arXiv:2208.10342v2 [quant-ph] 25 Feb 2023

Efficient algorithms for quantum information bottleneck

+1,2,3,4

Masahito Hayashi and Yuxiang Yang®

1Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen,518055, China
2|nternational Quantum Academy (SIQA), Futian District, Shenzhen 518048, China
3Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen,

518055, China

4Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan

5QICI Quantum Information and Computation Initiative, Department of Computer Science, The University of Hong Kong, Pokfulam

Road, Hong Kong

The ability to extract relevant information is
critical to learning. An ingenious approach as
such is the information bottleneck, an optimi-
sation problem whose solution corresponds to
a faithful and memory-efficient representation
of relevant information from a large system.
The advent of the age of quantum computing
calls for efficient methods that work on infor-
mation regarding quantum systems. Here we
address this by proposing a new and general
algorithm for the quantum generalisation of in-
formation bottleneck. Our algorithm excels in
the speed and the definiteness of convergence
compared with prior results. It also works for
a much broader range of problems, including
the quantum extension of deterministic infor-
mation bottleneck, an important variant of the
original information bottleneck problem. No-
tably, we discover that a quantum system can
achieve strictly better performance than a clas-
sical system of the same size regarding quan-
tum information bottleneck, providing new vi-
sion on justifying the advantage of quantum
machine learning.

1 Introduction

Learning is a task of eminent importance to the con-
temporary world. As such, it has always been of top
priority to quest powerful tools for learning informa-
tion. Information bottleneck [32] stands as an excel-
lent example, with many useful applications includ-
ing deep learning [8, 28, 33], video processing [16],
clustering [29] and polar coding [30]. Concretely, in-
formation bottleneck is a method to extract a piece
of information 7" with respect to the system Y from
the system X, and is formulated as the minimization
problem of the difference I(T : X) — SI(T : Y) with
a positive parameter 3, where I(T : X) is the mutual
information between T and X. In particular, we are
interested in the case when X is classical. By design,
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Figure 1: Visualization of quantum information bot-
tleneck. In a prototypical setting of quantum information
bottleneck, the task is to compress a classical system into a
smaller system T', which can be either classical or quantum,
by extracting its useful information about a quantum system
Y and removing the useless information. It is expected that
more relevant information Y’ about Y, instead of the entire
X, can be recovered from 7.

information bottleneck achieves an irreversible com-
pression, by extracting essential information about Y
and simultaneously removing unessential information
contained in X.

As we are stepping into the age of quantum infor-
mation, the demand is growing for a method that effi-
ciently learns information on a quantum system. For
this purpose, let us consider the setup of quantum in-
formation bottleneck (QIB), demonstrated in Fig. 1.
Similar as its classical counterpart, the aim of QIB is
to compress X into a smaller system T while preserv-
ing the correlation with Y when some of these systems
are quantum systems. Prior to this work, QIB has
been discussed in several recent works [2, 6, 9, 14, 24]
and has been applied to quantum information theory
[6, 14] and quantum machine learning [2]. On the
other hand, the fundamental properties of QIB such
as convergence have not been analysed, which hinders
its application in more practical tasks. Quantum in-
formation bottleneck is first proposed as a quantum
extension of information bottleneck method in [9]. It
also derived a necessary condition for the solution of
the minimization problem (see [9, Appendix A]) by
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using Lagrange multiplier method in the same way as
[1, 4]. Using the obtained condition, it also proposed
an iterative algorithm to find a solution to satisfy the
necessary condition [9, Appendix C]. Then, the refer-
ence [24] considered QIB in the quantum communica-
tion scenario. ! However, no study discusses the be-
haviour of the iterative algorithm, i.e., it is not known
whether the algorithm monotonically reduces the ob-
jective function [9, 24, 31, 32]. It was also claimed in
[9, Appendix B] that there is no advantage of using a
quantum 7" if X,Y are both classical.

In this work, we conduct a systematic study on
quantum information bottleneck, focusing on the case
when the system X is classical. Compared to exist-
ing works [2, 6, 9, 14, 24], our work makes significant
contributions in several directions:

First, we provide throughout analyses on two crit-
ical properties — efficiency and convergence — of
QIB. Motivated by a recent generalization [22] of the
Arimoto-Blahut algorithm [1, 4], we introduce a new
quantum information bottleneck algorithm with an
acceleration parameter v that can make the value of
QIB converges much faster than before when chosen
properly. We prove rigorous criteria for our algorithm
to converge and to achieve a minimum. In particular,
we prove that the choice of 8 plays an important role
in convergence.

Second, in contrast to the claim in Refs. [9, 24], we
provide concrete examples where using a quantum in-
stead of classical T could reduce the minimal value of
QIB. Notably, our result justifies a genuine quantum
advantage in quantum machine learning [3, 27, 34],
where the employment of quantum circuits has been
prevalent [5, 11, 17, 20, 25, 26] but the quantum ad-
vantage was rarely justified.

Last but not least, we generalise QIB by consider-
ing a general target function (1 — «)H(T) + oI(T :
X)— BI(T : Y) with parameters «, 8 > 0, which re-
duces to the standard QIB when a = 1. By doing so,
the generalised QIB contains QDIB, i.e., the quantum
version of deterministic information bottleneck [31],
by setting o = 0. We show that our analyses and
our algorithm hold for this generalised setting and, in
particular, to QDIB. Then, we clarify that QDIB can
be used to find a good approximate sufficient statis-
tics T for X for Y, which requires a smaller entropy
H(T) and larger mutual information I(7T : V). We
justify our finding via a numerical example, where
QDIB extracts a good approximate sufficient statis-
tics over information about a quantum ensemble.

In summary, our work addresses several critical is-
sues of QIB, including convergence, efficiency, choice

IThe reference [24, Appendix A] derived a necessary con-
dition for the solution of the minimization problem by using
Lagrange multiplier method in the same way as [1, 4]. Using
the obtained condition, it also proposed an iterative algorithm
to find a solution to satisfy the necessary condition [24, The
end of Appendix C].

of parameters, and the quantum advantage. We also
extend QIB to a generalised setting and introduce the
notion of QDIB. Our results consist of both rigorous
analytical analyses and numerical experiments that
justifies the importance of QIB and QDIB in funda-
mental tasks of learning.

The remaining part of this paper is organized as fol-
lows. Section 2 introduces our algorithm for quantum
information bottleneck, and discusses its convergence
and dependence of the parameter 3. Section 3 dis-
cusses our algorithm when our memory system T is
classical. Section 4 presents examples that realizes a
smaller value of the target function by quantum mem-
ory T than by classical memory T'. Section 5 discusses
an application of our QIB algorithm in data classifi-
cation. Section 6 proposes our algorithm for quantum
deterministic information bottleneck, and studies its
properties. Section 7 applies it to the extraction of
approximate sufficient statistics, and numerically ver-
ifies its efficiency in an example. Section 8 makes
discussion and conclusion.

2 The quantum information bottle-
neck (QIB) problem

2.1 Problem definition

Consider a classical-quantum joint system composed
of X and Y with the joint state

pPXY = ZPX(I)W(M ® Py |a; (1)

where X is a classical system and Y is a quantum
system. Our quantum information bottleneck (QIB)
problem aims at constructing an information proces-
sor, modelled by a c-q channel op|x from X to T
(which prepares a quantum state op|, when the clas-
sical register is z), that extracts efficient information
from X with respect to the quantum system Y. Af-
ter the action of the information processor, the joint
state becomes:

pxyr = Px(@)[2)(@] @ pyje @ o710 (2)

To this aim, the QIB problem concerns constructing
a classical-quantum channel o7 x : X — T that mini-
mizes the information bottleneck function, consisting
of entropic quantities defined with respect to the joint
state pxyr:

falomx) i= H(T) — aH(T|X) — BI(T : )
=1-a)HT)+al(T:X)—-pI(T:Y),
3)
where H(T) denotes the entropy of T' #, H(T|X) de-
notes the conditional entropy of T on X, and I(T : Y)

?For convenience, the notation H(A) stands for the Shan-
non entropy when the system A is classical and for the von
Neumann entropy when A is quantum.
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stands for the mutual information between T and Y.
That is, our aim is the calculation of the following
value:

Top = 51;1‘2 falor|x)- (4)

In the information bottleneck (3), o and S are posi-
tive real variables modelling the objective of the task.
In the original proposal of information bottleneck [32]
« = 1. Another common choice of « is a = 0, and
the task is called a deterministic QIB (whose classical
counterpart was discussed in Ref. [31]). The param-
eter [ controls the tradeoff between faithfulness and
compression. For instance, in a deterministic infor-
mation bottleneck, a larger S would make I(T : Y)
more prominent in the objective function, forcing the
information processor to preserve more information
about Y, whereas a smaller S would signify the role
of I(T : X), prompting the information processor to
do more compression in X.

Although this section addresses the case with quan-
tum systems Y and T, the case with a classical sys-
tem Y and a quantum 7" can be contained as a special
case by considering the diagonal densities py|,. On
the other hand, the case with a classical system T
is a different problem from the case with a quantum
system T because we need to discuss a different mini-
mization problem, which has a different range for the
minimizing variable. Fortunately, our algorithm for a
quantum system 7', presented in the next subsection,
can be applied to the case with a classical system 7.
Section 3 discusses the case of T' being classical. We
remark that the case where both 7" and Y are classical
has been widely studied in classical information the-
ory and machine learning; see, e.g., Refs. [28, 31-33].

2.2 QIB algorithm for a =1

The paper [9] discussed this problem when X, Y, T are
quantum systems and « = 1, extending the classical
information bottleneck [32] to the quantum regime. It
derived a necessary condition for ox | to achieve the
minimum (4). The necessary condition with quantum
systems T, Y and a classical system X is written as

log o7|, =(1 — B)logor[or x]

— B Try py|m(10g py — log UYT[UT\X]) - Cy,

(5)

where C, is a normalizing constant and

pY —ZPX T)py e (6)
rlorx] : ZPX T)oT|s (7)
Se

oyrlorx] : T)o7|z @ PY|a- (8)

Since this condition is self-consistent, using this
condition, the paper [9] proposed the following itera-
tive algorithm with the following update rule:

1
+1
(Tvim ). =5, oxXp ((1 ‘) logaT[J(TYB(}

- BTry py|a ( log py — log UYT[U(TTB(]))-
9)

2.3 The acceleration parameter

Next, we propose an extension of the iterative algo-
rithm in [9]. First, we introduce a new parameter
v > 0 and rewrite the condition (5) as:

1 1
logop), = (1 — ;) logop|, + ; log o7,

1 1
=(1- ;) log o), + 5(1 — fB)logor[orx]

! 1
- ;5 Try pY|x(10ng — log O'YT[O'T‘X]) - ;Cm

1 1
=log o), — ;]-'1 lorx](z) — ;C’w, (10)

where

Filorx](x)

—logor[or x] +1logor,

+ B Try (pyu ( log(or|or|x] ® py) — log UYT[0T|X])>~

(1)

Using (10), we can derive another iterative algorithm
as

n 1
U(Tlg—clrl) = — exp (log U;Im - f}"l [UTlX](x)).

o (12)

In this way, we can easily generalize the iterative
algorithm (9) by [9]. However, it is not trivial to find
the suitable value for 1, which, as we show later, is
critical to the efficiency of our iterative algorithm. Al-
though many papers [9, 24, 31, 32] discussed the it-
erative algorithm given by (9) including the classical
case, no preceding study showed the convergence of
the iterative algorithm by (9). In addition, the dis-
cussion above focuses on the case of & = 1 and does
not include the case of deterministic information bot-
tleneck (a = 0). Therefore, to make an efficient algo-
rithm, we need to discuss the choice of the parameter
~ for generic a.

2.4 QIB algorithm with general a: and conver-
gence

To analyze the convergence of the algorithm (12), we
introduce a two-input variable function based on the
idea in Ref. [22, Section III-B], whereas the method
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in Ref. [22, Section III-B] was obtained as a gen-
eralization of the Arimoto-Blahut algorithm [1, 4].
The idea is that, instead of directly solving the min-
imization of f,(or)x), which is often too difficult,
we find a continuous function J(o7| X,G’Tl ) with

two variables or|x, U’TI - Then we can update these
two input variables o7 x, U’Tl  alternately to decrease
J(orx, U’Tl +)- Finally, if the function satisfies

fa(UT|X) = J(O'TleUT\X)a (13)

the minimum of J(JT‘X,Uéqu) will be close to the
minimum of the IB function.

The above type of functions can be constructed if
we find an operator Fy o7 x](z) to satisfy

falorix) =Y Px (@) Trr orp Falorx)(z),  (14)

In this paper, we employ the following function:

]:a[O'T|X]($)
= —logoror x| +alogor|,

+ B Try (PY@(lOg(JT[UﬂX} ® py) — log UYT[JT\X])

(15)

Then, the condition (14) is satisfied.

Using  this function, we can  define
JO(UT|XaU%\X) = Trp Zac UTleX(x)]:a[Uﬁx](x)»
which satisfies the condition (13). However, it is
difficult to optimize two input variables alternately
in the function J0(0'T|X,0',/T|X). Instead, for v > 0,
we introduce the following function

J%a(UTIXvUIT|X) (16)
i=yD(orx |l07x) + Y Px(x) Trr orjFo o7 ] (2),
w a7)

where D(0T|XHU{,«|X) => . Px (l‘)D(UT\z”U&%) and
D(UT\w||‘7§“|w) denotes the relative entropy.

Next, we need to specify the rules of the alterna-
tively updating op|x, U’Tl - Crucially, we need to en-
sure that J (o7 x, a%‘ ) is non-increasing under the
updating rules. To this purpose, we first introduce the
following condition:

(A1) or|x and o7 satisfy the relation
vy Px(@)D(or:|lo,)

> Px(2) Trr orpe(Falorx] (@) — Falor x)(z).

(18)

In fact, the condition (A1) is rewritten as v >

y(orx, Uéqu) by defining 'y(JT‘X,oéﬂlx) as

Y(oT|X, 07 x)
20 Px(@) Trr ogpo(Falor x](z) — Falog x](2))
o > Px(x)D(o7sllor,) .

(19)
This quantity is evaluated as
(20)

Y(orix, o7 x) < @

because the relation

D(pyrlorix]lpyrlor x]) = D(orlorx]llor(or x])

—D(orlorix] @ pyllorlohx] @ py) (21)
implies the relation
> Px(@) Trr oppp(Falor x)(@) = Falohx] (@)

= — D(orlorix]|lor(op x])

+ « Z Px(l')D(UT\wHO—&"W)

+ BD(or[orx| @ pyllor(op x] @ py)
= BD(pyrlorix]lpyrlor x])
< — D(or[orx]llorlor x])

+ « Z Px (JE)D(UT\wHG’/ﬂI)

<a Y Px(@)D(or,lIoh,)- (22)

To state our updating rules, we define

s lomlia) i=exp (logom, = ~Fulorix](@)

(23)
My,alzlorx] =T 6y arlorx](2) (24)
1
GraTlx07|x] =0y, 707 x](T)-
e T g alorp (@)
(25)
In particular, when ~ = «, the operator

Gv,a,7lo7x]() is simplified as

6@,T[UT|XK‘T)

= exp ( log o (o7 x]
p
- - Try pym(log py — log UYT[UT\X]))' (26)
Theorem 1 Under the condition (A1), we have

(27)

Joa(071x, 071 %) 2Ty.0(0y.01x107 x]s 07 x)- (28)

'y,a(JT\Xa U’/T|X) ZJ%CY(O-T|X’ UT|X)
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Proof of Theorem 1: The condition (A1) yields

Jy.alorx507|%)
= Z Tr o), Px (2) Folor x] ()

< Z Trop), Px () Fa [‘75“|X]($a t)

+7>_ Px(x)D

=Jyal07|x: 07|x)- (29)

(O’T\xHU/Tpc)

Hence, we obtain (27).
Also, we have

Jyalor|x, 07 x)

(a)
=y Z Px(z) Tr o), ( log op|, —log oy,

=y Z Px(z) ( Trop, ( log o), — log &%a’ﬂx[U’T‘X])

108 1.0l x)(2))

:’YZPX(QU) D(
7Y Px(x)

where (a), (b), and (c) follow from (17), (23), and (25),
respectively. Finally, from Eq. (30) we can see that
the minimum of JVva(o'T|X’U§"|X) is achieved when

OT|z HOA"y,a,T|x[0§“\X]))

IOg ﬁfy,a\x[o'é“\X]a (30)

or|x = 677Q)T‘$[0’T‘X], since the first term of (30) is
non-negative (with equality achieved when o7 x =
6%%;”36[0}')(]) and the second term is independent of
or|x- Hence, we obtain (28). ]

Corollary 2 Assume that v >
p )

SUDg x sl "}/(O'T|X,O'T‘X). When orix is a lo-

cal minimizer, we have

Gy,0,1el0TX] = 07X, (31)

which is equivalent to (5) when o = 1.

When v > V(& a,11xloTX] 07 X ),
the following chain of inequalities
hold: falorx)=Jy.a(0rx, 07X )
Jy.a(Gy,0,7x 0T x], 07 X)
']%Oé(a-'y,a,T\X[o'T\X}?&v,a,T|X[O'T|X])
fa(Gry.a1x|oT|X] Hence, the monotonicity of
the information bottleneck under the updating rules
is also guaranteed, as long as « is sufficiently large.

v IV

Finally, we propose the following algorithm with a
fixed v and general «:

Algorithm 1 QIB algorithm

1: Input: A joint state pxy [as in Eq. (1)].

1 .
T|X>

3: Create a counter n as the number of iterations;

initialize n to 1.

2: Randomly choose an initial c-q channel o

4: repeat
Choose J(TT‘L;D as (3'%%T|X[O'¥g(] [cf. Egs. (23)
and (25)]; set n as n + 1.

until convergence.

: Output: A c-q channel agfll;l)

N2

As mentioned, when + satisfies the condition (A1)
in all iteration steps, i.e., when =y is sufficiently large,
Theorem 1 guarantees the monotonicity of the infor-
mation bottleneck function:

Faloi") < Ty (o) o) < falolly). (32)

Since f, consists of bounded entropic quantities (as-
suming the system to be finite), it is a bounded quan-
tity. Therefore, the sequence { fa(a(TT&)} in our Al-
gorithm converges. In addition, we can show that the
sequence of c-q channels {a(TTB(} converges as well:

Theorem 3 When v > SUDgy. o

TIx ’V(O—T|Xa 0’/1“|X)7

the sequence {U(TTT)X} converges.

. . ,
In particular, since o > SUPgy o7, (0T|X,O'T|X),
the sequence {O’T‘ X} converges with v = a.

Proof: Since { fo (U(TT&)} is monotonically decreasing

for n, we have

lim fa(UT‘X) falofiiD) =0. (33)

Using (30), we have

Talofk ofik)

n+1 n+1 n
D loGiiD) + Ty a oyt abiy)

fa(UT\X)

=) _ Px(@)
27 Z Px(x)D
Thus, we have

VZPX(»’U)

0T|x||UT7;L1)) + fal TTT;U)- (34)

(n+1)
Tz )

Fa(@80) — falolril).

(35)

0T|1||0

Since due to (33) and (35), the sequence {U(TTB(} is a
Cauchy sequence, it converges. |
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We remark that it is free to choose the convergence
criterion in Algorithm 1.

In Algorithm 1, +y is fixed to be a large enough value.
Intuitively (see the next paragraph for more detailed
discussion), 7 (or, more precisely, 1/7) is an acceler-
ation parameter that makes the algorithm converge
faster if chosen to be a smaller value.

To begin with, we show the role of - in convergence
of the algorithm. Denote by U}‘  the convergence

point of {Ut(lflgg} The performance of our algorithm

can be characterized by the decreasing speed of the

)

average divergence between a}‘ x and O’%L ¢, Which is

evaluated as

" n * n+1
> Px(@)D(ogyllof])) = > Px(@)D(0, o)
= Z Px(z) Tr a}‘w(log o7, — log arfpnl)
= 3 Px(@) Troy, (logag, — logali")

= Z Px(z) Trog, (log ggi:l) —log 0(T7|L;>

= ; ((J'y,a(agm;l)v Uéﬂ&() - fa(UT|X))

+ 3 Px(a) Trogy, (Falorix)(@) = Falofik]@)) ),
) (36)

where (a), (b), and (c) follow from the combination of
(23) and (25), (30), and (27), respectively.

The above discussion manifests that
. n+1 n *
if 2 (J%oz(a(ﬂj( )’0—;‘&() falopix))  +

5, Px(@) Trog, (Faloq )(@) = Fa [a;”?,(](x))) >
0, making v smaller makes the average divergence
between a}l ~ and O’éfi?x decrease faster. On the other
hand, making + too small leads to a risk of violating

the condition (18) (and, consequently, breaking the
monotonicity of J, o).

Remark 1 The reference [22, Section III] considered a
general setting. If o x is a single density matriz, our
method can be considered as a special case of their set-
ting. However, since op|x is classical-quantum chan-
nel in our case, our analysis is not a special case of
their setting.

Remark 2 The references [9, Appendiz A] [24, Ap-
pendixz A] considered the case when the systems
X,Y, T are quantum systems and o = 1. They derived
a necessary condition for the solution of the minimiza-
tion problem by using Lagrange multiplier method in

n n 1 . " (0
O alo ) = = 3 Pe@) Trog Falof] ) Where o = (

the same way as [1, /). Using the obtained condi-
tion, they [9, Appendiz C] [24, Appendiz C] also pro-
posed an iterative algorithm to find a solution to sat-
isfy the necessary condition. It seems that their nec-
essary condition is the same as (31) with v = o = 1.
However, they did not discuss the convergence to a
local minimizer in their algorithm.

2.5 Numerics on the effects of different v

To see the effect of different ~, let us take a look at
a concrete example: Consider a single-qubit quan-
tum system Y and a classical register X with size
28. Then, we assume that Px is the uniform distri-
bution over X = {0,...,2% — 1}, and the density py |,
is given as py |, = p(0z, Az), where

(6, 2) = exp (i60,) (16A 2) exp (—ifo,), (37)

WS Pa(a) Trog, (- %J—'a 040 )(x) — logity alofik](@))

1 0
rameters 6, and A\, are randomly chosen.

1) is the Pauli-X matrix. The pa-

Then, the ensemble we consider admits the follow-
ing joint density matrix:

pxy =) Px(@)ln(@)(m(z)| © p (62, 2:)  (38)

with p (0, Az) given by Eq. (37).

Now, we apply our QIB algorithm (i.e., Algorithm
1) to the ensemble (38). We consider a classical T'
whose size is the square root of | X| (i.e., | T| = 2%). We
set « = 1, and 8 = 10. Our focus will be the effects
of different choices of the acceleration parameter ~.
As shown in Fig. 2, the choice of v is crucial for the
performance, more specifically, the efficiency and the
convergence, of the QIB algorithm.

Two interesting phenomena are manifested by our
numerics: For one thing, choosing a smaller v will ac-
celerate the course of convergence. As shown in Fig. 2,
by choosing a suitably smaller value of v (e.g., 0.8 or
0.5), our QIB algorithm achieves convergence faster
than the existing QIB algorithm [9, 24], which cor-
responds to Algorithm 1 with v = 1. For the other,
choosing a too small y will ruin the convergence prop-
erty of the QIB algorithm. For instance, when 7 is
chosen to be 0.4, f, jumps up after a few iterations
and ends up in a much larger value than its initial
value.

Accepted in (Yuantum 2023-02-21, click title to verify. Published under CC-BY 4.0. 6



2.5 =1.0
= 0.8
2.0 = 0.6
= 0.55
1.5 - 05
1.0 = 0.45
W =04
0.5 = 0.2
0.07 =
-0.5
-1.0 N —
5 10 15 20
number of iterations (n) N

Figure 2: Performance of Algorithm 1 for different
~v. We apply Algorithm 1 (|7] =16, a =1, and 8 = 10) to
the joint state (38). The information bottleneck f. is plotted
as a function of the number of iterations for different values
of 7. The green curve with v = 0.55 converges most quickly.
It significantly improves the convergence speed in comparison
with the black line with v = 1. The blue curve with v = 0.45
goes down even faster in the beginning but gets overtaken
after a few iterations. Finally, it goes up around n = 7. It
shows that v = 0.45 does not satisfy the condition (A1) for
n>".

In conclusion, the numerics has justified our theo-
retical analysis (see Section 2.4) on the importance of
choosing a suitable v. We emphasize that our contri-
bution in this direction is twofold:

1. We proposed a method of accelerating the QIB
algorithm, making it converge within fewer
rounds of iteration, by introducing a new param-
eter v and setting it to be smaller than one.

2. We showed that the QIB algorithm cannot
achieve the desired minimal value of f, if v is
too small.

2.6 Choice of

The output of our QIB algorithms depend not only
on pxy [cf. (1)] but also on the choice of o and 3.
Intuitively, a larger § improves the faithfulness (as it
makes I(Y : T') more significant in f, ), while a smaller
B leads to more compression (as it makes I(X : T')
more significant in f,). Somehow surprisingly, the
choice of 8 is not completely free: In the following,
we show that the QIB algorithm will yield a trivial
orx if B is too small.

To consider the relation between the choice of 3
and the resultant information on 7', we introduce the
following condition for a subset S C Sx_,r, where
Sx 7 is the the set of all c-q channels from X to T,
i.e., the set {o7|x = (07|z)eecx }:

(A2) For any two distinct elements JT‘X,O',/HX €

s, S, Px (@) Trp oy (Falorix)(z)  —
Falopx(@)) >0

The condition (A2) is unitarily invariant, i.e., the
pair (o7|x, 07 y) satisfies the condition (A2), if and
only if the pair (UUT‘XUT,UU’TleT) satisfies the
condition (A2) for any unitary U on T. Hence, we
choose S as a unitarily invariant subset.

Theorem 4 Assume that a unitarily invariant subset
S satisfies (A2). Let ‘77]\“/[|X := argmin fq(op|x) be the

oT|X
solution to the QIB problem. When U%X belongs to

S, O’%w is the mazimally mized state on T for any x.

If o%w is the maximally mixed state for every =z,
T is uncorrelated with Y and does not contain any
meaningful information. In other words, when the
assumption for Theorem 4 holds, the solution of the
QIB problem is not useful. Hence, we need to choose
the parameters «, 8 such that condition (A2) does not
hold.

Now we discuss how to avoid the condition (A2).
The LHS of (A2) is evaluated as
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Y Px(@) Trr oppe(Falorx](z) — Falofx] (@)

=Trry ZPX(JU)(UT\JC 0y lem)( — (log UT[UT\X] - 10g0'T[U£f|X]) + a(log OT|z — log 0/T|z)

+ B((10g(or[omx] @ py) ~ log(orlox] @ py)) = (log oy rloryx] — logayrlohx]) ) )

=Trry ZPX(:E)(JT‘:E ® pY|x)( — (logor[or x] — IOgJT[U,ﬂXD + a(log Px (z)or), — log PX(vT)UIT\z)

+ 8((og(orlorx] @ py) — log(orloyx] ® py)) = (log oy rloryx] — log oy rlofx]) ) )

= — D(or[or|x]llor[or x]) + aD(oxr(or x]loxT(or x])

— B(D(oyrlorxlllovr(or x]) — Dorlorxllor(or x])),

UXT[UT|X] =

Yo Px(@)orglorx] @
Since >

|z){x]. D(oyrlorx]lovrlor x])
D(or[orx]llorlor x]), the coefficient of 3 is a
negative value. Hence, a smaller 5 has a possibility
to satisfy the condition (A2). That is, to obtain
a useful solution, we need to choose B to be a
sufficiently large value.

Proof of Theorem 4: Let U be an arbitrary unitary
on 7. We define U%X by o’%w = Ua%wUT. Substi-

(n)
T|x

0=Y" Px(z)D(o}, o)

tuting o,/ with U%; in (36), we have

- Z Px (x)D(O"%m”a-”/,a,TM[U%X])

—~ (falotfx) = fulotx))

130 P ool (Falod )

(40)

- 3 Px() ol (Falodle) - Falofyl(o)
(41)

Thus, the condition (A2) implies o7 = o4f\. o},
is the completely mixed state on T for any . | |

3 Classical system T

Next, we consider the case when T' is constrained to
be a classical system. We stress that this is a different
minimization from the previously discussed one with
a quantum system 7', whose minimum may not be
attainable with a classical T'. Instead, our objective
function now is

min (42)

] falor|x)-
or|x:diagonal

(R
a,p -

~ Falotfx)(@))

(39)

Therefore, we need to re-examine the validity of our
previous analyses.

Let us start with the form of QIB algorithm. Fortu-
nately, our algorithm with a quantum system T can
be applied to this case, simply with the adaptation
that the states o), are limited to diagonal density
matrices with respect to the basis {|t)} of T. Under
this condition, the states &,  7z[07x] are also di-
agonal density matrices. Therefore, when we set the
initial state as diagonal density matrices, Algorithm
1 works for this case.

The above discussion leads to an interesting obser-
vation as follows. The convergent orx with initial
diagonal o7 x satisfies the condition (10) and it is
also diagonal. That is, if the minimum with classical
T is strictly larger than the minimum with quantum
T, the minimum with classical T is an example for
the following statement: A solution of the condition
(10) does not necessarily give the minimum of f, with
quantum 7. This fact shows the possible risk that
a solution to (10) might be a saddle point or a local
minimum rather than the global minimum for f, with
quantum 7.

When the states op|, are limited to diagonal den-
sity matrices with respect to the basis {|t)} of T,
orylopx] is commutative with or[op x] so that
we can define O'y‘T[O'T|X] = UTy[O'T‘X]UT[O'Tp(]_l.
Then, 6., o 7[o7x](z) is simplified as follows.

log &y o, rlor x](x)

o 1
=(1- ;)IOgUT\x + 5 log o (o7 x]

- gTI"Y (Py\z(long — log UY\T[UTlX]))- (43)

The notion of unitary invariance is reduced to in-
variance under permutations on 7', and the condition
(A2) is invariant under permutations on T. Then,
Theorem 4 can be rewritten as follows.

Theorem 5 Assume that a subset S satisfies (A2) and
is invariant under any permutation on T. Let J;‘X
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be the minimizer of Wil :diagonal falorx). When
o7 x belongs to S, Oy 8 the uniform distribution
over T for any x.

Theorem 5
4.

5 can be shown in the same way as Theorem

In this case, we can make a more precise discussion
for the condition (A2). For this purpose, we consider
the maximum ratio

D>, Qx(@)pyll 2o, Q% (T)py|a)
D(Qx|Q%) '

(44)

The inequality x < 1 follows from the infor-
mation processing inequality for the map Qx +—
> 2 @x(x)py|e. In this condition, or[or x| is writ-
ten as ), Qrlopx](t)|t)(t| by using a distribution
Qrlor x]. Then, the LHS of (A2) is simplified as

Z Px(x)

(ﬂ 1) )
+aD(oxr(orx]loxror x])
— BD(oyrlorx]lloyr(op x])

) )

=(a = 1)D(or[orx]llor]orx]

+ Z Qrlorx](t) (OéD(UX|T:t[UT\X] loxr=tlorx])

t

Trr o7y0(Falorx](2) = Falor x](z))

D(or[orx] ||UT[‘7TIX]

- BD(UY|T:t[UT\X]||0Y\T:t[U'T|x]))
>(a— 1)D(or[orx]llor[or x])

+ (= Br) Y Qrlorx](t)

'D(”X|T:t[UT|X]||UX|T:t[UéI”\XD' (45)
When the condition av > 1,% > 3 holds, the LHS
of (A2) is positive for o x # U’TlX. Hence, to ex-
tract useful o x, we need to choose 3 to satisfy the
condition f > % with o = 1. In fact, even when
B > <, there is a possibility that a permutation-
invariant subset S satisfies (A2). Due to Theorem 5,
when a permutation-invariant subset S satisfies (A2),
a useful solution does not belong to the subset S.
Hence, to obtain a useful solution, we need to choose
f8 sufficiently large beyond the above condition g > <
with a = 1.

Remark 3 We consider the case with classical Y and

v = a. The operator G407 x|(x) is simplified as
follows.

Ga,rlorx](z)

1
=exp (E log orlor|x]

- gTrY (Py|z(10g py — 10g0’Y|T[UT|X]))>- (46)

In this case, the reference [31, (14) Section 3] pro-
posed the following update rule:

1

Tr 7r[or x](x) “7)

Trielorx] = 7rlorx](x),

where the operator r[op x|(x) is defined as

Trlorx](x)

1
‘=exp (a log UT[O'T\X]

- gTry (py|w(log,0y|x — log UY\T[UT|XD))-

(48)
Since
log #r (o7 x](x) —log 67 (o7 x](x) = = D(pyzllpy ),
(49)
we have
)z [oT|X]

1

_ B D(Py\z”pY)
TreaD(py\zHPY)ﬁ'T[UT\X]( )

UT[UT\X]( )

=0rzlo7x]- (50)
That s, the update rule (47) by [31, (14) Section 3]
s the same as ours of this special case. In particular,
the update rule (47) with o = 1 coincides with the
update rule by the reference [32].

Remark 4 When the system Y is classical and o = 1,
the reference [9, Appendiz B] claimed that there is no
difference between the optimal value with quantum T
and the optimal value with classical T. Since their
algorithm works with T of a fized size, it can be con-
sidered that they claimed the above statement when
the size of T is fized. However, their proof (see [9,
Appendiz B II]) contains a gap: The statement un-
der Eq. (B23) that “the Lagrangian is invariant under
a measurement of the memory M in a chosen basis
|m)” is not backed by a rigorous mathematical proof.
It is thus unclear whether this statement and, conse-
quently, the claim that there is no quantum advantage
are correct. On the other hand, as we show next, the
optimal value with quantum T can be strictly smaller
than the optimal value with classical T. That is, the
claim in [9, Appendixz B] contradicts with our result
of the next section.

4 Quantum advantage for T'

To see the advantage of quantum system 7" over clas-
sical system T', we discuss several examples with the
strict inequality

Top<ZIyp (51)
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We provide an analytical example in this section and
a numerical example with application in quantum ma-
chine learning in Section 5.2 when the size of the sys-
tem T is fixed. Generally, to achieve the optimal per-
formance, we need to choose the system T as a suf-
ficiently large dimensional system. However, in this
section, to provide analytical examples, we fix the size
of the system T to a certain value.

Assume that ) is a classical system of size d. The
size of X is k times of the size d of . We assume
that X is given as X1 x Xp with X3 = Y and |X,| = k.
The distribution of X is assumed to be uniform. We
focus on the quantum system 7T with the dimension
n < d.

Lemma 6 When 8> 1 and 8 > «, we have
Zop=(1-p)logn

Proof: First, we show a bound on the QIB for generic

(quantum) T'. For any op|,, we have H(T) > I(T

X)>I(T: Y) Hence, the relation g —a > 0 implies
—(B-—a)I(T:Y)>—(8—a)H(T). Hence, we have

falore) = (1= )H(T) +al(T: X) —
2(1=a)H(T) = (8 —a)[(T:Y)

(52)

BI(T :Y)

> (1= B)H(T).
(53)
Since H(T) <logn and 1 — 8 < 0, we obtain
Top > (1 f)logn. (54)

The above bound is tight. Indeed, we choose o7y, 4,

as the pure state > )" ; ﬁe%:lﬂt). Then, we have
H(T) =logn. Also, HT)=I(T : X) =I(T :Y).
Therefore, fo (o)) = (1 — 3)logn. [ |

Next, we focus on the case when T is a classical
system of dimension n < d.

Lemma 7 Assume that d = mn +1 with 0 < [ < n.
When 8> 1> «, we have

[(m+1 d —1
=0 (1 gy 0

)
(55)

Proof: Any channel o7, can be written as a proba-

bilistic mixture of deterministic channels U?le. That

is, we have

UT\:E = (56)

o
E :p]UT\x'
J

Since Y is independent of X5 and the random variable
J describing the choice of j, we have

I(T:Y|JXs) =I(T : Y|JX2) + I(Y : JX,)

=I(TJX,:Y)>I(T:Y). (57)

Also, we have

H(T) = H(T|J X2). (58)

Then, we have

falors) 2 (1 ) H(T) - (8

(T1JX2) = (B -

—a)I(T:Y)

b

(2)(1 —a)H a)[(T:Y|JX2), (59)
where (a) follows from (53), and (b) follows from (57)
and (58). The minimization of (1 — «)H(T|JX2) —
(B —a)I(T : Y|JX2) equals the minimization of the
same function under the condition that op x is a de-
terministic channel and op|;,,, depends only on ;.

Under this condition, we have I(T X) =
I(T : Xy) = I(T : Y), which implies the equal-
ity in (a) at (59). Therefore, for the minimiza-
tion, we can impose this condition, i.e., the vari-
able T is determined only by X; = Y, which im-
plies I(T : Y) = H(T). In this case, we have
Jalor)z) = (1 — B)H(T). In the classical case, the
maximum entropy H(T) among deterministic chan-
nels is achieved when the distribution (Pr(t))f-, as
close as possible to the uniform distribution, i.e., Py =

l n—I
———
(m; 1,..., m;— 1, %,,%) Hence, the maxi-
mum entropy H (T') is l(mjl) log —%— m+1 + W log %
Therefore, we obtain the desired statement. |
When the conditions of Lemma 7 hold, d cannot
be divided by n. In this case, since l(de) log =%~ m+1 +

(n— l)m log & is strictly smaller than logn, when the
State pxy is close to the state 3, 1|z, z)(z,z|, the
strict inequality (51) holds. There is clearly an ad-
vantage of using a quantum 7'.

5 Quantum feature maps with QIB

5.1 Information bottleneck in supervised learn-
ing

Supervised learning is a cornerstone of machine learn-
ing. Given a dataset {(z,y)} sampled from an un-
known probability distribution Pxy, a general super-
vised learning task is to find a classifier such that, for
any testing data (2/,y’) sampled from the same dis-
tribution Pxc, it predicts the label ¢ with as high
accuracy as possible given z’.

Remarkably, recent studies [8, 28, 33] on the infor-
mation bottleneck theory showed evidences that the
training phase of deep learning can be divided into
two stages. In the first stage, a representation 7" of X
that faithfully encodes its correlation with Y is found,
featured by increasing I(T : Y). In the second stage,
the size of T is compressed, featured by decreasing
I(T : X). This result suggests that finding an effi-
cient and compressed representation of X facilitates
data classification.
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Figure 3: Data classification with quantum feature
maps. The flowchart illustrates the training phase and the
testing phase of data classification using the technique of
quantum feature maps. The part where our QIB algorithm
is applied is highlighted.
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5.2 Quantum feature maps

Following the above intuition, we propose a classical-
quantum hybrid algorithm of data classification, by
combining the QIB algorithm with the kernel method.
The idea is illustrated in the flowchart in Fig. 3. Given
a training dataset Sirain, the algorithm first identi-
fies an efficient representation 7' of X by minimising
the information bottleneck f, := H(T)—aH(T|X) —
BI(T :Y). Then a classifier is constructed that yields
a prediction Y based on the state in T corresponding
to the value of X. For simplicity, we consider for now
the case when Y € {1, —1} is binary. In the first step,
we set the representation 7' to be a quantum state
p(z) that depends on the data x, and we obtain p(x)
via Algorithm 1. In the second step, we use a linear
classifier

cqus (p(7)) = sgn (Tr[Ap(Z)] + b) (60)

where A is a Hermitian operator and b € R. We fur-
ther consider A that can be expressed as a linear com-
bination A =3, ecs, . azp(x), and the classifier
has the reduced form

cqis (p(Z)) = sgn >

x:(2,¢) EStrain

a K(z,2)+0b ],
(61)

where K (z, Z) is the kernel function, in our case given
by the Hilbert-Schmidt (HS) inner product of quan-
tum states and can be evaluated by performing the
SWAP test on a quantum computer:

K(z,y) = Tr{p(x)p(y)}. (62)

The algorithm is summarised as follows:

Algorithm 2 QIB for data classification

input: A training data set Sirain = {(z,9)}; con-
figuration («, 3,7).

input: A classifier cqp : X — Y.

1) Generate an empirical distribution P(z,y) from
Strain'

2) Run Algorithm 1 with P(z,y) as input and cer-
tain (adjustable) parameters a,3,7.

3) Compute the kernel K in Eq. (61) using the
output of Step 2).

4) Train the classifier (61) with Sipain and output
the trained classifier.

We remark that the quantum kernel method, where
a mapping © — p(z) is constructed for better clas-
sification, has been a hot topic recently (see, e.g.,
[5, 11, 17, 20, 25, 26]). The key distinction between
existing works and our present method is the follow-
ing: In existing works, the parameter = is passed to
a parametrised (a.k.a. variational) quantum circuit
that prepares the state p(z). One needs to train the
circuit parameters on a quantum computer to obtain
a good mapping = — p(x), which is called a feature
map. In the near term, this method might be sub-
ject to the physical limitations of quantum devices.
In contrast, in our present method p(z) is directly
computed via a simple iterative algorithm. Therefore,
there are two possible ways of realizing our present
method, i.e., Algorithm 2. In the near term, we can
regard Algorithm 2 as a “quantum-inspired” classical
algorithm, and evaluate everything on a classical com-
puter. When large-scale quantum computing becomes
feasible, Algorithm 2 can be readily “quantised”. In-
deed, the evaluation of p(z) in each iteration requires
subroutines that compute matrix powers and loga-
rithm and solve linear systems, which have already
been developed in Refs. [7, 10, 18, 19].

5.3 Numerical experiments

As a proof-of-principle experiment, we tested the per-
formance of our QIB classifier on a dataset on R?, gen-
erated in the following way: First, we define the dis-
crete sets X = Xy x Xy and Y, with &3 =Y ={0,1,2}
and Xy = {0,1,...,9}. To apply our classification
method, we arbitrarily choose permutation 7, and
generate n’ = 400 independent and identically dis-
tributed data (XlJ,Xg,i,Yi) for: = 1,...,n as fol-
lows. We independently generate (X1 ;, X2,,Y;) ac-
cording to the following distribution

Pxy (21, 22,y) = Py (y)Qx, v (21, ¥) Qx| x, (x5, 1),

(63)
where Py is the uniform distribution over Y,
QX1|Y($1,Z/) = d(r1,y), QXg\Xl(x%xl) = %7

(z1,22). Next, we generate the ran-

and (z7,24) =
dom variables X;; := X;; + R;;, where the ran-

Accepted in (Yuantum 2023-02-21, click title to verify. Published under CC-BY 4.0. 11



—— classical T
-1 —— quantum T

number of iterations (n)
o)

Figure 4: Quantum vs classical feature maps. We
run Algorithm 1 with @« =y =1, 8 = 15 on the distribution
Pxvy based on the training data, and compare the converging
values of QIB when T is classical (i.e., a probabilistic bit)
and when T is quantum (i.e., a single qubit). This numerics
shows the advantage of use of quantum T over classical T'.
The final feature maps with quantum 7' (plotted in red) and
with the classical-T' (plotted in blue) are visualised in the
Bloch ball.

dom variable R;; is subject to the uniform distribu-
tion in the interval [0,1.2) unless ¢« = 1, X; = 2 nor
1 =2,X; =09, it is subject to the uniform distribu-
tion in the interval [0, 1) otherwise. Then, using the
obtained data (| X1,],|X2.],Y:) with i = 1,...,n,
we define its empirical distribution Pxy. We apply
Algorithm 1 to the distribution Pyxy as Fig. 4. In
the case with the distribution Pxy, Algorithm 1 with
quantum 7" can realize a smaller f, than Algorithm 1
with classical T, which shows the advantage of quan-
tum T over classical T'.

In the classification experiment, 50% of the data
are used as the training set and the rest are used as
the testing set. The kernel is constructed with Al-
gorithm 2 with a = 1,8 = 15,y = 1, a single-qubit
register T', and 10 iterations. We consider both when
T is a generic qubit system and when T is restricted
to a binary classical system, and we compare their
performance. As can be seen from Fig. 4, the case of
quantum 7 has lower IB value than the case of clas-
sical T'. The final feature map o7 x for the quantum
T case suffers from certain degree of dispersion due
to the random noise r1, 72, but the quantum features
still form 3 clusters. In contrast, the final o7 x in the

classical T' case maps different values of X into two
clusters.

The effect of the above distinction is made apparent
in the classification performance. In Fig. 5, the perfor-
mance of the classifiers constructed from the kernels
are illustrated via their decision regions. It can be
seen that, since the classical-T feature map groups X
into two clusters, its resultant classifier gives a binary
prediction on any input data, giving up the least pos-
sible label. In stark contrast, the quantum-7" feature
map utilizes the full Bloch ball to generate 3 clusters,
leading to a much higher accuracy of prediction. The
advantage of a genuinely quantum feature map is thus
manifested by this numerical example.

For reference, in Fig. 5, we also plot the perfor-
mance of two standard methods of classical feature
maps. The referential methods (linear kernel and
polynomial kernel) achieve accuracies (defined by the
ratio of correct predictions in the testing set) 0.64 and
0.62, which is slightly higher than the classical-T" in-
formation bottleneck kernel (0.565) but much lower
than the QIB kernel (0.92). This further justifies the
superior performance of our QIB method in classifi-
cation.

QIB (classical T)
':{'a"r N

o0 00

QIB (quantum T)
RNV
\

P o
L3

1

o

Figure 5: Decision regions of the QIB classifier and
reference classifiers. The decision regions of the QIB
classifier, the classical-T" IB classifier, and two reference clas-
sifiers are plotted together with the test data. The different
dot colors correspond to data with different labels, and the
color of each region corresponds to the prediction made by
the classifier for data in that region.

6 Quantum deterministic information
bottleneck (QDIB)

Considering the limit « — +0, the paper [31] pro-
posed deterministic IB, which minimize f,. Now,
we consider this minimization with quantum systems
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T,Y and classical system X. First, we define

G0, 7|z[07|x]
. 1
- Trop Prizlorx]

Prizlorx]ore Prizlor x],

(64)

where Ppi,[op|x] is the projection to the maximum
eigenvalue of the operator (1 — f)logor[orx] +
B Try py(logoyr[or x] — log py).

Given an initial point U%)X, we propose the follow-
ing update rule

n+1 ~ n
J(Tl; )= UO,T|X[0(T|§<]. (65)

As shown below, each step of this algorithm improves
the value of the target function fo.
The operator 6o p|[0p|x] is characterized as

6o,1eloT|X] = Clylg}) Oaa.1|zloTX]- (66)
Since Theorem 1 and (20) guarantee

fa(6a,a,1x[0Tx])
=Jo,a(0aa1x07x] 000X 0T X])
<Ja,a(Ga,a,rxlorx], orx)
<Ja,alor)x,071x) = falor)x), (67)

the limit o — 0 in (67) implies
fa—o0(6orx[07x]) < faso(orx]); (68)

which shows that each step of this algorithm improves
the value of the target function fpig := fa_0-

Algorithm 3 Quantum deterministic information
bottleneck (QDIB) algorithm

1: Input: A joint state pxy [cf. (1)].

2: Create a counter n as the number of iterations,
initialized to 1.

3: repeat

4:  Choose a%;l) as

Prig [aéfi)X]JE:; Pri, [ngn‘)x]

Tr (o)) Priz[orx])

(n+1) _
Tl

(69)

(n)

71x) is the projection on the space

where Pp,[o

spanned by the eigenvectors of fazo[a(ﬁk](x)
[cf. (15)] corresponding to the minimum eigen-
value.

5. Setnasn-+1.

6: until convergence.

7: Output: A c-q channel O'gi;l)

7 Approximate sufficient statistics

from DIB

7.1 Task formulation

Next, we discuss how DIB can be used for the extrac-
tion of useful information under a classical-quantum
(c-q) joint system composed of X and Y with the
joint state pxy := > Px(z)|z)(z| ® py|s, where X
is a classical system and Y is a quantum system. For
example, assume that our interest is in the quantum
phenomena in the quantum system Y. This quan-
tum system Y is correlated to the classical system
X. However, there is a possibility that the classical
system X contains redundant information. In this
case, it is useful to extract essential information from
X to describe the behavior of the quantum phenom-
ena in the quantum system Y. To discuss the es-
sential information, we introduce the concept of e-
(approximate) sufficient statistics of the classical sys-
tem X with respect to the quantum system Y while
the papers [12, 36] discussed this concept when system
Y is a classical system.

A function f from X to T is called a sufficient statis-
tics of X for the quantum system Y when there exists
a conditional distribution Px |7 such that

pxy = Pxpr(zit)a)@l@ Y Px(a)py
t z’€f1(t)
(70)
The above condition is equivalent to the condition
I(X:Y)=I(T:Y) (71)

while in general we have the inequality I(X : V) >
I(T:Y).

However, when we use sufficient statistics, we can-
not remove a small correlation generated by a noise.
As an example, suppose that the classical system
X is composed of two classical systems X; and
Xs. Assume that we have a c-q state px,x,vy =
Down 2wy Pxix, (@1, 22) 21, 22) (21, 22| ® pyp, With
two classical systems X; and Xs.

We assume that we have already known the distri-
bution Px,x, but we do not know py,. Also, we
assume that we generate this state several times and
apply the state estimation to the generated state. As
a result, we obtain our estimate

ﬁX1X2Y = ZZ PX1X2 (xla (EQ)I(El,LU2><1'1,£C2| ® pAY|-T17TE2'

T T2

(72)

Since our estimate always has small error, py s, 4,
is not exactly the same as py|,,, but it is close to
Py|z, - In this case, this difference should be consid-
ered as a noise. That is, the dependence of X5 is
not essential. It is better to consider that the correla-

tion is given as Py s, = D, Px,x, (¥2|71)Dy |2, a0
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Figure 6: Bloch representation of the estimated en-
semble {p(0z,,22, A\w1,22) - As can be seen in the figure,
the qubit states, especially those with higher purity, form
several clusters in the Bloch ball. In each cluster, the states
have the same value of x; and different values of x2. This
shows that the correlation between X; and Y is higher than
the correlation between X5 and Y.

so that our estimate of px,x,y is given as
Down 2ows Px1.x0 (1, T2) 01, @2) (21, 22| @ Py o, -

For € > 0, a function f : X — T is called an e
sufficient statistics when the inequality

I(X:Y)—e<I(T:Y) (73)

holds. Hence, a sufficient statistics with 7' of small
size and an e-sufficient statistics can be considered as
compressed data of X with respect to Y.

In the above example, X7 X is a sufficient statistics
for Y. When ¢ is sufficiently small for e, I(X; : Y) is
close to I(X1 X5 :Y), i.e., X1 is an e-sufficient statis-
tics. Hence, we can remove non-essential information
X5. In fact, if X = X} x Xy is disturbed by a random
permutation 7, it will be non-trivial to extract essen-
tial information. To cover such a non-trivial case, we
need a systematic approach to find such a function
with a small-size T. For this aim, we can use the
information bottleneck algorithm.

To extract approximate sufficient statistics 7', we
focus on two requirements. The mutual information
I(T :Y) should be larger, and the entropy H(T)
should be smaller. To handle these requirements, we
simply minimize H(T)—FI(T : Y) by using determin-
istic information bottleneck algorithm with |7| = | X|.
Since the algorithm minimizes H(T) — SI(T : Y),
and the conditional distribution Pr|x in the solution
is deterministic, the support of Pr in the solution is
expected to be smaller than the original set 7.

7.2 Numerics

To demonstrate the above idea, let us take a look at
a concrete example, which is a modification of the
example in Section 2.5. Consider a single-qubit quan-
tum system Y and a classical register X that encodes
information about Y. The register X is further split

into two sub-registers X; and X, that take values in
the sets X} = {0,1,...,4} and X, = {0,1,...,19}.
Then, we assume that Px is the uniform distribu-
tion over X X X, and the density py|,, is given as
p(0z,, Ay ) with (37). The parameters  and A\ depend
on x as

Ty

T
Op, =7 75 Ay 1=
' |1 P

. (74)

Obviously, the quantum system depends only on X3
and X, contains no information about the quantum
system. An experimentalist who has access to the
ensemble, however, does not know this. To extract
information about the quantum system, for each pair
of (x1,x2), the experimentalist estimates its density
matrix by repetitively (for v < oo times) making a
suitable measurement on p(0y,, A, ). According to
quantum state estimation theory [13, 15], the estimate
has an inaccuracy proportional to 1/4/v. Taking this
into account, we model the estimated density matrix
as p (0zy .05 Azy,0o) When the actual density matrix is
p (04, Az,), where

€
Opyzn =7 7= (L +7r, (21,2 75
) |Xl|( ( 1 2)) ( )
Ao n = e (1470, (21, 22)) (76)
T1,To 4|X1| v 1,42

and r, (1, x2), 7, (21, 22) = O(1/4/v) characterise the
estimation errors. The estimated ensemble then ad-
mits the density matrix given in (72) with py |4, », =
P (03, 20, Az, 2n), Which is given by Eqs. (37), (75),
and (76). Notice that now the register Xy is corre-
lated with Y in the estimated joint state pxy, even
if the estimation-induced noise follows a distribution
that does not depend on the value of Xs.

Now, the task is to compress the register X, by con-
structing a map from X to a smaller classical register
T. Here we take T to be the same size as X. One in-
tuitive approach is to discard the X, register because
X1 contains much more information about the qubit
state than X5. Nevertheless, such a simple map does
not exist in more general cases. For instance, if the
values of (z1,z2) in Eq. (72) are permuted, discarding
X5 will not result in faithful compression. To see this,
we further apply a arbitrary chosen unknown reshuf-
fling m : X — X to the classical register X = A} x X;
in Eq. (72). The ensemble then admits the following
joint density matrix:

Py = 3 (Px(@n,ee)ln(r,@2) (n(w1,2)

T1,T2

®@ P (0, 205 Aay o) ) (77)

with p (02, 25, As1,2,) given by Egs. (75) and (76).
The goal is to extract an approximate sufficient statis-
tics by constructing a map Q : X — T.
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Figure 7: Performance of QDIB algorithm in constructing approximate sufficient statistics. We apply our
quantum deterministic information bottleneck (QDIB) algorithm on the state (77) (see also Fig. 6). For the joint state, we
choose |Xi| = 5 and |X2| = 20, and Px to be the uniform distribution over X = X} x AX>. The noise r,(x1,x2) and
r},(x1,x2) are drawn randomly and uniformly from the interval (—1/y/v,1/y/v) with v = 20 for any z1 € X1,x2 € X2. In
the QDIB algorithm (Algorithm 3), we choose 5 = 20 and |T| = |X| = 100. In the figure above, the information bottleneck
fpiB := fa—o is plotted as a function of the number of iterations. As can be seen from the plot, the QDIB value of our
algorithm becomes lower than that of the fictional protocol of “discarding X after the inverse permutation 7 =" after only 3
iterations. In the figure below, the faithfulness I(T" : Y') is plotted as a function of the number of iterations, and I(X; : Y)
after the inverse permutation 7' (corresponding to the performance of the fictional protocol of “discarding X2 after the
inverse permutation 77 1") as well as I(X : Y) (corresponding to the upper bound of I(T : Y)) are plotted for reference.

Both plots justify that our QDIB algorithm performs well in the task of constructing approximate sufficient statistics.

Our QDIB algorithm works as a more systematic
and more efficient method to extract essential infor-
mation and discard non-essential information, even
in the presence of an arbitrary permutation. In the
QDIB algorithm (Algorithm 3), we choose § = 20
and |T| = |X| = |X1||Az|. First, we consider the
case when the ensemble admits the form (72), and
the performance is summarised in Fig. 7. As one can
see from the numerics, fpig := fa—o of applying our
QDIB algorithm to pxy drops lower than that of the
“discarding X5 after the inverse permutation 7= ap-
proach within 5 iterations, and converges to a much
lower value, suggesting a better compression perfor-
mance. This is further justified in the second plot,
where the faithfulness I(T : Y') and the residual in-
formation I(T : X) are plotted. We can see that since
our QDIB algorithm preserves almost as much infor-
mation about Y as the original variable X, it com-
presses a considerably larger portion of information
about the original register X.

8 Discussion and conclusion

We have proposed a generalized algorithm for QIB
with an acceleration parameter v and an additional
parameter «, and have derived a necessary condition
for the monotonic decrease of the objective function
fo = H(T)—aH(T|X) - BI(T : Y) with quantum
systems Y, T and classical system X when we extract
information T with respect to Y from X. We have
also showed its convergence under the same condition

and that a wisely-chosen parameter v can accelerate
the convergence. Our numerical calculation has fur-
ther justified the above analysis as follows. In our nu-
merical experiment, making v smaller accelerates the
convergence, but if v is made smaller than a thresh-
old the algorithm will fail to converge. In addition,
we have provided examples that quantum system T
have an advantage over classical system T even when
Y and X are classical.

Next, taking the limit a@ — 40, we have proposed
an iterative algorithm for QDIB that minimizes the
objective function fpig = H(T) — BI(T : Y). We
have shown that this iterative algorithm always de-
creases the objective function monotonically. QDIB
can be applied to find an approximate sufficient statis-
tics because it realizes a smaller entropy H(T') and a
larger mutual information I(T : Y). Then, we have
numerically demonstrated that our QDIB algorithm
works well as an approximate sufficient statistics.

An important application we show in this work
is that our QIB algorithm yields a new approach
of constructing quantum feature maps for classifica-
tion. In our numerical example, quantum system
T realizes a smaller value of the objective function
than classical system 7. This numerical analysis
shows the advantage of using quantum memory 7" for
the classification. Despite significant recent progress
[3, 5,11, 17, 20, 2527, 34], the advantage of quantum
machine learning over its classical counterpart has not
been discussed much. Our work provides a new an-
gle of attacking this issue, shedding light on a new
proposal to rigorously justify and quantify quantum
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supremacy in the world of learning.

An open question left for future study is how to
extend our result to the case where X is also a quan-
tum system, which covers, for instance,the scenario
of compressing a quantum system while keeping its
correlation with a classical label [21, 23, 35-38]. Re-
markably, in such a scenario, it has been shown that,
if T is classical, some correlation will be lost regard-
less of its size [37]. Therefore, we anticipate that the
advantage of a quantum 7" might persist or grow even
stronger for QIB with a quantum X.

Finally, we remark that currently there is no effi-
cient method to compute the restriction on v in The-
orem 3. Resolving this important issue in a future
work will accelerate the convergence of our informa-
tion bottleneck algorithm.
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