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Graph states are a family of stabilizer states
which can be tailored towards various appli-
cations in photonic quantum computing and
quantum communication. In this paper, we
present a modular design based on quantum
dot emitters coupled to a waveguide and opti-
cal fiber delay lines to deterministically gener-
ate N-dimensional cluster states and other use-
ful graph states such as tree states and repeater
states. Unlike previous proposals, our design
requires no two-qubit gates on quantum dots
and at most one optical switch, thereby, min-
imizing challenges usually posed by these re-
quirements. Furthermore, we discuss the error
model for our design and demonstrate a fault-
tolerant quantum memory with an error thresh-
old of 0.53% in the case of a 3d graph state on
a Raussendorf-Harrington-Goyal (RHG) lattice.
We also provide a fundamental upper bound on
the correctable loss in the fault-tolerant RHG
state based on the percolation theory, which is
1.24 dB or 0.24 dB depending on whether the
state is directly generated or obtained from a
simple cubic cluster state, respectively.

1 Introduction

Photonic systems offer a promising route for scalable
quantum computing and networking (collectively called
quantum information processing). Integrated photonic
chips have a small footprint and are network compat-
ible in the sense that they can be connected together
via an optical quantum network to realize distributed
quantum computing [1, 2]. Another feature of photon-
based qubits compared to matter-based qubits is that
photonic qubits are protected from decoherence since
they barely interact with environment. However, de-
veloping quantum photonic technologies poses two new
challenges: First, photons do not easily interact with
each other and require nonlinear devices to mediate in-

teractions’. Even though integrating several devices in
the form of a quantum circuit (where photons inter-
act by flowing through) can be done for a specific task,
it is not a general purpose solution. Second, photonic
systems suffer from loss error where photons either are
absorbed or leak out.

Fortunately, both issues can be addressed in a
measurement-based scheme [7, 8] where various tasks
including applying quantum gates, error (loss) correc-
tion, teleportation, etc. can be realized in terms of a se-
quence of (easily reconfigurable) single-qubit measure-
ments on a multi-photon entangled state, a.k.a. resource
state. Resource states are usually realized in the form
of a graph state. Among others, two important ad-
vantages of using graph states are that they are stabi-
lizer states which means the stabilizer formalism tool-
box is available and they are equipped with a graph
representation which provides room for further innova-
tions by applying graph theory ideas. In the context of
computing, cluster states in two and three dimensions
are archetypal examples of graph states which can be
used to perform universal [9-11] and fault-tolerant [12]
quantum computation, respectively. In the context of
networking, quantum repeater states and loss-tolerant
quantum error correcting codes, based on all-to-all con-
nected [13-15], self-similar [16], and tree graphs [17, 18],
respectively, have been developed as new generations
of quantum communication protocols. Consequently,
design and implementation of photonic devices to ef-
ficiently generate resource graph states play a crucial
role in realizing measurement-based photonic quantum
information processing. Our focus in this work is on
optimal designs for a deterministic resource state gen-
erator.

Different protocols to generate entangled resource
states generally fall into two categories [19, 20]: One
involves probabilistic sources of entangled photon pairs,
based on three-wave or four-wave mixing, whose output
is fed into a linear optical circuit for further probabilistic

IThere is a separate line of research on quantum computing [3]
and realizing gates based on linear optics which led to develop-
ment of probabilistic postselected and fusion gates [4-6]. We do
not address these approaches in this work.
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gating and postselection of the desired graph state [21].
Despite the technological breakthroughs in this field,
the probabilistic nature of this approach causes a large
overhead and has limited its scalability. The other ap-
proach is based on light-matter interfaces or quantum
emitters which are deterministic sources of single pho-
tons [22]. A semiconductor quantum dot (QD) [23, 24]
in a nanophotonic cavity or waveguide is a prototypical
example of a quantum emitter which can further be used
as a source of nonlinearity [25, 26] and integrated with
photonic chips. Quantum emitters have also been real-
ized in other systems such as atoms, ions, vacancy cen-
ters, and molecules. The main advantage of the latter
approach is that the photon source and nonlinear gates
are deterministic, which leads to high resource-state
generation rates without a large overhead. Addition-
ally, recent advances in QD technologies [27-29] offer a
great deal of quantum controllability and makes it pos-
sible to achieve large Purcell enhancement and produce
indistinguishable photons over extended timescales.

Designing optical circuits and protocols for determin-
istic generation of entangled states of photons such as
Greenberger—Horne—Zeilinger (GHZ) and linear cluster
states via a single quantum emitter was pioneered in
Ref. [30], which was subsequently demonstrated experi-
mentally using a QD [31] and more recently using a sin-
gle atom in a cavity [32]. The core idea is that by apply-
ing a temporal sequence of resonant pulses to a quantum
emitter whose logical state is controlled by a separate
optical transition, we obtain a sequence of entangled
photons at the output. This scheme was extended to
coupled QDs for generating 2d cluster states [33, 34],
and repeater states [35], which was followed up and
further analyzed in several recent studies [36-38]. De-
spite being theoretically interesting, experimentally re-
alizing such circuit designs are often extremely chal-
lenging since they require multiple actively monitored
emitters and two-qubit gates on them. Even if the two-
qubit gates were feasible, it would limit the overall gen-
eration rate of resource states as these gates are typi-
cally slow. Furthermore, unlike the original proposal,
these designs typically lack a regular repeated pattern
of resonant pulses and emitter gates, which leads to an
irregular temporal output. In other words, there is no
obvious way to define a reference clock cycle for out-
going photons. This is particularly an important issue
for quantum communication purposes where clock syn-
chronization is vital.

In a parallel direction, Ref. [39] opened another route
by designing a novel resource state generator in terms of
a quantum emitter coupled to a quantum feedback loop
(or a time-delay line), which was further pursued to de-
sign protocols for generating cluster states in 2d [40] and
3d [41] as well as tree graph states [42]. Such designs

involve only a single emitter and relax the multi-emitter
requirement. In addition, the photon emission rate is
manifestly regular. However, the feedback loop idea
by itself relies on a particular photonic qubit encoding
(i.e., presence/absence), where single-qubit gates are
not readily available. Moreover, this type of qubit en-
coding is very sensitive to dephasing error and may not
be a good choice, especially because in these schemes
qubits travel through optical fiber delay line. Hence,
resource states obtained from this approach cannot be
easily manipulated for different tasks without introduc-
ing extra overhead. In addition, introducing more than
one delay-line [41] in this scheme requires multiple ul-
trafast optical switches for routing which puts an upper
bound on the device overall performance in terms of
generation rate. Needless to say that optical switches
lead to larger loss rate in the system.

In this paper, we attempt to resolve the issues with
existing prototypes mentioned above and propose a new
optical circuit design for deterministic resource state
generators. Our design consists of two components:
An active component, a quantum emitter which sends
photons to a passive component, comprising an opti-
cal circulator attached to a scattering block [26] with
a delay-line feedback loop (see Fig. 1). Different graph
states can be obtained by changing the resonant pulse
sequence applied to QD and possibly additional single-
qubit gates. Furthermore, our design is modular, i.e.,
the passive component can be stacked to realize graphs
on higher dimensional lattices. We should note that our
proposal is not restricted to the QD platform and may
be applicable to other quantum emitter technologies.
Regarding the aforementioned issues, our design con-
tains only one emitter; as a result, it does not require
any two-qubit gates for emitters and manifestly has a
reference clock cycle which is governed by the resonant
pulse sequence applied to the emitter. We use time-
bin qubit encoding where single-qubit gates are readily
available for performing customized tasks on the output
resource state. Additionally, time-bin encoding is gen-
erally not sensitive to dephasing error and suitable for
long-distance quantum communication [43]. Last but
not least, our setup does not generally require ultra-
fast optical switches running at photon generation rate.
In certain cases, we may have to use an optical switch;
however, it only needs to run at a much slower speed
than the photon generation rate and hence does not
impose a constraint on the overall resource state gener-
ation rate.

We provide explicit design protocols for generating
cluster states in any dimension, repeater states, and
tree graph states. We further discuss an error model for
our design where for simplicity we accompany every (ef-
fective) gate with a depolarizing channel and calculate
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Figure 1: Schematic setup to generate (a) two-dimensional and
(b) N-dimensional cluster state. Q and Cz denote quantum
emitter and controlled-phase gate (based on a quantum dot
array), respectively. Optical fiber delay lines are terminated by
a reflective plane; however, we show round-trip trajectories of
photons for clarity.

the circuit error threshold in the case of fault-tolerant
cluster state in three dimensions. We find the circuit
error threshold to be 0.53% which shows an improve-
ment compared to the error threshold of 0.39% found in
Ref. [41]. This roughly means that fault-tolerant error
correction can be achieved as along as the gate infideli-
ties are below 0.53%.

We also study tolerance against the loss error and
reproduce the known result that loss rates for directly
generating graph states on RHG lattice can be toler-
ated up to 24.9% (or equivalently 1.24 dB) correspond-
ing to the bond percolation transition on simple cubic
lattice [44]. Alternatively, one can imagine generating
a 3d cluster state on cubic lattice and then carving out
an RHG lattice by measuring a subset of qubits in Z ba-
sis. We show the loss threshold in this case to be quite
lower around 5.41% (or 0.24 dB) which is described by
the bond percolation transition on cubic lattice with
second and fourth nearest neighbor links. As we ex-
plain, the fault-tolerant regime can be reached despite
the loss error in optical fiber delay lines as long as the
photon emission rates are greater than 7.5 or 130 MHz
with or without conversion to the telecomm frequency
band. There are two other places where loss error is
dominant, namely, the emitter-waveguide and chip-to-
fiber interfaces. Chip-to-fiber connection in principle
can be improved by engineering a better interface. At
the same time, recent developments in QD technologies
have resulted in the emitter radiation efficiency near
unity (e.g., 98.4% reported in Ref. [45]) and the path

Figure 2: (a) 2-dim cluster state. Qubits are numbered and
color coded according to the circuit in Fig. 6. (b) RHG lat-
tice for fault-tolerant quantum computing. In panel (b), black
edges are to used to show the 3D structure, while blue edges
represent edges in the graph state representation.

forward looks promising [46].

The rest of this paper is organized as follows: In
Sec. 2, we provide some background materials on graph
states and the physics of quantum emitters and explain
the two entangling gates available in our setup. Next,
in Sec. 3 we present details of our optical circuit design
to deterministically generate various graph states. In
Sec. 4, we focus on fault-tolerant properties of 3d clus-
ter states and show that our optical circuit can generate
a robust state in the presence of photon loss and gate
errors. Finally, we close in Sec. 5 with concluding re-
marks and future directions. Some of the details and
derivations are presented in three appendices.

2 Preliminary remarks

In this section, we review some basics of the graph states
and also discuss the building blocks of our optical cir-
cuits, namely, quantum dots coupled to a waveguide
which we use to generate entangled photons and imple-
ment deterministic gates.

2.1 Graph state representation

In this part, we review some definitions and introduce
our notations. Consider an undirected graph G with
N vertices representing N qubits. A graph state (see
Ref. [47] for a detailed review) associated with G is then
defined as a quantum state of N qubits and given by

W)= [[ czij )V, (2.1)
(4,j)€G
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where subscripts are qubit labels 7,7 = 1,--- , N, and
Cz; ; is a controlled-phase gate between qubits ¢ and j
for every edge (i,7) on graph G. We should note that
the ordering of 0z gates in the above expression does not
matter as they commute with each other. Throughout
this paper, we use {X;,Y;, Z;} to denote the Pauli oper-
ators acting on qubit i. Also, |[+) refers to the eigenstate
of X Pauli operator, i.e., X |+) = £ |£), which can be
obtained by a Hadamard gate |[+) = H |0).

An important property of graph states is that they
can be characterized as stabilizer states, i.e., a common
eigenvector of a stabilizer group generated by N com-
muting set of Pauli operators (aka stabilizer generators)
S ={P1, -+, Pn}. The i-th stabilizer generator asso-
ciated with the i-th vertex on G is defined by

Pr=X;, Q Z (2.2)
(1,7)€G

In other words, the i-th stabilizer is a product of an
X Pauli operator on ¢-th vertex and Z Pauli operators
of adjacent (in the sense of graph) vertices. We should
note that graph state is a stabilizer state (as opposed
to a stabilizer code) since there are N stabilizers which
determine a unique state for N qubits.

There are several advantages to use graph states; to
name two, let us mention that they are equipped with
a graphical representation which gives some intuition
to the multipartite entanglement nature of the system,
and second the stabilizer formalism provides an efficient
classical description of the graph state (despite being
a non-trivial many-body state) which makes the simu-
lation of error processes (and possible error correction
schemes) tractable on a classical computer. Figures 2-
4 show some commonly used graph states with various
applications from quantum computing to quantum net-
working and communications. Graph states on a hyper-
cubic lattice in N-dimensions are generally referred to
as N-dim cluster states (see Fig. 2). A 1d (linear) clus-
ter state is a simplest state which can be used as a tele-
portation channel or for entanglement distribution in a
quantum network. A 2d cluster state shown in Fig. 2(a)
is a resource state for universal quantum computation
in a measurement-based computation scheme [9, 10].
Most importantly, a 3d cluster state or its variant in
the form of a Raussendorf-Harrington-Goyal (RHG) lat-
tice [12, 48] (Fig. 2(b)) can be used as a platform for
universal fault-tolerant quantum computation.

Other useful graph states with applications in quan-
tum communication include all-to-all graph (repeater)
states such as the ones shown in Fig. 3 for all photonic
quantum repeaters [15] and tree graph states as a quan-
tum error-correcting code to realize a one-way quantum
communication protocol [17].

Before, we delve into the details of our optical circuit

(b)

Figure 3: Graph representation of photonic repeater states of
(a) twelve and (b) sixteen qubits. Numbers indicate the tem-
poral position of the photon in the sequence.

1 2 3 4 5 6 7 8

Figure 4: Tree graph state of fifteen qubits. Numbers indicate
the temporal position of the photon in the sequence.

designs, let us briefly go over the circuit building blocks,
i.e., quantum emitters and controlled-phase gates in the
next part.

2.2 Quantum emitters for deterministic gates

As mentioned, quantum emitters such as a quantum
dot coupled to a waveguide can be used both as a de-
terministic source of entangled photons and a nonlinear
medium for two-photon gates. In this section, we review
these facts in some detail which then will be used in the
following sections as principles for the circuit design.
As we see, the photon emission process is effectively a
controlled-not gate where the control qubit is the emit-
ter and the target qubit is a photonic qubit.
Throughout this paper, we use an emitter with a A-
type energy level structure as shown in Fig. 5(a), where
we use the transition |g) < |f) to send and absorb
photons denoted by a and a. The other state is denoted
by |e) and the transition is |e) <> |f) is not active and
undesired. The logical states of the emitter are

V=19, 10),:=1e). (2.3)

Such energy levels can be realized in a QD subject to a
few Tesla magnetic field (see e.g. [49]), where |g) and |e)
correspond to electron or hole spin degree of freedom,
and |f) describes a state with an additional exciton.
We apply two types of resonant pulses: One that con-
trols the logical state of the emitter |g) > |f) with Rabi

Accepted in {Yuantum 2023-02-24, click title to verify. Published under CC-BY 4.0. 4



frequency 0, and another one that drives the transi-
tion |g) <> |e) with Rabi frequency Q. We should
note that in the case of QDs the latter transition (be-
tween electron or hole spin up and down) is driven by a
detuned Raman laser and is not an optical dipole tran-
sition [49]; nevertheless, this process results in a transi-
tion with an effective ground state coupling Qg.

For the photonic qubits, we use a time-bin encoding
of quantum information based on the photon arrival
(generation) time. The logical states of a photonic qubit
are defined by

1), = al |vac), 0), = alT [vac) , (2.4)

where the subscript of the photon creation operator
e (1) denotes the early (late) generation time, respec-
tively. Here, |vac) denotes the vacuum state of the
photonic mode in the waveguide. Two advantages of
using this encoding scheme is that single-qubit gates
can be implemented and dephasing error is nearly su-
pressed. A potential challenge with this encoding would
be implementing a controlled-phase gate between the
emitter and photonic qubits, where a simple scattering
off the emitter [40, 50] is not effective since we get a
m-phase shift regardless of the logical state of the pho-
tonic qubit. However, as we explain shortly, we can
implement a controlled-phase gate between two time-
bin encoded photonic qubits by using an array of QDs
following a recent proposal by Schrinski et al. [26]. In
what follows, we explain the two basic gates we use to
generate entangled states: A controlled-not gate dur-
ing the emission process and a controlled-phase gate
through a scattering process.
FEmission process: We initialize the emitter state in
a Hadamard state [+), = (|0), + |1>q)/\@ by sending
a resonant w/2-pulse between |0) < |1) at Qg. This
corresponds to a Hadamard gate on the emitter, which
we denote by H,. Then, we send a resonant m-pulse of
Qo which after possible spontaneous emission gives the
following state
1
V2
Note that the photon emitted at this instance is the
early one. Next, we apply a m-pulse of Qg followed by
another 7-pulse of Qo where the state after the emission
is found to be
—=(0), ®a [vac) + 11}, @ af [vac))
1

V2

After another 7-pulse of Qg we obtain the desired state
1

V2

(11), ® af [vac) +|0), ® [vac)).

(10), @ [1), + 1), @10),), (2.5)

(I @ [1), +10), @10),), (2.6)
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Figure 5: (a) Energy levels of the quantum dot (emitter) where
we use {|e),|g)} as the computational basis for the emitter.
(b) Quantum dot coupled to photonic waveguide as a photon
source. We use time-bin encoding characterized by intra-qubit
time-delay 71 and inter-qubit time difference of 5. (c) Array
of quantum dots to mediate a controlled-phase gate between
two time-bin photonic qubits incident from left and right.

which is a Bell pair between the emitter and the pho-
tonic qubit. Therefore, the emission process effectively
acts as a CNOTy gate where the control qubit is the
emitter. Combined with the emitter initialization, this
process corresponds to the following quantum circuit

Q ] (2.7)

1 —o——

As we discuss in the next section, by applying resonant
pulses regularly we generate an array of time-ordered
photonic qubits in a desired graph state. In particu-
lar, we use the emitter (possibly equipped with single-
qubit gates) to generate linear cluster states, star graph
states, and single qubits in |£) states. The basic timing
requirement is y7; > 1 where Tfl is the photon gen-
eration rate (or 7; with ¢ = 1,2 is the time difference
between two consecutive photons, see Fig. 5(b)), and ~
is the emitter decay rate. Hence, a QD with v ~ 1-100
GHz [46, 49] can accommodate photon emission rates
of 7 ~ 0.1-10 nsec.

Scattering process: To build arbitrary graph states,
we need another two-qubit gate besides the nonlinear-
ity during the emission process. This could be achieved
by using the fact that a photon scattered by a (reso-
nant) QD accumulates a m-phase shift [51-53], which
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Figure 6: Effective quantum circuit to generate 2D cluster state (Fig. 2(a)) using the setup shown in Fig. 1, where qubit numbers
indicate the temporal position of the photonic qubit in the sequence.

effectively acts as a ¢z gate between the QD and the
photonic qubit (in a presence/absence encoding) [40]. A
possible circuit design for arbitrary graph states would
then have delay-line feedback loops into a single quan-
tum emitter [40, 41]. Despite the simplicity and min-
imal requirement for number of components, these de-
signs need high speed optical switches as fast as 771
(photon generation rate) for photon routing. Further-
more, it is not clear how to implement an arbitrary
single-qubit gate for universal quantum computation in
a presence/absence encoding. As mentioned, we would
like to use the time-bin encoding, as a result of which
the above emitter-photonic-qubit ¢z gate is not avail-
able (simply because in either logical state of photonic
qubit there will be a m-phase shift). Hence, to induce
a m-phase shift, we use the nonlinearity induced by an
array of QDs as shown in Fig. 5(c) following Ref. [26]
(We note that these theoretical designs are yet to be re-
alized in the lab). The basic idea is based on the absence
of scattering m-phase shift when two photons simulta-
neously pass through a QD. If the time-bin photonic
qubits are scheduled to arrive such that the late com-
ponent of the incoming photon from left overlaps with
the early component of the incoming photon from right,
then we will get the following (relative) phase-shifts

ler,er) — ler,er),

llL,er) = — Iz, €r)

ler,lr) = ler,lr),

|lL,lR> — ‘ZL,lR> (2.8)

Here, |t;) = al,|vac) in which ¢ = e (I) refers
to early (late) time-bin in photonic qubits and s =
L (R) denotes the incoming qubit from left (right)
(c.f. Fig. 5(c)). From the computational basis defined in
Eq. (2.4), it is easy to see that the above transformation
corresponds to a combined gate X;czr, pXr.

In the next section, we introduce our designs by com-
bining a quantum emitter and CZ gates along with delay
lines to generate various graph states.

3 Optical Circuit Designs for Graph
States

Our typical optical circuit design to generate time-
ordered graph states is shown in Fig. 1(a). It consists
of an active component and a passive component which
may be composed of a few passive modules. The ac-
tive component is a quantum emitter, denoted by Q,
coupled to a waveguide as a source of either linear clus-
ters or individual photonic qubits. Each passive module
consists of an optical circulator, a Cz (scattering) gate,
and an optical fiber delay-line that is in turn termi-
nated by a reflector (or mirror). The entanglement is
built within both passive and active regions of the cir-
cuit. As we explain later in this section, passive modules
can be stacked to generate more complex graph states
(see Fig. 1(b)). Depending on the type of graph state
we wish to generate, we apply a series of Qo and Qg
pulses to the Q emitter and may need to have additional
single-qubit gates as shown in Fig. 8.

In what follows we shall use two basic subgraphs,
namely, the star graph and linear cluster, generated by
a quantum emitter to form more complex graphs. As
we recall in Sec. 2.2, a five-step sequence of Qo and Qg
resonant pulses lead to a Bell-pair between the emitter
and a photonic qubit: (i) 5-pulse of Qg, (ii)-(v) four al-
ternating m-pulses of (o and Qg. Repeating the steps
(ii)—(v) N-times lead to a GHZ state of N photonic
qubits and the emitter. Upon applying hadamard to
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Figure 7: Effective quantum circuit to generate 12-qubit repeater state in Fig. 3(a) using the setup in Fig. 8. Here, numbers

indicate the temporal position of the photon in the sequence.

(a)

(b)

Figure 8: Schematic setup to generate a repeater graph state
(Fig. 3). Q and ¢z denote quantum emitter and controlled-
phase gate (based on a quantum dot array), respectively. Panel
(b) shows the contents of logic gate block in (a). We note that
to generate a repeater state of 2N qubits, the switch remains
at each position for NT.

photonic qubits, we obtain a star graph,

2 e

Q

4 (3.1)

where the central vertex on the graph is the emitter.
The effective circuit is depicted by:

2 ——ofH]
N—O-.—' &H{H]

(3.2)

Repeating all five steps lead to a linear cluster state such
that in the graph representation the emitter is adjacent

to the last emitted photonic qubit as in

— e .- 0—0o—o 3.3
1 2 N-1 N Q (3:3)

It is worth noting that we can combine the last m-pulse
of Qg in a given step with the first T-pulse of (2 in the
next step to make it a four-step pulse sequence: Three
m-pluses of Qp, (g, and Qp, respectively, along with a
5 Qg pulse. The corresponding quantum circuit can be

shown as
Q Ly
1 )
2

Ve
Au

A~

(3.4)

N D

The above two protocols are modified versions of the
original Lindner-Rudolph [30] machine-gun proposal to
account for qubit time-bin encoding. We denote the
time difference between early and late bins within a
photonic qubit by 7 and the time difference between
the late and early bins of two consecutive qubits by 7o
(see Fig. 5(b)). This simply implies that the time dif-
ference between the early bins of two consecutive qubits
is 7 = 71 + 7. As we see, we can obtain graph states
on different lattices by tuning the 71 /72 ratio.

The other subgraph we may need is an array of un-
entangled qubits prepared in hadamard basis |+). We
propose three ways to do that. One way to achieve this
is to interrupt the linear cluster generation by measur-
ing the emitter in the Hadamard basis (which puts the
photonic qubit in |4+) depending on the measurement
outcome). This corresponds to the following circuit:

Q s
WIS gy
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Figure 9: Effective quantum circuit to generate 15-qubit binary tree state in Fig. 4 using the setup in Fig. 1(a).

Another way is to prepare a star graph (3.1) and mea-
sure the emitter afterwards. As a third method, we
can put the emitter in the logical state |1) and run it
as a two-level system. Then, applying a sequence of
m-pulses of Qo yields a series of single photons. By
placing a Mach-Zehnder interferometer (MZI) with a
phase-shifter and a delay line (of )

~ = (3.6)

we can then generate a sequence of time-bin qubits in
|+) as follows: An early photon passes through MZI
while we set ¢ = § so that half of the incoming signal
goes to the delay line and the other half leaves. Upon
approaching t = 7 we set ¢ = 7w so that the output of
the delay line comes out of the MZI. We should note
that these three methods have their own pros and cons.
For example, the emitter measurement and reinitializa-
tion could be slow (~ 0.1-1 usec) [49], which is used
for every qubit in method one. In contrast, the latter
two methods only require emitter resetting once. How-
ever, they come at the cost of single qubit gates such as
Hadamard in the second method (3.2) and MZI with a
delay line in the third method (3.6) which would intro-
duce further loss into the system.

3.1 N-dimensional cluster states

Our algorithm to make higher dimensional cluster states
is incremental in the sense that we start with linear clus-
ter states and stitch them together via Cz scattering
gate to get a 2d cluster state (Fig. 2(a)) at the out-
put. This step involves keeping n-th linear cluster in

the delay line while (n + 1)-th line is being prepared
by the emitter as shown in Fig. 1(a). As a result, if
we want to produce a L, x L, 2d cluster state (qubit
time-orderings and their coordinates are illustrated in
Fig. 2(a)), we need a delay line of L, (71 +72)+ 7 (such
that 7y < 72) and continue the process L, times. The
effective quantum circuit is shown in Fig. 6. We should
note that here we measure the emitter after the comple-
tion of each line so that we get a 2d cluster state with
open boundaries. Setting 71 = 79, we obtain a 2d graph
state on triangular lattice. To generate a 3d cluster
state, we add another passive module at the output of
this circuit which is used to stitch together layers of 2d
cluster states. To make a L, x L, x L, lattice, we need
to have a LyL, (1 + 72) + 71 delay line in the second
module. Repeating this process over N-modules lead to
an N-dimensional graph state on a hypercubic lattice.

An important example is the RHG state [12, 54]
shown in Fig. 2(b) which can be obtained by measur-
ing (in Z-basis) a subset of photons on 3d cubic lattice,
which form a body-centered lattice in a doubled unit
cell. Alternatively, we can make an RHG state by modi-
fying the resonant pulse sequence in every other line and
use one of the three methods discussed near the end of
the previous part (see the discussion around Eq. (3.5))
so that we get a sequence of qubits in |+). This gives the
downward output of the first optical circulator to be the
desired state on xy plane of RHG state, which is a clus-
ter state version of surface code with half of stabilizers.
As we will see in the next section, preparing a cubic
lattice and measuring qubits has a lower loss thresh-
old compared to the direct construction (i.e., the three
aforementioned methods); however, the former method
does not involve any switches or resetting the emitter,
and hence, might have a better performance in terms of
state generation rate since resetting emitters (in partic-
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ular QDs) is potentially a slow process.

Let us now compare our protocol with the previous
studies [40, 41]. First, both single-rail encodings in
previous work are based on absence/presence encoding
where applying a direct arbitrary single-qubit gates is
not possible. This is particularly important because
the most basic requirement is measurement in X ba-
sis (e.g., for error correction) which is not immediately
available in such encoding. In contrast, our protocol
is based on time-bin encoding which can be easily con-
verted to dual-rail encoding where linear optics can be
used for single-qubit gates. The dual-rail encoding in
Ref. [41] involves distinguishable photons and may be
used for applying arbitrary single-qubit gates, but at
the cost of extra overhead such as frequency convert-
ers. Second, adding two delay-lines [41] requires ultra-
fast switching at the photon emission rate, while there
is no need for ultrafast switches or only one switch in
our scheme. Third, the RHG generation protocol in
Ref. [41] requires emitter resetting quite frequently. As
mentioned above, this is potentially a very slow process
for QDs and not experimentally desirable. In our case,
we have two alternative ways of doing that by using
a star graph or running the QD as a two-level system
(albeit at the cost of introducing actively reconfigured
MZI switches), whereas there is no such flexibility in
Ref. [41].

3.2 Repeater graph states

One of the challenges to form an entanglement distri-
bution across a quantum network is amplifying a quan-
tum signal which is prohibited by the no-cloning theo-
rem. A possible solution is to realize long-range Bell-
pairs by preparing local Bell-pairs and sequentially send
one (photonic) qubit of each repeater station to the
next station where a fusion measurement gate is per-
formed. The issue with this approach is that fusion
gates are probabilistic and over a long distance (and
many repeater stations) the success probability of gen-
erating a long-range Bell-pair decays (exponentially)
rather quickly. To increase the success probability of
each fusion gate, all-photonic repeater states were devel-
oped [15], which effectively act as a multiplexed fusion
gate: Instead of sending one qubit of Bell-pair, multi-
ple qubits (left/right half of repeater states in Fig. 3)
are sent and multiple fusion gates are performed on the
outer qubits (labeled 1 to 6 in Fig. 3(a)). Depending
on the fusion outcomes, inner qubits are measured to
complete a Bell link between two consecutive repeater
station. Since the pioneering work [15], there have been
several studies on trade-off and resource requirements
to realize these states deterministically [35-38, 42] and
perform various quantum communication tasks based

on the repeater states [8, 55, 56].

Here, as a byproduct of our design, we show how to
determinstically generate repeater states in our setup.
We should note that compared to previous works [35—
38] which use actively controlled multiple QDs (or solid-
state emitters) and require two-qubit gates on them, our
setup has only one active component. Figure 8 shows
a schematic optical circuit which only differs from the
2d-cluster state generator of Fig. 1(a) by a logic gate
block.

We now explain how to generate repeater state of 2N
qubits (see Fig. 3(a) and (b) for N = 6 and 8, respec-
tively). As mentioned, the multi-qubit output state in
our system is time-ordered. A natural ordering for re-
peater states is to enumerate outer qubits and then in-
ner qubits (e.g., Fig. 3(a)). Given this ordering, we need
to define a sequence of resonant pulses on the quan-
tum emitter and a proper delay line so that the outer
qubits in |£) states and collide them with an all-to-all
connected graph of inner qubits. The equivalent quan-
tum circuit is shown in Fig. 7. To obtain the N outer
qubits, we have three options as we discussed earlier in
this section. In the quantum circuit depicted in Fig. 7,
we use the star graph (3.1) and then measure the emit-
ter. The generated sequence of N outer qubits goes
through the identity path in the logic block of Fig. 8(b)
and is held in the delay line while the inner part is pre-
pared. Hence, the duration of the delay line needs to be
N (71 +72) + 71 (provided that 71 < 73), and the optical
switch rate is N (71 + 72) since we only need to have an
additional single qubit gate for the inner qubits. For
the inner layer, we prepare another star graph and ap-
ply a local complementation [57, 58] with respect to the
emitter vertex and measure the emitter in Z basis subse-
quently. The local complementation is achieved by v/iZ
and ViX gates on qubits and the emitter, respectively.
It is worth noting that the single-qubit gates commute
with each other and only need to be performed before
the cz gate. Next, the all-to-all graph is stitched to the
outer qubits in the delay line by the Cz scattering gate.
We also note that since our design is modular we can
stack another passive layer at the output of this circuit
(similar to 1(b)) and effectively add multiple levels of
tree branches to the outer qubits (see next part below
for further details).

3.3 Tree graph states

One of the main challenges in one-way quantum commu-
nication with discrete variable (DV) encoding is photon
loss. A possible resolution within the DV formalism is
to use quantum error correcting codes [59]. This way,
quantum information is encoded in several qubits in the
form of a stabilizer state and sent to a repeater station
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where the state is reconstructed (even though a por-
tion of qubits are lost) based on the remaining qubits
received at that point. As it was shown in Ref. [59],
tree graphs could be a good candidate stabilizer state
for this purpose. Another application of tree states is
a tree-type channel between two nodes on a graph as a
loss tolerant teleportation channel [18].

Let us now explain how to generate a binary tree
graph of N layers consisting of 2V — 1 qubits. We con-
sider a natural ordering of vertices from bottom to top
as shown in Fig. 4 for N = 4. The resonant pulse se-
quence we develop is applied to an optical circuit sim-
ilar to Fig. 1 and realizes the quantum circuit shown
in Fig. 9. All the qubits here are generated by using
the single-qubit protocol in Eq. (3.5). Similar to the
repeater states, the lowest layer can alternatively be
prepared by generating a star graph state and measur-
ing the emitter. The delay line and pulse sequence is
designed such that upper level qubits collide with two
consecutive lower level qubits while passing through cz
and realize a binary branch structure. For instance, late
component of qubit 1 and early component of qubit 9
and early component of qubit 2 and late component of
qubit 9 meet at CZ scattering center. Therefore, we
need to use a varying time-bin encoding in each layer
(according to a pattern which we discuss below) and
include a superscript (n) to denote the layer number in
the tree structure from n = 0 (lowest) ton = N — 1
(highest). By a direct time-analysis we find that

7_1(7L+1) _ 7_2(n)’
T2(n+1) = 27'1(n) + TQ(H), (3.7)
We assume 71(0) = 72(0) which implies the delay line du-

ration to be A = (2 — 1)71(0). Equation (3.7) leads to
the following temporal bins for the n-th layer

(n) 7-1(0) n+1 n
T 27(2 +(-1"),

3

=

(22 = (=1)"). (3.8)

The emission time of the first qubit in the n-th layer
satisfies the following relation

() _ A ) ), (39)

init init

and the solution is given by

n—1

thi =nA+ > 77 (3.10)
j=0
+0)

=nA+ 142" -1)+1-(-1)"), (3.11)

6

(@)

Syndrome graph

(b)
k’y
‘ Error chain
X
—3 Graph edge

Cubic lattice

Figure 10: (a) Syndrome graph shown in violet, where vertices
and edges are associated with parity checks (cells of RHG cubic
lattice) and qubits (faces), respectively, superimposed on RHG
lattice shown in gray. Bit flip errors are shown in (b) and a loss
error in (c) and (d). (b) An error chain (pink) with two failed
parity checks at its endpoints (black vertices). As explained in
the text, stabilizer generators need to be modified to account
for a qubit loss. (c) A lost qubit is shown by the dashed green
edge where the two adjacent parity checks are impacted. (d) By
combining the two impacted stabilizers, a supercheck operator
(green ellipse) is constructed and the syndrome graph is no
longer a regular (simple cubic) lattice.

where we set the time origin at the moment when the
early component of the qubit 1 is emitted, i.e., ti(gi)t =0.

In closing, let us note that all three types of graph
states discussed in this section can be obtained fully by
a sequence of qubits in |+) and a cz-delay line block.
Hence, we may use a regular QD (two-level system) as
a single-photon emitter and a linear optical circuit of
Eq. (3.6) to generate qubits in |+) states using time-
bin encoding.

4  Error analysis of fault-tolerant state

In this section, we focus on a graph state on an RHG
lattice which is a candidate state for fault-tolerant quan-
tum computing and show that our protocol can realize
a fault-tolerant regime. Before we delve into details of
error models, let us briefly review how error correction
works in an RHG cluster state. Here, we only consider
the cluster state as a quantum memory.

As shown in Fig. 2(b), the graph representation de-
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fines face stabilizers as

Sr=X; & Ze. (4.1)

ecof

where f denotes a (primal) cubic face (black squares in
Fig. 2(b)) and 0f denotes the boundary edges of face
f. A subgroup of the stabilizers can be constructed in
terms of product of the face stabilizers Sy corresponding
to the faces of a given cell ¢ which takes the form of

S.= Q) 5= Q) Xy, (4.2)

f€dc f€de

where the edge Pauli operators cancel out. Here, Oc
denotes the boundary faces of cell ¢. Another subgroup
of stabilizers can be similarly defined in terms product
of the stabilizers associated with edges connected to a
vertex on the primal (or cells on the dual) lattice. The
two set of stabilizers can be used towards a topological
quantum error correction as explained below.

4.1 Pauli error threshold

In the absence of loss, error correction process on pri-
mal lattice (which in this case is simple cubic) is real-
ized by measuring qubits on faces in X basis and calcu-
lating the parity checks associated with cell stabilizers
(4.2) [12]. It is more convenient to consider the dual
lattice, where cell stabilizers are defined on vertices and
qubits are placed on the edges. Such a lattice is called
a syndrome graph (Fig. 10(a)). The erroneous qubits
on the syndrome graph form an error chain connect-
ing failed parity checks (a.k.a. syndrome defects), see
Fig. 10(b). The goal of error correction is to find recov-
ery (or correction) chains which match the syndrome
defects as their endpoints. By definition, the error and
recovery chains form closed loops. Logical errors occur
when these loop operators do not commute with logical
operators, otherwise, the error correction succeeds.

In practice, finding a suitable correction chain is com-
putationally difficult. Following the literature [12, 60],
we use Edmonds’ minimum-weight perfect matching
(MWPM) algorithm [61] which is known as a heuris-
tic but efficient method for this purpose. The MWPM
algorithm, in short, pairs up syndrome defects which are
closest to each other and minimize the sum of weights of
the correction chains, i.e., minimum number of qubits
connecting failed checks (which, on a regular lattice
with equal error rate on each link, simply equals the
taxicab distance, c.f. Fig. 10(b)). As we explain be-
low, the effective error rate of physical qubits in our
setup is not uniform since the state generation process
is anisotropic. Because of that, we use Dijkstra’s al-
gorithm for finding shortest paths on a weighted graph.
In our numerical simulations, we wish to probe the bulk

properties; hence, we consider periodic boundary con-
ditions in all three directions to avoid boundary effects
in a finite-size system. Therefore, logical errors occur
when the loops formed by combining error and correc-
tion chains span nontrivial Zs cycles of the syndrome
graph (that is a 3d torus in this case).

For our simulations, we consider a general error model
for single-qubit and two-qubit gates. We also account
for the photon loss and explain the decoding procedure
later in this section. Each single-qubit gate is accompa-
nied by a single-qubit depolarizing channel

Dulp)=(1=pp+5 >

Pe{X,Y,Z}

P,pP,, (4.3)

with probability p. There are several stages where this
error may happen: single-qubit gate on the emitter (p,),
and on photonic qubits (pg), where we label various pro-
cesses with the corresponding error rate. Furthermore,
we consider single-qubit errors on the emitter preceding
a measurement (pr) and single-qubit errors on photonic
qubits preceding the final X-measurement (pg) in the
cluster state.
Similarly, a two-qubit gate is accompanied by a two-
qubit depolarizing channel
/ P’
Dup(p)=(-pp+ 3 X

PP e{I,X,)Y,Z}
(P,P")#(I,I)

P,PlpP, P,

(4.4)

and we have two types of two-qubit gates: The emis-
sion process (c.f. the cNOT,,, gate in (2.7)) with error
probability ps , and the €z, ,, scattering gate with ps.

As discussed in Sec. 3.1, we generate linear clusters
along x axis and stitch them to form a 2d clusters in xy
plane which are then stitched to obtain a 3d structure.
This way of generating a 3d resource state is clearly
anisotropic and hence we have different effective error
rates for the three kinds of qubits associated with the
three faces (xy, yz, xz) of the primal (or dual) lattice.
We further make use of the fact that at each instance of
time the quantum state is a stabilizer state and we can
transform errors to local errors up to stabilizer gener-
ators. This trick was also elucidated in Ref. [41]. The
overall single-qubit error rate for the qubits on yz faces
is given by

4 2 8 32
Qo = 5Pq + - (7 + PF) + —=D2,g + —D2, (4.5)

3 3 15 15
while for the qubits on xz and xy faces, we have
4 2 16
Gy = ¢z = 3P + 3Pr + 7= (P2g T p2), (4.6)

where the subscript indicates the normal vector to the
face on which the qubit lies. Here, the error rates are
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Qzz ;

Figure 11: Correlated errors on the syndrome graph.

calculated by noting that since qubits are measured in
X basis (as discussed earlier) then either Z or Y Pauli
operators are considered a bit flip error (see Appendix A
for details).

Furthermore, two-qubit gates cause simultaneous er-
rors on some qubits located on opposite edges of faces
in syndrome graph,

4
Quz = Qzy = Tsp%
4 8
Gry = q 5Pzt pPa (4.7)

where the subscript is read in the following way: The
first and second letters denote the edge direction and
the direction connecting two edges, respectively, as
shown in Fig. 11. We note that our state generation
protocol implies that not all opposite edges experience
a simultaneous error (see Appendix A for details).

Using the above error model, we run Monte-Carlo
simulations on finite-size lattices, and the results are
plotted in Fig. 12. For simplicity, the error rates are set
to be equal,

Pq =DPs = DT = PF = D2 =P2,q = P- (4.8)

Since the error model is anisotropic, the weights in the
MWPM decoder are given in terms of their respective
error probability ¢; as follows

wy =log (1 —aq)/a), (4.9)

and Dijkstra’s algorithm is exploited for finding short-
est paths between every pair of vertices. We cross-
checked our code with PyMatching package [62]. As
shown in Fig. 12, we obtain the circuit error thresh-
old of pyn = (0.53 £ 0.02)% which is close to the origi-
nal theoretical model of Ref. [12], that reported 0.58%.
Our circuit threshold can be further improved by better
decoders which exploit sublattice correlations [54, 63]
and take into account degeneracies of possible match-
ings [44]. We postpone using decoders with either fea-
tures to a future work.
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Figure 12: Error thresholds for the RHG state without loss.
Ensemble size for averaging is 100k. Inset shows the scaling
collapse with v = 1.

4.2 Loss error threshold

In the remainder of this section, we discuss the effect
of unheralded loss on the logical error rate. Loss in our
case is detected during the measurement process and
can be viewed as a quantum erasure channel where the
error location is known but the error type is not known.
The reason that here we are dealing with erasure (not
deletion) is because every qubit is measured during the
decoding process. Hence, the missing photons can be
located through the detection process. In terms of the
construction process, if a qubit is lost at any point in
our architecture, ¢z will not be active; however, the
gate error rates on the present qubits remain the same.

Mathematically, loss error corresponds to partial
tracing over the missing qubits. For instance, a loss
(or erasure) channel for qubit a is described by the fol-
lowing quantum channel,

£a(p) = (1 - ploss)p +plosstra(p) ® |€> <€| y (410)
where |e) denotes an unknown state outside the com-
putational basis for qubit a, which in our case corre-
spond to an empty (vacuum) state with no photon in
either time bins. We should contrast this with pres-
ence/absence encoding [41] where the photon loss cor-
responds to a forced measurement (state collapse) to
|0) rather than an erasure. To circumvent this issue,
Ref. [41] proposed a dual-rail encoding (with two dis-
tinguishable photonic modes) by considering two addi-
tional energy levels in emitters. This idea however re-
quires extra hardware overhead if one wants to measure
the photonic qubits in bases other than the computa-
tional basis.

One way to model the qubit loss is to reduce the stabi-
lizer group to only stabilizer operators which commute
with the Pauli operators acting on the missing qubit.
This effect leads to a syndrome graph on an irregular
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lattice [44, 64—66]. Suppose that a qubit connecting
two nodes ¢ and ¢ is lost (green edge in Fig. 10(c)).
Since the two check operators associated with ¢ and ¢/,
denoted by S, and S., do not commute the lost qubit
operators, we are only left with S.S/, as a new stabi-
lizer or supercheck operator. This effectively leads to a
syndrome graph shown in Fig. 10(d)) which is no longer
simple cubic. Now, in general multiple loss events occur
and we end up with an irregular lattice with several su-
percheck vertices which may be connected to each other
via more than one edge. For our decoder, we need to
define a graph with only one edge connecting a pair
of vertices. Suppose there are n; edges oriented along
i = x,y, 2 direction connecting two supercheck opera-
tors. We replace those edges with a single edge with an
effective error rate

1
p=5 (1= (1= 20)"™ (1= 20,)"™ (1 - 20.)")

(4.11)

which is simply derived by noting that syndrome defect
occurs when odd number of those qubits are flipped.
For the Monte-Carlo simulations we generate an er-
ror syndrome according to these modified error rates.
The MWPM algorithm can be run on this graph, but
finding whether the recovery chain causes a logical er-
ror or not is non-trivial since the graph is irregular,
and it is not clear how to define Zs cycles. Following
Ref. [64], we run the MWPM decoder on the original
(cubic) lattice, where it is easy to determine the ho-
mology group of error recovery chains, provided that
we put zero weights on missing edges (associated with
loss error) and assign weights (4.9) to the remaining
edges according to Eq. (4.11). For a given loss er-
ror rate, we calculate the logical error rate for several
system sizes L = 8,10,12,14,16 (see Appendix A for
simulation data), and find the error threshold. Fig-
ure 13 shows the circuit error threshold as a function of
loss error probability (piess, Ptn), where we fit the data
with a quadratic function and include the two limiting
cases: No loss (0,0.053) and when lost edges percolate
(0.249,0) and error correction always fails. The latter
case corresponds to the bond percolation transition on
a simple cubic lattice [44, 67] (see Appendix B). For ref-
erence, as we recall from Sec. 3.1 the RHG lattice can
be constructed by measuring qubits on a body-centered
lattice in a 3d cluster state. This method has several
advantages such as simplicity and low hardware over-
head; however, the overall performance in terms of er-
ror thresholds is worse. In Appendix B, we identify
the loss threshold in this case to be a bond percolation
transition on simple cubic lattice with first, second, and
fourth nearest neighbors which occurs at 5.41%, which
is significantly lower than directly generated RHG state.
We expect a similar behavior for the circuit error thresh-
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Figure 13: Error thresholds of the RHG state for various loss
error rates and a quadratic fit (black solid line). Horizontal
lines corresponds to curves (colors represent different sizes) in
Fig. 14 where logical error rate is calculated. All lines are at
p = 1072 and displaced slightly vertically for clarity.

old, but do not further explore this numerically in this
paper.

4.3 Delay-line trade off

Figure 13 may be interpreted as a 2d phase diagram in
the sense that if the system characteristics (pioss, ) fall
within the shaded area (correctable) then we are in the
fault-tolerant regime, i.e. the logical error rate can be
reduced exponentially as we increase the cluster dimen-
sion L. However, in practice as we increase the cluster
size, the dominant factor to the photon loss will be the
optical fiber where the cumulative loss probability grows
with system size as in

—2urL?
)

Ploss = 1 — 10 7o (4.12)
since we are using an optical fiber delay line to store
L? qubits. Here, A denotes the loss per unit length (in
units of dB/km), v = 2.13 x 108 m/s is the speed of
light in the fiber and 7 is the time difference between
two consecutive photonic qubits as discussed in Sec. 3
(c.f. Fig. 5(b)), which varies over the range of 7 ~ 0.1-
50nsec [29]. Therefore, enlarging the cluster state size
eventually overwhelms the error correction and takes us
outside the correctable region of the phase diagram.
Given that the loss rate increases with the system
size, one may ask whether this setup can be exploited
to reduce the logical error rate and eventually be used
as a fault-tolerant quantum memory. To address this
question, let us run a numerical experiment: We start
with a physical error rate p = py and ask whether a typ-
ical loss rate in optical fiber can allow for smaller logical
error rates upon going to larger cluster states. That is
to ask, does error correction in our scheme work given
the typical values in real systems? We set pg = 1073

Accepted in {Yuantum 2023-02-24, click title to verify. Published under CC-BY 4.0. 13



10—1 .

1072 .

10—3 .

logical error rate

10—4 .

1073
0.002

0.003 0.004 0.005 0.006
optical fiber loss rate [dB/qubit]

0.007

Figure 14: Logical error rate for different system sizes as a
function of optical fiber loss rate per qubit, i.e. AvT defined
in Eq. (4.12). Here, we assume physical qubit error rates are
p = 0.1%. The ensemble average for each point is performed
on N, = 5 x 10° samples and error bars Pait (1 — prait) /N
are shown when applicable. Solid lines are guide for eyes.

and compute the logical error rate as a function of loss
per length in number of qubits [dB/qubit] for various
system sizes as plotted in Fig. 14. As we see, if the
loss rate obeys A\t < 5.7 x 1073 dB/qubit, the logi-
cal error rate can be made smaller than the circuit er-
ror rate for some values of L. Typical fiber losses are
A = 3.5 dB/km at the native QD operation wavelength
(950 nm) [29], and improve to A = 0.2 dB/km at the
telecom C-band. Hence, for the protocol to work with-
out a frequency converter, the emission rate needs to be
7 < 7.6 nsec so that the break-even point for the error
rate occurs at 3.5 dB/km.

As mentioned, for a fixed circuit error rate as we in-
crease the cluster size, the loss error rate also increases.
For instance, points in Fig. 14 for various loss rates per
qubit and system sizes correspond to spanning horizon-
tal lines in the phase diagram as shown in. Fig. 13. In
other words, as we increase the system size, the new sys-
tem corresponds to a point further right in the phase
diagram. We should note that at each loss rate per
qubit the logical error rate is bounded from below, and
there is an optimum system size Lop¢ which gives the
lowest possible logical error rate. Ref. [41] showed that
the optimal logical error rate associated with Ly fol-
lows an empirical formula pop ~ exp(—¢/A~1/2). In Ap-
pendix C, we use the saddle point approximation and
derive this relation by assuming an exponentially decay-
ing (in cluster dimension) logical error rate within the
correctable region of the phase diagram. However, our
numerical data is not conclusive in the sense that a wide
range of exponents 0 < z < 1 in popy ~ exp(—c'A™%)
can fit our data well. We suspect the data in Ref. [41]
may suffer from the same issue. We attribute this ob-

servation to the finite-size effects and possible invalidity
of the assumption that the logical error rate decays ex-
ponentially with the system size.

Last but not least, in all finite-size scaling analyses
(with or without loss), we estimate the circuit error
threshold and the critical exponent by collapsing the
data on a single-parameter scaling ansatz

plogic(pa L) _plogic(ptha L) = f((p _pth)Ll/y)7 (413)

without a polynomial fit to the data following the
method developed in Ref. [68] (see details in Ap-
pendix A), where Diogic,c = Plogic(Pth, L) denotes the
logical error rate at the scale-invariant (critical) point.
We find that v = 1.00 £ 0.05 (e.g., see inset of Fig. 12)
which matches the critical exponent of the transition in
the random plaquette Zo gauge theory in 3D [60]. We
also observe that piggic,c in our case is close to those of
Refs. [12, 44, 60]. This further indicates that our numer-
ics (despite detailed differences with previous works)
probe the same phase transition since the value piogic,c
must be related to some universal physical observable
such as the conductivity which only depends on the uni-
versality class.

Let us conclude this section by reiterating a general
remark about fault-tolerant photonic quantum memo-
ries based on discrete-variable cluster states on RHG
lattice. As we discussed earlier in this section, there is
a hard upper bound on loss tolerance in such systems
(regardless of the protocol) corresponding to a bond
percolation transition in a simple cubic lattice which
occurs at pperc. = 24.9%. The critical value in turn
translates into 1.24 dB transmission loss, which imposes
an upper bound on the allowed overall loss. In other
words, quantum error correction in such schemes would
not work if the total transmission loss is greater than
1.24 dB, regardless of how low the qubit (bit flip) error
rate can be made. Assuming that the loss is dominated
by the optical fiber, it is easy to show that the largest
fault-tolerant cluster is given by,

1/2

10
ons 10g10(1 - pperc-) (4.14)

AT

Plugging in A = 0.2 dB/km, we find that L., ranges
between 24 to 540 corresponding to 7 = 50 nsec and
7 = 0.1 nsec, respectively. An interesting observation
here is that if the emission rate is fast enough 77! > 1/3
GHz the photon loss in the delay line does not funda-
mentally preclude the realization of a quantum memory
with million qubits.

Lmax =

5 Discussion

In conclusion, we propose a new optical circuit design
based on quantum emitters and optical fiber delay lines
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to deterministically generate resource graph states. Our
design consists of an active component and a stack of
passive ones which are responsible for single photon gen-
eration and gating, respectively. As we show, different
graph states can be obtained by varying the resonant
pulse sequence applied to the quantum emitter and pos-
sibly additional single-qubit gates. Our optical circuit
admits a modular structure, where passive components
can be stacked to produce graphs on higher dimensional
lattices. We provide explicit design protocols for gen-
erating cluster states in any dimension, repeater states,
and tree graph states. We further discuss an error model
for our design and calculate the circuit error threshold in
the case of fault-tolerant cluster state. We map out an
error-correction phase diagram in terms of circuit error
and loss rates in our setup and identify the correctable
region. In the absence of loss, we find the circuit error
threshold to be 0.53%, while in the absence of circuit
error, the loss threshold is 24.9% corresponding to bond
percolation on a cubic lattice. Finally, we show through
an example that the break-even point for error reduc-
tion in the fault-tolerant construction can be reached
with the existing technology.

There have been several recent studies on using quan-
tum emitters to deterministically generate graph states
for quantum communication [35-39] as well as quan-
tum computing [40, 41]. A central theme in all these
works (including ours) is to reduce the number of com-
ponents by optimizing the generation protocol. This
is particularly beneficial in terms of reducing the engi-
neering challenges to achieve the desired outcome, as in
such systems improving a small number of components
leads to a great performance enhancement. Nonethe-
less, these minimal architectures pose new challenges.
In this work, we address some of these issues in a more
realistic design. Our circuit contains only one actively
monitored emitter and does not require any two-qubit
gates for emitters. Having one emitter implies a refer-
ence clock cycle which is governed by the resonant pulse
sequence applied to the emitter. Our protocol is based
on time-bin qubit encoding which is not sensitive to de-
phasing error and equipped with arbitrary single-qubit
gate set for performing computation or other manipula-
tions on the output resource state. Furthermore, there
is no need for ultrafast optical switches in our design.

At the hardware level, our proposed device archi-
tectures are inspired by the platforms based on semi-
conductor QDs coupled to a waveguide, although they
are not restricted to such platforms and may be ap-
plicable to other quantum emitter technologies such as
atomic systems where atom-photon entanglement and
quantum memory were demonstrated [69, 70]. As men-
tioned above, there is a hard upper bound for loss error
threshold depending on the generation protocol of the

RHG lattice: We report 24.9% for direct generation and
5.41% for indirect generation by measuring 3d cluster
state, which translate into 1.24 and 0.24 dB transmis-
sion loss, respectively. Reaching the levels below the
loss threshold requires minimizing the signal loss at sev-
eral locations in a photonic system most notably at the
interfaces between different components and inside the
optical fiber delay line. As we discussed in Sec. 4, one
should be able to deal with the loss in the optical fiber
as long as the photon emission rate is fast enough, which
is currently achievable [29]. Another place for improve-
ment is the QD coupling to a single mode waveguide or
nanocavity which needs to be strong enough while cou-
pling to unwanted leaky modes must be suppressed; this
is quantified by the single-photon coupling efficiency or
B factor (i.e., the ratio of the number of emitted photons
in the guided mode to that of all modes), which rou-
tinely reaches near unity in nanophotonic devices. See
for example Refs. [29, 45] which reports 8 > 98.4% im-
plying a quantum cooperativity (i.e., the ratio between
the number of emitted photons in the guided mode and
that of undesired modes) of C' = §/(1—4) > 62. Photon
indistinguishability is also an essential requirement for
discrete-variable quantum information processing which
has been achieved for single QD [71]; however, having
multiple QDs emitting nearly indistinguishable photons
is quite challenging. Here, we tried to minimize that by
having only one active device as a photon source and use
passive devices containing multiple QDs which reduce
the chance of incompatibility.

We close the discussion with a survey of new avenues
for future research. In this paper, we base our design on
quantum emitters with a A-type energy level-structure
and use them to generate linear cluster states as part
the desired graph states. However, the three energy
levels are not so essential in our design, and a two-level
emitter can work as well. As mentioned in Sec. 3, one
way to generate a linear cluster state with a two-level
emitter is by using the circuit in Fig. 8 and putting an
MZI with a delay line as in Eq. (3.6) which effectively
generates a sequence of time-bin qubits in |+). The
drawback is that we have one additional ¢z layer in
our passive component stack. It would be interesting to
fully examine the error model in this case. Upon first
glance, it looks like the error model is identical to that
of the original work of Raussendorf et al. [12] where the
error threshold is 0.58%. Here, we explained how to
generate some prototypical graph states; an interesting
direction would be to develop a general algorithm to
produce arbitrary graphs using emitter with delay lines,
perhaps along the lines of Ref. [38].

Throughout this work, we use a standard MWPM
decoder to calculate the circuit error thresholds for the
fault-tolerant cluster state on the RHG lattice. In prin-
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ciple, the thresholds can be further improved by using a
better decoder. As mentioned earlier, cluster states on
the RHG lattice can tolerate a maximum loss error rate
of 24.9%. As shown in Refs. [72, 73], this threshold can
be improved significantly to larger values (near 50%)
by realizing graph states on more complex (beyond fo-
liated) 3d crystal structures. Designing protocols to
generate such states could be worth pursuing. Here,
we focus on the state generation and discuss the fault-
tolerant properties of the 3d cluster state as a quantum
memory. A natural next step is to define protocols for
performing logical gates on these states and envision a
multi-qubit setup with a fault-tolerant logical gate set.
One of the building blocks of our design was the €z
scattering block [25, 26] based on array of QDs. The
nonlinearity induced by this device could enable a new
capability for non-Gaussian operations in continuous-
variable quantum information processing schemes pos-
sibly via a hybrid discrete-continuous variable protocol.
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A Details of error threshold simulations

In this appendix, we show how to derive the error rates
used in the main text, Eqgs. (4.5), (4.6) and (4.7). We
also provide some raw data for the phase diagram and
briefly discuss how the error threshold and critical ex-
ponent are computed.

A.1 Effective circuit error rates

In this part, we derive the effective circuit error rates
for the cluster state on RHG lattice given the error pro-
cesses in our setup. We only consider lowest order con-
tribution in probability amplitudes as we are only ex-
ploring small error regimes < 1072,

Let us begin with qubits on the yz faces (normal to
the x axis). They can be generated via the process in
Eq. (3.5) where the initial state of the emitter is |0).
After the first hadamard gate or before the final qubit
measurement, Z, or Y, error gives Z,, error with prob-
abilities %pq and %pp, respectively. Also, after the sec-
ond hadamard gate or before the emitter measurement,
X4 or Y, error leads to a Z, error on the qubit with
probabilities %pq and %pT, respectively. Note that we

considered errors up to instantaneous stabilizers. Re-
garding two-qubit gates: first, CNOT, ,, gives Z,, via the
errors (Z,,Y,) @ (I, Xp,) and (I, X,) ® (Z,,Y,) with
overall probability 2 x %pg,q. Second, z-type qubit un-
dergoes four cz gates where (Y,,, Z,,) ® P, Kraus op-
erators give a circuit error with probability 4 x %pg.
Hence, we obtain

4 2 8 32
Gz = 5Pg + 5(PT +PF) + 5zP2,g + TzP2-  (Al)

3 3 15 15

The qubits on the zz and zy faces (or y and z type
qubits, respectively) are part of the linear cluster gen-
erated by the emitter @), where the emitter error can
be transformed into a qubit error by using an instan-
taneous stabilizer at each moment, i.e., X, ® Z,, after
emission of n-th qubit. At every qubit emission process,
we effectively apply the operator

A, = H,CNOT ,. (A2)

As far as H, gate is concerned, a Z; error before A,
and an X, after A, lead to a Z,, error with probability
of %pq. Y, error before A,, causes a two-qubit Z,,Z,_;
error with prob p,/3. Since qubits n and n—1 belong to
primal and dual lattices, then this error is simplified into
single-qubit errors. Plus, qubits experience Z or Y error
right before measurement with probability %p r. As for
two qubit gates: Similar to z-type qubits CNOT, ,, leads
to Z, with probability 2 x %pzq. Second, CNOTg,5—1
gives Z, through 8 Kraus terms (X, Y;) ® P,_q with
probability %pg,q. Third, these types of qubits expe-
rience two Cz gates where (Y;,, Z,,) ® P, Kraus oper-
ators are circuit errors with probability 2 x %pg. We
note that there is no error propagation from neighbor-
ing qubits since they are prepared in the hadamard ba-
sis (i.e., eigenstates of X operator). Hence, the overall
single-qubit error rates for y and z type qubits is given
by
4 2 16
Qy—qz—gpq'i'gpF'*'B
Next, we consider correlated errors. Let us reempha-
size that nearest neighbor qubits on the RHG lattice be-
long to primal and dual lattice and next nearest neigh-
bor qubits belong to the same parity check. Hence, they
are not considered correlated errors. In our setup, we
only generate correlated errors between opposite edges
of each face on the primal lattice or neighboring faces on
the same plane (which correspond to opposite edges of
faces on the syndrome graph (c.f. Fig. 11)). For all types
of qubits, we may consider two CZ gates connecting two
next nearest neighbor qubits, where (X, Y%) ® (Yy, Z»)
error after the first gate (k denotes the shared qubit for
the two Cz gates) leads to a correlated error with prob-
ability %pg. For z-type qubits, we have an additional

(P2, + P2)- (A3)
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Figure 15: Error thresholds of the RHG state for various loss rates. Ensemble size for averaging is 60k.

error due to Py ® (X, Yy) error with probability %pzyq
from CNOT, i gate during the linear cluster generation
process. Therefore, we may write

4
Quz = Qzy = BPQa (A4)
4 8
vy — Qrz — T2 e . A
Qay = oz = 7pP2 + 15P24 (A5)

A.2 Simulation data for the phase diagram

As discussed in Sec. 4, we run Monte-Carlo simulations
to find the circuit error threshold for various loss rates
and map out a phase diagram for our design. The
simulation results are summarized in Fig. 15. We use
the algorithm of Ref. [68] for estimating the circuit er-
ror threshold pt, and the correlation length exponent v
which is based on searching for scaling collapse among
curves Piogic(P, L) — Plogic(Pth, L) as a function of the
single variable (p — pg,) L'/, Below, we briefly discuss
this method.

The objective is to minimize a cost function R(psp, V)
which essentially measures deviation from a data col-
lapse on a universal (unknown) function. The cor-
responding optimal values are our estimates for pi,
and v. For a given value of py, and v, we estimate
Diogic(Pen, L) for each system size L by a piece-wise
linear interpolation. We then calculate the function
YL(%) = Plogic (P, L) = Plogic(Pen, L) and @ = (p—pe) L'/¥
for given values of p and L from the dataset. This gives
a family of curves yr,(x) vs. z, which we wish to collapse
on a single curve. Next, we sample from these curves at

a set of discrete points x; and define the cost function
R = Z lyr(zi) — gz, (A6)
i,L

in terms sum of the variance of yr,(z;) for different sys-
tem sizes, where

i) = 5 Syl (A7)
L

is the mean value at point z;, and Ny is the number
of different system sizes in the dataset. We should note
that again we use piece-wise linear interpolation to es-
timate yr(z;) and omit a point for a given L if it is
outside the range of the dataset for that particular L.
Finally, we search numerically for the values of p¢, and
v that minimize the objective function.

In order to estimate the uncertainty in our results for
ptn and v, we examine how the optimum point change
when we run the minimization algorithm on a subset of
data. In particular, we choose every pair of system sizes
and calculate the optimum values of pi;, and v and use
their variation as a proxy for the uncertainty.

B Loss error threshold and percolation
transition

As mentioned in the main text, there is a loss thresh-
old for a fault-tolerant graph state similar to the circuit
error threshold above which the quantum error correc-
tion is not effective. Their difference is that the location
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of loss errors are known. In this appendix, we discuss
the connection between loss error and bond percolation
transition where the critical probability in the percola-
tion problem correspond to the loss threshold.

Consider a syndrome graph where the qubits and par-
ity checks are associated with edges and vertices of the
graph. For instance, syndrome graph for the RHG clus-
ter state forms a simple cubic lattice (Fig. 10). Loss
error is modeled as independent random processes on
every edge with probability p. When a qubit is lost
(erased), the parity checks on the adjacent vertices are
not well-defined. Instead, one can define supercheck
operators which are product of even number of the ad-
jacent parity checks, so that the new stabilizers do not
have a Pauli operator acting on the lost qubit. For a
given set of lost qubits, we check for a logical error event
by determining whether the error chain form a non-
contractible loop or not. This is exactly the bond per-
colation problem on the syndrome graph. This means
that below the critical probability pperc. in percolation
problem increasing the system size decreases the proba-
bility of forming a percolating path. In the quantum er-
ror correction language, this is equivalent to saying that
below the loss threshold piy, the logical error probability
can be arbitrarily reduced by increasing the system size.
In other words, Pt = Pperc.. S0, the loss threshold for
the RHG lattice is described by the bond percolation on
the simple cubic lattice and is equal to pperc. =~ 24.9%.

Now, let us consider another example when we start
with a 3d cluster state (i.e., simple cubic lattice) and
remove a subset of qubits on the body-centered lattice
in a doubled unit cell, i.e., the center of cell and its six
corners (c.f. Fig. 2(b)), by measuring them in Z basis.
Before the measurement, the product of stabilizers on
faces of a cell ¢ is given by

S. = ® Sy = ®Zci2ei ® Xy (A1)

feoce i feoc

Notice the extra operators in front of the actual sta-
bilizer in Eq. (4.2). Here, e; with ¢ = x,y, 2z denotes
the basis vectors in the cluster state cubic lattice. So,
c=+ 2e; correspond to six fourth nearest neighbor qubits
(distance 2a with lattice constant a) of the center of the
cell. If there is no loss, measuring these qubits simply
replace them with + depending on the measurement
outcome. However, if these qubits are lost, we need to
combine those stabilizers sharing them. Same applies
independently to the stabilizers associated with the dual
lattice. We note that each of the qubits to be removed
is shared between six parity checks located at +2e; with
respect to that qubit. Hence, given a missing qubit with
probability p, we must connect the parity check on cell
c with its second (distance 2v/2a) and fourth (distance
4a) nearest neighbors on the syndrome graph. There-
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Figure 16: Logical error rate for different system sizes using ex-
ponentially decaying logical error rate in the correctable region
of the phase diagram, e.g. Eq. (B1). The system size is varied
from L = 4 to 20 as shown by the arrow.

fore, threshold in this case corresponds to the bond per-
colation transition on cubic lattice with not only nearest
neighbor links but also links connecting to the second
and fourth nearest neighbors. To estimate the loss error
threshold, we use the formula pperc. ~ Z%l where z is
total coordination number of a lattice point [74]. Hav-
ing known pperc. ~ 24.9% for simple cubic lattice where
z = 6, we find that ppere. ~ 5.41% since z = 6 + 12 + 6.

C Optimum logical error rate with fiber
delay lines

In the main text, we learn that increasing the cluster
size does not necessarily lead to decreasing logical error
rate since the cumulative loss rate grows due to the
signal propagation through the delay lines. For a given
loss error rate per qubit in the fiber, n, we have the
overall loss as pioss = 1 — e_”LQ, where 7 is related to
A in Eq. (4.12) via n = Av71n(10)/10 [because of using
a different base]. In this appendix, we use the saddle
point approximation and show that there is an optimum
value for L where the logical error rate is minimum and
obeys the form pop; ~ exp(—c'n~1/2).

We start by assuming an exponential form for the
logical error rate,

L
2

p
ogic ™ ~ B1
Plog (pth(ploss)> ( )

= (aire3) (B2
= f@) (B3)

Nl

where we use a linear approximation to the error thresh-
old as a function of loss rate (phase boundary in
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Fig. 13),

pth(ploss) = QPloss T B
=a(l- e*”er) +p
~anl?+ 5, (B4)

and define
F(L)= 5 () ~ n(anl? + 5).  (B5)

The ansatz (B1) is plotted in Fig. 16 for various sys-
tem sizes where we use the fit to the phase boundary
in Fig. 13 for pyn(pross). We observe that the analytical
curves are qualitatively similar to the numerical results
in Fig. 14. However, we could not find a good quan-
titative fit to our data using this ansatz. To find the
minimum logical error, we use the saddle point approx-
imation by setting f'(Lopt) = 0, and we get

2anLgpt _0. (B6)

(n(p) = In(enLop +8)) = 1 5

The above equation can be turned into an algebraic
equation independent of 7 for an axiliary variable x¢ =

anL?,.. Hence, we can plug in the solution Lop; =

v/ zo/na to Eq. (B1) and obtain

1/ 20 \1/2
P 5(?7})
Plogic =~ (‘TO _’_5) (B?)

which is exponentially decaying in n—/2.
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