + Mo¥sXg — ¥3XeXg = 61 9)

while their classical counterparts S;, i = 1,...9 (observables with two possible results 1)
satisfy

S = 51598535 + 545556 + S75859 + 515457 + 525555 — 535659 < 4 (10)
Thus, the noncontextuality inequality should read
(S)y <4< (¥)=6. (11)

Taken together, most operator-based inequalities in the literature rely on coordinatiza-
tions of vertices/states of MMP hypergraphs by means of which the operators are defined
and then measured through an application on arbitrary states. In contrast, in the next
sections, we consider the inequalities which are defined directly by means of the coordina-
tizations of vertices of hypergraphs which are measured directly.

4.2 Hypergraph-based inequalities; Hypergraphs vs. operators

The approaches in Sec. 4.1 consider vertices either directly (Yu and Oh), or via their
inclusion in hyperedges (other approaches). In Sec. 4.3 we connect the operator-based
approach vertex structure of contextual sets with a hypergraph-based approach. But in
order to introduce particular vertex-based features of the latter approach, in this section we
reconsider a simple set—Klyachko, Can, Binicioglu, and Shumovsky’s pentagon |78, 79]—
to pinpoint the required features and to serve us as an introduction to Sec. 4.3.

As we pointed out in [41] the 3-dim 10-5 MMP pentagon from whose hyperedges the
vertices that belong to just one hyperedge (162,273,384,495,5A1., shown in Fig. 5(a)),
are dropped is a contextual non-binary 5-5 MMP pentagon (12,23,34,45,51.).

Operator vs. hypergraph approaches to the pentagon will serve us to introduce a distinc-
tion between operator-based measurements and direct measurements of quantum systems
exiting quantum ports determined via vertices within each hyperedge of an MMP hyper-
graph.

We can assign vectors to the pentagon vertices in many ways. Fig. 5(b) shows that 5-5
cannot be a regular planar pentagon, irrespective of chosen vectors, since the mutually
orthogonal vectors which would span its hyperedges, cannot reach it from the z-axis (left
magenta pair). The green diagonals do allow for such vectors (blue ones at the bottom) and
Klyachko et al. [78, Fig. 1] attempted to use the star-shaped pentagon (Fig. 5(c)) instead
and called it a pentagram. However, since the pentagon is a 3-dim one, the vectors that
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Figure 5: (a) MMP hypergraph representation of the pentagon; (b) impossible vector representation of
a planar regular pentagon; (c) impossible star-shaped planar vector-pentagon; (d) Proper non-planar
vector-pentagon; (e) its vector representation; (f) bare form of a pentagon obtained from {0,+1,2}
vector components; see text; (g) its vector representation; see text.

belong to just one hyperedge should also be taken into account, what makes the pentagram
contained in a plane inconsistent as it is obvious from Fig. 5(c). The proper pentagon with
curved hyperedges is given in Fig. 5(d). Together with vectors that span them it is shown
in Fig. 5(e) and vectors themselves are given above Fig. 4. The need to take all the states
into account experimentally was also stressed in [78]. Since vectors/states belong to the
spin-1 system all three ports of each gate should be measured even if only two of the
outcomes are postprocessed.

Now, Klyachko et al. [78] consider the states corresponding to vectors 1,...,5 in classical
vs. quantum representations. Assumed classical measurements demand that each vertex
within an hyperedge either receives an experimental detection or not, i.e., that it is assigned
a value 1 or 0 (a preassigned truth value), in such a way that the above hypergraph rules (i)
and (ii) from Def. 3.5 hold. “When the same assignments are carried over to the projectors
in the pentagram operator [A]...at most two of them can be assigned the value 1 [in our
notation below HI.p; = 2; Def. 4.4]. In a noncontextual reality an experimenter. .. will
therefore always find that [80, p. 415, Eq. (3)]

(Agy <27 (12)

In the quantum representation, the operators are |i)(i| and the maximum of the mean
value for ¥ = (0,0,1) is:

(Agphw = 25: (1| W) ]2 = V5 ~ 2.236 > 2 (13)

i=1

Its minimum value 5_—2‘/5 ~ 1.382 we obtain for ¥,, = (1,0,0) and these dependencies of
mean values of the measured observable on the chosen states render the pentagram setup
state-dependent in the operator approach.

But here we point out to two features of the pentagon.

First, we can generate vectors of the 10-5 in an automated way (as in [41]) from sim-
ple vector components, {0,41,2}, so as to obtain 1=(0,0,1), 2=(0,1,0), 3=(1,0,1)/v/2,
4=(1,1,1)/v/3, 5=(1,-1,0)/v/2, 6=(1,0,0), 7=(1,0,-1)/v/2, 8=(-1,2,1)//6, 9=(1,1,2)/\/6,
A:(l,l,O)/\/i. Vectors 1,2,...,5 do not determine a plane. The pentagon is shown in
Fig. 5(f,g). For vector ¢ = (3.15, —8.46,8.46) we obtain (Ajrax), = 2.23 > 2. The full 10-
5 MMP hypergraph is a binary one, i.e., anon-KSset. Ay-Ag-Ay =---=A5-A4-A1 =1,
where A; = |i)(i], gives:

(Ac[10-5]) = 5(I) =5 (14)
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Second, the 5-5 pentagon is a NBMMP hypergraph and we can make it hypergraph-state-
independent in the following sense. It can be implemented via a generalised Stern-Gerlach
experiment which makes use of both magnetic and electric fields [81], or via photonic
triplets [82], or via photon orbital angular momentum [4]. From each gate represented by
pentagon hyperedges, a particle or a photon will exit through one of the three ports and will
be detected by a corresponding detector. We postprocess the data so as to keep the records
of the “clicks” triggered by 1,2,...,5 events and discard those triggered by 6,7,...,A
events. After a recalibration of data, the probability of obtaining a click triggered by
1 or by 2 while measuring the 162 hyperedge is 1/2. Additionally, the probability of
obtaining a click while measuring 1 within the 5A1 hyperedge is also 1/2 as well as the
probability of obtaining a click while measuring 2 within the 273 hyperedge, and so on
for all other ports/vertices. Therefore, the sum of probabilities of registering any of the
1,2,...,5 events in pairs of hyperedges they belong to is 5. In notation of Sec. 4.3
HI, = 5; Def. 4.9. Since we can assign at most two classical 1s (satisfying the conditions
(i) and (ii)) from Def. 3.5 to pentagon vertices and since each of them share two hyperedges
we have HI}; =2 x 2 =4 and we obtain the following v-inequality (Def. 4.11):

HI'[5-5) =4 < HI,[5-5] =5 (15)

Notice that the non-KS filled 10-5 pentagon violates it:

HI'[10-5] =5 = HI,[10-5] =5 (16)
The violation occurs because the sum of probabilities for 1,2,...,5 is 10/3 and for
6,7,...,Aitis5/3 which together make 5. The maximum number of classical 1s is 5 (each

positioned in one of 6,7, ... ,A). So, a pentagon hypergraph inequality is hypergraph-state-
independent in the sense that it relies on the MMP hypergraph structure and not on its
coordinatization.

Thus, there are three things we take from here.

1. While the operator-based representation of the pentagon is state dependent, the
hypergraph one is not.

2. In the operator-based representation each state contributes just once in the measure-
ments, i.e., via projections to ¥, while in the MMP hypergraph representation each
state/vertex contributes twice, once through a measurement of a port contained in a
chosen hyperedge/gate and then through a measurement of the same port contained
in the next hyperedge/gate it shares. In Sec. 4.3 we formalize the hypergraph notions
we introduced here.

3. The non-binary MMP hypergraph 5-5 pentagon is not a subhypergraph of the binary
MMP hypergraph pentagon 10-5. In order to obtain 5-5 from 10-5 we discard vertices
that are contained in just one hyperedge while making use of the full coordinatiza-
tion of 10-5 to assign vectors to remaining vertices. We denote such a subset as a
subhypergraph.

Definition 4.2. Subhypergraph is a subset of an MMP hypergraph H = (V, E) from
which an arbitrary number of vertices contained in just one hyperedge are taken out so as
to satisfy the conditions of Def. 2.1, i.e., so as to be an MMP hypergraph itself.
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4.3 Hypergraph structure and inequalities

In this section we elaborate on MMP hypergraph vertices and the MMP hypergraph struc-
ture and properties based on them.
We start with the following definitions.

Definition 4.3. Vertex multiplicity is the number of hyperedges vertex i belongs to; we
denote it by m(7).

Definition 4.4. MMP classical vertex index HI. is the number of 1s one can assign
to vertices of an MMP hypergraph, non-binary or binary, so as to satisfy the conditions
(i) and (ii) from Def. 3.5. Mazimal (minimal) HI. is denoted as Hl.pr (HIcp,).

(Notice that in [41] some values of HI. are wrongly calculated due to an application
problem of our previous algorithm and program; program ONE used in this paper is a
substitute for that ones.)

Definition 4.5. MMP classical multiplexed vertex index HI[" is the number one
obtains when summing up all multiplicities of vertices of an MMP hypergraph with all
hyperedges contining n vertices, non-binary or binary, to which one can assign 1s so as to
satisfy the conditions (i) and (ii) from Def. 3.5. Maximal (minimal) HI is denoted as

We obtain HI. and HI" by an algorithm and its program ONE which assign 1s to vertices
of an MMP hypergraph. The algorithm randomly searches for a distribution of 1s satisfying
the conditions (i) and (ii) from Def. 3.5. It starts with a randomly chosen hyperedge
whose one vertex is assigned 1 and the others 0Os and continues with connected hyperedges
until all permitted vertices are assigned 1. Multiplicities for found 1s accumulated in
the process are taken into account. For contextual non-binary MMPs that means until
a contradiction is reached (although not necessarily a KS contradiction), i.e., a point at
which no vertex from the remaining hyperedges can be assigned 1; vertices within these
hyperedges are all assigned Os. The maximal number of 1s (HI., HI},) is obtained
by (up to 50,000) parallel runs with reshuffled vertices and hyperedges. Because we do
not make use of backtracking search algorithm resolve conflicts, the procedure does not
exponentially increase the CPU time with increasing number of vertices. KS sets with
several thousand vertices and hyperedges are processed within seconds on each CPU of a
cluster or a supercomputer.

The probability of not finding correct minimal or maximal HI. and HI]"* after so many
runs is extremely small but nevertheless that slight probability restrains our results mean-
ing that slightly bigger maximums and smaller minimums might be found in the future
computations for a chosen hypergraph.

Definition 4.6. Classical hyperedge number [. is the number of hyperedges which
contain vertices that build up HI. and the maximal and minimal number of such hyperedges
are leps and len,, Tespectively.

We stress that, in most cases, l.j; hyperedges do not contain H1.js vertices but a smaller
number of them. Also, I, hyperedges usually do not contain HI.,, vertices but a bigger
number of them.

The classical vertex index H I.js of a hypergraph H is related to the independence number
of H introduced by Grétschel, Lovasz, and Schrijver (GLS) [83, p. 192]. They introduced
the definition for graphs but it holds for hypergraphs as well, with graph cliques translit-
erated into hyperedges.
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Definition 4.7. GLS «. The independence number of H denoted by a(H) is the mazi-
mum number of pairwise non-adjacent vertices.

The independence number « has been given several definitions and names in the litera-
ture. For instance, “a(H) is the size of the largest set of vertices of A such that no two
elements of the set are adjacent” [12]. Such a set is called an independent or a stable set [55,
Def. 2.13|,[16, p. 272,428| and « is also called a stability number [16, p. 272,428|. In such
a set no two vertices are connected by a hyperedge. Definitions of these notions given by
Voloshin differ, since his sets might include two or more vertices from the same hyperedge
[19, p. 151].

Lemma 4.8. HI.;(H) = a(H)

Proof. Via conditions (i) and (ii) from Def. 3.5 which Def. 4.4 invokes, no two vertices to
which one can assign ‘1’ can belong to the same hyperedge. The maximum number of
such vertices, i.e., Hepr(H), is therefore the maximum number of pairwise non-adjacent
vertices, i.e., according to Def. 4.7, just a(H). O

The reason for distinguishing the two terms Hpr(H) and a(#H) that are numerically equal
is methodological. Finding o() is an NP complete, i.e., it is nondeterministic polynomial-
time complete procedure [83, p. 195 applied to the vertex structure of a hypergraph while
our algorithm for finding H.ps(#H) relies on repeated (sequential) non-exhaustive linear
searches for Os and 1s from given lists so as to satisfy conditions from Def. 4.4. Hence,
while the definition of H.p/(H) in Def. 4.4 is exact, the algorithm and program (ONE)
approximate it to an arbitrary precision. Each run takes 10 ms or less. We obtained
Hp(H) for over 1,000 MMP hypergraphs and verified (via other methods) that Heps(H) =
a(H) for all small MMP hypergraphs we considered. In this paper we present 43 MMP
hypergraphs for which H.p(H) = o(#H) holds and one which might not hold (we were
not able to independently verify whether H.j;(192-118) = 75 is the maximum). In the
literature we found only three explicitly calculated a(H)’s: two in [54] and one in [12].

To arrive at our noncontextuality inequality we introduce the following definition and
lemma.

Definition 4.9. MMP Quantum Hypergraph Index HI, is the sum of weighted prob-
abilities of all vertices of an n-dim k-l MMP hypergraph measured in all hyperedges/qgates,

i.e., repeatedly whenever they share more than one hyperedge (multiplicity being greater
than 1).

Lemma 4.10. Vertex-Hyperedge Lemma. For any n-dim k-l MMP hypergraph in
which each hyperedge contains n vertices the following holds

HI, =Y m:) —1. (17)
i=1

In general, any n-dim k-l MMP hypergraph with k(j) considered vertices in j-th hyperedge,
j=1,...,1, the following holds

HI, =33 0G0 =1 (18)

where k(j) is the number of vertices in a hyperedge j and p(j,\) = ﬁ is the probability
that a state of a system corresponding to one of the vertices would be detected when the
hyperedge/qate j is being measured.
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Proof. To prove Eq. (17) we take a constructive approach of building non-isomorphic
hypergraphs. For any loop of two or more hyperedges Eq. (17) obviously holds. E.g., a
loop of 3-dim hyperedges (pentagon) contains 10 vertices 5 of which share one hyperedge
and the other 5 two. Therefore 5 x 1 +5 x 2 =3 x 5. When we add a hyperedge at two
vertex connections the m numbers of these vertices rise by one so that the total number
of vertices increase by n and Eq. (17) holds. By weaving hyperedges so as to obtain the
so-called o-feature [58], i.e., by making pairs of them to intersect each other twice (at
two vertices) in a 4-dim space, or up to n — 2 times in an n-dim space (Def. 2.1(4.)),
the number of vertices lowers, but m proportionally rises at the vertices at which the
hyperedges intersect and Eq. (17) again holds. With this we exhaust constructive steps of
generating MMP hypergraphs [33, 34].

To prove Eq. (18), we just note that Z;gi p(j,A) =1 for any j. O

Eq. (17) is equivalent to a generalized Handshake Lemma for Hypergraphs given as a
Solution to Exercise 11.1.3.a in [84]. No proof of the lemma is given in [84].

Definition 4.11. v-inequality. An MMP hypergraph vertex inequality or simply v-
inequality is defined as

Hlep <Hlyy <HID < HIp =1 (19)

Lemma 4.12. Alln-dim NBMMP hypergraphs satisfy the v-inequality, i.e., any v-inequality
is a noncontextuality inequality (1).

Proof. In an NBMMP hypergraph a maximal number of hyperedges that contain ‘1’ must
be smaller than the total number of hyperedges [ and in a BMMP hypergraph every
hyperedge must allow assignment of one ‘1°, as follows from Defs. 3.5 and 3.6. O

Measurements of a k-l set are carried out on gates, i.e., hyperedges—hyperedge by
hyperedge—and each hyperedge/gate yields a single detection (click) corresponding to
one of n vertices (vectors, states) contained in the hyperedges with a probability of %
This means that for MMP hypergraphs whose all hyperedges contain n vertices, we can
build the statistics of the obtained data in two ways:

Hypergraph Statistics 4.13.

1. Raw data statistics for MMP hypergraphs with all hyperedges containing n vertices,
often adopted in the literature, e.g., [4, Egs. (2)], [35, lines under Eq. (2)], etc.,
consists of assigning % probability to each of k vertices contained in the hypergraph
(see Def. 3.5), independently of whether the vertices appear in just one hyperedge or
in two or more of them. Such a statistics does not appear as a valid processing of
measurement data.

2. Postprocessed data statistics takes into account that within an MMP hypergraph

(a) vertez ‘v’ might share m(v) hyperedges;

1 . . . . .y
(b) measurements are performed on - wvertices v(j) contained in hyperedges ‘j’,

hyperedge by hyperedge (j =1,...,1);
(c) outcomes of measurements carried out on particular vertices v(j) in particular

hyperedges j might be dropped out of consideration leaving us with k(j) vertices
in hyperedges j.
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Hence, we collect data from k(j) < n vertices in each hyperedge j. The probability of
getting measurement data for each vertex within the hyperedge, after discarding data
for n — k(j) dropped vertices, is ﬁ The sum of all probabilities is, according, to
Eq. (18), equal to the size of the hypergraph, i.e., to the number of its hyperedges .

As for hyperedges, several additional definitions are due for a further analysis of the
aforementioned structure in the next sections.

Definition 4.14. An MMP hypergraph mazximum hyperedge inequality or simply epjqe-
inequality is defined as

lev < L (20)

As for I, it satisfies the noncontextuality e,,;n-inequality

Definition 4.15. An MMP hypergraph minimum hyperedge inequality or simply €min-
inequality is defined as

Lem < L. (21)

They are the noncontextuality inequalities simply because ¢, = lo.ar = I for all binary
MMP hypergraphs. The inequality Eq. (21) has a bigger span between the terms than the
inequality (4.14) (because lep, < lepr) and therefore it is more viable for an implementation.
It seems to us that l., is the “rank of contextuality” Horodecki at al. [85] introduced as
a quantifier of contextuality for hypergraphs, although it is rather difficult to establish a
correspondence between their formalism and the MMP hypergraph language, in particular
because they keep using several different names for vertices and hyperedges throughout
their paper.

Whenever we refer to both epq.- and e,,;,-inequalities we invoke them as e-inequalities.

Lemma 4.16. All n-dim non-binary MMP hypergraphs satisfy the e-inequalities, i.e., any
e-inequality is a noncontextuality inequality (1).

Proof. For KS MMP hypergraphs it follows directly from the KS theorem 3.1 since both
a maximal and a minimal number of hyperedges that contain ‘1’ must be smaller than the
total number of hyperedges [. For non-KS NBMMP hypergraphs it follows from Def. 3.5
and its conditions (i) and (ii) in the same way. O

Here we stress that the raw data statistics cause a problem with the application of the
maximum of total probabilities to obtain measurement outcomes that served some authors
in the literature to establish noncontextual inequalities which should single out contextual
sets. The maximum in question is derived from the fractional independence number defined
in the graph and hypergraph theories by the following definition [83, p. 192].

Definition 4.17. Fractional independence number o*(H) of an MMP hypergraph
H(V, E) = H(k-1) is the mazimum value of Y-F_, x(v), where v € V' and where x(v) are
non-negative real numbers such that Y ,c. x(v) <1 for each hyperedge e € E of H.

Since a*(#H) is the optimum of a linear programming (LP) problem, it can also be given
the following equivalent definition [86].
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Definition 4.18. LP Fractional independence number o*(#H) of an MMP hyper-
graph H(k-l) is the optimum value of the following linear programming problem LP =
LP(H)
(LP) Mazimize Y, ¢y z(v)
subject to Y e, <1,Vec E
z(v) € 0,1], Vv e V

The fractional independence number o* has recently been renamed to the fractional
packing number and used for obtaining noncontextuality inequalities for measured contex-
tual quantum systems [54, 12, 55|. However, the properties of probabilities of quantum
contextual measurements in these references have not been fully used in applications of
the fractional independence number to them, as follows from the following postulate and
theorem which dispense with variable probabilities z(v) used in Defs. 4.17 and 4.18.

Quantum Indeterminacy Postulate. 4.19. A quantum system generated in an un-
known (unprepared) pure state in an apparatus (e.g., a generalized Stern-Gerlach one),
when exiting from it through one of the out-ports (channels) of its gate, has equal proba-
bility of being detected [87, Sec. 5-1] on its exit.

That means that in an n-dim k-l MMP hypergraph with n vertices within each hyperedge
1

the probability of detecting the system at one of the ports is p(v) = - for any vertex v
within each hyperedge E;, j = 1,...,l and that the condition ZveEj p(v) < 1 for each
hyperedge E; € E, j = 1,...,1 is satisfied. Later on we might decide to drop particular
vertices and apply postprocessed data statistics 4.13.

That also means that assuming that one can manipulate the generated pure states be-
fore measuring them is not plausible. For instance, an unprepared spin-1 system can be
projected to one of three subspaces with equal probabilities of 1/3 and this inherent quan-
tum randomness is what builds up the contextuality of the whole set. Any filtering of the
systems before measurements, i.e., any other set of probabilities that do not amount to
1/3 each, ruins the contextuality since then the sum of probabilities is less than 1 per a
hyperedge and we loose data.

As an example, take Eq. (17) which gives the sum of probabilities of detecting vertex
states over all multiple appearances of vertices in hyperedges/gates obtained by postpro-
cessing of measurement data. The sum takes into account multiple detections of systems
corresponding to the same vertices exiting through different hyperedges/gates the ver-
tices/ports share. For instance, take the 18-9 MMP 1234,4567,789A,ABCD,DEFG,GHI1,
35CE,29BI,68FH. and carry out measurements on all 9 hyperedges of them. Then, the
probability of detecting a system determined by any of the vertices in any hyperedge/gate
is i. But every vertex appears in two gates, so the sum of probabilities of the system
being detected in each such pair is % and the overall sum of probabilities is 18% =9, ie.,
HI, =1 =9. This is a consequence of measuring each of the 9 hyperedges separately
and obtaining outcomes for each tetrads of vertices per hyperedge with the probability of
i—making a total of 1 per hyperedge. Hence, the sum of probabilities for all 9 hyperedges
is equal to 9 in contrast to the collection of the raw data in [4, Eqgs. (2)] where the sum
18% = 4.5 is assumed what would mean the sum of probabilities per a hyperedge of % and

a dismissal of half of the data.

Theorem 4.20. Let variables x(v) from Defs. /.17 and /.18 be the probabilities p(v),
v € V of detecting an event by YES-NO measurements at one of the out-ports (vertices)
contained within a hyperedge of an n-dim MMP hypergraph H(V, E) = H(k-l). FEach of
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E; € E, j =1,...,1 hyperedges (gates) contains n vertices. The probabilities satisfy the
condition:

S p) < Lj=1....L (22)
”L)GEj

They also satisfy the following:

(a) Under the raw data statistics 4.13(a) assumption, i.e., under the assumption that
every vertex within an MMP hypergraph has + probability of being detected [54], [12], [55],
the sum of all probabilities is:

k
k
Y o) = = = ai(k-l) = a;(H) (23)
v=1 n
where o s the raw quantum fractional independence number.
This implies that, in general, the a-inequality (compare it with free probability GLS
inequality [83, p. 192])

Hly=ao(H) <ay(H) = - (24)
does not always hold for quantum mechanical measurements whose probabilities of detection
within each hyperedge satisfy the condition given by Eq. (22), i.e., p(v) = %, veV. The
inequality is violated by a significant portion of contextual non-binary MMP hypergraphs
in any dimension; see Fig. 6(a-d), the 3rd figure in Sec. 5.2, figures (a,h) in Sec. 5.1, 1st
figure (d) in Sec. 5.2, the 1st figure (b) in Sec. 5.3, the 3rd figure (g) in Sec. 5.4, the 1st
figure (a,h) in Appendiz A, and the 1st table in Sec. 5.2, the 1st table in Sec. 5.6, and
the 2nd table in Sec. 5.7. It is, therefore, not a reliable discriminator of contextual sets.
This is only to be expected since the raw data statistics is, as we pointed out above, not a
consistent elaboration of measurement data.

Figure 6: 3-,4-, 6-, and 8-dim KS MMP hypergraphs that violate the inequality o < « given by
Eq. (24); the vertices that belong to the independent (stable) set and contribute to o = HI.ps are
squared in red; (a) 3-dim; & = 21 > o = ¥ ~ 16.3; (b) 4-dim; « =7 > o = 2 = 6.5; (c) 6-dim
a=6>a; =3 ~56 (d) 8dim; o =5> o =3 =4.625 (e) 4-dim; a =3 > o} = § = 2.25;

(f) 3-dim; a =5 > af = % = 3.3; (a-d) MMP hypergraphs are KS non-binary critical contextual sets

while (e) and (f) are 9-3 4-dim and 10-5 3-dim binary noncontextual MMP hypergraphs, respectively.

(b) Under the postprocessed data statistics 4.13(b) assumption, i.e., under the assump-

m(v)

tion that every vertex v within an MMP hypergraph has == probability of being detected,
the sum of all probabilities is:
: “ m(v) ‘ ’
Zp(v) = Z = I = ap(k-1) = ay(H) (25)
v=1 v=1
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where ay, is called the postprocessed quantum fractional independence number.
This implies that the o -inequality [83, p. 192],

Hly = a(H) < ay(H) =1= HI,, (26)

which follows from the Vertex-Hyperedge Lemma 18, is another form of the v-inequality
(19) and is therefore a noncontextuality inequality and a reliable discriminator of contex-
tual sets.

Proof. Quantum YES-NO measurements of states determined by MMP hypergraphs are
carried out either by letting the quantum system through gates, e.g., Stern-Gerlach devices
or via projecting their states on unit vectors. According to the quantum indeterminacy
postulate 4.19 that makes the probabilities of their detection constant.

(a) Within the raw data statistics 4.13(a) one assumes, according to the Postulate 4.19,
that the probability of detecting a state that corresponds to a vertex v € V is equal to
the probability of detecting that state within any of hyperedges the vertex might belong

to, i.e., p(v) = L for any v € V. That yields Eq. (23). Examples of such an approach in

the literature are: @ (5,5) = 5 for the induced 4-dim pentagon (5 x %) [54, p.3, top] and
@ (18,9) = 4.5 for the 4-dim 18-9 MMP (18 x 1) [4, Eq. (2)]. These examples do satisfy
the inequality (24). The others that do not are given in the Theorem 4.20(a).

(b) Within the postprocessed data statistics 4.13(b) every vertex v € V is taken into
account m(v) times, yielding the probability p(v) = @ (Cf. Eq. (17)). This gives
Eq. (25) and the inequality (26). Examples of such an approach are given for a pentagon
in Sec. 4.2, Eq. (15): a;(5,5) = HI,[5,5] = 5 and for the 18-9 MMP hypergraph in Sec. 4.1
below Eq. (4) and in Sec. 4.3 below the Postulate 4.19: «;;(18,9) = HI,[18,9] = 9. O

Notice that since the theorem asserts that a contextual non-binary MMP hypergraph
might or might not satisfy the raw quantum fractional independence number inequality
given by Eq. (24) and which is therefore not a noncontextuality inequality, the only known
unequivocal noncontextuality inequalities that hold for every MMP hypergraph are v- and
e-inequalities (and hence also oy, inequalities). Still, for a contextual k-l MMP hypergraph
the a-inequality has had a greater span (smaller ) than for a noncontextual k-l MMP
hypergraph for roughly 1,000 randomly chosen k-l MMP hypergraphs.

If v- and e-inequalities were satisfied, an MMP hypergraph would be contextual. If not,
it wouldn’t. So, the v- and e-inequalities are noncontextuality inequalities. On the other
hand, as we stressed above, oj-inequalities, are not such direct measures of the quantum
contextuality since many contextual MMP hypergraphs do not satisfy them. All contextual
MMP hypergraphs satisfy the inequality l., < lcys < [, while the noncontextual MMP
hypergraphs satisfy l.,, = l.pr = I. That means that a noncontextual MMP hypergraph is
structurally different from a contextual MMP hypergraph.

Note that both a;- and aj-inequalities given by Egs. (24) and (26), respectively, assume
the validity of the quantum indeterminacy postulate 4.19. Notwithstanding the plausibility
of the postulate, some authors apply the original GLS inequality [54, Result 1]

a(H) < a*(H), (27)
(where a(H) is defined by Def. 4.7 and o*(H) by Defs. 4.17 and 4.18), to contextual
non-binary MMP hypergraphs and claim [54, Results 1 & 2| that the inequality (27) is
a noncontextuality inequality. In [54] there is also the weight of the probabilities at each
hyperedge which, according to the indeterminacy postulate 4.19, should be equal to 1.
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The discrepancy comes from the fact that the inequality Eq. (27) is correct provided
p is not a constant (as it would be under the assumption of the quantum indeterminacy
postulate) but a free variable which is determined as a solution of the linear programming
problem given in Def. 4.18. In [54] it is even stated that finding o* is NP hard, what is
correct for the GLS inequality.

For a pentagon, the raw data statistics and LP approaches give the same result o* = %

A difference emerges already for a very simple MMP hypergraph 9-3 given in Fig. 6(e),
though. For a free p we have:

LP[{-1,-1,-1,-1,-1,-1,-1,-1,-1},{{1,1,1,1,0,0,0,0,0},{0,0,0,1,1,1,1,0,0},{1,0,0,0,0,0,1,1,1}},
{{17‘1}7{17'1}?{1a‘1}}]

Out:={0,1,0,0,1,0,0,1,0}, i.e, o* = 3. Since o = 3, inequality (27) is satisfied.

However, for p = % we get

LP{-1o11- 1oL o111 ({1,1,1,1,0,0,0.0,01,£0,0,0,1,1,1,1,0,01,{1,0,00,00,1.1, 11

(OO L, {4,1} L T

Out:= %7%7%7%7171’1 171} ie., o = 2 = 2.25, which violates inequality (27) as well as
24) (o7 = §).

Hence o* # o, meaning that ) is a special case of a*; the former a applies to vari-
able probabilities and the latter to fixed probabilities of YES-NO quantum measurements
implying that Eq. (27) fails for arbitrary many quantum measurements and that the prob-
abilities must be equal and constant at all ports of a quantum gate as a consequence of

quantum indeterminacy postulate 4.19, i.e., of a genuine quantum randomness.

Discussion 4.21. Non-maximal number of vertices within hyperedges and their
probabilities. There are MMP hypergraphs for which we should yet decide what an
optimal approach to form a proper statistics of their measurement should be and those
are the n-dim MMP hypergraphs whose hyperedges do not all have a maximal number of
vertices, i.e., n vertices. Consider, for example, the 9-3 MMP shown in Fig. 6(e) from
which the vertices 8 and 9 are dropped from the consideration. We are left with 7-3 MMP:
1234,4567,71. When we detect particles at outgoing ports of 1234 ,4567 hyperedges/qates
the probability of their detection is i. The same is with the 7891 in the 9-3 MMP, but in
the 7-8 MMP we discard two outcomes—those at 8 and those 9. After the dismissal of 8
and 9 data, the 7- and 1-detection have the probability of% each. But the question remains
about the overall probability of detections at 7 and 1 within the 7-8 MMP hypergraph. In
[41] we proposed that the probability be the arithmetic mean of the probabilities the vertex
has in all hyperedges it shares. For instance, vertex 7 within the 4567 hyperedge would
have the probability i and within the 71 hyperedge it would have the probability of %
The overall probability for 7 to occur, i.e., the arithmetic mean of these probabilities,
would be (4 £)/2 = 3. (Notice also that it would be plausible to assume twice as many
measurements for the 7891 than for the other two hyperedges, if we wanted to drop data
for 8 and 9 and claim the probability % for 1 and 7.) We provide some further examples
and a discussion in Secs. 5.2 and 5.4

4.4 Hypergraph structure exemplified

To get a better insight into the introduced notions and features, we consider two examples:
a complex 4-dim 21-11 KS MMP hypergraph, shown in Fig. 7, that is not a subset of
Peres’ 24-24 KS set [23] unlike the real 4-dim KS 18-9 that is [21] and Yu-Oh’s 3-dim
13-16 non-binary non-KS MMP hypergraph, shown in Fig. 8, that is a subhypergraph of
a binary 25-16 which is itself a subhypergraph of Peres’ 57-40 KS MMP hypergraph.
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B =(1,1,0,0)
C =(1,-1,i~)
D=(1,1-1,-1)
E =(LLL1)

1=(1,1,1,-1)
2 =(1,-1,-1,-1
=|V)lk) 3=(1,00,1)
v 4=(0,1,-1,0)
5=(0,1,1,0)
6=(0,0,0,1)
7 =(1,0,0,0)
=|H|)|ln) 8=(0,1,0,0)
: 9=(0,0,1,-1)
A=(0,0,1,1)

| =(0,1,0,1)
J=(1,-1,1,1)
K =(0,0,1,0)
L=(1,-1,4,)

Figure 7: 21-11 KS set from the 60-105 KS class [58, Fig.5] with a coordinatization and 2-qubit states
(polarization + OAM) on single photons at the hyperedge ABCL. See text. Notice the orthogonality:
eg.,CL=(1,-1,4,—%)-(1,-1,—¢,i) =0

We establish a relation between the hypergraph-based features introduced in the previous
section and the operator-based features introduced in Sec. 4.1, in particular with respect
to inequalities (4) and (5).

We can implement the 21-11 set by means of two qubits mounted on single photons via
spin and angular momentum [88, 89| states defined as follows

(i) - -5 ) - () -2),

where H,V are horizontal, vertical, D, A diagonal, anti-diagonal, and R, L right, left circu-
lar polarizations, while £2 are Laguerre-Gauss modes carrying +2/ units of orbital angular
momentum (OAM) and h, v are their & superposition, respectively. Indices ‘1’ and ‘2’ refer
to the 1st and 2nd qubit mounted on the system, respectively. Four states building the
hyperedge ABCL are given in Fig. 7. Other states have similar expressions and they enable
us to obtain the analogues of Cabello’s states defined by Eq. (3). Since our vectors are
complex, our bras are hermitian conjugates of our kets: O; = 2|1)(i|T — I. The matrix
forms of the operators of our four states read:

1000 01 00 11 4 4 11 4 i
01 00 1 0 00 111 1 4 4 11 1 4 4
OA_0001’0’3_0010’00_51'511’@_’%2'11’
0010 00 01 i i 11 i i 1 1

where 1 stands for —1 and ¢ for —i.

We can verify that any of |A),|B),|C),|L) is an eigenvector of any of O, g ¢ 1 with eigenvalues
41, and that OyOpOcOr = —1I holds. We can also verify that these relations hold for any
hyperedge. Actually, we conjecture that they hold for any hyperedge of any critical KS
MMP hypergraph in any dimension. That yields:

l 11
Pk, ] =F) (Ole]) =1;  for our Fig. 7set : Py[21,11] = =) (O[e]) = 11, (28)
e=1 e=1
where F signs are for even/odd dimensions, respectively, and where O[e] stands for Q1,02
-+ One, where je refers to the j-th vertex on the hyperedge e. With respect to the afore-
mentioned eigenvalues we assume that classical counterparts Oj. of quantum Oj. have
two possible results Oj. = 1 and Oj. = —1. Maximal values of the classical analogues of
Eq. (28) is given by Eq. (29).
l 11

Pkl =F Z Ole] =1 — 2; for our set : P.21,11] = — Z Ole] =9, (29)

e=1 e=1
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where Ole] stands for 01,02 - - - Ope. We confirmed the special case 21-11 result by Math-
ematica.
Equations (28) and (29) yield the noncontextuality inequalities

Pk, 1] < P,lk,1]; for our set : P.[21,11] =9 < P,[21,11] = 11. (30)

These results correspond to Cabello’s |21, Eqgs. (1,2)] (P[18,9] = 7 < F,[18,9] = 9)
referred to by Egs. (3) and (4) above.

Now, let us establish the correspondence of these operator-based results with our hyper-
graph-based approach. FPylk,l] = [ given by Eq. (28) in the operator-based approach
is equivalent to HI,[k,l] = [ given by Eq. (17) of the hypergraph-based approach. In
accordance with this, Cabello |21, p. 2, top| obtains P.[18,9] = 7, F,[18,9] = 9, and the
noncontextuality inequality 7 < 9. In other words, in [21| he adopts the postprocessed
data statistics while in [4, Egs. (2)] the authors adopt the raw data statistics and have
P,[18,9] = 4.5 (with operators |¢ >< i, not 2|i >< i| — I, but the result should be the
same). In the former approach each vertex state shares two hyperedges (has multiplicity
m = 2) and is therefore measured twice, once within measurements carried out on the first
hyperedge and the second time within those carried out on the second hyperedge. Since
all vertices in the 18-9 MMP share two hyperedges one is tempted to apply the raw data
approach, but in the 21-11 MMP the vertex 7 shares four hyperedges, i.e., its multiplicity
is m(7) = 4 and we should take into account that it is measured four times while all the
other vertices are measured only twice when we measure all hyperedges in turn.

A correlated approach is given by Badzidg, Bengtsson, Cabello, and Pitowsky who obtain
Bem(n,l) < l(n—2) —2 and Bom(n,l) = l(n —2) [22, Egs. (1,8)] corresponding to our
2l.ar and 21 for n = 4, respectively, due to the way they define the operators [22, Egs. (3)].
It is, therefore, rather surprising that they get puzzling results for simple cases. For
instance, they claim (in 2009) that the Peres’ 24-24 MMP hypergraph “generate[s| 96
(critical) 20-observable [20 vertices| and 16 (critical) 18-observable [18 vertices| proofs of
the KS theorem,” while it was proved (in 2005) that it contains only two non-isomorphic
critical MMP hypergraphs with 20 vertices (20-11) and a single critical with 18 vertices
(18-9) [33, 34, Fig. 3, Figs. 4(b,c)|. Do they refer to isomorphic instances of these MMP
hypergraphs? Because it was proved in [52, Table 1] that Peres’ 24-24 MMP hypergraph
contains only one MMP hypergraph with 18 vertices and 7 (non-isomorphic) ones with 20
vertices (including two 20-11 criticals).

Yu-Oh’s operator approach is different [35]. They make use of the inequality given by
Eq. (5) to prove the operator contextuality, but the underlying MMP hypergraph is itself
contextual. See Fig. 8.

More specifically, they build their operators A; in Eq. (5) by means of vectors/states
assigned to vertices of their 13-16 MMP hypergraph; e.g., Ay = A,, = I — 2|z1)(z1],
where |2z1) = (1,0,0) [35, Eq. (1) and Appendix|. All 13 vectors are eigenvectors of A;,
i =1,...,13. Therefore “the outcomes for observables A; are either +1 or —1, depending
on whether there is a photon click (or no click) in the corresponding photon detector” [82,
Supp. Material]. The operators violate inequality (5) for any state, i.e., the violation is
state independent.

Before we proceed with a further analysis of Yu-Oh’s set we would like to point out that
there is the following problem with the violation of inequality (5). In [41] we tested it on
50 different non-binary MMP hypergraphs and found no violation. That means that the
inequality is unsuitable for application on an arbitrary MMP hypergraph.

On the other hand, Yu-Oh’s MMP hypergraph does satisfy the v- (Hl.pr = a = 5 <
HI%, =14 <1=16), e- (l.ps = 14 < 1 = 16), and even o-inequality (5 = o < of = 5.6).
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(b) Yu-Oh's (C) graph notation

graph—MMP
mixture y, i‘f ‘
II equivalent
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isomorphic
—o—0
13—-16 or
; Lo T e
non—binary
MMP hypergraph MMPH notation

Figure 8: (a) MMP hypergraph representation of Yu-Oh's graph-hypergraph mixture; vertices with
m = 1 are shown as gray dots; all vertices together build 25-16 binary MMP hypergraph; MMP
hypergraph with the gray vertices dropped build a non-binary 13-16 MMP hypergraph; (b) Yu-Oh's
graph-MMP-hypergraph graphical presentation of their set; (c) graph clique vs. MMP hyperedge.

(Note that l.py # | — 1 because 13-16 is not critical; see the 3rd figure from Sec. 5.2.)
Thus, in addition to its operator implementation, Yu-Oh’s set, as any non-KS non-binary
MMP hypergraph, can be straightforwardly and instantaneously identified as such via our
programs and implemented with the help of YES-NO measurements of vertex states exiting
the hyperedge gates.

Yu and Oh arrived at their 13-16 non-binary MMP hypergraph by removing m = 1
vertices from the 25-16 binary MMP hypergraph (shown as gray dots in Fig. 8(a)) which
is itself a subhypergraph of Peres’ 57-40 MMP hypergraph (figure (c) in Appendix B).
Actually, just five gray vertices (a,...,e) suffice to turn the 13-16 into a binary 18-16
MMP hypergraph. Its parameters are: HIy, = l.ps = | = 16 and v- and e-inequalities are
violated. If we then remove any of the five gray vertices (a, . .. ,e), the MMP hypergraph
becomes a contextual non-binary 17-16 one and HI}, = l.pr = 14 <1 =16, i.e., v- and e-
inequalities are satisfied. It should be stressed here that in a 3-dim space all vector triples
should be implementable, i.e., that 25-16 should have a coordinatization. The {0,+1}
components suffice for only 13 vectors of the “magic cube” shown in [35, Fig. 1|. For a
proper implementation of the 13-16 one should make use of, e.g., {0, %1, 2} components to
allow an implementation of the 25-16 as well. In doing so one also changes the assignments
of vectors to the original 13 vertices. This is analogous to the pentagon (e)-resolution of
the (c)-attempt in Fig. 5. Vectors a, ... ,m in Fig. 8(a) contain the component ‘2’, while
the vectors assigned to the original 13 vertices do not.

Taken together, operator-based measurements of contextual states differ from hypergraph-
based ones in the following way. To measure the mean values of observables/operators we
have to first measure correlations between observables/operators defined by vertices/vectors
of an MMP hypergraph. To prove the state independence we have to carry out measure-
ments with different input states. Thus, the number of measurements grows exponentially
with the size and with the dimension of the set.

In the hypergraph-based approach the input states are the states from the coordinatiza-
tion of an MMP, as in Fig. 7, and we verify them by detecting output states at the ports of
each gate/hyperedge. The number of measurements grows linearly with the size of MMP
hypergraphs and with their dimension.

Of course, each approach has its own application. When an MMP hypergraph is a part of
a quantum network which requires projections to specified states, then we use the operator-
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based approach, and when it is a part of a quantum computation which has to distinguish
contextual loops from noncontextual ones, then we use a hypergraph approach.

5 Analysis of MMP hypergraph features in diversified dimensions

5.1 MMP hypergraph multiplicity

So far we have seen that the multiplicity of vertices plays significant roles in determining
the features of MMP hypergraphs. Here we consider two such features shown in Fig. 9 and
Table 1 (odd number of hyperedges) and in the Appendix A (even number of hyperedges).

1: 8,9,.D,E,B,C,
5,634,122

4:GK.84,0.8
R
(b)

HI,,

HI(M D

Figure 9: 4-dim KS criticals with 17 hyperedges from the 156-249 class. m # 2 are stated for each
set. (a)-(g) have only m = 2 and m = 4. Distributions (for (a) and (h)) of the maximal and minimal
numbers of “classical 1s” are given by squares and diamonds, respectively; (a)-(g) have parity proofs;
(a) a=8>a=7;(h) a=10> o = 8.75.

Table 1: Multiplicities m of master KS sets. The 3-dim 81-52 KS master is vector-generated from
vector components {0, 41, ++/2,3} which build vectors of Peres’ 57-40 sets [23]. Master 81-52 has
only one critical set—Peres’ 57-40.

n 3-dim 4-dim 6-dim

24-24  60-75 60-105 148-265 | 81-162 216-153 834-1609
[23, 90] [65]  [32, 58, 60] [58, 60] [60] [59, 91] [60]
8(x3), 13(x4), 33(x6), 193(x6),

m 4 (x24) 5 (x60) 7 (x60) 12(x54)
3,2, 1 7(x144) 4,3 12, 4

master | 81-52

First, for thousands of 4-dim MMP hypergraphs we checked, it turns out that those
with odd number of hyperedges predominantly have vertices with even multiplicities. The
program ONE gives vertex multiplicities m. For smaller sets, they can be verified by hand
(see, e.g., figures in [58]), but for the bigger ones, it would be a really demanding endeavour.
So, as an example we consider a subclass with 17 hyperedges from the 4-dim class 156-249
[27] shown in Fig. 9. We also contrast it with a subclass with 18 hyperedges from the same
class shown in the Appendix A which exhibits a prevalent number of odd multiplicities,
once m = 2 (dominant in all MMPs) is excluded. Notice that any KS MMP with a parity
proof must have an odd number of edges.

Second, multiplicities of vertices uniquely characterize master MMP hypergraphs we
use to generate all known MMP hypergraphs classes from. Master sets that are generated
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from symmetric geometry or from symmetric polytopes or from symmetric vector-generated
MMPs exhibit large and unique multiplicities m, while with asymmetric vector-generated
ones we have n (=dimension) bigger m’s followed by multiple occurrences of one or two
smaller m’s, as shown in Table 1. We can see that 4-dim master 24-24 consist of 24 vertices
all of which have multiplicity m = 4, 60-75 of 60 vertices with m = 5, 60-105 of 60 vertices
with m = 7, etc. The bigger the asymmetric vector-generated MMP hypergraphs are,
the more m’s they contain. E.g., 4-dim the KS MMP hypergraph master 1132-2460 (not
shown in Table 1) contains m = 79 four times, and then 42, 36, etc, down to 1 (altogether
16 different m’s) in multiple occurrences. The KS MMP hypergraph master 1132-2460
contains the 60-75 master.

5.2 3-dim MMP hypergraphs

In [58] we gave figures and strings of 3-dim Bub [92], Conway-Cohen [48], Peres [23], and
original Kochen-Specker |20] critical MMPs: 49-36, 51-37, 57-40, and 192-118, respectively.
Renewed figures are given in the figure in Appendix B. New 3-dim MMP hypergraphs,
mostly obtained in [46], are given in Fig. 10. Their properties are in Table 2. As for the
w components in Table 2, w = ¢*™/3 = (=1 + i1/3)/2. Note that proving ortogonalities
between vertices containing complex vectors require complex conjugate dot products.

Figure 10: (a-c) Critical 3D MMPHs generated by the components {0, +1,+2,5}; (a) the only 53-
38; 22-gon; (b) one of the eight 54-39s; 23-gon; (c) the only 55-40; 22-gon; (d) the only 57-41—the
smallest MMPH generated by {0, +1, 2, £5, +w, 2w}; 21-gon; (e) that smallest MMP hypergraph 69-50
generated by {0, +w, 2w, +w?, 2w?}; 24-gon.

As explained in [93, 33, 34, 94, 58, 41], in order to be KS sets the aforementioned original
MMP hypergraphs must have 49, 51, 57, and 192 vertices/vectors, respectively, not 33,
31, 33, and 117 as often stated in the literature and even in the original papers. The
latter versions of the sets are those with m = 1 vertices dropped. They are not KS sets
but are contextual non-binary MMP hypergraphs. The same holds for all the other MMP
hypergraphs, e.g., for those in Fig. 10.

Their HI.pr, Hlcp, lem, lear, and mpy are given in Table 2. The ejq.-inequalities are
trivial for the critical MMP hypergraphs for which we have I,y = [—1. For the KS 192-118,
in 100,000 runs on a supercomputer, we obtained l.j; = [ —2 = 116. But our program ONE
for finding [ is probabilistic and an exhaustive search would not allow parallel computation
what means too lengthy a computation. Their e,,;,-inequalities read 24 < 36, 26 < 37,
..., 99 < 118. They would allow for a more robust implementation. Cf. 7-dim case at the
end of Sec. 5.8.

In the figure (d) from Appendix B we give the 192-118 KS MMP hypergraph. Notice that
the original figure of Kochen and Specker [20, p. 69| is neither a graph nor a hypergraph.
Its points a and pg, b and qp, ¢ and r [20, p. 69| are actually single vertices, respectively,
and lines between them are not edges but only indications of merged dots what makes their
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Table 2: Terms for the inequalities of 3-dim KS sets: aj-inequality: a < ), v-inequality: Hl.p <1
and e-inequality: l.ps < [; myy is the maximal m. Notice that the o -inequality is violated for all MMP
hypergraphs.

HI ector
dim KS hypergraphs M f Iem lens lem 1 mpp o crit. v
e components

Bub’s 49-36 [92] 21 11 35 24 36 4 163 yes  {0,£1,+2,5}

Conway-Kochen’s

g% 51.37 48] 22 13 36 26 37 4 17 yes {0,+1,4+2,5}

§o 53-38[46] 21 12 37 27 38 4 17.6 yes {0,£1,+2,5}

é 54-39[46] 23 13 38 27 39 4 18 yes {0,£1,+2,5}

i 55-40[46] 23 13 39 27 40 4 18.3 yes {0,+1,4+2,5}

é Peres’ 57-40 [23] 27 15 39 31 40 4 19 yes {0, +1,+v/2,3}

g 57-41[46] 24 13 40 29 41 5 19 yes {0,£1,2,45, +w,2w}

g 69-50 36 21 49 40 50 4 23 yes {0,+w,2w,+w? 2w?}
Kochen-Specker’s 5 63 116 99 118 9 64 yes 24 components

192-118 [20] — Ref. [46]

figure together with comments in its caption just a set of instructions on how to design a
proper hypergraph, what we did in [33, 34, Fig. 6] and [58, Fig. 19] and here.

Surprisingly, Budroni, Cabello, Giihne, Kleinmann and Larsson [30, Fig. 1] copied the
main part of the figure from |26, Fig. 7.8|, or |33, 34, Fig. 6], or [58, Fig. 19] (without citing
the sources) and cut off parts of twelve of its hyperedges thus making their Kochen-Specker
figure inconsistent—it is, like the original Kochen-Specker’s figure, neither a graph nor a
hypergraph. In the caption of their figure, they call it a graph. However, in the figure
itself they substituted the MMP hypergraph version of I'g from |26, Figs. 7.5,7.8| for a
graph version from [20, Fig. on p. 68| shown in the figure (d) from Appendix B as I'{ and
I'y. So, [30, Fig. 1] shown here in Fig. 11(a) should be an MMP hypergraph, but it is
not. To see this, let us look at two red hyperedges in Fig. 11(b)) 2-10-9 and 2-12-13.
The caption of [30, Fig. 1] (here: Fig. 11(a)), in effect, reads: “node 2 is orthogonal to all
nodes connected to the red edges. Similarly for the green and [blue| nodes.” Nodes are
hypergraph vertices, but that what the nodes (e.g., the node 2) are “connected” to (e.g.,
9-10 or 12-13 in Fig. 11(a)) are neither graph “edges” nor hypergraph “hyperedges.” They
are just lines connecting dot 9 with dot 10, etc. All that confuses the reader who, after
more than 50 years of the first appearance of the iconic KS set, deserves references to its
unambiguous hypergraph presentation as given in |26, 33, 34, 58| and here in Fig. 11(b).

In the figure (a,b,c) from Appendix B, vertices with m = 1, are shown as gray dots. E.g.,
Conway-Kochen’s 51-37 hypergraph has 20 such vertices, and this is why Conway-Kochen’s
51-37 is often called a KS set with 31 vertices (51 — 20 = 31) in the literature.

Peres’ 57-40 KS is characterised by its coordinatization derived from the {0, +1, +v/2,3}
vector components. By means of vector components {0, 41, ++/2}, used by Peres [23], in
a 3-dim space we can only build 49 vectors, while in the 57-40 KS MMP hypergraph there
are 57 of them, meaning that eight vertices cannot have a vector representation at all and
that Escher’s “impossible Waterfall” [95, 96, 97] geometry (mapping of Peres’ set onto the
configuration of three interpenetrating cubes) cannot represent it. To build a KS set, all
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Kochen—

Specker

192-118

Figure 11: (a) Graphics according to [30, Fig. 1]; lines 9-10 and 12-13 represent neither edges nor
hyperedges; they are just pieces of hyperedges 2-9-10 and 2-12-13, respectively; (b) KS MMP hy-
pergraph according to [26, Fig. 7.8], or [33, 34, Fig. 6], or [58, Fig. 19], or Fig. 22(d).

three vertices in every hyperedge/triple must be realisable via 3-dim mutually orthogonal
vectors, irrespective of whether we make use of all three of them (while postprocessing
measurement data) or not. They do live in a 3-dim space and must be there, virtual or
actual.

We also stress here that the caption of [30, Table 1] is incorrect and misleading in
the following sense. It reads “[in] KS proofs [3-dim Bub, Conway-Kochen, and Peres’|
the...numbers inside parenthesis (33,31,33) are the numbers used in the contradiction,
numbers outside (49,51,57) counts all vectors when completing the bases.” But as we show
in [33, 34, 58, 41| not the 33-36, 31-37, and 33-40, but the 49-36, 51-37, and 57-40 MMP
hypergraphs are critical KS MMP hypergraphs which are therefore primarily “used in the
contradiction” of the KS theorem since they are the KS sets while the former ones are not.
We show in [41] that many MMP hypergraphs one obtains from 49-36, 51-37, and 57-40 by
removing chosen m = 1 vertices, down to 33-36, 31-37, and 33-40 MMPs, are non-binary
contextual MMP hypergraphs. However, they are not KS MMP hypergraphs by definition
and therefore they are not “KS proofs.”

Still, excluding the m = 1 vertices in a postprocessing of data generated by measurements
provide us with an important method of obtaining arbitrary many smaller contextual non-
binary MMP hypergraphs from both non-binary and binary MMP hypergraphs. This is
due to an important structural difference between the MMP hypergraphs with hyperedges
containing the maximal number of vertices per hyperedge and those with less vertices in
some hyperedges. If the former MMPs are critical (as, e.g., all MMPs from the figure
from Appendix B, then no stripping of their hyperedges would lead to another non-binary
MMP. However, stripping of their m = 1 vertices may yield non-critical MMPs which may
generate smaller non-binary critical MMPs which may be stripped again and may yield
even smaller criticals. Of course, because of the stripping, none of the obtained smaller
MMPs is a proper subhypergraph of an MMP we start with. They are all subhypergraphs.

In [41] we generated thousands of smaller non-binary MMP critical hypergraphs from
all four bigger MMPs given in the figure in Appendix B, the smallest of which are shown
in Fig. 12. As a rule, all small critical non-binary MMP hypergraphs do satisfy the o-
inequality. Notice that the 14-12 MMP hypergraph which does not satisfy it, is not critical
and that the critical 13-11 which it contains does satisfy the inequality.
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Table 3: Terms for the inequalities of 3-dim contextual non-binary subhypergraphs from Fig. 12: o-
inequality: o < of, v-inequality: HIT}, < [, and eprqz-inequality: lo.pr < I mas is the maximal
m.

vector
components
8-7 3 2 3.5  yes {0, £1}
14-11 5 ) 2 5.9 yes {0,£1,2}
11-10 4 4 9 9 10 3 4.75  yes {0,+1,2}
14-12 6 5 3 4.916 no {0,£1,2}

dim KS MMPs

3D MMPs

Figure 12: (a) 8-7 MMP hypergraph (T'y from Fig. 11) is a subhypergraph of Bub's 49-36 and Yu-Oh's
13-16 (Fig. 8); note that Yu-Oh's 13-16 [35] is not critical and that its filled version 25-16 is a subgraph
of Peres’s 57-40 [41]; (b) subhypergraph of Bub's 49-36; (c) subhypergraph of both Bub’s 49-36 and
Conway-Kochen's 49-36; (d) subhypergraph of Conway-Kochen's 49-36; in contrast to the previous
MMPs it violates the a-inequality: 6 > 4.916; its filled MMP can have a coordinatization from the
{0,+1,2} component set; (a,b) do have a parity proof, while (c,d) do not; (a,b,c) are critical, while
(d) is not; 14-12 without the cyan hyperedge is a 13-11 critical MMP with a parity proof.

5.3 Small 4-dim MMP hypergraphs and the smallest MMP hypergraph that exists

In Sec. 5.2 we obtained small 3-dim critical non-binary MMP hypergraphs from big crit-
ical non-binary MMP hypergraphs. In this section we consider small 4-dim critical non-
binary MMP hypergraphs we generate from big non-binary MMP hypergraphs by the same
method we used in Sec. 5.2.

In Table 4 we present HI.p;, Hlom, leps and g, values for chosen MMP subhyper-
graphs of the KS master MMP hypergraph 636-1657 [60]. Among billions of them that
we generated in an automated fashion from the 636-1657, we have chosen a number of
MMP hypergraphs some of which were also previously obtained in the literature via other
methods.

None of them contain vertices with multiplicity m = 1, i.e., they are structurally dense.
Since one can easily assign ASCII characters to the vertices we do not show them in Fig. 13.
An MMP hypergraph is characterized by its structure, not by a specification of characters
assigned to its vertices.

All MMP hypergraphs shown in Fig. 13 exhibit the maximal level of the so-called ¢
feature (pairs of them to intersect each other twice, at two vertices) which characterizes
most of the KS MMP hypergraphs from the 636-1657 class. Notice that the § feature
characterizes all MMP hypergraphs—due to their definition (Def. 2.1(4.))—and not just
KS ones (cf. Fig. 13(a,c)).

The 636-1657 class, whose critical KS sets overwhelmingly exhibits the ¢ feature, is
completely disjoint from two other 4-dim classes of KS criticals 300-675 and 148-265, which
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Figure 13: (a-d) Figures of MMP hypergraphs from Table 4; (a) 18-9 non-KS—a subhypergraph of
Peres' 24-24; (b) critical KS 22-13 from the 636-1657 class; vertices that contribute to & = HI.py = 6
are squared in red; note that off = 22 = 5.5 < «; (c) 22-13 non-KS from the 60-105 class which is
a subclass of the 636-1657 class; (d) critical KS 26-13 which belongs to both classes; (e) critical KS
26-13 which is from the 636-1657 class but which does not belong to the 60-105 class.

do not exhibit the § feature at all, and which are in turn completely disjoint from each
other. Moreover, the non-KS sets and the non-critical KS sets from the 636-1657 class also
possess the § feature.

Table 4: Parameters of the considered 4-dim MMP hypergraphs. KS ones are from the 636-1657 class,
apart from the 60-75 master which is from the 300-675 class. Non-KS ones are from the 24-24 and
60-105 classes, respectively.

MMP hypergraphs HIl..s HI., Il o, crit. vec. compon.

18-9 [50] 1 3 8 6 yes (0,£1)
18-9 non-KS [here] 6 4 9 7 no (0,£1)
20-11 [33, 34] 5) 3 10 8 yes (0,4+1)
21-11 [98, 59 5 3 10 8  yes (0,£1,4)
22-13 [33, 34] 6 3 12 8 yes (0,4+1)
22-13 non-KS [here] 8 3 13 9 no (0,£1)
26-13 [here] 6 5 12 10 yes (0,£1,+4,2)
98-17 [here] 8 5 16 12 yes  (0,41,%9)
29...34-17 [here] 8 5 16 12 yes (0,£1,+7)
35-17 [here] 10 7 16 14 yes (0,41, %)
35-17 non-KS [here] 11 7 17 13 yes (0,£1,+7)
30-18 [here] 8 5 17 11 yes (0,£1,%1)
31...36-18 [here] 11 5 17 12 yes (0,£1,+4)
37-18 [here] 11 7 17 15 yes (0,41,+1)
24-24 [23] (master) 5 3 20 12 no (0,£1)
60-105 [32] (master) 12 7 84 70 no (0,41,2)
60-75 [99] (master) 13 9 65 45 no  (0,41,4Y5EL)

That means that the ¢ feature characterises classes of hypergraphs although it does
not determine the contextuality—both, classes that possess it as well as those that do
not are contextual. The ¢ feature determines MMP classes through their structure and
coordinatization, though. For instance:

(i) it is absent in 3-dim MMP hypergraphs due to their definition; 3-dim MMP hyper-
graphs are equivalent to Greechie diagrams [41], but n-dim, n > 4 MMP hypergraphs
are not, exactly due to the d-feature which is not permitted to any Greechie diagram
due to its definition; also the smallest loops in any Greechie diagram in dimension
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are pentagons by its definition [57]; the smallest loops in 3-dim MMP hypergraphs
are pentagons due to their geometry and that is the reason why they are equivalent
only in the 3-dim space [33, 34];

(ii) it allows the smallest hypergraphs in the 636-1657 MMP hypergraph class to be
smaller than the smallest ones in the 300-675 and 148-265 MMP hypergraph classes
that do not exhibit the § feature;

(iii) it is present in the MMP hypergraph which represents the exclusivity graph [12] and
plays an essential role in the quantum computation theory (See Sec. 5.4);

(iv) it characterizes all higher dimensional MMP hypergraphs;

(v) in the 4-dim Hilbert space it resides in the complex spaces, while it is absent in the
real ones |58, 60].

Apart from these characteristics, parameters obtained for the MMPs from the 300-675
and 148-265 classes do not fundamentally differ from those obtained for the 636-1657 class
and therefore we do not give equivalent set of examples for the former classes.

However, there is another feature of all non-KS MMP hypergraphs like the 18-9 shown
in Fig. 13(a). Let us first analyze the very non-KS 18-9. Its coordinatization is generated
by the {0,1,—1} vector components: 1=(0,0,0,1), 2=(1,-1,0,0), 3=(1,1,0,0), 4=(0,0,1,0),
5=(1,0,0,1), 6=(1,0,0,-1), 7=(0,1,0,0), 8=(0,0,1,-1), 9=(0,0,1,1), A=(1,0,0,0), B=(0,1,1,0),
c=(0,1,-1,0), D=(0,1,0,1), E=(1,0,1,0), F=(1,1,-1,-1), G=(1,-1,-1,1), H=(0,1,0,-1), I—(1,0,-
1,0).

Its subhypergraph with all m = 1 vertices removed is shown in Fig. 14(a). It is a
contextual non-binary MMP hypergraph (Def. 3.5) which contains four critical MMP sub-
hypergraphs shown in Figs. 14(b,f,g,h). A subhypergraph of Fig. 14(b) with all m = 1
vertices removed is shown in Fig. 14(c). It contains a critical MMP subhypergraph 3-3
shown in Fig. 14(d). It is the smallest contextual non-binary MMP hypergraph that exists.

()

Figure 14: (a) subhypergraph of 18-9 non-KS MMP hypergraph shown in Fig. 13(a); (b,f,g,h) critical
sub-hypergraphs of 10-9; (c) non-critical subhypergraph of 10-6; (d) a critical subhypergraph of 4-6—
the smallest MMP hypergraph that exists: 3-3; (e) filled 3-3; (i) filled 4-3.

Smallest Contextual Set. 5.1. The critical contextual non-binary 4-dim MMP hyper-
graph 3-3 with 3 vertices and 8 hyperedges with coordinatization shown in Fig. 14(d) is the
smallest existing contextual hypergraph with a coordinatization in any dimension because
the 3-dim 3-3 non-binary MMP does not have a coordinatization [41].
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Noncontextual — Contextual. 5.2. Subhypergraphs of noncontertual binary MMP
hypergraphs as well as of their subhypergraphs and subhypergraphs are overwhelmingly
contextual, i.e., they are mostly non-binary MMP hypergraphs.

We confirmed this feature on thousands of binary MMP hypergraphs. It enables us
to obtain a much greater varieties of contextual sets than via the KS or the operator
generation, including obtaining a plethora of small sets in any dimension. For the time
being, we have carried out a massive generation neither of binary MMP hypergraphs nor of
non-binary MMP hypergraphs that would follow from the binary ones via the 5.2 feature
(noncontextual — contextual). We leave that for a future project.

5.4 Graphs, hypergraphs, contextuality, experiments, and computation

In this section we review the usage of the graph formalism and the GLS inequality via the
following examples: “Experimental Implementation of a Kochen-Specker Set of Quantum
Tests” by D’Ambrosio, Herbauts, Amselem, Nagali, Bourennane, Sciarrino, and Cabello
[4], “Contextuality Supplies the ‘Magic’ for Quantum Computation” by Howard, Wallman,
Veitech, and Emerson [12], and “Graph-Theoretic Approach to Quantum Correlations” by
Cabello, Severini, and Winter |54].

In Fig. 2 we see that the graph representation (c) of the 18-9 KS set has three times
as many edges as its MMP hypergraph representation (b). In higher dimensions and for
more vertices and edges the graph representation gets more and more complicated and
graphically unintelligible. Matrix graph representation also becomes hardly manageable
in comparison with the MMP string representation. That is why Cabello [21, Fig. 1] first
adopted the general hypergraph representation [33, 34, Fig. 3(a)| for the 18-9 KS. However,
in [4, Fig. 1(a)| the authors, surprisingly, abandoned the hypergraph language and adopted
the graph representation shown in Fig. 15(e) that caused the following inconsistencies.

In [4, Fig. 1(a)| 9 edges were added to the 18-9 KS graph from Fig. 15(d)—in Fig. 15(e)
they are denoted as 3 green and 6 red ones. This turns the 18-9 set into an 18-18 set whose
MMP hypergraph representation is shown in Fig. 15(g). The measurements for vertices on
these additional 9 edges were carried out and provided in [4, Supp. Material, Table ITI]. For
instance, for vertices 1,2,5,10,15,18, i.e., edges 1-10, 2-15 and 5-18, the probabilities
P1,10, P2,15, and ps 13 were obtained. However, as shown in [93, 33, 34, 94, 58, 41, 30]
not just two but four vertices should be measured and should have a coordinatization in
each green and red hyperedge even when we do not take all of them into account while
postprocessing the data.

That means that the 18-vertex set from [4, Fig. 1(a)| is not a “Kochen-Specker set”
as claimed in the title of the paper because all edges in a 4-dim KS set should have 4
vertices and green and red edges have only two vertices. The missing vertices should be
added. In a graph representation it would be a real mess of lines and therefore we show
them in the MMP hypergraph representation as gray dots in Fig. 15(f). It should have
a coordinatization, but apparently this filled 36-18 MMP hypergraph (36 vertices and 18
hyperedges) has no coordinatization. We verified, that MMP 36-18 is not a subhypergraph
of any known 4-dim MMP hypergraph class [58, 41, 60], i.e., that there are no known [59,
Tables 1 & 2| vector components for any available coordinatization. Hence, not only
that the considered set is not a KS set, but the measurement data themselves in [4] are
inconsistent.

One way out of these inconsistencies is to merge triples of gray vertices at the intersections
of hyperedges as shown in Fig. 15(h), i.e., new measurements should be carried out for the
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Figure 15: (a) MMP representation of the 10-5 pentagon; (b) the same set in the graph representation
[16]: 10-15; (c) the smallest 4-dim KS set in the MMP hypergraph representation: 18-9 [33, 34]; (d)
the same set in the graph representation: 18-54; (e) contextual non-KS set implemented in [4] where it
is misnamed as a KS set—graph representation from [4, Fig. 1(a)]: 18-63; (f) the same set, with m =1
(gray) vertices added, in the MMP hypergraph representation: 36-18; (g) the same set with m =1
(gray) vertices dropped—non-binary MMP hypergraph 18-18—equivalent to 18-63 (e)-graph; (h) the
same set with gray m = 1 vertex triples merged into m = 3 vertices—KS 24-18 MMP hypergraph—a
subhypergraph of Peres’ 24-24 MMP hypergraph.
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additional 6 vertices of the new 24-18 MMP hypergraph which is one of 1233 KS MMP
hypergraphs [52| contained in Peres’ 24-24 master set.

Another way out would be to abandon green and red hyperedges and reduce the imple-
mentation to the 18-9 KS MMP hypergraph.

Our second example is the one of Howard, Wallman, Veitech, and Emerson [12|. They
have shown that stabilizer operations with quantum bits initialized as magic states, i.e.,
superposition of states, can be used to purify quantum gates provided they exhibit contex-
tuality. As a proof that considered sets are contextual the authors make use of the GLS
inequality [83, p. 192].

However, “There are some subtleties that limit what these results can say about [qubits]
as opposed to larger quantum systems. The limitation could simply be a vagary of the
proof technique used by the authors” [13].

Their proof is a kind of a proof by induction and we shall focus on its first step which
elaborates on a two-qubit system, a qubit being a 2-dim system (p = 2). The graph I they
make use of for the purpose is shown in [12, Fig. 2] and its MMP hypergraph presentation
in Fig. 16(a). Details on how is I' obtained from a set of entangled projectors [12, Eq. (14)]
which are in turn obtained from the set of stabilizers states [12, Eq. (14)] are not provided.
A reference to [54] is given instead and we shall come back to it below.

One can verify that a(I') = p®> = 8 holds (e.g., via ONE). How a = 8 < a* = 9
(the 2nd line of the proof of Theorem 1 in [12]) is obtained is not explained in detail but
the approach the authors seem to have applied apparently runs as follows. I' is a 30-108
non-binary MMP hypergraph whose string is given in Appendix E and whose graphical
representation is given in Fig. 16(b). The MMP notation is substituted for the original
clique representation of mutually orthogonal vertices in seven hyperedges which each con-
tain four vertices (1234,5678,9ABC,DEFG,HIJK, JKLM,MLNO), altogether 24 vertices, each
of which within each of the 7 hyperedges has the probability p = % of being detected, so
that their sum of probabilities amounts to 6. The remaining 6 vertices (P,Q,R,S,T,U) are
apparently assumed to have the probabilities p = % and it is apparently also assumed that
the sum of their % probabilities amounts to 3. That yields the total sum of probabilities
equal to a*(T') = 9 [12, Proof of Theorem 1]. But hyperedges that connect two vertices
that do not both belong to the aforementioned 6 vertices, e.g., 15 or 1Q, are not taken into
account in this calculation at all. Let us see how this can be amended.

The string of the 30-108 MMP given in Appendix E offers us the following probabilities.
Vertex 1 is in the hyperedge 1234 and has the probability of % of being detected. But it
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Figure 16: (a) I' in MMP notation: 30-108 MMP; (b) filled I with all vertices that belong to only one
hyperedge (m = 1); it is a 232-108 KS MMP hypergraph; vertices 7,9,D have m = 8 and K,N,Q,S,U
have m = 7; if vertices with m = 1 were shown (as, e.g., +v and +w), that would overcrowd the figure.
One can avoid such a clutter by extending the hyperedges and positioning the vertices outside the loop
as, e.g., n and o; (c) the only found critical contained in 232-108 is 152-71 and when its vertices with
m = 1 are dropped it becomes the 24-71 MMP shown here; in all three figures, independent vertices
are dark patterned, red, and enlarged; the ASCII strings for all three figures are given in Appendix E.

is also in the following 7 hyperedges 15, 18, 1F, 1G, 1I, 1K, and 1Q within each of which
it has the probability % of being detected. The arithmetic mean of these probabilities
is (7% + %) /8 = 12 There are 16 such blocks. The rest are organized in 7-hyperedges

@.
blocks: four (53 +2%)/7 = 2, four (63 + 1)/7 = 32, and six 71/7 = 3. The total sum of
probabilities probabilities is 127 = 14.07 = o, which differs from o*(I') = 9 [12, Proof of
Th. 1]
8 =a(l') < 14.07 = a; (') # a*(T') = 9. (31)

The question arises whether a*(I') = «(I') under another approach. We discus this be-
low. In any case it does not seem correct to assign the probabilities % and i to the
aforementioned 6 and 24 vertices based on their containment in the 2-vertex- and 4-vertex-
hyperedges, respectively, and ignore their containment in 86 hyperedges that connect ver-
tices in the 2-vertex-hyperedges with those in the 4-vertex-hyperedges or two vertices in
different 4-vertex-hyperedges via 2-vertex-hyperedges. For the time being, let us elaborate
on discarding two states from a tensor product of states of two qubits.

Any two mutually orthogonal vertices from two-vertex-hyperedges in the 30-108 MMP
belong to an edge and therefore to two qubits. The two-vertex-hyperedge only means that
two of four states are discarded. Thus 202 of 232 vertices are excluded. Each qubit has
a coordinatization and a complete measurement of each edge must involve all four vertex
states, i.e., only complete states (both vertices from each hyperedges) can build up tensor
products of two qubits. The quantum systems must pass out-ports no matter whether we
take them into account in a later elaboration of our data or not. Related to that, the
claim that « = 8 should be clarified, because, e.g., in Fig. 16 we see that the vertices
7,9,D,K,Q,N,S,U,V,n, etc., are independent and yield the independence number o > 101
that violates the inequalities a < a* and o < «. It remains to be explained how come
that vertices with m = 1 do not contribute to the independence set when they actually
build up a KS MMP hypergraph 232-108. If it were a result of the construction of T,
then the role of @ = p? = 8 should also be explained, because there are contextual critical
non-binary MMP hypergraphs with higher o which violate Eq. (24) (see Table 4).

When we take into account all vertices of all qubits we get I'(filled) 232-108 KS MMP,
whose string is given in Appendix E. Its parameters are given in Table 5. It is not critical,
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and the only critical set contained in it, that we obtained, is the 152-71 critical KS MMP
shown in Fig. 16(d) (where we dropped m = 1 vertices) whose hypergraph string is also
given in the Appendix E. It satisfies 64 < «(152-71) > «(152-71) = 38. The string of
152-71 with dropped m = 1 vertices—24-71 MMP—is given in the Appendix E. It has 5
independent vertices: 4,8,K (m = 7) and Q,M (m = 6). Their parameters are also given
in Table 5. We obtain 5 = «(24-71) < a(24-71) = 7.12.

Table 5: Terms for the inequalities of 4-dim contextual non-binary I' MMP hypergraphs from Fig. 16:
ar-inequality: a < o (violated for 232-108 and 152-71), v-inequality: HIZ, < [, and eprqqu-
inequality: l.ps < I; mas is the maximal m; computer search for vectors formed from simple compo-
nents (0, +1, 44, +w, +2, +1/2, £3, +5) failed; finding of H I, lcas, lem for 30-180 and 24-71 requires
tweaking of the program ONE so as to provide us with the parameters when some hyperedges (from
an n-dim space) contain less than n vertices, what we have not done as of yet; note that non-critical
30-108, 232-108, and 24-71 MMPs generate thousands of smaller non-binary subhypergraphs.

dim KS hypergraphs Hlem Hl, levg lemm 1 mpy  of  crit. vector
components
" 30-108 8 - - - 108 8 14.07 no ?
% 232-108 101 59 107 101 108 8 58 no ?
E 2471 5 . - - 70 7 712 o ?
152-71 64 41 70 64 T1 7 38  yes ?

While deriving their fractional independence number inequality (Eq. (24)) for their T’
graphs, Howard, Wallman, Veitech, and Emerson [12] refer to the paper of Cabello, Sev-
erini and Winter [54] who claim that the GLS inequality is a noncontextuality inequal-
ity. In contrast, Theorem 4.20 shows that for quantum YES-NO measurements carried
out on MMP hypergraphs for which the raw data statistics 4.13(a) is formed, the a*-
inequality (27) should reduce to the o-inequality (24) and therefore cannot be considered
a noncontextuality inequality since arbitrarily many contextual and noncontextual MMP
hypergraphs violate it, as exemplified in Figs. 6(a-e), 9(a,h), 12(d), and 13(b).

On the other hand, in order to deal with the 30-108 MMP hypergraph we first have
to implement 232-108, measure all 232 vertices within their hyperedges and only then
postselect 30 vertices to form 30-108 MMP hypergraph and prove the contextuality. But
the 232-108 KS MMP has far too intricate a coordinatization for an implementation. We
tried to generate it from simple vector components but did not get anything within months
of running our programs on a supercomputer.

Besides, there are practically arbitrary many simpler non-binary contextual MMP hyper-
graphs that can be automatically generated and whose contextuality can be automatically
verified via existing algorithms and programs which then satisfy the inequalities (19) or
(20). Here, one should only answer the question of what such an inequality for an MMP
hypergraph offers to a quantum computer once it has already been verified that it is con-
textual.

5.5 Peres-Mermin non-binary MMP hypergraphs and the smallest MMP hypergraph
that exists revisited

In Sec. 4.1, Eq. (4), we referred to an operator-based inequality for the 4-dim KS 18-9
MMP hypergraph and in Sec. 4.3, Egs. (28)-(29), we consider an analogous operator-based
inequality for a general critical MMP hypergraph and for the 21-11 MMP, in particular.
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In both cases the operators are defined via vectors/states/vertices of a given MMP hyper-
graph. In contrast, the so-called Peres-Mermin square is defined via operators alone, i.e.,
without a vector-defined set underlying the operator set. The operator set is defined by
means of the following nine operators [45]:

21 =0MeI® 5 =1Wee?, v3=0V00?,
2= IW@e?, 55 = oWei® 55 = oD@,
Yr=0Vec?, vs=0cVe g2>, Ny = oM@, (32)

The Peres-Mermin square schematic is shown in the figure (a) below. The square has 9
dots and 6 lines and it is claimed that the Peres-Mermin square which is “convert|ible] . ..
to KS vectors” [30, p. 8| “exhibits SIC [state independent contextuality|” [100].

Why, then, do Cabello, Kleinmann and Portillo claim that “according to quantum theory,
no SIC set with less than 13 rays exists” [47]7

Do they have some particular vector-based set which one can derive from the operator-
based Peres-Mermin square in mind?

Because, it might be argued that the Peres-Mermin square is not a SIC set and even not
a consistent contextual set in the following sense. Egs. (9) and (32) show that there are
three operators in each row and/or column which multiply so as to give +1. But there
is no common eigenstate or a combination of eigenstates |¢)) of operators ¥; which would
counterfactually enable ¥;]¢)) = £[¢)). Hence, their classical counterparts S; (Eq. (10))
cannot be assigned values +1, either. In other words, since such counterfactually assumed
clicks of nondestructive measurements carried out via each of operators XJ; cannot occur,
assignments of +1 to classical counterparts of these assumed measurements is ungrounded.

This statement is at odds with the overwhelming acceptance and acclaim of the Peres-
Mermin square as a contextual set and a KS proof in the literature. Let us dissect it.

Peres-Mermin contradiction. 5.3.
(i) We have

1585 = NS5 = NrSeNg = NNy = $o8sNs = I, 535639 = —I; (33)

(ii) all operator/projector-based or hypergraph-based contextual or KS sets assume YES-
NO measurements (counterfactual or actual) carried out on systems emerging from
prepared gates; upon leaving a gate determined by operators/projectors or vectors/ver-
tices the systems are projected to or detected in a particular state or not; so, a quan-
tum system in state |V) which enters sequences of three gates, whose actions are
described by operators ¥; from Eq. (32), should either counterfactually or actually
emerge from each of the gates either in the state |V) or in the state —|¥);

(iii) a classical set of states of a classical system which would be a counterpart of the
quantum system described in (ii) should experience predetermined actions of classical
gates described by observables S; which would assign either 1”7 or ‘=1’ to each state;

(iv) there is no state |V) for which we would have
ilU) =|¥)  and  %,[¥) = —|¥) (34)

fori,j € {1,...,9% i # j;
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(v) statements (ii) and (iv) contradict each other, so the statement (iii) cannot hold
either.

To be more specific, let us consider the following case. It is generally assumed that the
Peres-Mermin contradiction is state independent and Eq. (33) is offered as a support for
the claim. Our point is that a quantum system in state |¥) has to pass three gates in a
succession; say first through 31, then through s, and finally through X3 so as to emerge
in states +|¥). But to which counterfactual (not performed) quantum measurements
(“clicks”) assumed valuations of classical counterparts S; might correspond? According to
point (iv) eigenvalues of ¥; cannot play such a role. For an arbitrary state, say the triplet
(UH) = | 14) + | I1), we obtain: 31¥*) = | t]) — | }1) and Zo|¥*) = | M) + | }J) The
observables change the triplet state into other states (singlet and another triplet). So, the
operators do not act on the same state and this is the meaning of point (ii) above.

Our conclusion is that it is inconsistent to assume the existence of a classical observable
S; which would assign %1 to the states of a system because there is no quantum state |¥)
of a system which X; would project to states £|¥). Since the noncontextuality cannot be
formulated we cannot talk about Peres-Mermin square contextuality either.

On the other hand, Budroni, Cabello, Githne, Kleinmann and Larsson claim [30, p. §]:
“The |[Peres-Mermin| magic square can be converted into a standard proof of the KS theo-
rem with vectors [from| [23].” This is, however, incorrect. The Peres-Mermin square cannot
be converted to the vectors given in |23, Table 2]. When properly organized in hyperedges
(not explicitly carried out in [23]) those hyperedges yield one of 1,233 KS MMP hyper-
graphs 52| contained in the master MMP hypergraph 24-24. The latter set is obtained by
adding further hyperedges (not provided in [23]) to the former ones [51] “although [Peres|
has most probably never tried to identify all 24 tetrads for his 24 vectors.” But there exists
no conversion of the Peres-Mermin square given on p. L179 of [23] to or from any of 1,233
KS MMP hypergraphs generated by vectors from Table 2 on p. L177 of [23]. They are
simply independently given in the same paper.

Let us therefore see whether we can arrive at vectors for which some plausible linkage with
the Peres-Mermin operators would be possible. The idea is to establish a correspondence
with the Pauli operators ¥ structure, as a contextual “square of orthogonalities” which
would support a postselection of 9 measurements in a 3 x 3 arrangement of YES-NO
measurements shown in Fig. 17:

Figure 17: (a) Peres-Mermin operator schematics; (b,c) filled MMPs (noncontextual); (d) filled MMP
with extended orthogonalities and gray m = 1 vertices (noncontextual); (¢) MMP with extended
orthogonalities and m = 1 vertices dropped—contextual, but not a KS set and not a critical set; (f)-(i)
critical subsets of (e).

e (a) a direct translation 12,23,45,56,78,89,14,47,25,58,36,69. does not work
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(hyperedges connect vertices pairwise and consecutively); e.g., 1 is not orthogonal to
3 but it should be because ¥;, i = 1,2, 3 mutually commute;

e (b) 15-6: 1A23,4B56,7C89,1D47,2E58,3F69. is noncontextual; hyperedges go through
all three vertices; e.g., 1 is orthogonal to 2 and 3 in the same hyperedge; 9-6 (15-6
with gray vertices A,B, ... ,F dropped 123,456,789,147,258,369.) is also noncon-
textual;

e (c) has 45 vertices/vectors and 18 hyperedges and its string is given in Appendix F:
hyperedges connect vertices pairwise but exhaustively; e.g., 1 is orthogonal to 2 via
one hyperedge and to 3 via another); it is not contextual; some of its properties are:
HI., =9 and HI.); = 18 and they violate the v-inequality:

HIon =18=HI, =18. (35)
lem = lepr = 18 and they violate the e-inequalities:

ley =18 =1 =18 (36)

e (d) dropping all gray vertices with m = 1 from (c) yields a contextual 9-18 non-binary
MMP hypergraph 12,23,13,45,56,46,78,89,79,14,47,17,25,58,28,36,69,39.
All the remaining vertices have m = 4; HI.); = 3. The «a;-inequality reads

9
3:HICM:a<a::§:4.5. (37)
The eprqz-inequality reads:
ey =12 <1 =18, (38)

and its span shows us that it is not critical. It might be implemented by port-
detections at each hyperedge/gate, but not via letting systems fly through triple
consecutive gates as in Peres-Mermin square measurements in the literature.

The non-binary 9-18 MMP hypergraph contains the critical subhypergraphs 3-3, 5-5, 7-7,
and 9-9 for whose we have l.py = [ — 1. These criticals are shown in Fig. 17(e-h). They
all have l.pr = (I — 1)/2 and satisfy the e-inequalities. Their filled versions 9-3, 15-5, 21-7,
and 27-9 all have l.ps = and therefore they violate the e-inequalities.

We can get the coordinatization of these critical sets by reading it off from Appendix F
for the corresponding vertices.

The obtained smallest quantum contextual MMP hypergraph 3-3, which differs from the
one obtained in Sec. 5.3 (Def. 5.1) only by its coordinatization, is not a SIC set in the
standard sense of the word, because it is not an operator-based set. It is state independent
in the sense that its contextuality is based on its hypergraph structure, meaning that it
holds for any set of states that can support it, i.e., build its coordinatization.
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5.6 5-dim KS MMP hypergraphs/sets

The 5-dim hypergraph spaces are defined by spin-2 systems and cannot include qubits.
So far, to our knowledge, only several MMP hypergraphs were obtained in [101],[102,
Supp. Material| “by hand.” By our automated generation we obtained up to 30 millions
critical non-isomorphic MMP hypergraphs from the vector components {0,+1}. Several
smallest ones are shown in Fig. 18.

Figure 18: 5-dim MMP hypergraphs; (a) the smallest 29-16 exhibits a left-right symmetry; its biggest
loop is a pentagon; (b) one of several 30-16 MMPs; (c) one of several 30-17 MMPs; half of them have
hexagons as their biggest loops; (d) one of several 34-17 MMPs with hexagon loops.

Their structural property parameters are shown in Table 6.

Table 6: Structural properties of KS subhypergraphs of the 5-dim KS master set 105-136 generated
from {0,+1} components. All MMPs violate the o -inequality.

Dim KS MMPs HlI. Hl., ley len crit  vec.comp.

29-16 7 3 15 10 yes  {0,£1}
o, 30-16 8 3 15 11 yes  {0,+1}
§ ; 30-17 8 3 16 10 yes  {0,£1}
g & 34-17 8 3 16 11 yes  {0,%1}
25 58-40 15 7 39 22 yes {0,+1)
Ei é 65-40 17 8 39 25 yes {0,£1}
A 105-136

23 13 122 80 no  {0,%1}

(master)

In Appendix G we give the ASCII strings and coordinatization for all MMP hypergraphs
from Table 6 which include the four hypergraphs given in Fig. 18.

5.7 6-dim KS MMP hypergraphs/sets

In 2014 a star-like 6D 21-7 KS set was found [36] and implemented [7]. The coordina-
tization used was defined by the vector components from the set {0,1,w,w?}. In [58]
it was shown that the set can be given a simpler coordinatization based only on the
components from {0,1,w} components and that the star-like graphical representation is
isomorphic to the triangular representation given in [58, Fig. 11]. In the same reference,
a polytope-based class 236-1216 of 6-dim KS hypergraph was generated but it did not
contain the 21-7 star/triangle-like set; its vectors had components from the following set:
{0, :t%, +1 + L 1}. Also, based on many other failed attempts to generate real coordi-

V3T V2?
natization of 21-7, we conjecture that it might have only complex ones.
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(a) (b)
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Figure 19: (a-f) the smallest critical 6-dim KS MMP hypergraphs obtained from {0, 1,w,w?} compo-
nents; see text; (g,h) smallest critical 6-dim KS MMP hypergraphs obtained from {0, +1} components;
see text.

Table 7: Structural properties of the KS subhypergraphs of the 6-dim KS master set/hypergraph 81-162.
Only 20-5 and 31-11 violate the aj-inequality; 5 > 3.3 and 6 > 5.17, respectively.

Dim KS MMPs Hl.ny Hlg, ey lem crit.  vec. comp.

Q

205 Fig. 4(d) 5 4 5 5 non-KS {0,+1,2}
= 21-7 [36] 3 3 6 6  yes  (0,Lw)
= 27-9 [59, 60] 4 4 8 8 yes  (0,lw)
E 31-11 [59, 60] 6 4 10 9  yes (0,Lww?)
g 32-11 [60] 5 4 10 8 yes  (0,1,w,w?)
< & 33-11[60] 5 3 10 8 yes  (01w)
2 2 36-13 [60] 6 4 12 10 yes (0,1w,w?)
O% & 39-13 [60] 6 4 12 8  yes (0,Lww?)

- 81-162 [60] 11 7 132 84 no  (0,1,w,w?)

(sub-master)

In [59] we obtain a master KS set 216-153 from {0, 1,w} components. It contains just
three critical sets 21-7, 27-9, and 33-11 (the last one has 8 non-isomorphic instances);
Fig. 19(a,b,e). The 21-7 and 33-11 strings are given in [60, Supp. Material]. In [60] we also
generate two master sets 591-1123 and 81-162 and the corresponding classes (25 million
non-isomorphic critical KS sets) from {0, 1,w,w?} components. The 31-11 string is given
in [60, Supp. Material|. See Table 7.

In this paper, we generate the 332-1408 master from {0,+1} components. It contains
two unconnected sub-masters: a non-KS 96-192 one and a 236-1216 KS one, which turns
out to be isomorphic with the aforementioned polytope based 236-1216 one.

The structure of the smaller 6-dim MMP hypergraphs from the 81-162 class is different
from the 4-dim ones because the ¢ feature allows the 6-dim hypergraphs to be more in-
terwoven than the 4-dim ones, as presented in [59, Fig. A2| and [60, Fig. 4] and because
of the coordinatization with complex vectors. As a consequence, fewer vertices need to be
assigned value 1 to satisfy the KS conditions (i) and (ii) of the KS theorem.

The KS MMP hypergraphs from the 236-1216 class [58] obtained by means of real vector
components have much larger smallest hypergraphs, as shown in Table 8. The {0, £1} com-
ponents yield the 332-1408 MMP master which consists of two unconnected sub-masters:
the KS 236-1216 and a non-KS (noncontextual) 96-192.

Both MMP classes, 81-162 and 236-1216 exhibit the § feature and the distinguishers
which determine the sizes of minimal MMPs are complex vs. real vectors.
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Table 8: Structural properties of KS subhypergraphs of the 6-dim KS master set 236-1216. All the
MMPs violate the o -inequality.

Dim KS MMPs Hl.ny Hley ey lem crit  vec. comp.
N 34-16 [58] 7 3 15 10  yes  {0,%1}
= 35-16 [58] 7 3 15 10 yes  {0,%1}
= = 37-16 [58] 7 3 15 10  yes  {0,%1}
28 3717 58] 8 3 16 11 yes  {0,%1}
& b 37-18 [58] 8 3 17 11 yes {0,+1}
b § 38-18 [58] 8 4 17 10 yes {0, %1}
BRI ge g5 78 no {0,41)

(sub-master)

5.8 7- and 8-dim KS MMP hypergraphs/sets

Here we present a few examples from the 7- and 8-dim spaces. The distribution of the
7-dim KS MMP class is provided in [46] and of the 8-dim one in [58].

m .\‘(' (c) 8—dim

3619

Figure 20: (a) The smallest critical 7-dim KS MMP hypergraphs we obtained from the 805-9936 master
generated by {0,+1} components in [46, Fig. 3]; (b-d) smallest critical 8-dim KS MMP hypergraphs
obtained we obtained from the 3280-1361376 master (more precisely its 2768-1346016 sub-master)
generated by {0, £1} components; (c) and (d) are isomorphic—they also have a triangular representa-
tion (given in [58, Fig. 14]) as the 6-dim 21-7 in Fig. 19 does; as for (d), cf. 4-dim Fig. 15(c); (e) the
smallest MMP with 52 vertices; cf. 52-16 in [58, Fig. 14].

We give the structural properties of the examples in Table 9 and their ASCII strings and
coordinatizations in Appendix I. The 8-dim MMP hypergraphs given in Fig. 20 are highly
symmetrical, so the reader might easily assign ASCII symbols to vertices in the figure.

In [58] we obtained the 36-8(c) by hand and 34-9 and 36-9(d) from the master 120-2024
generated by the Lie algebra E8. Coordinatizations of 34-9 and 36-9(d) in [58] therefore
differ from the one obtained here via our program VECFIND, i.e., from {0,+1} components.
Since any 8-dim MMP hypergraphs with the latter vector components is a subhypergraph of
the 8-dim KS master MMP hypergraph 3280-1361376 generated from {0, 41} components,
the 34-9 and 36-9 are subhypergraphs of both the 120-2024 and the 3280-1361376 master
sets and have coordinatizations from both {0, +1} and Lie E8 components. Actually, the
120-2024 itself, as proven in [59], can have both coordinatizations and is therefore a sub-
hypergraph /sub-master of the 3280-1361376 master. The latter master consists of two
larger unconnected sub-masters: a KS 2768-1346016 one and a binary (noncontextual)
512-15360 one. This means that all 6,925,540 MMP critical hypergraphs [58, Fig. 12]
obtained from the Lie E8 components of the 120-2024 master are also subhypergraphs of
the 2768-1346016 master with {0, £1}-based coordinatizations.

In Table 9 we obtain .5y = 94 instead of expected 96 (for a critical MMP hypergraph).
This might be due to the algorithm and program ONE imperfections: for such highly
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Table 9: Structural properties of KS MMP subhypergraphs of the 7-dim KS master set 805-9936 and
8-dim KS (sub-)master 2768-1346016, both obtained from {0, £1} components. The 7-dim 34-14 and
202-97 and 8-dim 37-11 and 52-14 violate the o -inequality, while 8-dim 34-9 and 36-9 satisfy it.

dim KS MMPHs HICM HIcm ch lcm Critical Vector
components

7-dim 34-14 7 3 13 8 yes 10,1}

202-97 44 21 94 68 yes {0, %1}

34-9 4 3 8 8 yes {0, +1}

36-9 4 4 8 8 yes {07 j:l}

. 37-11 ) 3 11 8 yes {0,41}

8-dim 52-13 8 6 12 10 yes {0’ :|:1}

120-2024
(sub-master) 8 3 1080 404 no {0, £1}

interwoven hyperedges some assignments of 1s to vertices might have failed. Recall a
similar outcome for the original Kochen-Specker MMP hypergraph discussed below Table
2. An independent algorithm and program which would check on these discrepancies is
needed.

6 Implementation

The experiments cited in Sec. 1 were all focused on proving that contextual sets really are
contextual. In particular, they mostly carried out repeated measurements with operators
acting on different states to prove their state-independence (SIC). However, we entered the
realm of generation of arbitrary many contextual sets of any structure in any dimension
via automated algorithms and programs and the next stage of their application should be
a direct implementation of the sets from the data base we obtained. Instead of proving
that contextual sets really are contextual, we should simply accept that they are and start
using them in quantum computation and quantum communication.

For instance, generalised Stern-Gerlach experiment which makes use of both magnetic
and electric fields [81] can generate any quantum state in any dimension and therefore
provide us with implementation of any hypergraph which would yield these states.

On the other hand, there is a universal two-qubit quantum gate by means of which one
can build any quantum network/gates in a 2"-dim space that can be realized by QED,
nuclear spins, quantum dots, trapped ions, or photon-photon coupling in an all-optical
realization [103].

In a projector formulation, all KS MMP hypergraph with a coordinatization are state-
independent and for non-KS non-binary MMP hypergraphs one still has to find a general
automated approach. However, in addition to numerous already known small non-KS non-
binary MMP hypergraphs [41] we do have an abundance of KS MMP hypergraphs of any
size and structure in odd [46] and even [58, 59, 60] dimensional spaces.

Taken together, future research in the field should be focused on finding general auto-
mated algorithms and programs for implementation of arbitrary contextual sets in quantum
gate networks.
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7 Discussion

In this paper we elaborate on particular approaches to features of quantum contextual sets
that determine their generation, usage, applications, implementations, and perspectives of
future research.

7.1 Operator-based vs. MMP-hypergraph-based contextuality

In Secs. 2, 4.1, and 4.3 we compare operator-based and MMP-hypergraph-based approaches
to contextual sets and show that the former one relies on the latter. In the literature only
a handful of smallest operator-based contextual set have been analyzed while there are
billions of contextual MMP hypergraphs |56, 52, 57, 58, 59, 41, 60].

MMP hypergraph language is introduced in Sec. 2 and contrasted with obsolete and/or
inappropriate graph and general hypergraph language throughout the paper. The lat-
ter approaches are vividly graphically presented in Figs. 1, 5, 15, 16, and 17 and their
disadvantages discussed in the text surrounding them.

In Sec. 3.1 we consider several extensions of contextual Kochen-Specker (KS) vector
sets. The most important is a non-binary contextual MMP hypergraph extension given
by Def. 3.5 in which we dispense with vectors (coordinatization), i.e., states, and rely only
on the very structure of MMP hypergraphs. In this sense they are state-independent. To
make use of states/vectors or to define operators we attach a compatible coordinatization
to them using simple vector components.

In Sec. 4.1 we consider three approaches to obtain operator-based contextual sets, two
of which (hyperedge (i) and vertex (ii) ones) generate operators directly from MMP hy-
pergraphs k-I, mainly via projectors P = |v;){(vi|, ¢ = 1,...,k, where k is the number of
vertices and [ the number of hyperedges. We conjecture that the following rule universally
holds.

Operator <+ MMP Rule. 7.1. Every MMP hypergraph which might serve for a con-
struction of an operator-based contextual set via its states/vectors is itself a non-binary
contextual MMP hypergraph.

We give a number of examples to this rule in Secs. 4.1, 4.2, and 4.3. We would like to
single out Yu-Oh’s 13-16 set shown in Fig. 8; see the text above it.

An important notion we introduce in order to generate MMP hypergraphs is the mul-
tiplicity of vertices, m, given by Def. 4.3 that tells us how many hyperedges each vertex
shares. In relation to it, we can induce/generate contextual MMP hypergraphs from both
non-binary (contextual) and binary (noncontextual) MMP hypergraphs in two ways:

e by dropping data obtained by measuring states of systems related to vertices with
m = 1 as well as vertices themselves from the MMP hypergraphs; this works for
non-binary MMPs hypergraphs (e.g., for 3-dim ones shown in fig. 22 and extensively
elaborated on in [41]) as well as for the binary ones (e.g., Peres-Mermin’s 45-18 MMP
shown in Fig. 17); thousands of such subhypergraphs which serve the purpose are
generated in |41, Sec. IL.D];

e by finding smaller contextual non-binary MMP subhypergraphs (Def. 4.2) contained
in binary MMP hypergraphs with m # 1, as carried out on two examples in [54].
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7.2 Raw- and postselected data statistics and their inequalities; the Grotschel-Lovasz-
Schrijver (GLS) a*-inequality is not a noncontextuality inequality

The role of the multiplicity m (Def. 4.3) with which vertices share hyperedges in every
hypergraph is characterized by Eq. (17) and Lemma 4.10. As we explain in Secs. 4.2 and 4.3
it enables us to distinguish the standard Hypergraph Statistics based on raw measurement
data (4.13(a)) from the one based on postprocessed measurement data (4.13(b)). It also
determines the structure of the hypergraphs as shown in Sec. 5.1, Fig. 9, and Table 1.

A standard tool for discriminating contextual from noncontextual sets has lately been
claimed to be noncontextuality inequalities (Def. 2), in particular the operator/projector-
based ones [78, 21, 22, 1, 104, 105, 39, 40, 54, 42, 38, 43]. We review them in Secs. 4.1
and 4.2. They are mostly defined by states/vectors of contextual MMP hypergraphs what
means that the MMP hypergraph structure together with its coordinatization serves us to
build operator/projector structure.

Vertex multiplicity enables us to introduce a new kind of hypergraph-based vertex v-
inequalities (Def. 4.11) and relate the operator-based inequalities with the hypergraph-
based (hyper)edge e-inequalities (Defs. 4.14, 4.15). We also consider the a*- (Eq. (27)),
and a;- (Eq. (24), and aj- (Eq. (26)) inequalities. The « in them is the maximum number
of pairwise non-adjacent vertices (Def. 4.7), i.e., the maximum number of vertices to which
one can assign ‘1’ (Lemma 4.8); it is called the independence number and also the stability
number. Table 10 provides us with a list of inequalities.

e The v-inequality, relates the maximal classical multiplexed vertex indices H ..,
HlI.n, HITY, Def. 4.5 (the total number of 1s we can assign to vertices each mul-
tiplied by its multiplicity or not) to quantum hypergraph index H1,, Def. 4.9 (the
sum of the probabilities of getting quantum measurement clicks within hyperedges:
Hl., < Hl.y < HITR, < HIy, Def. 4.11); see Tables 2, 4, 7, and 8.

e The eprqq- and eyin-inequalities quantifies the KS theorem generalisation (Def. 3.5),
according to which we cannot assign 1 to all hyperedges of a non-binary MMP hy-
pergraph, i.e., they simply relate the maximum and minimum number, respectively,
of hyperedges which can contain 1 (lcpz,lem; Def. 4.6) with the actual number of
hyperedges of a considered MMP hypergraph k-l containing k vertices and [ hy-
peredges. The epsq,-inequality (20) corresponds to Badziag, Bengtsson, Cabello,
and Pitowsky’s f-inequality [22], given in Eq. (8), and I corresponds to 5; ensaq-
inequality has a trivial form .5y + 1 = [ for critical KS MMP hypergraphs (except
perhaps for the original KS one—see Sec. 5.2). They become relevant (l.p; becomes
significantly smaller than [) for non-critical and master KS MMP hypergraphs as
shown in Tables 4, 7, and 8. The e,;,-inequality (21) is more suitable for an imple-
mentation because of its greater span between its terms. We conjecture that [, is
the “rank of contextuality” recently introduced by Horodecki at al. [85].

e The a;- (24) and ;- (26) inequalities, with constant/fixed probabilities of detect-
ing (within quantum YES-NO measurements) a quantum particle in a particular
state (assigned to vertices within each hyperedge), are special cases of the GLS o*-
inequality which, in contrast to the former ones, rely to variable/free probabilities
(Defs. 4.17, 4.18, and Eq. (27)): a < o* (27). The latter inequality is valid for any
graph or hypergraph, contextual or not, with variable/free probabilities assigned to
vertices within each hyperedge. Linear programming or any other algorithms for solv-
ing linear optimization problems then determines which values must the probabilities
have within each hyperedge (where their sum must be < 1). The «-inequality is
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based on the Raw data statistics 4.13(1) and it is not a noncontextuality inequal-
ity. The aj-inequality is based on the Postprocessed data statistics 4.13(2); it is
just another another form of the v-inequality (19) and is therefore a noncontex-
tuality inequality. For example, a spin-1 particle passing through a Stern-Gerlach
gate/hyperedge has the probability of % to exit from any of its ports along any
of its 3 vertices/ports. But then, for arbitrary many contextual non-binary MMP
hypergraphs, the o -inequality fails (Cf. Figs. 6(a-d), 12(d), 13(b)).

Table 10: List of the inequalities elaborated on in the paper.

Inequality Bq. Ezgi(;rlliizxztll?hty
v Hlp <Hloy <HITY < (19) es
€Max ley < 1 (20) yes
€min lem <1 (21) yes
o asor=y (24) 1o
o o< =1 (26) yes
GLs a<o’ 1) 1o

Hypergraph v-, e-, a;, and «a,-inequalities can be generated via automated procedures
directly from non-binary MMP hypergraphs. The hypergraphs themselves can be gener-
ated in automated ways from simple vector components such as {0,+1,i} (Tables 4,8) or
{0,1,+w} (Table 7), etc. The operator approach is suitable for forming quantum gates
which can be applied to arbitrary states to generate inequalities for evaluating the contex-
tual measurements, while the latter automated hypergraph approach is suitable for testing
a level of contextuality of hypergraph states by postprocessing measurements carried out at
out-ports of gates determined by hyperedges as well as for verifying contextual properties
of a chosen hypergraph.

The v-, e-, and «, inequalities are the only genuine noncontextuality inequalities (Def. 4.1).

7.3 Structure and features of particular MMP hypergraphs

The MMP hypergraph language applied to several well-known contextual sets yields the
following results.

7.3.1 MMP vertex multiplicity

Throughout the paper we show that the multiplicity of vertices plays significant roles in
determining the features of n-dim MMP hypergraphs k-I. In particular, by the Vertex-
Hyperedge Lemma 4.10 we show that the sum of multiplicities is equal to nl; in Sec. 5.1 we
show that MMP hypergraphs with odd number of hyperedges predominantly have vertices
with even multiplicities (see Fig. 9 and the figure in Appendix A) and in Table 1 that
the multiplicities of vertices uniquely characterize master MMP hypergraphs we use to
generate all known MMP hypergraphs classes from.

Accepted in {Yuantum 2023-03-07, click title to verify. Published under CC-BY 4.0. 49



7.3.2 3-dim MMP hypergraphs; Graph vs. MMP hypergraph representations

In Sec. 5.2 we discuss (see Fig. 22) the four previously known 3-dim KS MMP hypergraphs:
Bub’s 49-36, Conway-Kochen’s 51-37, Peres’ 57-40, and Kochen-Specker’s 192-118 and
point out that they are critical, i.e., that none of them contains any smaller KS sets.
By removing vertices with m = 1 from these KS MMP hypergraphs, we obtain, via the
method presented in Sec. 7.1, the non-binary contextual 33-36, 31-37, 33-40, and 117-118
sets, respectively, but they are not KS sets, contrary to what [30, Table 1, p. 21| might
mislead the reader in.

In Fig. 10 we give five new 3-dim critical MMP hypergraphs obtained among thousands
of such new 3-dim ones in [46].

In Sec. 5.2 we show that Kochen and Specker’s original presentation of their 192-118 set
or Budroni, Cabello, Githne, Kleinmann and Larsson’s [30, Fig. 1] “simplification” of that
set is neither a graph, nor a general hypergraph, nor an MMP hypergraph.

Note that no definite vectors for the KS set 192-118 have been given prior to the ones
provided in [46].

None of the 3-dim KS sets satisfies the a;-inequality, but most of their smaller subhyper-
graphs do, in particular the critical ones [41]. Some are shown in Fig. 12 and Table 3.

7.3.3 The smallest non-binary MMP hypergraph that exists and other small 4-dim MMPs

In Sec. 5.3 we review several chosen small 4-dim MMP hypergraphs and give their pa-
rameters in Table 4 and their figures in Fig. 13. Binary 18-9, non-binary critical 22-13,
and binary 22-13 shown in Figs. 13(a,b,c), respectively, violate the aj-inequality. When
the m = 1 vertices are dropped from the binary 18-9 one obtains a non-binary MMP
subhypergraph 10-9 shown in Fig. 14(a). One of its critical subhypergraphs is the non-
binary 3-3 MMP hypergraph shown in Fig. 14(d)—the smallest 4-dim MMP hypergraph
with coordinatization that exists. Since the 3-dim 3-3 MMP hypergraph does not have a
coordinatization, the obtained 4-dim 3-3 is the smallest contextual set that exists in any
dimension. This is the Result 5.1.
Another result obtained in that section is the Result 5.2.

7.3.4 4-dim: Graph vs. MMP hypergraph case

In Sec. 5.4 we analyze a recent experiment [4] and show how and why graph representation
of contextual sets lead to wrong experimental and theoretical results.

In particular they claim that all 18 vectors they consider contribute with an equal weight
and that therefore their implementation is a proper KS set. We show their graph in
Fig. 15(e). Their red and green edges contain only two vertices, though. For example,
vertices 1,2,5,10,15,18, i.e., edges 1-10, 2-15 and 5-18, the probabilities p1 10, p2,15,
and ps 18 from measurement data were obtained. We show their set in the MMP hypergraph
representation in Fig. 15(g). It is an MMP 18-18, but it should have a coordinatization,
i.e., m = 1 vertices should be added while performing the experiment and they are shown
in Fig. 15(f) as gray dots—we end up with an MMP with 36 vertices and 18 hyperedges—
and that leads us into a contradiction: 36-18 MMP has no coordinatization. So, not only
that the set is not a KS set, but the measurement data themselves are inconsistent.

There are two possible remedies for the contradiction:

e merge triples of gray vertices at the intersections of red and green hyperedges as
shown in Fig. 15(h); new measurements should be carried out for the additional six
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vertices of the new 24-18 MMP hypergraph; it is one of 1233 KS MMP hypergraphs
[52] contained in Peres’ 24-24 master set;

e abandon green and red hyperedges altogether and reduce the implementation to the
18-9 KS MMP hypergraph (Fig. 15(c));

7.3.5 a*-inequality vs. quantum computation and quantum indeterminacy

As presented in details in Sec. 5.4 Howard, Wallman, Veitech, and Emerson have shown
that stabilizer operations with quantum bits initialized superposition of states (“magic
states”), can be used to purify quantum gates provided they exhibit the contextuality [12].
As a proof that considered sets are contextual the authors make use of the GLS inequality
[83, p. 192] by invoking Ref. [54].

In the latter reference, two simple examples are given for inducing small contextual non-
binary MMP hypergraphs from bigger noncontextual binary ones. This is essentially the
second procedure we referred to at the end of Sec. 7.1. A generalization of the procedure is
offered, which would consist in a recognition of the GLS inequality [83| as a noncontextual-
ity inequality (Def. 4.1). A similar approach is carried out by Cabello [69, Supp. Material,
Sec. IV]. However, as we show in Theorem 4.20, the assumption of variable probabilities of
detecting outputs from hyperedges would clash with the postulate of quantum indetermi-
nacy 4.19 and therefore the a-inequality given by Eq. (24) should be used, instead. The
theorem then states that a;-inequality is not a noncontextuality inequality since arbitrary
many contextual and noncontextual MMP hypergraphs violate it.

In Ref. [12] the same problem emerges. The exclusivity graph—“a source of quantum
computer’s power” |13, 12]—is a non-binary 30-108 MMP hypergraph and a subhypergraph
of a non-critical KS 232-108 MMP hypergraph as analyzed in Sec. 5.4. In Fig. 16(b) we see
that we can extend the original 30-108 MMP hypergraph to the KS 232-108 one by adding
m = 1 vertices to the former one. These added vertices enable us to identify additional
independent vertices in addition to the original 8 thus exceeding the upper bound. We
obtain 101 < a > o = 58 (Table 5), and it is an open problem to prove that that is not
relevant for the proof that the appropriate inequality is a =22 =8 < a* =234+ 1 =9 as
given in Ref. [13]. On the other hand, for the 30-108 MMP hypergraph itself, a calculation
which takes into account all its edges and their 30 vertices yields o;f = 14.07—see Eq. (31).

Taken together, if the only reason for invoking the GLS inequality was to prove that
exclusivity MMP hypergraphs suitable for quantum computation are contextual, then the
more efficient approach would be to directly check the obtained measurement data on
contextuality, e.g., via e-inequalities.

7.3.6 Peres-Mermin square: operators vs. MMP hypergraphs

The Peres-Mermin square has received a great deal of attention both theoretically and
experimentally [44, 45, 95, 21, 10, 98, 106]. So far it has been formulated only via operators
(the claim that it “can be converted into a standard proof of the KS theorem with vectors”
[30, p. 8] is incorrect as explained in Sec. 5.5), and in this paper we arrive at an MMP
hypergraph representation of the basic features of the Peres-Mermin operators so as to
examine possible candidates for such a representation. We find that a non-KS 45-18 MMP
hypergraph, shown in Fig. 17(d), serves the purpose. This is because it contains contextual
9-18 non-binary MMP hypergraph (Fig. 17(e)) which we obtain by dropping all vertices
with multiplicity m = 1 from the 45-18 MMP (Fig. 17(d)). Notice that there are no

states which would satisfy the conditions given by Eqgs. (33) and (34), so there is no
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MMP contradiction which would correspond to the operator Peres-Mermin contradiction.
Notice also that vertices belonging to rows and columns of the original operator-based
schematics (Fig. 17(d)) are mutually orthogonal in correspondence to mutual commutations
of operators in the same rows and columns.

The 9-18 MMP hypergraph is not critical. It contains 3-3, 5-5, 7-7, and 9-9 criticals
as shown in Figs. 17(e-h). Their possible experimental implementations might use Peres-
Mermin operators but not in the square arrangements in which systems run through triple
gates as depicted in Fig. 17(a). Instead, one of the Fig. 17(c-h) arrangements might be
used.

As for the critical MMP subhypergraph 5-5, it is isomorphic to the pentagon from
Ref. [78] but they are not equivalent since they live in two different spaces, 4-dim and 3-
dim, respectively. That is why the coordinatization of complete, filled, MMP hypergraphs
are so essential. For example, while 5-5 can be represented in both 3-dim and 4-dim spaces,
3-3 or 4-4 cannot, because coordinatizations for a filled 3-3 (e.g., 1A2,2B3,3C1.) or a filled
4-4 (e.g., 1A2,2B3,3C4,4D1.) do not exist in a 3-dim space.

To sum up, the original operator formulation of the Peres-Mermin square is inconsistent
because classical observables S; which would assign £1 to the states have no quantum
counterparts since there is no quantum state |¥) of a system which ¥; might project to
states £|U) (eigenstates with £1 eigenvalues). The fact that a correlated noncontextuality
cannot be formulated and that therefore the Peres-Mermin square contextuality is void of
its meaning we presented as the Peres-Mermin contradiction 5.3.

7.3.7 The pentagon case

In Sec. 4.2 we make use of different coordinatizations to compare hypergraph inequalities
with the operator ones, on the example of Klyachko, Can, Binicioglu, and Shumovsky’s
3-dim pentagon. They consider particular coordinatization with vectors/states which an
operator projects to a chosen state ¥ so as to give the maximum quantum mean value V5 as
in Eq. (13) and the operator inequality 2 < v/5, i.e., the inequality is state-dependent. The
hypergraph approach, on the other hand, gives the quantum hypergraph index HI, = 5,
the e- and v-inequalities 4 < 5 (Eq. (15)), and the o inequality 2 = a < af = 3.
The inequalities arise from the structure of the MMP hypergraph alone independently
of the states that build its coordinatization and that makes the MMP hypergraph state
independent in the sense that its contextuality holds for any set of states that can build
its coordinatization and even when there are no such states. (Note that no projections
of or to any states are involved.) Still, the coordinatization plays a role in the geometric
representation of MMP hypergraphs; e.g., a 3-dim pentagon can never be planar even when
all five of its m > 1 vectors span a plane.

7.4 Higher dimensions

In Secs. 5.6, 5.7 and 5.8 we give give figures and structural properties of the smallest MMP
hypergraphs from 6- to 8-dim spaces, respectively.

7.5 Implementation and research perspectives

In Sec. 6 we presented existing general implementation schemes for implementation of
arbitrary MMP hypergraphs and a broad class of a qubit gate network. This opens up a
research road to possible universal automated preparation algorithms for implementation
of arbitrary contextual sets in contrast to existing approach in the literature which usually
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limits itself to experiments with the smallest contextual sets and theoretical constructs
based on them which however have not been exemplified on arbitrarily chosen contextual
sets. Actually, such small-set-approach often yields inconsistent results, some of which we
discussed in the paper in an attempt to purify the handling of the contextual sets and find
their general features. An abundance of available contextual sets would support achieving
this goal and therefore we also generated billions of them in odd (3 to 9; [46, 41]) and
even (4 to 32; |58, 59, 60]) dimensional spaces and stored them in a freely available data
base wherefrom one can download sets with required structure and complexity for any
application.

The programs are available at http://puh.srce.hr/s/Qegixzz2BdjYwFL

Acknowledgments

Computational support was provided by the cluster Isabella of the Zagreb University Com-
puting Centre. The support of Emir Imamagié¢ from Isabella and CRO-NGI to the technical
work is gratefully acknowledged. Reading of and commenting on the paper by late Norman
D. Megill was particularly appreciated.

Appendices

A MMP hypergraph multiplicity with even number of hyperedges (Fig. 21)
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Figure 21: Samples of 4-dim KS criticals with 18 hyperedges from the 156-249 class, from the lowest
to highest number of vertices. Vertex multiplicities m different from 2 are indicated for each set. There
are odd multiplicities m in all sets. Examples of distributions of the maximal and minimal numbers of
“classical 1s” (red squares and cyan diamonds, respectively) are shown for (a) 30-18 and (h) 37-18.
None of the sets has a parity proof.

B Historical 3-dim KS sets in a renewed MMP hypergraph representation

In Fig. 22 we give the four historically known 3-dim sets in MMP hypergraph graphical
presentation.
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Kochen—
Specker

192-118

Figure 22: (a) Bub's 49-36 MMP hypergraph; m(C) = 4 and m(F) = 4; gray dots denote vertices that
belong to just one hyperedge, i.e., m = 1; its maximal loop is an 18-gon; (b) Conway-Kochen's 51-37;
m(1) =4 and m(A) = 4; (c) Peres’ 57-40; it has three m = 4 multiplicities: m(1) = 4, m(M) = 4, and
m(0) = 4; (d) the original Kochen-Specker KS set [20, Fig. on p. 69] 192-118 in the MMP hypergraph
notation [58] with 15 I’y contextual non-binary MMP hexagons; I’ is a graph representation of T’y with
m = 1 gray vertices dropped; I'j is a graph representation of I'g; m(A) =9, m(B) =9, and m(C) = 9;
in [46, Appendix], apparently the only existing coordinatization in the literature is provided by means
of 24 components.

C ASCII strings and coordinatizations of 3-dim MMP hypergraphs given
in Fig. 10

53-38 213,39A,AFG,GpB,BNX,XWY,YdK,KVf,fe5,546,678,8ED,DIr,rq0,0LP,Pkl,1CH,
HMa,aZb,th,JSj ,ji2,BC5,HI2, JEC,KIG,LGB,MNL,LKJ,QRS,TUV,cd8,ghA,mnP,opO,

nFE,UND,RMF. 1—(52,1); 2=(-1,2,1); 3=(0,12); 4=(5-1,2); 5=(1,1-2); 6=(0,2,1);

—(5,1,-2); 8=(1,-1,2); 9=(5,-2,-1); A=(1,2,1); B=(1,1,1); C=(1,-1,0); D=(-1,1,1); E=(1,1,0);
F—(1,-1,1); G=(1,0,-1); H=(1,1,-1); I—(1,0,1); J=(0,0,1); K=(0,1,0); L=(1,0,0); M=(0,1,1);
N=(0,1,-1); 0=(0,1,2); P=(0,2,-1); Q=(2,1,5); R=(2,1,-1); S=(1,-2,0); T=(-2,5,-1); U=(2,1,1);
V=(1,0,-2); W=(2,5,-1); X=(-2,1,1); Y=(1,0,2); Z=(-2,1,5); a=(2,-1,1); b=(1,2,0); c=(1,5,2);
d:(2,0, 1); (—1,5,2); f:(2,0,1); g:(—l,—2,5); h:(2,—1,0); 1:(1,—2,5); j= (2,1,0);
k=(5,-1,-2); :(1,1,2);m:(5,1,2);n:(—1,1,2);o:(5,2,—1);p:(1,—2,1);q:(5,—2,1); =(1,2,-1).

54-39 546,6DE,EmW,WRV,VUJ,JHI,Ipq,qTs,srG,GFC,CAB,B38,879,9ZL,LMN,NOP,PbY,
Yci,ihj, jdg,gef,fXa,a25,123,KLJ,QRP,STN,XYG,bI3,cE9,cT2,dC6,dbZ,XV8,dVT,

klR,nSB,oUS,laZ. 1=(-1,1,2); 2=(1,1,0); 3=(1,-1,1); 4=(5,1,-2); 5=(1,-1,2); 6=(0,2,1);

7=(12,1); 8=(1,0-1); 9=(1,1,1); A=(5-2-1); B=(1,2,1); C=(0,1-2); D=(5-1,2);
E—(1,1,-2); F—(5,2,1);G=(-1,2,1); H—(-2,5,1); T=(2,1-1); 3=(1,0,2); K—(2,5,-1); L—(-2,1,1);
M=(2,-1,5); N=(1,2,0); 0=(-2,1,5); P=(2,-1,1); Q=(2,5,1); R=(1,0,-2); S=(2, 1,0),T:(0,0,1);
U=(2,0,-1); v=(0,1,0); w=(2,0,1); X=(1,0,1); Y=(1,1,-1); Z=(0,1,-1); a=(-1,1,1); b=(0,1,1);
e (1-1,0): d—(1,0.0): e (5-21); £-(1,2-1): g (012): h-(5-1-2); i—(1.1.2):
j=(0,2,-1); k=(-2,5,-1); 1=(2,1,1); m=(-1,5,2); n=(-1,-2,5); o0=(1,5,2); p=(2,1,5);

q=(1,-2,0); r=(1,-2,5); s=(2,1,0).

55-40 213,3EF,FKL,Lpq,qaV,Vgd,dDc,cBb,biZ,ZYo,onJ, JRT,Tjk,keX,XWm,m1H,HSN,
NOM,Mr5,546,6P0,0t2,789,AB6,CD9,GHB, 1JD,QR3,UPL, VW5,XY8,Za2, ecF,eall,dYP,

bWR,RPN,fgS,hiU,sQS. 1=(5-1,2), 2=(1,12), 3=(0,2,1); 4=(2,5,1), 5=(2,-1,1),
—(1,0-2), 7=(-1,-2,5), 8=(1,2,1), 9—(2-1,0), A=(-25-1), B=(2,1,1), C—(1.2,5),

D:(l 2, 1), (5,1, 2), F (1,—1,2) ( 2-1 5) *(1,—2,0), I:(5,—2,1), J:(O,I,Q), K:(1,5,2),
L—(2,0,-1), M=(1,2,0), N=(0,0,1), 0=(2,0,1), P=(0,1,0), @=(0,1,-2), R—(1,0,0), S=(2,1,0),
T:(O,Q 1), :(1,0,2), V= (1, 1), (0,1,1), X—(l,—l,l) (1 0,—1), Z:(l,l,l) (1 -1 0),
b:(O,l, 1); c=(-1,1,1), d=(1,0,1), e (1,1,0),f:(1,—2,5), —(-1,2,1), h=(2,5,-1), i=(-2,1,1),
J:( ) *('1712) :(27 )7m ( )an:(5?27'1)? (1 -2 1) P:(- 9y~ ) (1 12)7
r=(-2,1,5), s=(5,-2,-1), t=(-1,5,2
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57-41 213,398,876,645,5cd,dBa,abG,GWV,VTU,UAR,RSQ,Qr0,0HP,Pmn,nJD,D1F,FjE,
EpI,ItY,YCf,fe?,ABC,DCG,EB3,FGH,IJK,LK5,MK2,NHS,KHA,XSG,YZG,gZL,hbM ijL,

k1M, opP,qT0,stN,uvN,vaJ. 1=(1,2,5); 2=(2,-1,0); 3=(1,2,-1); 4=(-1,2,5); 5=(2,1,0);

6=(-1,2,-1); 7=(5,2,-1); 8=(0,1,2); 9=(-5,2,-1); A=(0,1,0); B=(1,0,1); C=(1,0,-1); D=(1,1,1);

L) B (0,1-1); G (0,1,1): H—(1,0,0); T—(1,1,0); J—(1-1,0); K (0 0 1) —(-1,2,0);

1,2,0); N=(0,2,-1); 0=(0,-1,2); P=(0,2,1); Q=(-1,2ww); R=(1,0,w); S=(lw,w);

(lrww); W=2w,w); X=(2,;ww); Y=(1,-1,1); Z=(2,1,-1);

);

);

)

1,2w,w); U=(1,0,-w); V=
:(2 -1 1)7 Cc— ( 1727_5); d:(_17271)7 e:(1727_5) f= ( 2 1) (27175 )
—(2 -1,-5); i=(2,1-5); j=(2.1,1); k=(2,-15); 1=(2-1-1); m=(5,12); n— ( 1-1,2):

E=(-
M=(
T—(
a=(1,1,-1);
h=(2, (
o=(-5,-1,2); p=(1,-1,2); gq=(-5,2w,w); r=(52w,w); s=(5,1,2); t=(-1,1,2); u= (5,1,2,
v=(
69-50 451,176,6wK,KLG,G3H,HNM,MqD,DC2,2AB,BmX,XWR,RZY,Y&8,8%U,UVQ,QST,TId,
dca,aef,f$F,F#h,hgb,bij,jt4,123,189,2EF,GIJ,HUP,QR3,ab3,ATk,AYl,BUn Clo,
COp,DKr,4fs, 5hu, 5dv, 60x, M7y, MXh, Iz7,KUf,,0Yj,Ed! ,Ej" ,X9', T(9. 1—(0,0,w);
2=(0,w,0); G=(0w,w); H=(0,w,-w); Q=(0,w,w?); R=(0,w,-w?); a=(0,w?w); b=(0,w?-w);
3=(w,0,0); A=(w,0,w); B=(w,0,-w); C=(w,0,w?); D=(w,0,w?); 4=(w,w,0); 5=(w,w,0);
6=(w,w?0); M=(ww?w?); I=(ww?-w?)z=(ww?2w?); 7T=(w,-w?0); K=(w, w?w?
0=(-w,w?w?); x=(w-w?2w?); g=(2w?-w?-w); r=(w2w?w?); p=(w,2w?-w
c=(2w? -w?w);  w=(ww?2w?);  y=(wrw?2w?);  o=(-w,2w? w?)
e=(2w?w?-w);  i=(2w?w?w); P=2ww?w?); L=(2ww?-w?); W=(2w?-w,-w?);
J=(2w,w? w?); N=(2w,w?-w?); S=(2w?-w,w?); E=(w?0w); F=(w?0,-w); 8=(w?w,0
X=(w?w,w?); T=(w?w, w?); (=(w?w2w?); 9=(w?-w,0); U=(w? -ww?); Y=(-w?ww?
&= (w? -w,2w?); n=(w?,2w,w?); 1=(w? 2w,-w?); h=(w? w2 w); d=(w?w?,-w); v=(w?w?,2w
f=(w?
(
(

=(w?-w?w); j=(-w? w? w) t=(w? -w? 2w); $:(w2,2w2,w); "= (w? 202 -w);
%=(-w?w,2w?); ' (w -w2w?); k=(-w?2ww?);  m=(-w?2w,-w?);  s=(-w?w? 2w);
u=(-w?-w? 2w); 1=(-w? 2w? w); #=(-w? 2w? -w); V=(2w? w,-w?); Z=(2w? w,w?).

D a < a violations

ASCII strings of MMP hypergraphs from Fig. 6 that violate Eq. (24) from Theorem 4.20,
i.e., for which the inequality o > o holds.
(a)I3ulfs‘49-36'71I,ICG,G5b,bVM,MPS,SAT,TjZ,Ze2,29B,BUN,NdD,Dkn,n8g,gQY,YCH,
H6m,mhF,FW7,aJs,Kel,VQB, JKF,E8e,Z5W,hgT,U3M,kVj,iD3,LQW,NIT, hKb,2XJ, fRA,
nbR,4AL,ZH3.

«o-vertices: 1,a,b,¢c,1,9,n,P,Q,2,F,6,E,U,i,C,X,f,d,4,0

aﬁ 26-15 NOQP,PQLM,M5GA,A89K,KJ76,6734,4BHE,E1CN,HIJK,FGLM,BCDE, 59DE, 2348,
12K0,4FIM.

@ﬂ 34-16 JMPSVN,N349AF,FDEIRY,Y1BKTX,X267CJ,TUVWXY,QRSWXY,KLMNOP,GHIJOP,
BCFUXY,AJSVXY,56789J,CEIJOY, 248FHM, 1DLQXY,35EGJO.

@D 37-11 789A56CB,BCDEFIHG,GHWXYVRP,PR0OQ3487,12345678,JKLMNIAC, STUVQRMN,
ZaYULF28,ZaXTKE17 ,bJDI9ABC,bWSORIAB.

(e) 9-3 1234,4567,7891.

(f) 10-5 123,345,567,789,9A1.
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E I' MMP hypergraphs

Howard, Wallman, Veitech, and Emerson’s exclusivity graph with cliques (Fig. 16(a))
has the following MMP hypergraph string representation where hyperedges substitute the
cliques:
30-108 1234,45,5678,9ABC,CD,DEFG,HIJK,KJLM,LMNO,PQ,QR,RS,ST,TU,15,18,1F,
1G,1I,1K,1Q,26,27,2F,2G,2H,2J,2P,36,37,3D, 3E, 31, 3K, 3Q,48,4D, 4E,4H,4J , 4P, 59,
5A,5M,50,5T,69,64A,6L,6N,6U0,7B,7C,7M,70,7T,8B,8C,8L,8N,8U,9E,9G,9I,9J,9R,AD,
AF,AH, AK, AS,BE,BG,BH,BK,BR,CF,CI,CJ,CS,DL,DO,DR,EM,EN,ES,FM,FN,FR,GL,GO,GS,
HN,HO,HQ,IN,IO,IP,JQ,KP,LT,MU,NT,0U,PS,PU,QT,RU.

Its filled KS 223-108 (Fig. 16(b)) MMP hypergraph ASCII string with all m = 1 vertices

1S

232-108 1234,4Vw5,5678,9ABC,CXYD,DEFG,HIJK,KJLM,LMNO,PZaQ,QbcR,RdeS,SfgT,
ThiU,1jk5,11m8, 1noF, 1pqG, 1rsI, 1tuk, 1vwQ,2xy6,2z!7,2"#F,2$%G,2&’H,2() J,
2*—P,3/:6,3;<7,3=>D,3?©E,3[\I,S]“K,S_‘Q,4ﬂ8,4}mD,4+1+2E,4+3+4H,4+5+6J,
4+7+8P,5+9+A9,5+B+CA,5+D+EM, 5+F+G0,5+H+IT,6+J+K9,6+L+MA, 6+N+0L, 6+P+QN,
6+R+SU, 7+T+UB, 7+V+WC, 7+X+YM, 7+Z+a0, 7+b+cT,8+d+eB, 8+f+gC,8+h+iL,8+j+kN,
8+1+mU, 9+n+oE, 9+p+qG, 9+r+sI,9+t+ul,9+v+wR,A+x+yD,A+z+!F,A+"+#H, A+$+7K,
A+&+’S B+ (+)E,B+*+—G,B+/+:H,B+; +<K,B+=+>R,C+7+QF,C+[+\I,C+]+"J,C+_+°S,
D+{+|L,D+}+~0,D++1++2R ,E++3++4M ,E++5++6N , E++7++8S ,F++9++AM,F++B++CN,
F++D++ER, G++F++GL,G++H++I0,G++J++KS ,H++L++MN, H++N++00,H++P++QQ , I++R++SN,
I++T++UQ, I++V++WP, J++X++YQ,K++Z++aP ,L++b++cT ,M++d++eU,N++f++gT,0++h++iU,
P++j++kS,P++1++mU, Q++n++oT,R++p++qU.

ASCII string of the only critical KS MMP hypergraph we found in the 232-108 KS MMP
hypergraph is:
152-71 1234,4567,589A,BCDE,EFGH,FIJK,LMNO, ONPQ,PQRS,15jk,1A1lm, 1Jno, 1Kpq,
1Mrs,10tu, 28xy,29z!,2J"#,2K$%,2L&’ ,2N() ,38/:,39;<,3F=>,317Q,3M[\,30] ~,4Al,
4F~ ,41+1+42,4L+3+4,4N+5+6,5B+9+A,5C+B+C,5Q0+D+E, 53+F+G, 8B+J+K,8C+L+M, 8P+N+0,
8R+P+Q,9D+T+U, 9E+V+W,9Q+X+Y,95+7Z+a,AD+d+e, AE+f+g,AP+h+i,AR+j+k,BI+n+o,
BK+p+q,BM+r+s,BN+t+u,CF+x+y,CJ+z+!,CL+"+#,C0+$+%,DI+(+) ,DK+*+— ,DL+/+:,
DO+;+<,EJ+?+@,EM+ [+\ ,EN+]+~ ,FP++| ,FS++~ , IQ++3++4 , IR++5++6 , JQ++9++A,
JR++B++C , KP++F++G ,KS++H++1 .

This critical MMP with m = 1 vertices dropped, i.e., the non-binary 24-71 MMP diagram
(Fig. 16(c)) is :
24-71 1234,45,59A8,8B,BI,IR,RJ,JC,CL,LD,DK,KS,SF,FP,POQN,NE,EM, M1, BCDE, EF,
FIJK,LMNO,PQRS,15,1A,1J,1K,10,28,29,2J,2K, 2L, 2N, 38,39, 3F,3I,3M, 30,44, 4F , 4T,
41,,4N,5B,5C,5Q,55,8C,8P,8R,9D,9E,9Q,9S,AD, AE, AP, AR,BK,BM,BN,CF,C0,DI,DO,EJ,
IQ,JQ,KP.

F Vector representation of the Peres-Mermin square

45-18  1AB2,2CD3,1EF3,4GH5,51J6,4KL6, 7MNS,80P9, 7QRO, 1ST4,4UV7 , 1WX7, 2YZ5,
5ab8,2cd8,3ef6,6gh9,3139.

1=(0,0,0,1); 2=(0,0,1,0); 3=(0,1,0,0); 4=(-1,i,2,0); 5=(1,i,0,2); 6=(2,0,1,-1); 7 )
8=(1,1,0,0); 9=(0,0,1,1); A=(1,1,0,0); B=(1,-1,0,0); C=(1,0,0,1); D=(1,0,0,-1); E=(1,0,1,0);
F=(1,0,-1,0); G=(1,i,0-1); H=(i,1,,0); I=(1,i,-3,-1); J=(i,3,-i,i); K=(1,-1,1,3); L=(i,-3-1,i);
M=(0,0,1,i); N=(0,0,i,1); 0=(1,i,1-1); P=(1,i-1,1); Q=(i,1,i-i); R=(i,1i,i); $=(0,2,i,0)
T=(5,,2,0); U=(i,1,i,i); V=(1,-1,1,-3); W=(-1,i,1,0); X=(1,-1,2,0); ¥=(0,2,0,i); Z2=(5,-i,0,-2)

I

(1,1,0,0

)

)

)
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a=(-i LiD); b=(Li3-1); e=(110,1); d=(10,2); e=(1,0,02); £=(-2.05.1); g=(L1-11);
h—(1,-3-1,1); i=(0,0,1,-1); §=(1,0,0,0)

G ASCII strings and coordinatizations of 5-dim MMP hypergraphs given
in Fig. 18

29-16  12345,56789,98ABC,CDEFG,GHI21, JBK78,LIM42,NOP32,QRP6S, SAOM2 THRKS,
HSFN2,TAEQ8,HFG2J,AECL8,DP528.  T—(1,-1,1,0-1), H=(1,0,-1,0,0), $=(1,-1,1,1,0),
A—(0,1,1,0,0),  D=(0,0,1,0,0),  E=(1,0,0,0,1),  F=(0,1,0,1,0), 1,0,0,0,-1),
1.-1,0,0,0),
)
)

C=(
G=(0,1,0,-1,0), @=(1,1,-1,0,-1), R—(1,1,1,0,1), N—(1,1,1,-1,0), 0=(1,1,-1,1,0), P=(1,
9=(1,-1,1,0,1), 6=(0,0,1,0,-1), 1=(1,-1,1,-1,0), 3=(0,0,1,1,0), 5=(1,1,0,0,0), L=(0,1,-1,0,0),
I—(1,1,1,1,0), M=(1,0,0,-1,0), 4=(1,-1-1,1,0), 2=(0,0,0,0,1), J=(1,0,1,0,0), B=(1,1,-1,0,1),
K=(0,1,0,0,-1), 7=(-1,1,1,0,1), 8=(0,0,0,1,0)
30-16 12345,56789,9ABCD,DEFGH,HIJK1,CLKM9,JNDPH,B8M94,QIGPH,80945,
RFSNH,REHK3, DQH92, STHK9 , UT7L9 , AUQ69.. A=(0,0,1,0-1),  U=(-1,1,1,0,1),
$=(1,0,0,0,0), T=(0,1,-1,0,0), R=(1,-1,1,-1,0), D=(1,-1,0,0,0), E=(1,1,-1,-1,0), F=(1,1,1,1,0),
Q=(1,1,0,0,0), I=(1,-1,1,1,0), G=(0,0,1,-1,0), B=(1,1,1,0,1), 6=(1,-1,1,0,1), 7=(1,1,1,0,-1),
8=(1,0,-1,0,0), J=(1,1,-1,1,0), N=(0,1,0,-1,0), 0=(1,0,1,0,0), P=(-1,1,1,1,0), H=(0,0,0,0,1),
c=(1,1,-1,0,-1), L=(1,0,0,0,1), K:(O,l,l,0,0), —(1,-1,1,0,-1), 9=(0,0,0,1,0), 2=(0,0,1,0,0),
3-(1,0,0,1,0), 1=(1,0,0,-1,0), 4=(0,1,0,0,-1), 5=(0,1,0,0,1)

30-17 89A7B,BCD23,3T41L, L1MNK,KIJH6 , 6QESS, 12345, 67845, EFGH6 , OPNG1,
QRFD6,SRJC6, TRMAL ,URP91, SI684,U0135,KGB61 . 1=(0,0,0,0,1), 2=(0,1,0,-1,0),
3=(0,1,0,1,0), 4:(1,0,1,0,0), 5—(1,0,-1,0,0), 6=(0,0,0,1,0), 7=(0,1,0,0,-1), 8=(0,1,0,0,1),
9—(1,0,0,-1,0), A=(1,0,0,1,0), B=(0,0,1,0,0), ¢=(1,0,0,0,1), D=(1,0,0,0,-1), E=(1,1,1,0,-1),
F—(1,1,-1,0,1), 6=(1,-1,0,0,0), H=(0,0,1,0,1), I=(1,-1,-1,0,1), J=(1,-1,1,0,-1), K=(1,1,0,0,0),
L=(1,-1,-1,1,0), M=(1,-1,1,-1,0), N=(0,0,1,1,0), 0=(1,1,1,-1,0), P=(1,1,-1,1,0), @=(1,-1,1,0,1),
R—(0,1,1,0,0), 8=(1,1,-1,0,-1), T—(1,1,-1,-1,0), U=(1,-1,1,1,0)
34-17 41235 ,5FGEH, HIJK9, 968A7 , 7STDO, ODNP4 , BCDEA , LMKHS , QRPD3, UTRDS,
VTJH2,WTMH1,E8934,XSNCD,XUQBD, YVIGH, YWLFH.  1—(1,0,0,0,-1), 2—(1,0,0,0,1),
3=(0,1,0,1,0), 4=(0,1,0,-1,0), 5=(0,0,1,0,0), 6=(1,1,0,0,0), 7=(1,-1,0,0,0), 8=(0,0,1,0,1),
0,0,1,0,-1), A=(0,0,0,1,0), B=(0,1,1,0,0), ¢=(0,1,-1,0,0), D=(0,0,0,0,1), E=(1,0,0,0,0),
)
)
)

(

(0,0,0,1,1), G=(0,0,0,1,-1), H=(0,1,0,0,0), I=(1,0,1,1,1), J=(1,0,-1,1,-1), K=(1,0,0,-1,0),
(1,0,1,1,-1), M=(1,0,-1,1,1), N=(-1,1,1,1,0), 0=(1,1,-1,1,0), P=(1,0,1,0,0), Q=(1,1,-1,-1,0),
(1-1-1,1,0), $=(1,1,1-1,0), T=(0,0,1,1,0), U=(1,1,1-1,0), V=(1,0,1,-1,-1),

W=(1,0,1,-1,1), X=(1,0,0,1,0),Y=(1,0,-1,0,0)

58-40 CBDAE,EAJKI, InPSg,gShQY,YroHZ,ZpmOM,MwlVU,UVvgN,NaXR5,5bWGC,
12345,6789A ,FGHI5,LMHI5,MI345,N089A,PQRSD, TUVWK , XYNOA ,,ZYSOA,cdefZ,ijVMD,
LK79A,aX245,kZCA5,1C69A ,mnokZ,pqrZC,stjVW,efZYM,hC145,ut1VH,hYWS0,dfZRK,

9
F
L=
R

vwshV, vwTUV, baNF5, YNJBA, qkc£Z , qnkZC. 1—(-1,1,1,1,0), 2-—(1,1,-1,1,0),

—(1,1,1,-1,0), 4=(1,-1,1,1,0), 5=(0,0,0,0,1), 6=(1,-1,1,0,1), 7=(1,1,-1,0,1), 8=(1,1,1,0,-1),
9-—(-1,1,1,0,1), A=(0,0,0,1,0), B=(1,-1-1,0,1), ¢=(1,1,0,0,0), D=(0,0,1,0,1), E=(1,-1,1,0,-1),
F—(1,1,1,1,0), G=(1,-1,1,-1,0), H=(0,1,0,-1,0), I=(1,0,-1,0,0), J=(1,1,1,0,1), K=(0,1,0,0,-1),
L—(1,0,1,0,0), M=(0,1,0,1,0), N=(0,1,-1,0,0), 0=(1,0,0,0,1), P= (1 0,1,-1,-1), @=(1,0,-1,-1,1),
R—(1,0,0,1,0), $=(0,1,0,0,0), T=(0,1-1,1,1), U=(0,1,1,-1,1), V=(1,0,0,0,0), Ww=(0,0,1,1,0),
X=(0,1,1,0,0), Y=(1,0,0,0,-1), Z=(0,0,1,0,0), a=(1,0,0,-1,0), b=(1,-1,-1,1,0), c¢=(1,1,0,1,-1),
d=(-1,1,0,1,1), e=(1,-1,0,1,1), £=(1,1,0,-1,1), g=(1,0,1,1,1), h=(0,0,1,-1,0), i=(0,1,-1-1,1),
§=(0,1,1,-1,-1), (1,-1,0,0,0),1:(0,0,1,0,-1), —(1,1,0,-1,-1), n=(0,0,0,1,-1), 0=(1,1,0,1,1),
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p=(1,-1,0,1,-1), 9=(0,0,0,1,1), r=(1,-1,0,-1,1), s=(0,1,0,0,1), +=(0,1,-1,1,-1), u=(0,1,1,1,1),
v=(0,1,1,1,-1), w=(0,-1,1,1,1) (the first ten hyperedges form a decagon).

65-40  8679A,ABCDE,EG254,45c3d,d#RUT, TUQNu,ujIMZ,ZMaPb, blnkm,mk! £8,12345,
FGH95,IJKLM,NOPH5,QRSTU, VWXYU,efLF5,ghijk,on125,pqrnA, odUM5, rakKMG, STUJ9,
XYUJE,daIMD,ocOF5,stuch, vuxyM,z!kcJ, "\#\$kG, $ikfD, xyuMG, wydM8, vyPJM, #hkUA,

BC67A,vwr jM, rWYUN, #0VYU,kfUN5S. (the first ten hyperedges form a decagon)

1=(1,1,0,1,1), 2=(1,1,0,1-1), 3=(1,1,0-1,1), 4=(1,1,0-1,-1),  5=(0,0,1,0,0),
6=(0,1,-1,1,-1), 7=(0,1,1,1,1), 8=(0,0,1,0,-1), 9=(0,1,0,-1,0), A=(1,0,0,0,0), B=(0,1,-1,-1,1),
c=(0,1,1,-1,-1), D=(0,0,1,0,1), E=(0,1,0,1,0), F—=(1,1,0,1,-1), G=(1,0,0,0,1), H=(-1,1,0,1,1),
I—(1,0,-1-1,1), 3=(1,0,1,0,0), K=(1,0,-1,1,-1), L=(0,0,0,1,1), M=(0,1,0,0,0), N=(1,1,0,0,0),
0—(1.-1,0,1,1), P—(0,0,0,1-1), Q—(1, 1,1,1,0) R—(1,1,1,-1,0), S=(1,1,-1,1,0), T=(-1,1,1,1,0),
U=(0,0,0,0,1), V=(1,1,1,1,0), W=(1,-1,1,-1,0), X=(1,1,-1,-1,0), Y=(1,-1,-1,1,0), Z=(1,0,1,1,1),
a=(1,0,1,-1,-1), b=(1,0,-1,0,0), ¢ (0,1,001) —(1,0,0,1,0), e=(1,1,0,-1,1), £=(1,-1,0,0,0),
g=(1,1,1,0,1), b=(0,1,1,0,0), i=(1,1,-1,0,1), j=(1,0,0,0,-1), k=(0,0,0,1,0), 1=(1,-1,1,0,-1),
n—(1,1,1,0,1), n—(0,1,0,0,-1), 0—(1,0,0,- 1,0), ~(0,1,-1,1,1), g—(0,1,1,-1,1), r=(0,0,1,1,0),
s=(0,1,1,1,-1), t=(0,-1,1,1,1), u=(0,0,1,-1,0), v=(1,0,-1,1,1), w=(1,0,1,-1,1), x=(1,0,1,1,-1),
y—(-1,0,1,1,1), z—(1,1,1,0,1), '=(1,1-1,0-1), "=(-1,1,1,0,1), #—(0,1,-1,0,0),
$=(1,1,1,0,-1) .

105-136 12345,12367,12489,12AB5,134CD,13EF5,1GH45,1GH67,1G6IJ,1GKL7 ,1H6MN,
1HOP7,1EF89, 1ESIP, 1E9KN, 1F8ML, 1F90J,1ABCD,1ACJP,1ADLN, 1QRST, 1QUVW, 1XYSZ,
1XabW, 1BCMK, 1BD0OI, 1cYVd, 1caeT,1fRbd, 1fUeZ,10IJP,1MKLN, 234gh,231j5,2k145,
2k167,2k6émn, 2kop7 , 216qr, 21st7,21j89,2i8mt,2i%0r,2j8qp,2j9sn, 2ABgh, 2Agtn,
2Ahpr, 2uvSw, 2uxyW,2z! 8", 2z#$W, 2Bgoq, 2Bhsm, 2% ! yd , 2%#tew, 2&ved, 2&xe" ,2smtn,
2oqpr,’ (345, (367, (489, (AB5,°36)*,’3—/7,°48:;,°4<=9,’A>75,°Q[B5, (36\],
(3~_7,(48{, (4[}9, (A~+15, (+2+3B5,31jCD,3iC_*,3iD—\,3jC/1,3jD") ,3EFgh,
3Eg_) ,3Eh/\,3+4+5Vw,3+4+6yT,3+7+8V" ,3+7+9$T,3Fg—] ,3Fh™*,3+A+8yZ,3+A+9bw,
3+B+5$Z,3+B+6b",3~_)*,3—/\],k14CD,k1EF5,k4C}; ,k4D<‘ ,kE+375,kF@~5,14C={,
14D|:,1E[+15,1F+2>5,GH4gh,GHij5,G4g} : ,G4h=",Gi+3>5,Gj [~5,+C4+5Rx , +C4+6vU,
+C+7X%5,+C+AZCS,+D4+8R#,+D4+9!U,+D+4X&5,+D+Buc5,H4g<{,H4h|;,Hi©+15,Hj+2?5,
+E4+8va,+E4+9YX,+E+4zf5,+E+BQ%5,+F4+5!a,+F4+6Y#,+F+7uf5,+F+AQ&5,4U1;,
4<=“{,+2+3>75,0[~+15. 1=(0,0,0,0,1), 2:(0,0,0,1,0), 3=(0,0,1,0,0), 4-(0,1,0,0,0),
(1,0,0,0,0), 6=(1,1,0,0,0), 7=(1,-1,0,0,0), 8=(1,0,1,0,0), 9=(1,0,-1,0,0), A:(O,l,l,0,0),
0,1,-1,0,0), ¢=(1,0,0,1,0), b=(1,0,0,-1,0), E=(0,1,0,1,0), F=(0,1,0,-1,0), G=(0,0,1,1,0),
(

5—
B= ( ’ )
H=(0,0,1,-1,0), I=(1,-1,-1,1,0), 3=(1,-1,1,-1,0), K=(1,1,1,-1,0), L=(1,1,-1,1,0), M=(-1,1,1,1,0),
N=(1,-1,1,1,0), 0= 1,1,1,1,0), P—(1,1,-1-1,0), @=(0,1,1,1,0), R=(1,0,1,-1,0), $=(1,1,-1,0,0),
T—(1,-1,0,1,0), U=(1,0,-1,1,0), v:(1,1,0, 1,0), W=(1,-1,1,0,0), X=(0,1,1,-1,0), Y=(1,0,1,1,0),
2=(-1,1,0,10), a=(-1,0,1,1,0), b=(1,1,0,1,0), ¢=(0,1,-1,1,0), d=(-1,1,1,0,0), e=(1,1,1,0,0),
£=(0,-1,1,1,0), g=(1,0,0,0,1), h=(1,0,0,0,-1), i=(0,1,0,0,1), j=(0,1,0,0,-1), k=(0,0,1,0,1),
1-(0,0,1,0-1), m—(1-1-1,0,1), n—=(1-1,1,0-1), o=(1,1,1,0-1), p=(1,1-1,0,1),
q=(-1,1,1,0,1), r=(1, 1,1,0,1), s=(1,1,1,0,1), t=(1,1,-1,0,- 1),u:(0,1,1,0 1), v=(1,0,1,0,-1),
w=(1,-1,0,0,1), x=(1,0,-1,0,1), y=(1,1,0,0,-1), z=(0,1,1,0,-1), 1=(1,0,1,0,1), "=(-1,1,0,0,1),
#=(-1,0,1,0,1), $= (1,1,001) %—=(0,1,-1,0,1), &=(0,-1,1,0,1), *= (000,1,1),( (0,0,0,1,-1),
) (1-1,0,1-1), *=(1,-1,0,-1,1), —=(1,1,0,1-1), /=(1,1,0-1,1), :=(1,0-1,1-1),
—(1,0-1,-1,1),  <=(1,0,1,1-1), ==(1,0,1-1,1), >=(0,1-1,1-1), :( 1-1-1,1),
(0,1,1,1, 1), [=(0,1,1-1,1), \=(1-101,1), 1=(-1,1,0,1,1), ~=(1,1,0,1,1),
=(

1,1,0,-1-1), <=(1,0,-1,1,1), {=(-1,0,1,1,1), |=(1,0,1,1,1), 3=(1,0,1,-1,-1), ~=(0,1,-1,1,1),

—(0,-1,1,1,1), +2=(0,1,1,1,1), +3=(0,1,1,-1,-1), +4=(0,1,0,1,1), +5=(1,0,0,1,-1),
+6=(1,0,0,-1,1), +7=(0,1,0,1-1), +8=(1,0,0,1,1), +9=(-1,0,0,1,1), +A=(0,1,0,-1,1),
+B=(0,-1,0,1,1), +¢=(0,0,1,1,1), +D=(0,0,1,1,-1), +E=(0,0,1,-1,1), +F=(0,0,-1,1,1)
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H ASCII strings and coordinatizations of 6-dim MMP hypergraphs given
in Fig. 19 and Tables 7 and 8

27-9 123456,1789AB,27CEHR,3C8DGQ,4EDOFJ, 5HGFATI ,BI JKLM, MLKPON ,NOPQR6 .
1=(0,0,1,1,ww), 2=(0,1,0w,l,w), 3=(0,1,w,0,w,1), 4=(0,w,1,w,0,1), *(Ow,w,l,l,O),
6—(1,0,0,0,0,0), 7—(1,0,0ww,1), 8=(1,0,0,1w), 9—(w,0w,1,0,1), A—(w,0,1w,1,0),
B=(0,1,0,0,0,0), C=(w,0,0,1,1), D=(w,1,1,0,0), E=(10,0,1,0w), F=(1,1,ww,0,0),
6—(1,0,1,00,0), H=(w,1,0,1,w,0), I—(0,0,0,0,0,1), JI=(0,0,0,0,1,0), ,0,1,1,0,0),
L=( )
Q=(

K=(
1,00,1,0,0), M=(1,0,1,0,0,0), N=(0,1,0,0,w,1), 0=(0,w,0,0,1,1), P=(0,1,0,0,1,w),
0?0707]‘7070)7 R:(0707170)070)?

32-11 123456 1789AB, CDE4AF , CGH96T , JGKHLM, JNOS5P , QDKRSM, QN3RTB,
UVWHTI,UVOESP,27WHLF.  1=(w,1,1,1,1,1), C:{WQM%ungj), J=(w?w,1,w,1,1),
Q= (w?,w,1,1,w,1),U=(1,w?w,1wl)2=(1,w?wllw)D=(1w?1w?11),7=(1,w%1 wwl),

V=(1,0?,1,w,1,w),6=(1,w?1,1,w% 1) N=(1,w?1,1,1,w?) W=(w?1,ww1,1),0=(w?1,wl1w),

3=(l,ww?w,1,1),K u%ﬁng, =(w?,1,1,ww,1),R (%ﬂw$m,:WJJ$ww

8=(1,w,w,1,w? 1), =(1w,1w?1w),4=(1,w,1,1,ww?),s=(1,1,1,1,w? w?),5 (1,1,1,ww w)

L=(1,1,1,w%,1,w?),T=(1,1,1,w? w?1),A=(1,1,w,w,1,w?),6 (l,l,ww w,1),1=(1,1,w?1,1,w?),
B=(1,1,w?,1,ww)F (1wa2j¢u,1L =(1,1,w?w? 1,1) M=(1,1,w% w,w,1)

36-13 123456, 1789AB, CD34EF , CGHIJK , CGLMEA , C7TNIOP,QRHS56 , QRTUEF,

VDWSXY, V2WUJK, VZL9X0, Va8MYP, ZaTNEB. 1—(w,1,1,1,w,w?), C—(w?ww,1,1,1),
Q= (w,1,1w?w,1), V=(w ,1J4w,Laﬁ) R—(w?w,1,w,1,1), D=(w,1,w? 1,w,1), 2=(w? w,1,1,1,w),

),D

Z=(1w?ww1,1), 6=(w,1,w?wl11),a=(w,1,w,1,w?1), 7=
L—(w,w?1,1w,1), W=(1,ww?w,1,1), 3= (w,w? ,1,w,1,1),T
8=(1,w,w,1,1,w?), U=(w,w?w,1,1,1), 4=(1,w,1,w?w,1), M
I=( ) 2 )

X=(
K—(

)
(1,w%,1,1,w? 1) H=(w, w2,1,1,1,w),
(1,w,w?,1,w,1), N=(w? ,1,1,w w,1),
(1,w,1,ww?1),9 ::@u 1w? ,1,1,1%

1w,1,w,1,w2, S=(1w,1,1,ww?), E=(1,1,1,1,1,w), J=(1,1,1,1,w,1), 5=(1,1,1,w,w?w),

1,1,1,w?w? 1), 6=(1,1,w,1,1,1), 0=(1,1,w,1,w,w?), Y=(w?w?1,1,1,1), F=(1,1,w,w,w? 1),

11ww? lw), A=(1,1w,w?wl), P=(1,1,w?w?1,1), B=(w,w,1,w?1,1)
39-13 123456 ,1789AB, CDEFGH, CIJKH6 ,LIMKAB, LNOFPQ,RST95U , RVO4PW,
XNYTZa,X7b8cW,DVY3Ga,dSEMcU,d2bJZQ. 1=(w,1,1,1,1,1), c:(w;L1¢u%a@1%
L= (,LLwa)l) =(1w?w? 1,1,1), X=(w,1,w? 1,1,w), D=(w? w,1,w,1,1),d=(1,w?w,1,1,w),
I=(w,1,w,1,1,w?), s=(w,1,w,1,w%1), A(a@1¢4a9,Ll),2:{1¢u%1¢up%1) (1cu,1¢uJ, ),
7=(1,w? 1,1, w,w), Y=(w,w?1,1w,1), b=(w? 1w,1w1), E=(1lww?1w1), I=(w?1,1,wlw),
M:(mgmwm,:@;u;mﬁ%:uww¢w1% =(w?1,1,w?1,1),8 uww@Lﬁy
F=(w,w?w,1,1,1), 4=(1w,1w? 1w), 9=(1,w,lww?1), 6=(1,1,1,1,1,w), Z=(1,1,1,1,w? w?),
K=(1,w,1,1,1,1), c=(1,1,1,w,1,1), P=(1,1,w,1w?w), 5=(1,1,w,w,1,w?), H=(1,1,w,w,w? 1),
A= ﬂﬂww wl):ﬁwwﬂjjwa, =(w,w,1,1,w?1),6=(1,1,w? 1,ww),d=(1,1,w?w?1,1),
B—(1,1,w?w,lw), a=(1,1,w?ww,1)

81-162 master 123456,12789A,1BCD5E, 1B7FGH,1ICJ9K, 1I3LGM, 1NODAP, 1NQ4HR,
1S0J6T,1SU8MR, 1VQLET, 1VUFKP,WXY45Z ,WX7abA,WcdebE,Wc7Ffg,WIdJbh,WIYifM,
WjkeAP,WjQ4gl ,WSkJZm,WSnaMl,WoQiEm,WonFhP,pqY89Z,pq3ab6,pcre9K, pc3lsg,
pBrDbh,pBYisH,pjte6T,pjU8gu,pNtDZm, pNnaHu,pvnLhT,pvUiKm,wxyD5Z ,wx7azH,
w!"eb6,w!78#g,wl"Lzh,wlyi#K,wSkeHR,w$0Dgl ,wVkLZ} ,wV&aK1l,wo0i6% ,wo&8hR,

> (yDbA,’> (Y4zH, 1) Jb6,’ ' Y8*M, *c)LzE, ’cyF*K, ’-kJHu, *-tDM1, *vkLA/, ’v:4K1,
’otF6/,’0:8Eu, ; ("e9A, ; (34#g, ;x)J9Z, ;x3a*M, ;B) i#E, ;B"F*h, ; <teMR, ;<0Jgu,
;vOiA=,alA/;v>4hR, ;VtFZ=, ;V>aEu,?!reGM, ?!CJsg, 7qyFGZ, 7qCazE, 72yisA, 72r4zh,
?7$:eET,?$UFg/,?-&JhT, ?-UiM},, 7N:4Z%,7N&alA/,@(deGH,@(CDfg,@X)LGZ,
@XCa*K,02)1if6,02d8%h,0<:eKP,@<QLg/,@->DhP,0-QiH=,@S:8Z=,0@S5>a6/, [xdJsH,
[xrDfM, [X"LsA, [Xrd#K, [q"Ff6, [qd8#E, [<&JKm, [<nLM}, [$>DEm, [$nFH=, [j>46%,
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[j&8A=, (8"Uzm, (Syn#T, (VAUb%, (VY&ET, (oCn9%, (03&Gm,xj)UzP,xjyQ*T,xvdU5/,
xv7:fT,xorQ9/,x03:sP, IN)n#P, IN"Q*m, | vCn5=, ! v7>Gm, ! VrQb=, ' VY>sP,X$)UbR,
X$YO*T, X-"USu, X-7t#T, Xor0Gu, XoCtsR, g<yQbR, q<Y0zP,q-"Q91, q-3k#P, qvd0G1,
qvCkfR, 2<ynbu,2<7tzm,2$)n91,2$3k*m,2Vdtsl,2Vrkfu, c-3&5=,c-7>9%,cN) &fR,
cNdOx*%,cSy>sR, cSr0z=,B<Y&5/,B<7:b%,Bj)&G1, Bj Ckx*%,BS":s1,BSrk#/,I$Y>9/,

I1$3:b=,Ijy>Gu,IjCtz=,IN":fu, INdt#/. (w,ljjljﬂl) W=(w,1,1,1,w? w),
p=(w,1,1,1,w,w?), w= (w,l,l,w 1), ' =(w?ww,1,1,1), ;=(w,1,1w?w,1),7=(w,1,1,w,1,w?),
e—(w,1,1,ww?1), [=(1,w?w?1,1,1), (=(w,1,w?1,1,w),x=(w? cu,l,uj 1,1),'=(w,1,w? 1,w,1),
X=(w?w,1,1w,1), g=(w?w,1,1,1,w), 2=(1,w? ,w,w,l,l) =(w,1,w?w,1,1),B=(1,w? w,l,w 1),
I-(1,w?w,1,lw), <=(w,1w,1,1,w?), $=(w,1,w,1,w?1),-=(1,w?1,w?1,1),j=(w,1,ww? ,1,1),
N=(1,w? 1,ww,1), s:(m dwlw)v=(1w?1,1,w%1)V=(1,w%1,1,ww),0=(1,w?1,1,1,w?),
):(ww A1), = (w? 1,w,w,1,1),
y=(w,w ,l,lqcu 1), d=(w? ,l,ugljcu 1), r=(w?1,w,1,1w),C (l,oqu w,1,1),Y (u@cu2,],cu,1,1),
3=(lww? 1w1), 7=(1lww?1,1,w), k=(w? 1,1,ww,1), t=(w? ,1,1,w,1,w) —(1w,w,w?1,1),
::(2J4$ww,x4wJﬂJJM),:(2;J$w ,1),0= lwwﬂw J1).n ({LLwJJL
U—(1,w,w,1,1,w?), a=(ww?w,1,1,1), 8=(1,w,1,w?w1), 4=(1,w,1,w% 1 w), F=(1,w,1,ww?1),
i= (ZJM,LLD (1%LwJM%,D(1wJJM W), J (1w4¢ww) (LLLLLw%
z=(1,1,1,1w,1), #=(1,1,1,1,w?w?), e=(1,w,1,1,1,1), b=(1,1,1,w,1,1), 5=(1,1,1,w,w,w?),
9—(1,1,1,w,w? w) (LLLw,Lw2 G=(1,1,1,w?w,w), s=(1,1,1,w? w? 1), Z=(1,1,w,1,1,1),
A=(1,1, w,l,ww ),6 (1,1,w,1,w w)H=(1,1w, w,l,w Hg=(w?w? 1,1,1,1) M=(1,1,w,w,w?1),
E=(1,1,w,w?1,w), K=(1,1,ww?w,1), h=(w,w,w ,1,1,1), =—(w,w,1,1,1,w?), %=(w,w,1,1w? 1),
1=(1,1,w?,1,1,0%) R=(1,1,w? 1 w.w)u=(1,1,w?1,w?1),/=(1,1,w? w?1,1)n=(ww,1w?1,1),
P=(1,1,w?w,1w), T=(1,1,w? ww,1)
34-16 123456,789456 , ABCDEF ,GHIJEF, JCDF93,KLMI86,N0OM256 ,PJ9356,QRSTUJ,
OLIJEG,VWUPMD,XWTMHC,XRSOJS,YKB756,YNA156,VQLGJE 1-(0,1,0,0,0,1),
2—(1,0,0,0,1,0), 3=(1,-1,0,0-1,1), 4=(1,1,0,0-1,-1), 5=(0,0,0,1,0,0), 6=(0,0,1,0,0,0),
7-(1,0,0,0,0,1), 8=(0,1,0,0,1,0), 9=(1-1,0,0,1,-1), A=(1-1,0,0,1,1), B=(-1,1,0,0,1,1),
C—(11.1.1,0.0), D—(0.01-1,00), E—(0,0.0.0.1-1), F—(11-1-1,00), G—(0.1.1.0.0.0).
H—(1-1,1-1,0,0), I=(1,0,0,1,0,0), J=(0,0,0,0,1,1), ::(0,1,0 0,-1,0), L=(1,0,0,-1,0,0),
M=(0,0,0,0,0,1), N=(1,0,0,0-1,0), 0=(0,1,0,0,0,0), P=(1,1,0,0,0,0), Q=(1,1,-1,1,0,0),
R—(1,0,1,0,-1,1), $=(1,0,1,0,1,-1), T=(0,1,0,-1,0,0), U=(-1,1,1,1,0,0), V=(1,-1,1,1,0,0),
W=(0,0,0,0,1,0), X=(1,0,-1,0,0,0), Y=(1,1,0,0,1,-1)
35-16 123456 ,789AB6,CDEFB5,GHIJKA ,LMEFAS5 ,NJK9A4 ,0NIFAB,PQRSD5, TUH823,
ULMGAl,VWSClS,XYQRMS,ZW7893,TOE723,ZYVL15,XP1356. 1=(0,0,0,0,1,-1),
2-(0,0,1,0,0,0), 3=(0,0,0,1,0,0), 4=(1,0,0,0,0,0), 5=(0,0,0,0,1,1), 6=(0,1,0,0,0,0),
7-=(1,0,0,0,-1,0), ::(1,0,0,0,1,0), 9-=(0,0,0,0,0,1), A=(0,0,1,1,0,0), B=(0,0,1,-1,0,0),
c=(1,1-1,-1,0,0), D=(1,1,1,1,0,0), E=(1,-1,0,0,1,-1), F=(1,-1,0,0-1,1), G=(1,-1,0,0,1,1),
H=(1,1,0,0,-1,1), I=(1,0,0,0,0,-1), J=(0,1-1,1,1,0), K=(0,1,1,1,1,0), L—(1,1,1,-1,0,0),
M=(1,1,1,1,0,0), N=(0,1,0,0,-1,0), 0=(1,1,0,0,1,1), P=(1,0,-1,0,0,0), Q=(0,1,0,-1,-1,1)
R=(0,1,0-1,1,-1), S=(1,-1,1-1,0,0), T=(0,1,0,0,0,-1), U=(-1,1,0,0,1,1), V=(1,0,0,1,0,0),
w—(0,1,1,0,0,0), X=(1,0,1,0,0,0), Y=(-1,1,1,1,0,0), Z—(0,1,-1,0,0,0)
37-16 123456 ,789ABC,DEFGC6 ,HIJK56 ,LMNKFG,0PAB46,QRSTUN, VWXUJ5,PLMIES,
ONHI89,YZXTNH,aZWIN2,bYSTNK,baRJ15, JD7126,VQI345. 1=(0,1,1,-1,-1,0)

2-(0,1,1,1,1,0), 3=(1-1,1,0,0,-1), 4=(1,1,-1,0,0,-1), 5=(1,0,0,0,0,1), 6=(0,0,0,1,-1,0),
(1,-1,1,0,0,1), 8=(1,0,-1,1-1,0), 9=(1,0,-1,-1,1,0), A=(0,1,0,1,1,1), B=(0,1,0,-1,-1,1),
(1,1,1,0,0,-1), D=(1,1-1,0,0,1), E=(0,0,1,0,0,1), F=(1,-1,0,1,1,0), G=(-1,1,0,1,1,0),
(0,1,0,0,0,0), I=(0,0,0,1,1,0), J=(1,0,0,0,0-1), Xk=(0,0,1,0,0,0), L=(1,1,0,1,-1,0),

I
C
H
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M=(1,1,0,-1,1,0), N:(O 0,0,0,0,1), 0=(1,0,1,0,0,0), P:(l,-l,-l,0,0,l), Q=(0,1,1,-1,1,0),
R—(0,0,1,1,0,0), $=(0,1,0,0-1,0), T=(1,0,0,0,0,0), U=(0,1,-1,1,1,0), V=(0,1,1,1,-1,0),
W=(0,1,0,-1,0,0), X=(0,0,1,0,1,0), ¥=(0,0,0,1,0,0), 2=(0,0,1,0,-1,0), a=(0,1,-1,1-1,0),
b=(0,1,0,0,1,0)

37-17 123456, 789A56 , BCDE34 , FGE124 , HI JKD3 , LMJKC3 , NOPQME , RSQIE3, TUVWB2,
xwwcn ,SHEA13,ROPBE2, ZaUG9A , baYF9A , NLFGEA , ZT89A6 , bX8245. 1—(1,1,0,0,0,0),

(O 0 O O 0 1) :(070717'1707())7 4:(07070707170)7 5:<17'171717070)7 6:('1717171707())7

7=(1,1,1,1,0,0), 8=(1,1-1,1,0,0), 9=(0,0,0,0,1,-1), A=(0,0,0,0,1,1), B=(1,0,0,0,0,0),
¢—(0,1,0,0,0,1), D—(0,1,0,0,0,-1), E—(0,0,1,1,0,0), F—(1,-1,1-1,0,0), G—(1,-1,-1,1,0,0),
H=(1,-1,0,0,1-1), I=(1,1,0,0,1,1), J=(1,0,1,1,-1,0), K=(-1,0,1,1,1,0), L=(1,1,0,0,1,-1),
M—(1-1,0,0,1,1), N=(1,1,0,0-1,1), 0-(0,1,1-1,1,0), P=(0,1,1,1,1,0),@=(1,0,0,0,0,-1),
R—(0,1,0,0-1,0), S$=(1,-1,0,0,-1,1), T=(0,1,0,-1,0,0), U=(0,1,0,1,0,0), V=(0,0,1,0,-1,0),
W=(0,0,1,0,1,0), X=(1,0,0,-1,0,0), Y=(1,0,0,1,0,0), Z=(1,0,1,0,0,0), a—(1,1,-1,-1,0,0),
b=(0,1,1,0,0,0)
37-18 123456 ,789ABC,DEFGHI , JKLBC6 ,MNOHI5,PQLIBC,RSTUO4,VTUNG4 ,WXSUF4,
XUME34 ,YUQ345,BC1246,7ZKA235, ZY1935 ,abPJ8C,abU7C1,ZVDI9C,WRPLIC.
1-(0,1,0,0,0,0), 2-(1,0,1,0,0,0), 3-(0,0,0,0,1,0), 4-(0,0,0,1,0,0), 5-(0,0,0,0,0,1),

6—(1,0,-1,0,0,0), 7=(1,0,0-1,0,0),
B—(0,0,0,0,1,-1), €=(0,0,0,0,1,1),
G=(1,1,0,0,-1,-1), H=(0,0,1,1,0,0),
L—(1,-1,1,1,0,0),
Q=(
V=(
a=(

)
8=(0,1,-1,0,0,0), 9=(1,1,1,1,0,0), A=(1,-1-1,1,0,0),
D—(1,-1,0,0,-1,1), E=(0,1,0,0,0,1), F=(1,0,0,0,1,0),
1-(0,0,1,-1,0,0), J=(1,1,1,-1,0,0), K=(0,1,0,1,0,0),
)
)
)

M=(1,0,0,0,0,0), N=(0,1,0,0,1,0), 0=(0,1,0,0,-1,0), P=(-1,1,1,1,0,0),
1,1,0,0,0,0), R=(1,1,0,0,1-1), $=(-1,1,0,0,1,1), T=(1,0,0,0,0,1), U=(0,0,1,0,0,0),
1,-1,0,0,1,-1), W:GJDO -1,1), %=(0,1,0,0,0,-1), ¥=(1,-1,0,0,0,0), Z=(1,1-1,-1,0,0),
1,0,0,1,1-1), b=(1,0,0,1-1,1)

38-18 123456, 789ABC , DEFGBC , HIJKG6 , LMNOC5 , POFGAC , QRS946 , SJKF36 , TNSABC,

UVWX02 ,WXPM02,XTR826,YVR234,ZX1156,ZQH7AB,aYUNEC,aLNDC1,bcXE25.
(0717 1 17170) 2:<17070707071>7 3:(17_17070717_1)7 4:(17170707_17_1)7 5:(0717171717())7

6— m04,10m 7=(1,0,0,0,-1,0), 8=(0,1,0,0,0,0), 9=(1,0,0,0,1,0), A=(0,0,0,1,0,0),
B—(0,0,1,0,0,0), €—(0,0,0,0,0,1), D—(0,0,0,1,1,0), E—(0,0,0,1,-1,0), F—(1,1,0,0,0,0),
G=(1,1,0,0,0,0), H=(1,1,0,0,1-1), I=(1,1,0,0,-1,1), :mOJJJJ% K=(0,0,1,1,-1,-1),
L—(0,1,1,1-1,0), M=(0,1,0,-1,0,0), N—(1,0,0,0,0,0), 0-(0,0,1,0,-1,0), P=(0,0,1,0,1,0),
Q=(0,1,0,0,0,1), R=(0,0,1,1,0,0), S:U;LQQJJL T-(0,0,0,0,1,0), U=(0,-1,1,1,1,0),
v=(0,1,1-1,1,0), W=(0,1,0,1,0,0), X=(1,0,0,0,0,-1), Y=(0,1,-1,1,1,0), 2—=(1,-1,0,0,1,1),
a=(0,1,1,0,0,0), b=(0,1,1,-1,-1,0), c=(0,1,-1,0,0,0))

| ASCII strings and coordinatizations of 7- and 8-dim MMP hypergraphs
given in Fig. 20 and Table 9

7-dim
34-14 4567231, 19KHBL8,8WYVJPA,AJPRNSQ,QTU5674,189A5BC, 189DE7F, 189GHIJ,
2MNDOIP,2MNEOCL,2MNGK6F,RTV9567,WXMSS67,XY3U567. 1=(0,0,0,1,0,0,0),

2-(0,0,1,0,0,0,0), 3—(1,-1,0,0,0,0,0), 4—(1,1,0,0,0,0,0), 5-(0,0,0,0,0,0,1), 6=(0,0,0,0,1,1,0
7=(0,0,0,0,1,-1,0),8=(0,1,-1,0,0,0,0), 9=(0,1,1,0,0,0,0), A=(0,0,0,0,1,0,0),B=(1,0,0,0,0,-1,0
¢=(1,0,0,0,0,1,0),0—(1,0,0,0,1,1,-1),E—(-1,0,0,0,1,1,1),F=(1,0,0,0,0,0,1), G=(1,0,0,0,1,-1,-1),
H=(1,0,0,0,1,1,1),1=(1,0,0,0,-1,0,0),3=(0,0,0,0,0,1,-1),K=(1,0,0,0,-1,1,-1),L=(0,0,0,0,1,0,-1),
M—(0,1,0,1,0,0,0),N—(0,1,0,-1,0,0,0),0=(1,0,0,0,1,-1,1), P=(0,0,0,0,0,1,1), Q=(-1,1,1,1,0,0,0),
R—( —( V=
W=(

)

)
),
)
)

(- )
1,1,-1,1,0,0,0),8=(1,0,1,0,0,0,0),T=(1,-1,1,1,0,0,0),U=(0,0,1,-1,0,0,0), V=(1,0,0,-1,0,0,0),
1,-1,-1,1,0,0,0), X=(1,1,-1-1,0,0,0), Y=(1,1,1,1,0,0,0)

Accepted in {Yuantum 2023-03-07, click title to verify. Published under CC-BY 4.0. 61



8-dim

34-9

XYWTOI28,XYVSNH17.1-(0,0,1,1,1,1,0,0),  2=(0,0,1,-1,1,-1,0,0),

=(0,0,1,0,-1,0,0,0), 5=(0,1,0,0,0,0,0,0), 6-—(1,0,0,0,0,0,0,0),
8=(0,0,0,0,0,0,1,0), 9-(0,0,0,1,0,0,0,0), A=(0,0,1,0,0,0,0,0),
¢=(0,0,0,0,1,0,0,0), =(1,-1,1,0,1,0,0,0), E—(1,1,0,1,0,1,0,0),
G=(-1,1,1,0,1,0,0,0), =(0,1,-1,1,0,0,1,0), 1-=(1,0,1,1,0,0,0,-1),
¥=(0,1,0,0,-1,1,-1,0), L=(0,0,1,0,-1,0,1,1), M=(0,0,0,1,0,-1,-1,1),
0-(0,-1,1,0,0,1,0,1), P=(-1,1,0,0,0,0,1,1), Q=(1,0,-1,-1,0,0,0,1),
$=(1,0,0,1,-1,0,-1,0), T=(0,1,0,1,1,0,0,1), U=(1,1,0,0,0,0,1,-1),
w—(1,0,0,0,-1,-1,0,1), X=(1,1,0,-1,0,1,0,0), Y=(1,-1,-1,0,1,0,0,0)
36-9 star

ZTJ5VM9a,aw0CYRG1.1:{OJLOJLOJLO,1L
4—(0,0,0,0,1,0,0,0),  5=(0,0,1,1,0,0,0,0),

=(0,0,0,0,0,0,1,0),
:(070717_]—70707070)a

8—(1,-1,0,0,0,0,0,0), :mgpppp;Ln, —(0,0,1,1,1,-1,0,0),
c=(0,0,1-1,1,1,0,0), D=(0,0,0,1,0,1,0,0), E=(0,0,1,0,-1,0,0,0),
G—(0,0,1,0,0,-1,0,0), H—(1,0,0,0,0,0,0,1), I-(0,0,0,1,0,0,0,0),

K=(0,1,0,0,0,0,-1,0), :m010010m, M=(0,0,1,-1,1,-1,0,0),
0-(0,0,0,1,1,0,0,0), P=(0,0,1,1,-1,-1,0,0), Q=(1,-1,0,0,0,0,1,-1),
5-(0,0,1,0,1,0,0,0), :@Jpoppo1% ~(1,1,0,0,0,0,1,1),
W—(0,0,1,1,-1,1,0,0), X=(1,0,0,0,0,0,0-1), Y=(0,1,0,0,0,0,0,0),
a=(1,0,0,0,0,0,1,0)

36-9 hexagon
TUVWLMDE ,ZaRSHI56,XYPQ9A12.
3=(0,0,1,1,0,0,0,0),  4=(1,1,0,0,0,0,0,0),
7=(0,0,0,0,0,0,1,0), 8=(0,0,0,0,1,0,0,0),
B=(1,-1,0,0,0,0,1,-1), =(0,0,1,-1,-1,1,0,0),
F=(0,0,0,1,0,1,0,0), =(0,1,0,0,0,0,0,-1),
J=(0,0,1,0,0,-1,0,0), *(1000000 1),
N—=(0,0,1,-1,1,1,0,0), 0=(1,-1,0,0,0,0,-1,-1),
R—(
v
z—(

1=(0,0,0,0,0,0,0,1),
5=(0,0,1,-1,0,0,0,0),
9:(1a0707070707'1a0)7

:(1,1,0,0,0,0,1,-1),
:@Jpp@&&p)
P—(0,0,1,0,-1,0,0,0),
T=(0,0,1,-1,1,-1,0,0),
X=(0,0,0,1,0,0,0,0),

1,1,0,0,0,0,-1,1), 8=(0,0,1,1,1,- 100)
*(170705())0)0707 ]-)7
=(0,0,0,0,1,1,0,0)

0,0,1,0,0,1,0,0),
0,0,0,0,0,0,1,1), a

37-11
ZaYULF28 ,ZaXTKE17 ,bJDI9ABC,bWSORIAB.
3=(0,0,0,1,1,0,0,0), 4:@,Lammmmm,

:(070717'1a1707071))
5=(1,1,0,0,0,0,0,0),

7-(0,0,0,0,0,0,1,0),  8=(0,0,0,0,0,1,0,0),  9—(-1,1,1,0,0,0,0,1),
B—(0,0,0,1,0,0,0,0), €=(1,-1,1,0,0,0,0,1), :mogme1 -1),
F—(0,1,0,0,1,0,-1,1), G=(0,1,1,0,-1,-1,0,0), H=(-1,0,1,0,1,0,1,0),
3=(0,0,1,0,0-1,1-1), K=(0,1,0,1,0,-1,0,1), L=(1,0,0,1,0,0,-1,-1),
N—(-1,0,1,1,0,1,0,0), 0-(0,0,1,0,0,0,0,0), P=(1,1,0,-1,1,0,0,0),
R—(0,0,0,0,0,0,0,1), $=(1,-1,0,0,0,1-1,0), T=(0,1,-1,0,1,1,0,0),
v=(0,0,0,1,1-1-1,0), W=(1,-1,0,0,0,-1,1,0), X=(1,0,1,1,0,1,0,0),
Z—(1,1,0,-1-1,0,0,0), a—(1,-1,-1,0,0,0,0,1), b—(1,1,0,0,0,-1,-1,0)
52-13

dTb3Pce9, 12345678 ,KD67AINO,PQRSTUVW, EBogqpfe,CmS8Wcgb.
=(1,-1,-1,0,0,1,0,0), e—(0,0,0,0,0,0,0,1), Q—(1,0,0,1,0,1,0,1),

)
)
)
)
J=(1,-1,0,0,0,0,-1,-1),
)
)
)
)

D—(0,0,1,1,-1,-1,0,0),

9ABC5687,78DE34GF ,FGHILMKJ , JKVWUPA9, 12345678 ,NOPQRMEC, STUQRLDB,

3=(0,0,0,1,0,-1,0,0),
7-=(0,0,0,0,0,0,0,1),

=(0,0,0,0,0,1,0,0),
=(1,1,0,-1,0,-1,0,0),

=(1,0,0,0,1,1,0,1),
N—(1,0,1,0,0,-1,1,0),
R=(0,1,1,-1,0,0,-1,0),
v=(0,1,0,0,1,-1,-1,0),

12345678 ,89ABCDEF ,FGHI4JKL ,L7MNBOPQ, QERSI3TU, UK6VNAWX , XPDYSH2Z,

=(0,0,0,0,0,1,0,0),
=(1,1,0,0,0,0,0,0),
=(0,0,0,0,0,0,1,1),
F=(1,1,0,0,0,0,1,-1),

N=(1,-1,0,0,0,0,-1,1),
~(1,0,0,0,0,0,-1,0),
v=(0,0,0,0,1,1,0,0),

Z—(0,0,1,-1,-1,1,0,0),

34125687 ,78XYVWKJ , JKHILMON , NOPQRSGF ,FGOADECB,BCZaTU43,

2-(0,0,0,0,0,1,0,0),
6=(1,-1,0,0,0,0,0,0),
A—(0,0,1,0,1,0,0,0),
~(1,1,0,0,0,0,1,1),
1-(0,0,1,1,-1,1,0,0),
M=(0,0,0,1,1,0,0,0),
Q=(1,0,0,0,0,0,1,0),
U—(1,-1,0,0,0,0,-1,1),
Y-(0,1,0,0,0,0,0,0),

789A56CB,BCDEFIHG, GHWXYVRP ,PROQ3487,12345678, JKLMNIAC,STUVQRMN,

=(0,0,1,1,-1,0,0,1),
6=(0,0,1,0,0,0,0,-1),
A=(0,0,0,0,1,0,0,0),
:(1,0,0,0,1,—1,0,—1),
1-(1,1,0,0,0,1,1,0),
M=(0,1,1,-1,0,0,-1,0),
Q—(1,1,0,1,-1,0,0,0),
=(1,0,1,0,1,0,1,0),
Y=(0,1,-1,1,0,0,1,0),

9ABCDEFG,GFIKHLMJ, JLMH41aY,YaQONUXZ,ZXRfgVih,hiopklnj, jk1n52md,

:(0717'1717())07071))
:(07170707171707_1)7
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E—(0,0,0,0,0,1,0,0),  q=(0,0,0,0,0,0,1,0), 5=(0,1,1,0,-1,0,1,0),  7=(1,0,1,0,1,0,0,-1),
U—(1,0,1,-1,0,0,1,0),  i=(0,0,0,0,0,1,0,1),  0-(0,0,0,0,1,0,0,0),  A—(1,1,0,0,0,0,1,1),
h—(0,0,1,0,0,0,1,0), £=(0,0,0,1,0,0,0,0), V=(0,1,1,0,-1,0,-1,0), 3=(1,0-1,-1,0,0,1,0),
4—(0-1,0,1,0,1,1,0), T=(0,1,0,1,0,-1,1,0), S=(0,1,-1,-1,0,0,0,1), P=(1,0,0,0,1,-1,-1,0),
b—(0,0,-1,1,1,1,0,0), k—(0,0,1,0,0,0,-1,0), Y=(1,0,-1,0,1,0,0-1), m—(0,1,0,0,1,-1,0,-1),
1=(1,0,0,0,-1,1-1,0), B=(0,0,1,0,0,0,0,0), ¢=(1,1,1,0,0,1,0,0), M=(1,0,0,0-1,-1,1,0),
F—(1,1,0,0,0,0,-1,-1),  J=(1,0,1,0,1,0,0,1), L=(0,1,0-1,0,1,1,0), 2=(0,1,0,0,1,1,0,1),
p—(0,1,0,0,0,0,0,0),  X=(0,1,0,0,1,-1,0,1),  0=(-1,0,0,0,1,1,1,0), n=(0,0,0,0,0,1,0-1),
Ww—(-1,0,1,0,1,0,0,1), 8=(1,0,0,1,0,-1,0,1), N=(0,1,0,-1,0,1-1,0), G=(0,0,0,1,1,0,1-1),
9-(1,-1,0,1-1,0,0,0), 6-(0,1,-1,1,0,0,0-1), 1-(1,0,0,1,0,0,0,0), a=(0,1,1,1,0,0,0-1),
z-=(0,1,-1,0,-1,0,1,0), D=(0,0,0,1,1,0,-1,1), d4-=(0,-1,1,0,1,0,1,0), j=(1,0,0,-1,0,0,0,0),
1-(0,0,1,1,-1,1,0,0), g=(1,0,0,0,0,0,0,0), ¢=(1,-1,0,-1,1,0,0,0)
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