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Active quantum error correction is a central
ingredient to achieve robust quantum proces-
sors. In this paper we investigate the potential
of quantum machine learning for quantum er-
ror correction in a quantum memory. Specif-
ically, we demonstrate how quantum neural
networks, in the form of quantum autoen-
coders, can be trained to learn optimal strate-
gies for active detection and correction of er-
rors, including spatially correlated computa-
tional errors as well as qubit losses. We high-
light that the denoising capabilities of quan-
tum autoencoders are not limited to the pro-
tection of specific states but extend to the
entire logical codespace. We also show that
quantum neural networks can be used to dis-
cover new logical encodings that are optimally
adapted to the underlying noise. Moreover,
we find that, even in the presence of moder-
ate noise in the quantum autoencoders them-
selves, they may still be successfully used to
perform beneficial quantum error correction
and thereby extend the lifetime of a logical
qubit.

1 Introduction
Experimental platforms for quantum information pro-
cessing are unavoidably subject to noise, which can
cause failures during quantum computations. The
operation of reliable large-scale quantum computers
will require active quantum error correction (QEC)
procedures in order to cope with errors that dynami-
cally occur during storage and processing of quantum
information [1–3]. Quantum error correction relies
on redundant encoding of logical quantum informa-
tion, e.g. into specific multi-qubit states or bosonic
modes [3, 4]. Standard qubit-based QEC protocols
require measurements of qubits that are coupled to
the encoded data, followed by real-time feedback op-
erations. Experimental realizations of quantum error
correction have seen great progress and range from
repetition [5–7] and error detection codes [8, 9] to
recent fault-tolerant implementations [10–13]. While
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performing in-sequence measurements and real-time
feedback is experimentally challenging, it has been
achieved in various hardware platforms and applica-
tion contexts [14–17]. Repeated cycles of quantum
error detection and correction are currently studied
extensively with superconducting qubits [9, 18–21].
Experimental demonstrations of QEC that include in-
sequence measurements and real-time feedback have
been achieved in nitrogen-vacancy centers [13, 22], su-
perconducting qubits [23, 24], trapped-ion platforms
[12, 25] and bosonic qubits [26, 27]. The correction of
errors on the encoded data requires suitable feedback
operations based on the obtained measurement re-
sults. This task is known as decoding and is a subject
of ongoing research [3] that includes also the applica-
tion of classical neural networks [28–31]. To avoid the
challenges posed by in-sequence measurements and
feedback, self-correcting quantum memories are inves-
tigated [32] and protocols for autonomous corrections
have been considered. Previous works in the latter
direction include measurement-free QEC [33–35] or
engineered dissipation [36–39], e.g. in bosonic codes
[40–43]. Moreover, quantum machine learning rep-
resents a promising approach towards realizations of
autonomous QEC that we want to follow in this work.
The field of quantum machine learning is rapidly de-
veloping in several directions [44–46] ranging from
variational quantum algorithms such as feedforward
quantum neural networks (QNNs) [47–51] to quantum
associative memories [52–54]. In this work, we focus
on a type of multi-layered feedforward QNNs, called
quantum autoencoders (QAEs), which have been in-
vestigated theoretically for the compression of quan-
tum data [55–59]. Furthermore, QAEs have been
proposed to denoise specific quantum states such as
GHZ- or W-states [60–62]. Compression of quantum
data using QAEs has already been achieved in exper-
iments using single photons [63, 64] or superconduct-
ing qubits [65]. In other works, certain types of quan-
tum neural networks were proposed to find suitable
encodings of quantum information into logical states
that allow for hardware-specific noise to be corrected
[66–68].

In this paper we employ quantum autoencoders to
perform quantum error correction and explore their
utility with a focus on a quantum memory setting. In
contrast to most previous works, we envisage QAEs as
a flexible and powerful tool to denoise generic states
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from a logical codespace instead of stabilizing spe-
cific quantum states, thereby extending the lifetime of
encoded information. Differently from conventional
quantum error correction protocols, QAEs are in-
tended to perform the error correction autonomously,
requiring neither in-sequence measurements nor clas-
sical processing for decoding and feedback. We show
how QAEs can be used to correct computational er-
rors on given logical states and also qubit erasures,
which can be induced by the loss of qubits or leak-
age processes. Additionally, we show that QAEs are
able to adopt correction strategies that are suited op-
timally for the noise, which the QNNs are trained
for. We furthermore set up and analyze QNNs that
can be used to unveil novel logical encodings in an
unsupervised manner and without a-priori knowledge
about the noise structure. The discovered encodings
are optimally suited to protect quantum information
against that specific noise. We propose and show that
these QNNs can be directly transformed into QAEs
ready to perform QEC on the newly discovered states
without the need to conduct further training. Lastly,
we probe the robustness of the networks when these
are constituted by noisy gates. Our results show that
even in the presence of moderate levels of intrinsic
noise, QAEs can be used for beneficial quantum error
correction, to extend the lifetime of a logical qubit.

2 Background on QEC and QNNs
In this section we briefly summarize some basic quan-
tum error correction concepts, which will be useful for
the later benchmark of our QAEs against standard
QEC codes. Moreover, we review a model of multi-
layered feedforward quantum neural networks, known
in the literature under the name dissipative quantum
neural networks [49, 69, 70]. We then set up quantum
autoencoders using this model and discuss how they
can be used for QEC purposes.

2.1 Quantum Error Correction
To protect quantum information from errors it is nec-
essary to encode the information redundantly using
for instance particular entangled multi-qubit states
[2, 71]. For a single encoded qubit, logical states
|ψL〉 = α |0L〉 + β |1L〉 belong to the codespace HL
spanned by two basis states |0L〉 and |1L〉. Many
quantum error-correcting codes are conveniently de-
scribed in the stabilizer formalism, which uses oper-
ators instead of state vector amplitudes to efficiently
describe quantum states [72]. An n-qubit stabilizer
state is defined as the common +1-eigenstate of an
Abelian group containing 2n elements. This stabi-
lizer group is a subgroup of the Pauli group. Without
loss of generality, we focus on n physical qubits encod-
ing a single logical qubit. The 2-dimensional logical

Figure 1: (a) Standard scheme of quantum error correction.
Information is encoded in logical states |ψL〉 that undergo a
noise process N . Potential errors can possibly be detected by
coupling ancilla qubits to the data and measuring the ancil-
las, yielding the error syndrome. Based on the syndrome an
appropriate recovery operation is applied to the data qubits.
(b) A quantum autoencoder being used for QEC. Instead of
performing syndrome measurements and manually applying
recovery operations we employ a QAE to perform the error
correction autonomously. The network realizes a quantum
channel Q. We use the model of dissipative quantum neural
networks to implement the QAE. Nodes in the graph rep-
resent individual qubits while edges represent unitary opera-
tions. The lower right box illustrates how layer-to-layer tran-
sitions are realized in a DQNN. Training the QAE amounts to
learning the parameters of the unitary matrices. We find that
QAEs can be successfully applied to correct computational
errors as well as qubit erasures on logical states.

codespace is defined by a stabilizer group that can be
generated from n− 1 group elements.

Errors occurring on the individual physical qubits
can be detected if they map the state out of the
logical codespace. The correction of errors is con-
ducted in two steps. Measuring all stabilizer gener-
ators first determines for a possibly erroneous state
the 2-dimensional subspace, which is orthogonal to
the original code space. These measurements are per-
formed by coupling ancilla qubits to the data qubits
and measuring the ancillas, as depicted in Fig. 1(a)
[2]. The measurements yield a set of ±1 outcomes
that form the error syndrome. A non-trivial syndrome
indicates the occurrence of errors on the underlying
logical state. In a second step, potential errors must
be removed, mapping the state back to the logical
codespace HL. This is achieved by applying a suit-
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able recovery operation to the data qubits being de-
termined from the error syndrome in the process of
decoding. Different types of noise occurring on logi-
cal states may lead to different decoding strategies in
order to achieve optimal error correction results [3].

2.2 Dissipative Quantum Neural Networks
A class of quantum feedforward neural networks hav-
ing attracted attention in the last years are dissipative
quantum neural networks (DQNNs) [49, 60, 69, 70].
A DQNN can be represented as a graph consisting
of neurons arranged in subsequent coupled layers, as
depicted in Fig. 1(b). A layer k of the network con-
sists of nk neurons that represent individual qubits.
The network as a whole realizes a quantum channel
Q that maps an input state ρin defined on the qubits
of the first layer to an output state ρout = Q(ρin) on
the last layer. Each transition from a layer k − 1 to
a layer k realizes an individual map Ek. The full net-
work channel is the concatenation of all layer-to-layer
maps:

Q(ρin) = Eout (. . . E3 (E2 (ρin)) . . .) . (1)

We regard the input layer as the first network layer,
thus the layer-to-layer maps start at E2. All con-
stituent maps are adjustable via a finite set of pa-
rameters which can be chosen such that the network
implements a map Q∗ which achieves a desired task.
Training a network refers to the process of gradually
adjusting the network parameters to eventually attain
the target map. Thus, DQNNs are set up similarly to
classical feedforward neural networks [73], however,
they implement quantum channels instead of maps
on classical data. The training of a DQNN is re-
alized in a quantum-classical hybrid procedure: the
network is implemented on actual quantum hardware
while the optimization of the network parameters
is performed on classical hardware. For supervised
learning, the training of a feedforward neural net-
work requires training pairs in the form {(ρiin, ρitarg)},
where states ρiin serve as input states for the network
that one wants to be mapped to corresponding target
states ρitarg. To quantify the success of the neural net-
work in achieving this task, a cost function is defined
which assumes its minimal value if the output states
ρiout = Q(ρiin) equal the corresponding target states.
A natural choice for a cost function is the averaged
infidelity between training input and target states,

C = 1− 1
N

N∑
i=1
F(ρiout, ρ

i
targ), (2)

where the fidelity between two quantum states ρ1 and
ρ2 is defined as

F(ρ1, ρ2) =
(

Tr
√√

ρ2ρ1
√
ρ2

)2
. (3)

Figure 2: Quantum circuit that realizes a 3-1-3 QAE utilizing
an architecture that we call self-inverse architecture. Using
this ansatz the decoding channel implementing the transi-
tion from the single-qubit hidden layer to the 3-qubit output
layer is set up from the inverse of the unitary matrix imple-
menting the encoding channel. Compared to independently
trained channels this ansatz leads to a reduction of training
parameters.

The quantum hardware is thus used to map training
input states to output states, which are then mea-
sured to evaluate the cost function. Classical opti-
mization routines, such as widely used gradient de-
scent algorithms, can then be used to find an up-
dated set of network parameters that reduces the cost.
Updating the network parameters and repeating this
cycle eventually leads to a convergence of the cost.
In this work we simulate the DQNNs on a classical
computer. This allows us to apply an efficient train-
ing algorithm similar to a backpropagation algorithm
known from classical machine learning. We sketch it
briefly in Appendix B and refer to Ref. [49] for a
detailed description.

We now describe how the layer-to-layer maps are
realized in DQNNs. The graph representation of
a DQNN can straightforwardly be translated into a
quantum circuit, as indicated in Fig. 1(b). A layer-
to-layer map Ek is implemented as follows. Layer k−1
of the network, consisting of nk−1 neurons, represents
a quantum state ρk−1. This state is supplemented
with new qubits in the state |0〉⊗nk . A unitary ma-
trix Uk is then applied to the qubits of both adjacent
layers. Afterwards, qubits belonging to layer k − 1
are discarded, resulting in a quantum state ρk on the
k-th layer of the network [49]:

ρk = Ek (ρk−1) = Tr
k−1

[
Uk

(
ρk−1 ⊗ |0〉〈0|⊗nk

)
U†k

]
.

(4)
The trace operation conducted in the maps gives rise
to the term dissipative QNNs. The unitary opera-
tors Uk mediating the layer-to-layer transitions are
the trainable quantities in this model. To reduce the
number of training parameters or allow for an easy
execution of the network map on actual hardware one
may choose to set up the unitary matrices in various
ways. Beer et al. [49] suggested to build an operator
Uk from nk individual unitary matrices U jk , each act-
ing on all qubits in layer k − 1 and a single qubit j
in layer k: Uk = Unkk . . . U1

k . This explicit realization
is shown in Fig. 1(b) and we adopt this approach in
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our work. In an experiment it is often more practical
to specify a parameterized ansatz for the unitaries,
consisting of natively executable gates [70], instead of
training completely generic unitary matrices.

2.3 Quantum Autoencoders
Autoencoders (AEs) are technically defined as feed-
forward neural networks that are trained to reproduce
their inputs at the output layer [73]. Typically, they
comprise a hidden layer of width smaller than the
input and output layers, meaning that some informa-
tion must be discarded as the input states are pro-
cessed. Such networks are called undercomplete au-
toencoders. Undercomplete AEs consist of two parts:
a so-called encoder E maps the input to a latent state
of smaller dimension. A decoder1 D then tries to re-
construct the input from the latent state. The full
map Q describing the action of the autoencoder is
thus a concatenation of the encoder and the decoder
map: Q(·) = D(E(·)). Autoencoders can e.g. be used
for data compression [74]. An undercomplete AE that
succeeds to reproduce certain input data at the out-
put layer is able to perform a lossless compression
and reconstruction of the input. The latent states
can thus be considered as compressed data which are
found in an unsupervised manner since no compressed
reference states have to be provided for training. Fur-
thermore, AEs can be employed for denoising of data
[75]. When an AE is trained to map noisy samples of
the training data to noise-free instances, the network
might learn to remove the noise and keep the rele-
vant information while compressing the data. Noise-
free samples can then be reconstructed at the output
layer.

Quantum autoencoders are defined equivalently to
their classical counterparts: In the quantum case, the
input and output states are quantum states and the
network realizes a quantum map. Just as classical
AEs they can be split up into an encoding channel
and a decoding channel, applied one after another.

In this work we employ denoising QAEs in the set-
ting depicted in Fig. 1(b). We consider arbitrary
states |ψL〉 from a predefined codespace HL being af-
fected by noise to serve as input states for a QAE. We
first assume that the network dynamics is noise-free,
while in Sec. 5 we discuss the generalization to noise
occurring during the application of the network. The
ultimate goal is that the QAE discards eventual errors
while keeping the encoded quantum information as
the noisy input states are processed. To achieve this,
we apply a supervised learning scheme using a small
number of logical states

∣∣ψiL〉 from the code space. We

take noisy states N (
∣∣ψiL〉〈ψiL∣∣) as training inputs and

the corresponding noise-free logical states as target

1The term decoding in the context of autoencoders is not to
be confused with the terminology of decoding as it is used in
QEC.

Figure 3: Validation of several 3-1-3 QAEs trained on logi-
cal states of the 3-qubit repetition code subjected to bit flip
noise. To test the performance of a QAE, 104 randomly
drawn logical states are subjected to Pauli X-errors occur-
ring independently on any qubit with probability p. The cor-
responding QAE having been trained on noise strength p is
then used to correct the errors on those states. The plot
shows the averaged fidelity of denoised states w.r.t. the cor-
responding noise-free logical states. We find that the QAEs
(blue circles) perform exactly as well as the standard 3-qubit
repetition code (grey line), 〈F〉 = 1− 2

3pL (see Appendix A).
A closer analysis reveals that the QAEs learn to perfectly cor-
rect single X-errors (red triangles). Here and in the remain-
der of the paper we omit error bars because the statistical
errors are smaller than the symbol sizes. The inset shows a
sketch of the 3-1-3 QAE geometry used in this example.

states for the training. The cost function therefore
reads

C = 1− 1
N

N∑
i=1

〈
ψiL
∣∣ ρiout

∣∣ψiL〉 , (5)

with output states ρiout = Q(N (
∣∣ψiL〉〈ψiL∣∣)).

In general, every layer-to-layer map of a DQNN is
realized by independent unitary matrices that are ad-
justed during the training process. However, the spe-
cial form of a QAE consisting of an encoding and a
decoding channel allows for a simpler ansatz. Inspired
by Ref. [55] we may choose to not train the encoding
and decoding channels independently but set up the
decoder using the inverse matrices from the encoder,
as depicted in Fig. 2. In the remaining part of the pa-
per we will refer to this ansatz as self-inverse architec-
ture. The self-inverse architecture certainly leads to a
reduction of training parameters and comes with ad-
ditional advantages that will be highlighted in Sec. 3.

3 Quantum Error Correction Results
In this section we present numerical results demon-
strating that QAEs can be successfully used to per-
form quantum error correction. In particular, we show
that QAEs can correct both computational errors and
qubit loss (quantum erasures) occurring on logical
states of quantum error-correcting codes.
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(a) (b) (c)

Figure 4: Quantum process tomographies of the maps which a 3-1-3 QAE, trained on bit flip noise of strength p = 0.1,
implements after 20 (a), 50 (b) and 100 (c) training epochs. As the training progresses, the quantum channel realized by the
quantum neural network converges towards a final map which corresponds to the quantum process that realizes the correction
map of the standard 3-qubit code. Details are given in Appendix A.

3.1 Correction of Computational Errors
3.1.1 Correction of bit flips on 3 qubits

The 3-qubit repetition code (3QC) is a quantum error-
correcting code able to correct single bit flip errors [2].
Here, we take the 3QC as an illustrative example to
demonstrate that QAEs can be successfully trained
and applied for QEC. One may choose the logical
codespace to be spanned by the states |0L〉 = |000〉
and |1L〉 = |111〉. This space is stabilized by a group
generated e.g. from the operators Z1Z2 and Z2Z3.
The assignment of logical basis states above fixes the
logical generators of the code to be XL = X1X2X3
and ZL = Z1Z2Z3, up to multiplication by elements of
the stabilizer group [2, 72]. A bit flip error happening
to one of the physical qubits can be detected by mea-
suring the two stabilizer generators. Two bits of infor-
mation allow for four different syndromes to be dis-
tinguished, corresponding to the noise-free case and
the three different single-qubit X-errors. Removing
the respective bit flip corresponds to an appropriate
recovery operation. Bit flips occurring on two qubits
simultaneously, e.g. X1X2, are misinterpreted as sin-
gle bit flip errors on the complementary qubit, X3 for
this example. Therefore, a correction attempt causes
a third bit flip, inducing a logical error XL = X1X2X3
on the state. The presence of bit flip noise can be
modelled via the bit flip channel which for a single
qubit reads

N bit
p (ρ) = (1− p)ρ+ pXρX. (6)

A 3QC state |ψL〉 that is subjected to independent
bit flip noise suffers no error with probability (1 −
p)3, a single bit flip with probability 3p(1 − p)2 and
two or three flips with probabilities 3p2(1 − p) and
p3, respectively [2]. Since single bit flip errors are
correctable on logical states of the 3QC, active error
correction on a noisy state induces a logical bit flip
with probability pL = 3p2(1−p)+p3 and recovers the
noise-free state with prob. 1− pL.

We start our study by training 3-1-3 QAEs,
i.e. quantum neural networks with a 3-qubit input

layer, a single-qubit hidden layer and a 3-qubit output
layer, on logical states of the 3QC. A sketch of such
a network is shown in Fig. 3. For the training pro-
cess we consider the three states |0L〉, |1L〉 and |+L〉
which turn out to be enough training states for the
network to learn to successfully generalize to arbitrary
code states. These states are subjected to bit flip
noise occurring independently on the three physical
qubits with probability p. Concretely, we apply the
corresponding noise channel to the states, meaning
that mixed states N (|ψL〉〈ψL|) are taken as inputs for
the QAEs. As described in Sec. 2.3, the correspond-
ing noise-free logical states are considered as target
states. As a benchmark, Fig. 3 compares the trained
QAEs and the standard 3QC in terms of the correc-
tion performance. Every value of p corresponds to a
different QAE that has been trained on logical states
subjected to noise of this strength. A standard pro-
cedure in machine learning tasks is to test a trained
neural network on data which has not been used for
the training process, called validation. Thus, for ev-
ery trained QAE we randomly draw 104 pure logical
states that uniformly cover the logical Bloch sphere.
These states are subjected to Pauli X-errors occur-
ring independently on every qubit with probability p
to then serve as validation input states for a QAE. In
an actual experiment, a network would be trained and
run on the same platform, likely exposed to the same
error conditions. Hence, at both the training and test-
ing stage we apply noise of equal type and strength.
At the validation stage we want to investigate how the
QAE handles states that suffered no error, a single bit
flip etc. Therefore, we use states Ei |ψL〉 as validation
input states, where the set {Ei} consists of all com-
binations of bit flip errors from which we draw errors
with appropriate probabilities. The averaged fidelity
of denoised test states w.r.t. the corresponding noise-
free test states serves as a measure for the perfor-
mance of the trained QAE. For various noise strengths
we find that the trained quantum networks perform
just as well as the standard 3QC which corrects any
single-qubit X-errors. A closer analysis reveals that
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Figure 5: (a) Validation of several 5-1-5 QAEs trained on
depolarizing noise. To test the performance of a network,
5 × 104 randomly drawn logical states of the 5-qubit code
are subjected to Pauli errors occurring independently on ev-
ery qubit with probability p. The QAE having been trained
on the corresponding noise strength is then used to correct
the errors on those states. The plot shows the averaged fi-
delity of denoised states w.r.t. the noise-free validation states.
We find that the QAEs, indicated by the blue circles, per-
form exactly as well as the standard 5-qubit error correction
code represented by the grey line. A closer analysis reveals
that the QAEs learn to perfectly correct single-qubit Pauli
errors, as can be seen from the red triangles. (b) Valida-
tion of 5-1-5 QAEs trained on bit flip noise. Each network
is tested on 104 randomly drawn logical states subjected to
independent X-errors. We find that the networks perform
as well as a 5-qubit bit flip code, correcting all single- and
two-qubit X-errors. Thus, we see that QAEs adopt differ-
ent error correction strategies depending on the noise that is
present during the training process.

the networks for any p < 0.5 but p 6= 0 indeed learn to
implement a channel that perfectly corrects any sin-
gle bit flip error on arbitrary logical states, indicated
by the red triangles in Fig. 3. Hence, it is sufficient
to train a QAE for one non-zero value of p to learn
a correction strategy that successfully generalizes to
other noise strengths p < 0.5. By performing quan-
tum process tomographies of the maps Q realized by
the fully trained QAEs, we are able to show that the
learned channels are equivalent to the correction map
of the standard 3-qubit code. Figure 4 shows quan-
tum process tomographies of the maps that a 3-1-3
QAE implements at different stages of the training.
After 100 training epochs there are no deviations of
the quantum process from the map realizing the stan-
dard 3-qubit repetition code. Details on the quantum
process tomographies can be found in Appendix A.

We sometimes observe a failure of the training pro-
cess, manifesting itself in a channel Q that maps ar-
bitrary input states to a fixed state such as |000〉.
The training parameters realizing this map seem to
correspond to a saddle point of the cost function,
which is hard to escape using standard gradient de-
scent methods. However, employing the self-inverse
architecture, shown in Fig. 2, which reuses the uni-
tary matrices from the encoding channel for the de-
coding channel we do not observe these failures when

training 3-1-3 QAEs.

Considering QAEs whose latent space consists of a
single qubit, it is clear that the first part of the net-
work must conduct a combined correction and com-
pression of erroneous logical states. The network de-
coder then performs the trivial task of re-encoding a
logical state. Any errors left on the single-qubit inter-
mediate state necessarily lead to logical errors on the
final logical state. However, there exists a gauge free-
dom in the sense that the computational basis of the
single-qubit state on the intermediate network layer
can be arbitrarily rotated. The network encoder can
thus map an input state |ψL〉 to a state R |ψ〉 with R
being an arbitrary single-qubit rotation as long as the
network decoder reconstructs the desired logical state
|ψL〉 from R |ψ〉. In Appendix A we visualize this fea-
ture by means of quantum process tomographies.

3.1.2 Correction of arbitrary computational errors

To be able to correct Pauli X-, Y - and Z-errors occur-
ring on physical qubits in a quantum memory one has
to employ an encoding that uses at least five qubits
[2]. We consider logical states of the 5-qubit error-
correcting code [76] being generated by the stabilizer
elements

g1 = XZZXI

g2 = IXZZX

g3 = XIXZZ

g4 = ZXIXZ.

(7)

Logical states are +1-eigenstates of the operators g1
to g4 and the logical generators of the single encoded
qubit may be chosen as follows:

XL = XXXXX, ZL = ZZZZZ. (8)

The 5-qubit code is the smallest distance-3 code which
means that it can correct an arbitrary Pauli error hap-
pening to one of the physical qubits. It satisfies the
quantum Hamming bound: four stabilizer generators
allow for 24 = 16 different error syndromes to be dis-
tinguished, corresponding to the 15 different single-
qubit Pauli errors and the error-free case [2].

To further investigate the capabilities of quantum
autoencoders to perform QEC we train QAEs with a
5-1-5 geometry and utilize them to correct errors on
logical states of the 5-qubit code. We set up the QAEs
employing the self-inverse architecture introduced in
Sec. 2.3. Thus, the encoding channel is mediated via
a single trainable 6-qubit unitary matrix while the
decoding is realized using the inverse of that matrix.
As training input states we employ the six logical X-,
Y - and Z-eigenstates of the 5-qubit code subjected
to depolarizing noise. The depolarizing channel for a
single qubit reads

N depol
p (ρ) = (1− p)ρ+ p

3(XρX + Y ρY + ZρZ) (9)

Accepted in Quantum 2023-02-19, click title to verify. Published under CC-BY 4.0. 6



which we apply independently to the five physical
qubits. Fig. 5(a) shows a validation of the trained
QAEs. Every value of p corresponds to a different
QAE whose performance is tested by exposing it to
randomly drawn logical states subjected to random
Pauli errors according to independent depolarizing
noise of strength p. For various values of p we find that
the QAEs perform just as well as the standard 5-qubit
error correction code that corrects arbitrary single-
qubit Pauli errors. Analyzing the action of those net-
works on different classes of errors exhibits that QAEs
trained on p 6= 0 in fact implement a channel that
perfectly corrects any single-qubit Pauli error. Pauli
errors of weight two are, however, not correctable.

3.1.3 Adaptability to different types of noise

To investigate whether QAEs can learn different error
correction strategies in the presence of different types
of noise, we consider again QAEs with a 5-1-5 geom-
etry. However, opposed to the previous example, we
now train them on logical states that are subjected to
solely bit flip noise. As can be seen from a validation
of these networks in Fig. 5(b), the QAEs perform just
as well as a five-qubit bit flip code. We find that the
QAEs learn to perfectly correct up to two X-errors
on arbitrary logical states. This illustrates that QAEs
can learn various error correction strategies depend-
ing on the noise suffered by logical states during the
training process.

In experimental quantum information processing
devices, noise can be correlated in space and time
[77, 78]. We want to study whether, in the pres-
ence of spatially correlated bit flip noise, QAEs can
adopt correction strategies that perform better than
the standard approach. To do so, we go back to log-
ical states of the 3-qubit repetition code, subjected
to correlated bit flip noise. We describe the noise by
two parameters: an overall bit flip probability p and
a correlation parameter η [78]. Choosing two qubits
A and B, the correlation parameter is defined as

η = Pr(flip on A|B flipped)
Pr(flip on A|B not flipped) . (10)

For simplicity, for any three qubits A, B and C we
consider

Pr(flip on A|B flipped and C flipped)
= Pr(flip on A|B flipped, C not flipped),

(11)

i.e. the probability for one of them to be flipped is
the same, irrespective of whether one or both of the
other qubits have suffered an error. The case η = 1
corresponds to uncorrelated bit flip noise, whereas
η > 1 describes bunching of errors, meaning that bit
flips tend to occur in pairs. Antibunching is char-
acterized by η < 1. We train 3-1-3 QAEs on logi-
cal states of the 3-qubit repetition code suffering bit

2 3 4 5 6

correlation parameter η

0.70

0.75

0.80

0.85

0.90

〈F〉

standard 3-qubit code
alternative 3-qubit code
denoised states

Figure 6: Validation of several 3-1-3 QAEs trained on logical
states of the 3-qubit repetition code subjected to correlated
bit flip noise with fixed overall bit flip probability p = 0.2 and
varying correlation strength η. For η < 1−p

p
the probability

for a single bit flip error to occur is larger than the probabil-
ity of two bit flips happening on a state and vice versa for
η > 1−p

p
. Thus, for the overall error rate p = 0.2 the opti-

mal error correction strategy is different for η < 4 and η > 4,
denoted as standard / alternative 3-qubit code. QAEs auto-
matically adopt the best possible denoising strategy during
the training process. Each QAE is tested on 104 randomly
drawn validation states.

flips with fixed probability p = 0.2 but with dif-
ferent correlation strengths. We find that networks
trained in the presence of correlations η > 4 imple-
ment a different correction map than networks that
were trained on small correlations. This becomes clear
from Fig. 6, where the performance of several trained
QAEs is compared to the performance of the stan-
dard 3-qubit code and an alternative 3-qubit error
correction strategy. The alternative correction strat-
egy considers flips of two qubits as most likely error
events, therefore correcting those while inducing a log-
ical error for single bit flips. Indeed, if the correlation
strength is increased beyond a certain threshold, it
is advantageous to correct any two errors instead of
single ones. Abbreviating the conditional probability
Pr(flip on A|B flipped) as pc, the turnover point re-
sides at pc = 0.5. From Bayes’ theorem follows that

Pr(flip on A|B not flipped) = p(1−pc)
1−p , so we find the

critical correlation strength to be ηc = 1−p
p . During

the training process, a QAE correctly determines and
implements the correction strategy which yields the
best error correction results.

These findings demonstrate that QAEs can adopt
error correction strategies that are optimally suited
for the type of noise present during training. We saw
this at the example of QAEs adapting to depolarizing
and bit flip noise or QAEs adjusting their correction
strategy in the presence of correlations. In an experi-
ment, a QAE would be trained on the device on which
it is supposed to perform the error correction later
on, thus implementing an optimal denoising strategy
for the specific device. In the canonical scheme of
syndrome-based quantum error correction the differ-
ent strategies which a QAE can embrace correspond
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to different decodings of syndromes into recovery op-
erations.

3.2 Correction of Erasures and Computational
Errors
Besides computational errors, losses and leakage er-
rors pose a threat for successful quantum computa-
tions [79]. Ions or neutral atoms for example might es-
cape the trapping potential in atomic systems [80, 81]
or photons can get lost from a photonic quantum pro-
cessor [82]. Moreover, leakage into states which are
not part of the two-dimensional qubit subspace repre-
sents a risk, e.g. in superconducting [83–85] or atomic
[86] quantum processors. The quantum erasure chan-
nel, which for a single qubit reads

N erasure
p (ρ) = (1− p)ρ+ p |2〉〈2| , (12)

is used frequently to model losses or incoherent leak-
age errors. The positions of possible erasures can be
detected in experiments by performing quantum non-
demolition measurements. These signal the occur-
rence of potential erasures while leaving the quantum
state invariant if no erasures have happened. Such
detection protocols have been proposed or even im-
plemented for various architectures [80, 84, 87]. To
be able to protect a logical qubit from single erasures,
a code consisting of at least four physical qubits is
necessary [79]. Moreover, any complete code of dis-
tance d can be used to correct d−1 erasures or located
errors [79].

Here, we want to use QAEs to correct possible
losses of physical qubits from logical quantum states.
We consider the quantum erasure channel, thus, the
positions of losses are known. Note that we restrict
the investigation to erasures occurring on states be-
fore they enter a DQNN. Since erasures of different
qubits are classically distinguishable, it is possible to
apply a different recovery map for the correction of ev-
ery possible erasure event. In this work we thus use a
separate QAE for every possible loss. Together, these
QAEs form a collection of networks, as depicted in
Fig. 7. The individual QAEs from the collection have

Figure 7: Collection of QAEs used to correct erasures of
qubits. Since the positions of erasures are known, every pos-
sible combination of erasures is corrected by a separate QAE.
States Tr1 (|ψL〉〈ψL|) for example are processed by a QAE
consisting of the channels E1 and D. All the networks from
the collection are trained separately on the respective erro-
neous states.
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Figure 8: Validation of an x-1-5 collection of QAEs trained
to denoise logical states of the 5-qubit code undergoing era-
sures with probability ploss = 0.4 followed by depolarizing
noise occurring independently on every qubit with probabil-
ity pcomp = 0.1. The QAEs learn to correct arbitrary single-
qubit Pauli errors and up to two arbitrary erasures of qubits.
The collection of networks is tested on 5 × 104 randomly
drawn validation states subjected to errors as outlined above.

to be trained separately on the respective erroneous
states. We model erasures by tracing over the corre-
sponding qubits of a logical state, leaving behind a
state that is generally mixed. Networks that are used
to correct single erasures on logical states of a code
consisting of n physical qubits thus implement chan-
nels mapping (n−1)-qubit states to n-qubit states. In
the following we will employ the self-inverse architec-
ture to train the network that processes states which
did not suffer any erasures. The trained decoding
channel D will then be reused for all other networks
of the collection such that they differ only with regard
to the encoding channels Ei, as indicated in Fig. 7.

As a minimal example we train a collection of x-1-
4 QAEs on logical states of the 4-qubit erasure code
being subjected to losses. We find that after suffi-
cient training the networks learn to perfectly correct
any single erasure while failing to correct two or more
losses. In experimental devices for quantum informa-
tion processing, erasures and computational errors oc-
cur side by side. Thus, as a further example we train
a collection of x-1-5 QAEs to correct errors on logical
states of the 5-qubit error-correcting code. The states
suffer independent losses of qubits with probability
ploss = 0.4 followed by depolarizing noise of strength
pcomp = 0.1. Fig. 8 shows the performance of the
x-1-5 QAEs to correct errors on randomly drawn log-
ical states subjected to losses and Pauli errors, with
the same probabilities as for the training process. In
particular, the plot shows denoising results for differ-
ent subsets of errors. We see that the QAEs learn
to correct single Pauli errors as well as any single or
double erasure. This confirms our expectation regard-
ing what is possible to achieve on logical states of the
5-qubit error-correcting code.
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4 Encoding Discovery
In the previous section, we showed that quantum au-
toencoders are able to discover optimal strategies to
correct computational errors and erasures on states
from a predefined logical codespace. However, the
denoising capabilities of QAEs are fundamentally lim-
ited by the logical encoding defined in advance. To
allow for more flexible denoising strategies it would
be desirable to search for entirely new logical en-
codings that are optimally suited to protect quan-
tum information from unknown types of noise. Some
schemes have already been proposed on how quantum
neural networks can be used to achieve this [66–68].
Here, we choose quantum neural networks in the spirit
of overcomplete autoencoders as shown in Fig. 9(a)
to solve this task. The networks are trained to re-
construct the single-qubit input states at the output
layer while noise is present in the interior of the net-
work. In a first step, a trainable channel D maps the
single-qubit input states to unspecified logical states:
ρL = D(|ψ〉〈ψ|). The logical states are subjected
to noise N , corresponding to decoherence while the
states are stored in memory. The subsequent channel
E is trained to map these states back to the original
single-qubit inputs. Thus, the network finds a suitable
logical encoding that allows for errors induced by the
intermediate noise channel to be corrected. Such an
optimal encoding is found in an unsupervised man-
ner. We propose then to rearrange the channels D
and E of a trained network to form an undercomplete
QAE with a single neuron on the central layer, as
sketched in Fig. 9(b). This QAE is ready to perform
QEC on logical states defined by the newly discov-
ered encoding rule given by D, without the need to
perform further training. Exposing states ρL to noise
and feeding those to the new QAE results in corrected
logical states at the output layer.

To investigate whether the proposed QNNs can ac-
tually find suitable logical encodings and correction
strategies we consider the following error model. The
qubits of a state are subjected to spatially correlated
dephasing noise followed by possible erasures. The
collective dephasing arises from coherent Z-rotations
of all qubits in the register, occurring probabilisti-
cally:

N coll.deph.(ρ) =
∫
p(α)U(α)ρU(α)†dα, (13a)

where

U(α) = e−i
α
2

∑
n
Zn (13b)

and the quantity p(α) describes a probability distri-
bution. Collective dephasing of idling qubits is a rel-
evant type of noise in experimental setups of quan-
tum processors. For instance, it occurs in ion-trap
devices because of global fluctuations of the magnetic
field strengths [88]. Collective dephasing noise can

Figure 9: (a) Sketch of a quantum neural network that is
used to unveil novel logical encodings protecting quantum
information from noise N . The network is trained to repro-
duce input states |ψ〉 at the output layer. The intermediate
states D(|ψ〉〈ψ|) = ρL correspond to a logical encoding of
the input information that is learned in an unsupervised man-
ner. Those states are subjected to noise N whereupon the
channel E conducts a combined error correction and compres-
sion of the possibly faulty logical states. A good retrieval of
the original single-qubit states will be possible if the network
finds a logical encoding ρL = |ψL〉〈ψL| that is well suited to
deal with the present noise. (b) Interchanging the encoder
and the decoder of the network in (a) gives rise to an under-
complete QAE that can be used to perform quantum error
correction on erroneous logical states N (ρL).

have detrimental effects on stored quantum informa-
tion such as enhanced decoherence of entangled multi-
qubit states [88–90]. However, quantum information
can be perfectly protected from collective dephasing
noise by encoding logical states in a decoherence-free
subspace (DFS) [91–93].

Here, we train a collection of 1-4-1 QNNs, based on
the sketch in Fig. 9(a), and expose the 4-qubit states
in the center of the quantum networks to collective
dephasing noise according to Eq. (13), where p(α) is
chosen to be a centered Gaussian with unit variance.
Moreover, erasures of single qubits may occur on the
intermediate states, triggering one of the channels Ei,
i = 0, . . . , 4 from the collection to perform the com-
bined compression and correction of faulty states. We
employ the self-inverse architecture, meaning that the
dissipative channel E0 embeds the inverse of the 5-
qubit unitary matrix realizing the map D. We find
that the collection of quantum networks learns to en-
code logical states in a DFS. Moreover, the encoding
allows for single erasures of qubits to be corrected.
Logical states are thus perfectly protected from col-
lective dephasing and partially protected from losses
of qubits. In Appendix D we show the precise form of
the discovered logical states and discuss the numerical
results in more detail.
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5 Robustness Against Internal Noise

So far, we have assumed that noise only acts on incom-
ing qubits while the DQNNs themselves operate per-
fectly. This is, however, an idealization. In general,
the application of gates as well as idling of qubits dur-
ing a computation will introduce errors on the quan-
tum states operated. In this work we focus on a quan-
tum memory setting, i.e. stored quantum information
to be protected from noise. One goal is to extend
the lifetime of a logical qubit beyond the lifetime of a
bare physical qubit. Reaching this “break-even” point
is a present-day challenge. Using QEC to extend the
lifetime of an encoded qubit has been demonstrated
experimentally with bosonic codes [26, 27]. In other
works, active quantum error correction was shown
to be advantageous in some specific noise parameter
regimes [7].

To assess whether we can use an intrinsically noisy
QAE to extend the lifetime of an encoded qubit, we
employ a measure proposed and discussed in Ref. [94],
as sketched in Fig. 10. The goal is to protect quan-
tum information from environmental decoherence for
a time interval τ . To do so, one can either use a quan-
tum state |ψ〉 on a bare physical qubit or decide to en-
code the information into a logical multi-qubit state
|ψL〉. In any case, all physical qubits are subjected to
noise while being stored in memory. Now, the ques-
tion arises whether it is beneficial to apply a round
of imperfect quantum error correction to the encoded
state after, say, half of the memory time, to correct er-
rors that have accumulated thus far. It is not surpris-
ing that a very noisy QEC device rather deteriorates
the encoded state than improving it. A “good” QEC
device, however, can actually yield an advantage, as
compared to doing nothing. To assess the usefulness
of a noisy QEC device we therefore compare three sce-
narios. One starts either with a single-qubit quantum
state |ψ〉 or an encoded logical state |ψL〉. All qubits
are subjected to noise Npi caused by environmental
decoherence while being stored in memory for a time
τ/2. Now, one can apply a round of imperfect QEC
to the encoded state, assuming, for simplicity, that
the application of the QEC cycle happens on a much
shorter timescale than the idling time τ . Afterwards,
the states are left in memory for a further time τ/2,
again inducing noise Npi . Finally, we project encoded
logical states back to the codespace by performing a
round of perfect QEC. We note that this last step is
not part of an actual experimental protocol but rather
serves as a tool for the quantitative assessment of the
state’s quality. The probability P of successful state
discrimination is then given by the fidelity of a final
state w.r.t. the corresponding noise-free initial state.
We take this quantity as a measure for the quality of
the quantum memory. Comparing the values of P for
the different scenarios in Fig. 10 informs us whether
the application of the intrinsically noisy QEC device

Figure 10: Scheme to evaluate the efficacy of QEC with a
QAE in a quantum memory. A quantum state, either an
encoded logical state |ψL〉 (a,b) or a single-qubit state |ψ〉
stored in a bare physical qubit (c), is stored in memory for
a time τ/2 such that noise Npi acts on all physical qubits.
We may now choose to perform a round of imperfect QEC
(a), or to not apply it (b). Here, we assume, for simplicity,
that the QEC round happens on a much shorter timescale
than τ . The qubits then idle for another time τ/2 which
introduces noise Npi . Finally, logical states are projected
back to the codespace by a round of perfect QEC, which
provides a tool to assess the state quality. The fidelity of the
output w.r.t. the initial state determines the probability P of
successful state discrimination and serves as a measure for
the quality of the quantum memory.

can be beneficial.

To investigate whether noisy QAEs introduced in
this paper can prove beneficial for quantum error cor-
rection, we analyze a minimal example, which is an
intrinsically noisy 3-1-3 QAE to correct bit flip errors.
We note, however, that the analysis we perform for
this example could also be applied to larger codes and
therefore other types of network structures and noise.
In this work we do not focus on a specific physical
platform and therefore consider a platform-agnostic
noise model. In particular, we apply a multi-qubit
depolarizing channel after every application of a uni-
tary matrix. In this channel, any-weight Pauli errors
occur with equal probabilities pn/(4m−1), where m is
the number of qubits that the noise channel acts upon.
Here we consider a 3-1-3 DQNN with standard archi-
tecture consisting of four independent unitary matri-
ces, i.e. we do not use the self-inverse ansatz. A corre-
sponding quantum circuit representation can be found
in Appendix E. The internal noise thus acts at four
positions in the circuit. We model the environmental
decoherence in the quantum memory as bit flip errors
occurring independently on every qubit with probabil-
ity pi. For various pairs of noise strengths (pi, pn) we
perform numerical simulations according to Fig. 10 to
analyze how well the intrinsically noisy QAE corrects
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Figure 11: Comparison of the three different quantum mem-
ory settings shown in Fig. 10. A bare physical qubit (solid
black line), an encoded but uncorrected logical qubit (dashed
orange line) and a corrected logical qubit (dotted blue line
and data points) are compared. As incoming noise we con-
sider independent bit flips occurring with probability pi on ev-
ery qubit. We use logical states of the three-qubit repetition
code and apply a 3-1-3 QAE for QEC. The QAE is intrinsi-
cally noisy with the strength of the network noise quantified
by pn. Encoding quantum information in logical states and
performing active QEC is advantageous if the probability of
successful state discrimination P of denoised states is larger
than for single-qubit and uncorrected logical states. A fea-
ture of the three-qubit code is that the quality of the latter
two saturates at 〈P〉 = 2/3 for pi = 0.5, indicated by the
horizontal dashed line. For a perfect QAE, applying active
QEC is beneficial for pi < 0.5. For an increasingly noisy
QAE, the range of incoming noise strengths for which it is
beneficial to apply QEC is reduced. The numerical data is
obtained by averaging over 104 randomly drawn logical states
for each data point.

bit flip errors on the logical states. Fig. 11 compares
the quality of the three quantum memory settings in-
troduced in Fig. 10 for various different network noise
strengths pn and incoming noise strengths pi. We av-
erage the probability of successful state discrimination
over a large number of different input states. First,
we note that for bit flip probabilities pi < 0.5 the
uncorrected encoded qubit performs better than the
bare physical qubit. This is a known property of the
repetition code, resulting from the correctability of all
single-qubit errors in the final perfect round of QEC.
For a noise-free QAE, pn = 0, the error correction is
advantageous for incoming noise strengths in exactly
that range. Small values of pn reduce the interval of
incoming noise strengths for which performing QEC
is still beneficial. Above a certain threshold of pn, the
quality of an actively corrected logical qubit drops be-

low the quality of an uncorrected encoded qubit. If
we increase pn even further, the scheme involving the
noisy QAE is eventually outperformed by a bare phys-
ical qubit. In Appendix E we derive an approximate
expression for the quality of denoised logical states as
a function of pi and pn. We find that it scales linearly
with pn, highlighting that the design of the QAE is
not fault-tolerant. This is, however, not surprising,
since errors on the single bottleneck qubit inevitably
result in logical errors on the final state. Perform-
ing an extensive analysis for various pairs of noise
strengths (pi, pn) we obtain a phase diagram, depicted
in Fig. 12, that indicates three regimes: one where the
application of a noisy QAE for quantum error correc-
tion is advantageous compared to both a bare physical
qubit and an encoded but uncorrected logical qubit;
a regime where the quality of the actively corrected
qubit lies between the latter two; and a third regime
where the actively corrected qubit is outperformed by
the other two approaches. We see that noisy QAEs
can be successfully used for QEC as long as the in-
ternal noise of the quantum network stays below a
certain pi-dependent threshold. To obtain an approx-
imate form of the phase boundaries we expand the
output states of the noisy 3-1-3 QAE up to linear or-
der in pn. The calculation is sketched in Appendix E.
For small values of pn we observe excellent agreement
of the analytical phase boundaries with the numeri-
cal results. For encoded logical states in the quan-
tum memory, the final round of perfect QEC removes
any single bit flip errors, such that the logical error
rate and thus also the probability of successful state
discrimination are quadratic in pi. Therefore, also
the boundary separating the blue-colored and orange-
colored regions in Fig. 12 shows a quadratic behavior
for small values of pi. In contrast to this finding, the
boundary which separates the orange-colored and the
grey-colored regions is linear for small pi. This results
from the fact that the probability of successful state
discrimination for a single-qubit state is linear in pi.
Typically, we are interested in the regime of small,
though not too small incoming noise and small net-
work noise strengths. In that case the phase boundary
separating the blue and the orange phase can be very
well approximated as pcrit., logical

n = 765
351p

2
i , as derived

in Appendix E. For the investigated QAE consisting
of four unitary matrices the probability for a single
error to occur during the application of the network
is in leading order p1 err. ≈ 4pn. This means that for
p1 err. . 4 · 765

351p
2
i = 3060

351 p
2
i it is for this network struc-

ture advantageous to apply a QAE for error correction
in the quantum memory.

6 Discussion and Outlook
In this paper we showed that quantum neural net-
works in the form of quantum autoencoders can be
used to perform quantum error correction. QAEs are
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able to correct errors on arbitrary states from a pre-
defined logical codespace such that the lifetime of en-
coded logical qubits can be enhanced. In particular,
if a logical encoding allows for various error correc-
tion strategies to be applied, a QAE can learn the
strategy yielding the best possible denoising results.
As an example we demonstrated that QAEs are able
to adapt to spatially correlated bit flip noise. More-
over, we showed for the first time that the error cor-
rection abilities of QAEs are not limited to compu-
tational errors but extend also to the correction of
qubit erasures. Other types of QNNs designed in the
spirit of overcomplete quantum autoencoders can be
used to find novel logical encodings being optimally
suited to correct hardware-specific noise. We pro-
posed and showed that these networks can be directly
transformed into undercomplete QAEs ready to per-
form QEC on the discovered logical states without the
need to perform further training. Lastly, even QAEs
that are intrinsically noisy can be used successfully
for QEC in a quantum memory if the internal noise
of the quantum neural network is sufficiently low.

However, we note that we encountered difficulties
in the training of DQNNs for QEC. We observe that
especially the training of encoding finder networks, as
discussed in Sec. 4, frequently converges towards solu-
tions yielding non-optimal error correction strategies.
These observations indicate the existence of saddle
points or local minima in the cost function landscape.
At the beginning of the training process, the unitary
matrices composing a DQNN are initialized randomly,
so convergence towards those non-optimal points is
hard to avoid using standard gradient descent meth-
ods. To obtain a quantum network that is able to
optimally correct errors, we thus have to perform a
repeated random initialization of the training param-
eters followed by a gradient descent algorithm. These
findings are, however, not unexpected since the oc-
currence of barren plateaus, where cost function gra-
dients vanish exponentially in the number of qubits
[95], is frequently observed for variational quantum
algorithms. These training issues therefore impede a
straightforward scaling to substantially larger quan-
tum neural networks, where we expect the training
difficulties to become more prominent for increasing
depth and width of the networks. In fact, it has re-
cently been shown explicitly that also DQNNs are af-
fected by barren plateaus [69]. Ongoing research on
the trainability of QNNs involves e.g. the investigation
of different cost functions such that the occurrence of
barren plateaus can be avoided [96]. Moreover, it is a
challenge to find suitable variational ansätze that are
sufficiently expressive while avoiding the occurrence
of barren plateaus [97]. Eventually, one aims at find-
ing hardware-specific ansätze with a reduced number
of parameters that allow for an easy application of
a QNN on available quantum hardware and do not
suffer from serious trainability problems.

> >

> >

> >

Figure 12: Phase diagram indicating the benefit of a QAE
for QEC. It shows for which values of incoming bit flip noise
strengths pi and network noise strengths pn a 3-1-3 QAE is
beneficial for active QEC in a quantum memory. The range
of noise strengths in which the QAE-corrected memory is
superior to both a bare physical qubit and an encoded but
uncorrected qubit is shown as the lower blue region. The
orange-colored intermediate region corresponds to the ac-
tively corrected qubit performing better than a bare qubit
but worse than the uncorrected logical qubit. In the grey-
colored upper region, applying the QAE for QEC is inferior
to both other cases. Each data point is obtained by ran-
domly drawing 104 logical states, exposing them to a bit flip
channel and processing these states Npi(|ψL〉〈ψL|) with the
noisy QAE. Then, another round of noise Npi and a per-
fect round of QEC are applied. We compare the probability
of successful state discrimination to that of a physical qubit
and an uncorrected encoded qubit. The phase boundaries
are in some parts pixelated due to finite sampling statistics.
The lines correspond to phase boundaries predicted from an
analytical expansion to first order in pn (see Appendix E). For
small values of pn the analytical boundaries match the ac-
tual boundaries very well, whereas small deviations for larger
values of pn are expected.

In summary, our work shows that QAEs could serve
as a versatile tool for autonomous quantum error cor-
rection of a wide variety of error sources and charac-
teristics in a quantum memory. The QAE framework
is especially attractive for experimental setups where
in-sequence measurements with real-time feedback as
required for the conventional QEC approach are not
readily available or inefficient. Thus, a comparison of
quantum autoencoders with other autonomous QEC
proposals would be interesting. Furthermore, possible
future work could include the investigation of fault-
tolerant designs of QAEs for quantum error correc-
tion to extend their applicability beyond the quantum
memory setting. In this context, one could also imag-
ine logical qubits corrected by QAEs being used as
low-level autonomously running units that are trained
to deal with the dominant error sources of a given ar-
chitecture. Those could then form building blocks of
more complex established QEC codes, in analogy to
concatenating basic few-qubit codes with more ad-
vanced codes [98] or using bosonic codes as building
blocks for scalable QEC schemes [4].
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A Quantum Process Tomography
In this appendix we study some of the quantum autoencoders discussed in the main text in more detail by
analyzing the maps which they implement using quantum process tomographies. The error correction map of
the standard 3-qubit bit flip code is given by

R(·) =
∑
b

Mb · M†b , (14a)

with Kraus operators

M00 = |000〉〈000|+ |111〉〈111|
M01 = |000〉〈001|+ |111〉〈110|
M10 = |000〉〈100|+ |111〉〈011|
M11 = |000〉〈010|+ |111〉〈101| .

(14b)

In Sec. 3 of the main text we demonstrate that our fully trained 3-1-3 QAEs correct bit flip errors on 3QC
logical states as well as the standard 3QC does. To prove the assumption that the QAEs implement the map
stated in Eq. (14), we perform quantum process tomographies of the channels realized by the networks. Given
an operator basis {Ei}, a quantum channel Q can be written as

Q(·) =
∑
i,j

χijEi · E†j , (15)

where the complex Hermitian matrix χ uniquely characterizes the quantum channel Q w.r.t. the basis {Ei} [2].
Figure 4(c) in the main text shows the process matrix χ of a fully trained 3-1-3 QAE which is equal to the
process matrix of the map in Eq. (14). Analyzing the trained QAEs shown in Fig. 3 in the main text, we find
that all process matrices apart from the one corresponding to the network trained on p = 0 equal the matrix
in Fig. 4(c). This demonstrates that QAEs which are trained on noisy states learn to implement the correction
channel of the 3-qubit bit flip code, even though the number of different training states is very limited.

The analytical curve describing the performance of the standard 3-qubit code in Fig. 3 can be obtained as
follows. As stated in the main text, a logical 3QC state |ψL〉 undergoing independent bit flip noise of strength
p and being actively corrected afterwards suffers a logical error with probability pL = 3p2(1 − p) + p3 and no
error with probability 1− pL, thus resulting in a state

ρdenoised = (1− pL) |ψL〉〈ψL|+ pLXL |ψL〉〈ψL|XL. (16)
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(a)

(c)

(b)

(d)

Figure 13: (a) Quantum process tomography of the quantum channel described by the Kraus operators in Eq. (18) which
simultaneously corrects single bit flips on logical states of the 3QC and compresses them to single-qubit states. (b) Process
matrix of the channel with Kraus operator in Eq. (19) which reconstructs logical states of the 3QC. (c) Process matrix of the
3-1 encoding channel of a trained QAE. (d) Quantum process tomography of the 1-3 decoding channel of a trained QAE.
Performing the maps in (c) and (d) successively results in the same map that is obtained when the channels in (a) and (b)
are applied one after another.

For pure states |ψL〉 = cos(θ/2) |0L〉+ eiφ sin(θ/2) |1L〉, the averaged fidelity of denoised states w.r.t. the noise-
free target states therefore reads

〈F〉 =
∫∫ dθ dφ

4π sin(θ) 〈ψL| ρdenoised |ψL〉 = 1− 2
3pL. (17)

Another point which we discuss in the main text is that the encoding channel of a 3-1-3 QAE conducts the
combined compression and correction of erroneous input states while the decoding channel performs a trivial
reconstruction of logical states. The single-qubit intermediate state can, however, be arbitrarily rotated against
the logical input/output state. This can be seen from quantum process tomographies of the individual encoding
and decoding channels for various trained 3-1-3 QAEs. Fig. 13(a) shows the process matrix of a handmade
encoding channel described by the Kraus operators

M00 = |0〉〈000|+ |1〉〈111|
M01 = |0〉〈001|+ |1〉〈110|
M10 = |0〉〈100|+ |1〉〈011|
M11 = |0〉〈010|+ |1〉〈101| .

(18)

The quantum process tomography of the corresponding decoding channel, characterized by a single Kraus
operator

M0 = |000〉〈0|+ |111〉〈1| , (19)
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Figure 14: Quantum circuit realizing a 3-1-3 QAE with self-inverse architecture. The inverse of the matrix U1
2 which occurs

in the encoding channel is employed in the decoding channel. Since the three qubits belonging to the output layer are added
after the intermediate qubit, a set of swap gates is required to permute the qubit indices.

is shown in Fig. 13(b). For an exemplary 3-1-3 QAE trained to implement the 3QC error correction map,
Figs. 13(c) and (d) show process matrices of the respective encoding and decoding channels. The concatenation
of the two maps yields the channel given by Eq. (14). Compared to the handmade channels we see, however,
that the single-qubit intermediate state is rotated against the logical input and output state.

B Training QAEs with Self-inverse Architecture
Beer et al. [49] describe how DQNNs can be trained efficiently in numerical simulations. At time step s the
gradient descent step is performed by updating all unitary matrices in the network according to the rule

U jkk (s+ ε) = eiεK
jk
k

(s)U jkk (s), (20)

where the update matrices Kjk
k are chosen such that the cost function

C(s) = 1− 1
N

N∑
i=1

〈
φitarg

∣∣ ρiout(s)
∣∣φitarg

〉
(21)

is reduced as fast as possible. A careful analysis yields a simple rule to calculate the update matrices Kjk
k ,

resembling a backpropagation algorithm. The training input states ρiin are propagated forward through the
network while the corresponding target states

∣∣φitarg
〉

are propagated backwards. Commutators between the
density matrices of the forward- and backpropagted states yield the quantities

M jk
k (s, i) =

[
U jkk (s) . . . U1

2 (s)
(
ρiin ⊗ |0 . . . 0〉〈0 . . . 0|in,hidden

)(
U1

2 (s)
)†
. . .
(
U jkk (s)

)†
,(

U jk+1
k (s)

)†
. . .
(
U
jmax
out

out (s)
)†(

1in,hidden ⊗
∣∣φitarg

〉〈
φitarg

∣∣ )U jmax
out

out (s) . . . U jk+1
k (s)

]
,

(22)

which are involved in the calculation of the update matrices:

Kjk
k (s) = i

dim(U jkk )
2N

N∑
i=1

Tr
qubits

not in U
jk
k

[
M jk
k (s, i)

]
. (23)

For a detailed description the reader is referred to Ref. [49].
However, for QAEs with self-inverse architecture used in this paper the training algorithm requires some

modifications which we describe in the following. These adjustments arise from the fact that the same unitary
matrices occur at several positions in the network. For a numerical implementation it is convenient to always
introduce new qubits of succeeding layers at the tail end of the latest state. Therefore, the unitary matrices
used for the decoding channel are not just the inverses of the previously used matrices but they come with a
set of swap gates, as depicted in Fig. 14. However, these gates only perform a permutation of qubit indices, so
they do not have to be applied physically in the network. In a QAE with self-inverse architecture, a unitary
matrix U jkk appearing in the encoding channel occurs in the decoder as the j̄k-th matrix realizing the transition

to layer k̄. Abbreviating the necessary swap gates as Sjkk yields

U j̄k
k̄

= Sjkk
(
U jkk

)†(
Sjkk
)†
. (24)
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We consider QAEs where the unitaries of the encoder act on all qubits of the preceding layer and a single qubit
in the succeeding layer. For a QAE consisting of L layers (including the input layer), one finds k̄ = L + 2 − k
and j̄k = nk + 1− jk, where nk is the width of the k-th layer. Identical matrices occurring at several positions
within the DQNN require the training update rules to be modified. The goal is to find update matrices Kjk

k

such that the unitary matrices from the encoder are again updated according to the rule

U jkk (s+ ε) = eiεK
jk
k

(s) U jkk (s). (25)

The updates of the unitary matrices assembling the decoder, however, follow from the updated encoding ma-
trices:

U j̄k
k̄

(s+ ε) = Sjkk

(
U jkk (s+ ε)

)† (
Sjkk
)†

= Sjkk

((
U jkk (s)

)†
e−iεK

jk
k

(s)
) (
Sjkk
)†

=
(
Sjkk
(
U jkk (s)

)†
e−iεK

jk
k

(s) U jkk (s)
(
Sjkk
)†)

U j̄k
k̄

(s).

(26)

We now derive how the update matrices Kjk
k are calculated such that the cost function C is reduced as quickly

as possible. An expression for dC/ds can be obtained:

dC(s)
ds = −i

N

N∑
i=1

Tr
[
M1

2 (s, i)K1
2 (s) + . . .+M jmax

(L+1)/2(s, i)Kjmax

(L+1)/2(s)

+M1
(L+3)/2(s, i)J1

(L+3)/2(s) + . . .+M jmax

out (s, i)Jj
max

out (s)
]
.

(27)

Here, M jk
k is defined in Eq. (22) and the quantities J j̄k

k̄
are given by

J j̄k
k̄

= −Sjkk
(
U jkk

)†
Kjk
k U jkk

(
Sjkk
)†
. (28)

A matrix Kjk
k thus occurs twice in the expression for dC/ds. Minimizing it therefore yields additional terms in

the expressions for Kjk
k :

Kjk
k (s) = i

dim(U jkk )
2N

N∑
i=1

Tr
qubits

not in U
jk
k

[
M jk
k (s, i)

]
− Tr

qubits
not in U

j̄k
k̄

[
U jkk (s)

(
Sjkk
)†
M j̄k
k̄

(s, i)Sjkk
(
U jkk (s)

)†]
. (29)

An update matrix Kjk
k can therefore still be obtained by forward- and backpropagation of the training states.

However, since the corresponding unitary matrix U jkk occurs at two positions in the network, it is necessary to
propagate the training states to both places, for calculating the respective commutators between forward- and
backpropagated states and constructing the update matrix for that specific unitary.

C Training Specifications
Here we give details on the training of the DQNNs discussed in the main text. All networks were trained
numerically using the training algorithm described in Appendix B. A good overview of gradient descent variants
for the training of classical neural networks can be found in a review by Ruder [99]. The set of states being used
for the training of a DQNN is called training batch. We divide the batch into minibatches of size Sminibatch and
perform a gradient descent step after states from one minibatch were exposed to the network. Presenting all
minibatches to the network is called a training epoch. After a training epoch we shuffle all states in the batch,
create new minibatches and continue the training for a total number of Nepochs training epochs. The gradient
descent algorithm uses a learning rate ε. Moreover, we use the Nadam gradient descent optimizer with memory
coefficients β1 = 0.9 and β2 = 0.999 to achieve better training convergence [60, 99]. Table 1 summarizes the
hyperparameters that were used for the training of the QAEs discussed in the paper.

ε Nepochs Sminibatch training batch
Fig. 3 0.1 200 3 |0L〉 , |1L〉 , |+L〉
Fig. 5 0.2 200 2 |0L〉 , |1L〉 , |+L〉 , |−L〉 , |+′L〉 , |−′L〉
Fig. 6 0.1 200 3 |0L〉 , |1L〉 , |+L〉 , |−L〉 , |+′L〉 , |−′L〉
Fig. 8 0.1 200 3 |0L〉 , |1L〉 , |+L〉 , |−L〉 , |+′L〉 , |−′L〉 (50 each)

Table 1: Summary of training hyperparameters.
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Note that the training batch lists the noise-free training states. These states undergo noise as described in the
main text before serving as inputs for the QAEs. Computational errors are applied by subjecting the training
states to the corresponding noise channel, thus only one copy of each training state is contained in the batch.
Erasures, however, are applied probabilistically. To achieve good statistics we therefore include several copies
of each state in the batch when training a collection of QAEs to correct losses of qubits.

D Discovered Encodings
As described in Sec. 4 of the main text, certain types of DQNNs can be used to discover logical encodings that
optimally protect quantum information from specific kinds of noise. As an example we trained a collection of
1-4-1 DQNNs to find a logical encoding that perfectly protects states from collective desphasing and furthermore
allows for single erasures of qubits to be corrected. For the training we use a learning rate ε = 0.1 and a batch
containing 50 of each of the states {|0〉 , |1〉 , |+〉 , |−〉 , |+′〉 , |−′〉 }. Minibatches contain 100 states and we train
for a total number of 150 epochs. The logical codespace discovered by the network is spanned by the states

|0L〉 = (0.50 + 0.00i) |0011〉+ (0.28 + 0.25i) |0101〉 − (0.29 + 0.12i) |0110〉
+ (0.33 + 0.15i) |1001〉 − (0.30 + 0.25i) |1010〉 − (0.31− 0.36i) |1100〉 ,

|1L〉 = (0.15 + 0.46i) |0011〉+ (0.07− 0.45i) |0101〉 − (0.14− 0.23i) |0110〉
+ (0.10− 0.23i) |1001〉 − (0.05− 0.41i) |1010〉 − (0.48 + 0.15i) |1100〉 .

(30)

Note that the vector amplitudes shown here are rounded and components whose squared modulus is smaller
than 10−3 are omitted. One can clearly see that quantum information is encoded in a DFS. Logical states
|ψL〉 = α |0L〉+β |1L〉 are not altered by the application of a unitary e−i

α
2 (Z1+Z2+Z3+Z4) since all computational

basis states involved in the logical basis are eigenstates of the “total magnetization” Z1 + Z2 + Z3 + Z4 with
eigenvalue zero. Testing the collection of QAEs that results from the trained networks to correct erasures
on randomly drawn logical states |ψL〉 we find averaged fidelities between denoised states and corresponding
target states that are shown in the first line of Table 2. The data indicates that erasures of qubits can be
corrected very well. Given a state |ψL〉, one therefore expects that the marginal state on any single qubit,
ρi = Tr{code qubits}\i(|ψL〉〈ψL|), is maximally mixed and thus the loss of a single qubit does not erase the
encoded quantum information. In the second line of Table 2 we show averaged fidelities of those marginal states
w.r.t. the maximally mixed state. The fact that they are not exactly equal to one indicates a slight dependence
of a marginal state on the coefficients α and β of the original logical state.

no losses qubit 1 lost qubit 2 lost qubit 3 lost qubit 4 lost
〈F〉 1.0000 0.9997 0.9990 0.9997 0.9995

〈F(ρi,1/2)〉 − 0.9999 0.9995 0.9998 0.9997

Table 2: The first line shows how well a collection of x-1-4 QAEs resulting from trained encoding finder networks can denoise
random logical states that suffered collective dephasing and qubit erasures. Each network from the collection is tested on
2000 validation states subjected to collective dephasing of strength σ = 1 and a corresponding loss. The second line shows
the potential of the logical encoding to correct single erasure events. This is determined from the averaged fidelity of marginal
states on a single qubit, ρi = Tr{code qubits}\i(|ψL〉〈ψL|), w.r.t. the maximally mixed state 1/2.

E Analytical Approach for Noisy QAEs
In Sec. 5 of the main text we investigate the quality of a quantum memory that uses an intrinsically noisy
QAE for active quantum error correction. We compare it to a bare physical qubit and to an encoded but
uncorrected logical qubit. Here, we derive analytical expressions for the averaged probability of successful state
discrimination that serves as a measure for the quality of such a memory.

A single physical qubit that is subjected to two rounds of bit flip noise of strength pi, corresponding to two
rounds of idling for a time τ/2, suffers a bit flip with probability

psingle = 2pi(1− pi). (31)

The probability of successful state discrimination is given by the fidelity of the final state w.r.t. the noise-free
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Figure 15: Quantum circuit implementing a 3-1-3 QAE.

initial state |ψ〉 = cos (θ/2) |0〉+ eiφ sin (θ/2) |1〉. Averaging uniformly over all states on the Bloch sphere yields

〈Psingle〉 =
∫∫

dθ dφ

4π sin(θ)
[
(1− psingle) 〈ψ|ψ〉〈ψ|ψ〉+ psingle 〈ψ|X|ψ〉〈ψ|X|ψ〉

]
=(1− psingle) + 1

3psingle

=1− 4
3pi (1− pi) .

(32)

For an encoded logical qubit that is exposed to two rounds of bit flip noise and then subjected to a perfect
round of QEC, the logical error rate is

puncorr. = p3
single + 3p2

single (1− psingle)
= 12p2

i (1− pi)4 + 8p3
i (1− pi)3 + 12p4

i (1− pi)2,
(33)

where psingle is given by Eq. (31). Thus, the averaged probability of successful state discrimination reads

〈Puncorr.〉 =
∫∫

dθ dφ

4π sin(θ)
[
(1− puncorr.) 〈ψL|ψL〉〈ψL|ψL〉+ puncorr. 〈ψL|XL|ψL〉〈ψL|XL|ψL〉

]
=(1− puncorr.) + 1

3puncorr.

=1− 8p2
i + 80

3 p
3
i − 40p4

i + 32p5
i −

32
3 p

6
i .

(34)

Finally, we consider an intrinsically noisy 3-1-3 QAE that is used for QEC after the first round of bit flip noise.
For weak internal noise, pn � 1, output states of the QAE can be well approximated by expanding to linear
order in pn. We consider a hand-constructed QAE that implements the 3-qubit error correction channel stated
in Eq. (14). The QAE consists of four unitary matrices, as shown in Fig. 15, where

and U1
3 = CNOT, U2

3 = CNOT, U3
3 = SWAP. Each unitary matrix is followed by a multi-qubit depolarizing

channel. In the absence of internal noise, a logical state corrupted by bit flip noise is mapped to a logical state
ρL by the QAE. At the four positions in the circuit where noise is acting, the respective intermediate quantum
state remains unaffected with probability (1−pn) and suffers an error with probability pn. Expanding an output
state of the network to linear order in pn therefore involves errors at one position in the circuit at most. For
the analysis it turns out to be convenient to write the depolarizing channel acting on m qubits in the form

Npn (ρ) =
(

1− 4m pn

4m − 1

)
ρ+

(
4m pn

4m − 1

)
I⊗m

2m . (35)

Denoting the output state of the noise-free QAE as ρL, one can write the output states of the circuit with only
one of the four noise channels being present as follows:

ρnoise 1
out =

(
1− 256

255pn

)
ρL + 256

255pn
|000〉〈000|+ |111〉〈111|

2 , (36)
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ρnoise 2
out =

(
1− 16

15pn

)
ρL + 16

15pn
|000〉〈000|+ |011〉〈011|+ |100〉〈100|+ |111〉〈111|

4 , (37)

ρnoise 3
out =

(
1− 16

15pn

)
ρL + 16

15pn
(
〈0023| ρL |0023〉+ 〈1123| ρL |1123〉

)
⊗ I⊗2

4 , (38)

ρnoise 4
out =

(
1− 16

15pn

)
ρL + 16

15pn
(
〈03| ρL |03〉+ 〈13| ρL |13〉

)
⊗ I

2 . (39)

Collecting terms yields an approximate expression for a noisy output state of the quantum autoencoder that is
linear in pn, resulting from the circuit with all four noise channels present:

ρnoisy
out ≈ ρnoise 1

out + ρnoise 2
out + ρnoise 3

out + ρnoise 4
out − 3ρL. (40)

To account for the round of bit flip noise before the application of the noisy QAE, we substitute ρL = (1 −
pL) |ψL〉〈ψL|+pLXL |ψL〉〈ψL|XL into Eq. (40), where pL = p3

i +3p2
i (1−pi). After applying a second round of bit

flip noise and performing a perfect round of QEC, we take the fidelity of the resulting state w.r.t. the original
noise-free state |ψL〉 to obtain the probability of successful state discrimination. Averaging uniformly over all
states on the Bloch sphere yields

〈Pcorr.〉 =
(

1− 4p2
i + 8

3p
3
i + 12p4

i − 16p5
i + 16

3 p
6
i

)
− pn

(
156
85 + 8

15pi −
776
51 p

2
i + 5312

765 p
3
i + 13408

255 p4
i −

17152
255 p5

i + 17152
765 p6

i

)
.

(41)

Equating Eq. (41) with Eq. (32) or Eq. (34) and solving for pn gives rise to analytical expressions for the phase
boundaries as shown in Fig. 12 in the main text:

pcrit., single
n =

255
(
pi − 4p2

i + 2p3
i + 9p4

i − 12p5
i + 4p6

i
)

351 + 102pi − 2910p2
i + 1328p3

i + 10056p4
i − 12864p5

i + 4288p6
i

= 255
351pi +O(p2

i ) (42)

and

pcrit., logical
n =

765
(
p2

i − 6p3
i + 13p4

i − 12p5
i + 4p6

i
)

351 + 102pi − 2910p2
i + 1328p3

i + 10056p4
i − 12864p5

i + 4288p6
i

= 765
351p

2
i +O(p3

i ). (43)

Accepted in Quantum 2023-02-19, click title to verify. Published under CC-BY 4.0. 23


	1 Introduction
	2 Background on QEC and QNNs
	2.1 Quantum Error Correction
	2.2 Dissipative Quantum Neural Networks
	2.3 Quantum Autoencoders

	3 Quantum Error Correction Results
	3.1 Correction of Computational Errors
	3.1.1 Correction of bit flips on 3 qubits
	3.1.2 Correction of arbitrary computational errors
	3.1.3 Adaptability to different types of noise

	3.2 Correction of Erasures and Computational Errors

	4 Encoding Discovery
	5 Robustness Against Internal Noise
	6 Discussion and Outlook
	 Acknowledgments
	 References
	A Quantum Process Tomography
	B Training QAEs with Self-inverse Architecture
	C Training Specifications
	D Discovered Encodings
	E Analytical Approach for Noisy QAEs

