Purifying teleportation

Katarzyna Roszak1 and Jarosław K. Korbicz2

1Institute of Physics (FZU), Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
2Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Coupling to the environment typically suppresses quantum properties of physical systems via decoherence mechanisms. This is one of the main obstacles in practical implementations of quantum protocols. In this work we show how decoherence effects can be reversed/suppressed during quantum teleportation in a network scenario. Treating the environment quantumly, we show that under a general pure dephasing coupling, performing a second teleportation step can probabilistically reverse the decoherence effects if certain commutativity conditions hold. This effect is purely quantum and most pronounced for qubit systems, where in 25 % of instances the decoherence can be reversed completely. As an example, we show the effect in a physical model of a qubit register coupled to a bosonic bath. We also analyze general $d$-dimensional systems, identifying all instances of decoherence suppression. Our results are proof-of-concept but we believe will be relevant for the emerging field of quantum networks as teleportation is the key building block of network protocols.

► BibTeX data

► References

[1] E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu. ``Decoherence and the appearance of a classical world in quantum theory''. Springer. Berlin (2003). 2 edition.
https:/​/​doi.org/​10.1007/​978-3-662-05328-7

[2] Maximilian A Schlosshauer. ``Decoherence: and the quantum-to-classical transition''. Springer Science & Business Media. (2007).
https:/​/​doi.org/​10.1007/​978-3-540-35775-9

[3] Wojciech H. Zurek. ``Quantum darwinism''. Nature Physics 5, 181–188 (2009).
https:/​/​doi.org/​10.1038/​nphys1202

[4] Andreas J Landig, Jonne V Koski, Pasquale Scarlino, UC Mendes, Alexandre Blais, Christian Reichl, Werner Wegscheider, Andreas Wallraff, Klaus Ensslin, and T Ihn. ``Coherent spin–photon coupling using a resonant exchange qubit''. Nature 560, 179–184 (2018).
https:/​/​doi.org/​10.1038/​s41586-018-0365-y

[5] Jonathan J Burnett, Andreas Bengtsson, Marco Scigliuzzo, David Niepce, Marina Kudra, Per Delsing, and Jonas Bylander. ``Decoherence benchmarking of superconducting qubits''. npj Quantum Information 5, 1–8 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0168-5

[6] Steffen Schlör, Jürgen Lisenfeld, Clemens Müller, Alexander Bilmes, Andre Schneider, David P. Pappas, Alexey V. Ustinov, and Martin Weides. ``Correlating decoherence in transmon qubits: Low frequency noise by single fluctuators''. Phys. Rev. Lett. 123, 190502 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.190502

[7] Yangyang Liu, Yuan Sun, Zhuo Fu, Peng Xu, Xin Wang, Xiaodong He, Jin Wang, and Mingsheng Zhan. ``Infidelity induced by ground-rydberg decoherence of the control qubit in a two-qubit rydberg-blockade gate''. Phys. Rev. Applied 15, 054020 (2021).
https:/​/​doi.org/​10.1103/​PhysRevApplied.15.054020

[8] Weijian Chen, Maryam Abbasi, Byung Ha, Serra Erdamar, Yogesh N. Joglekar, and Kater W. Murch. ``Decoherence-induced exceptional points in a dissipative superconducting qubit''. Phys. Rev. Lett. 128, 110402 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.128.110402

[9] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. ``Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels''. Phys. Rev. Lett. 70, 1895–1899 (1993).
https:/​/​doi.org/​10.1103/​PhysRevLett.70.1895

[10] Garry Bowen and Sougato Bose. ``Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity''. Phys. Rev. Lett. 87, 267901 (2001).
https:/​/​doi.org/​10.1103/​PhysRevLett.87.267901

[11] Frank Verstraete and Henri Verschelde. ``Optimal teleportation with a mixed state of two qubits''. Phys. Rev. Lett. 90, 097901 (2003).
https:/​/​doi.org/​10.1103/​PhysRevLett.90.097901

[12] Somshubhro Bandyopadhyay and Barry C. Sanders. ``Quantum teleportation of composite systems via mixed entangled states''. Phys. Rev. A 74, 032310 (2006).
https:/​/​doi.org/​10.1103/​PhysRevA.74.032310

[13] Hari Prakash and Vikram Verma. ``Minimum assured fidelity and minimum average fidelity in quantum teleportation of single qubit using non-maximally entangled states''. Quantum Information Processing 11, 1951–1959 (2012).
https:/​/​doi.org/​10.1007/​s11128-011-0348-5

[14] Guo-Feng Zhang. ``Thermal entanglement and teleportation in a two-qubit heisenberg chain with dzyaloshinski-moriya anisotropic antisymmetric interaction''. Phys. Rev. A 75, 034304 (2007).
https:/​/​doi.org/​10.1103/​PhysRevA.75.034304

[15] Ji-Gang Ren, Ping Xu, Hai-Lin Yong, Liang Zhang, Sheng-Kai Liao, Juan Yin, Wei-Yue Liu, Wen-Qi Cai, Meng Yang, Li Li, Kui-Xing Yang, Xuan Han, Yong-Qiang Yao, Ji Li, Hai-Yan Wu, Song Wan, Lei Liu, Ding-Quan Liu, Yao-Wu Kuang, Zhi-Ping He, Peng Shang, Cheng Guo, Ru-Hua Zheng, Kai Tian, Zhen-Cai Zhu, Nai-Le Liu, Chao-Yang Lu, Rong Shu, Yu-Ao Chen, Cheng-Zhi Peng, Jian-Yu Wang, and Jian-Wei Pan. ``Ground-to-satellite quantum teleportation''. Nature 549, 70–73 (2017).
https:/​/​doi.org/​10.1038/​nature23675

[16] Shengshuai Liu, Yanbo Lou, and Jietai Jing. ``Orbital angular momentum multiplexed deterministic all-optical quantum teleportation''. Nature communications 11, 1–8 (2020).
https:/​/​doi.org/​10.1038/​s41467-020-17616-4

[17] Daniel Llewellyn, Yunhong Ding, Imad I Faruque, Stefano Paesani, Davide Bacco, Raffaele Santagati, Yan-Jun Qian, Yan Li, Yun-Feng Xiao, Marcus Huber, et al. ``Chip-to-chip quantum teleportation and multi-photon entanglement in silicon''. Nature Physics 16, 148–153 (2020).
https:/​/​doi.org/​10.1038/​s41567-019-0727-x

[18] Xiao-Min Hu, Chao Zhang, Bi-Heng Liu, Yu Cai, Xiang-Jun Ye, Yu Guo, Wen-Bo Xing, Cen-Xiao Huang, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. ``Experimental high-dimensional quantum teleportation''. Phys. Rev. Lett. 125, 230501 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.230501

[19] Niccolò Fiaschi, Bas Hensen, Andreas Wallucks, Rodrigo Benevides, Jie Li, Thiago P Mayer Alegre, and Simon Gröblacher. ``Optomechanical quantum teleportation''. Nature Photonics 15, 817–821 (2021).
https:/​/​doi.org/​10.1038/​s41566-021-00866-z

[20] Stefan Langenfeld, Stephan Welte, Lukas Hartung, Severin Daiss, Philip Thomas, Olivier Morin, Emanuele Distante, and Gerhard Rempe. ``Quantum teleportation between remote qubit memories with only a single photon as a resource''. Phys. Rev. Lett. 126, 130502 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.130502

[21] Angela Sara Cacciapuoti, Marcello Caleffi, Rodney Van Meter, and Lajos Hanzo. ``When entanglement meets classical communications: Quantum teleportation for the quantum internet''. IEEE Transactions on Communications 68, 3808–3833 (2020).
https:/​/​doi.org/​10.1109/​TCOMM.2020.2978071

[22] SLN Hermans, M Pompili, HKC Beukers, S Baier, J Borregaard, and R Hanson. ``Qubit teleportation between non-neighbouring nodes in a quantum network''. Nature 605, 663–668 (2022).
https:/​/​doi.org/​10.1038/​s41586-022-04697-y

[23] Erika Kawakami, Thibaut Jullien, Pasquale Scarlino, Daniel R. Ward, Donald E. Savage, Max G. Lagally, Viatcheslav V. Dobrovitski, Mark Friesen, Susan N. Coppersmith, Mark A. Eriksson, and Lieven M. K. Vandersypen. ``Gate fidelity and coherence of an electron spin in an si/​sige quantum dot with micromagnet''. Proceedings of the National Academy of Sciences 113, 11738–11743 (2016). arXiv:https:/​/​www.pnas.org/​content/​113/​42/​11738.full.pdf.
https:/​/​doi.org/​10.1073/​pnas.1603251113
arXiv:https://www.pnas.org/content/113/42/11738.full.pdf

[24] Filip K. Malinowski, Frederico Martins, Peter D. Nissen, Edwin Barnes, Łukasz Cywiński, Mark S. Rudner, Saeed Fallahi, Geoffrey C. Gardner, Michael J. Manfra, Charles M. Marcus, and Ferdinand Kuemmeth. ``Nuclear spins in gallium arsenide produce noise at discrete frequencies, which can be notch-filtered efficiently to extend coherence times of electron spin qubits to nearly 1ms''. Nature Nanotechnology 12, 16–20 (2017).
https:/​/​doi.org/​10.1038/​nnano.2016.170

[25] Yulin Wu, Li-Ping Yang, Ming Gong, Yarui Zheng, Hui Deng, Zhiguang Yan, Yanjun Zhao, Keqiang Huang, Anthony D. Castellano, William J. Munro, Kae Nemoto, Dong-Ning Zheng, C. P. Sun, Yu-xi Liu, Xiaobo Zhu, and Li Lu. ``An efficient and compact switch for quantum circuits''. npj Quantum Information 4, 50 (2018).
https:/​/​doi.org/​10.1038/​s41534-018-0099-6

[26] S. Touzard, A. Kou, N. E. Frattini, V. V. Sivak, S. Puri, A. Grimm, L. Frunzio, S. Shankar, and M. H. Devoret. ``Gated conditional displacement readout of superconducting qubits''. Phys. Rev. Lett. 122, 080502 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.080502

[27] L. M. K. Vandersypen and I. L. Chuang. ``Nmr techniques for quantum control and computation''. Rev. Mod. Phys. 76, 1037–1069 (2005).
https:/​/​doi.org/​10.1103/​RevModPhys.76.1037

[28] Xiao-Feng Shi. ``Accurate quantum logic gates by spin echo in rydberg atoms''. Phys. Rev. Applied 10, 034006 (2018).
https:/​/​doi.org/​10.1103/​PhysRevApplied.10.034006

[29] Jason S Gardner, Georg Ehlers, Antonio Faraone, and Victoria García Sakai. ``High-resolution neutron spectroscopy using backscattering and neutron spin-echo spectrometers in soft and hard condensed matter''. Nature Reviews Physics 2, 103–116 (2020).
https:/​/​doi.org/​10.1038/​s42254-019-0128-1

[30] Katarzyna Roszak and Łukasz Cywiński. ``Qubit-environment-entanglement generation and the spin echo''. Phys. Rev. A 103, 032208 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.103.032208

[31] Bibek Pokharel, Namit Anand, Benjamin Fortman, and Daniel A. Lidar. ``Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits''. Phys. Rev. Lett. 121, 220502 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.220502

[32] Colin J. Kennedy, Eric Oelker, John M. Robinson, Tobias Bothwell, Dhruv Kedar, William R. Milner, G. Edward Marti, Andrei Derevianko, and Jun Ye. ``Precision metrology meets cosmology: Improved constraints on ultralight dark matter from atom-cavity frequency comparisons''. Phys. Rev. Lett. 125, 201302 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.201302

[33] Yu Ma, You-Zhi Ma, Zong-Quan Zhou, Chuan-Feng Li, and Guang-Can Guo. ``One-hour coherent optical storage in an atomic frequency comb memory''. Nature communications 12, 1–6 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-22706-y

[34] Alexander Hahn, Daniel Burgarth, and Kazuya Yuasa. ``Unification of random dynamical decoupling and the quantum zeno effect''. New Journal of Physics 24, 063027 (2022).
https:/​/​doi.org/​10.1088/​1367-2630/​ac6b4f

[35] Tytus Harlender and Katarzyna Roszak. ``Transfer and teleportation of system-environment entanglement''. Phys. Rev. A 105, 012407 (2022).
https:/​/​doi.org/​10.1103/​PhysRevA.105.012407

[36] Katarzyna Roszak and Łukasz Cywiński. ``Characterization and measurement of qubit-environment-entanglement generation during pure dephasing''. Phys. Rev. A 92, 032310 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.92.032310

[37] John H. Reina, Luis Quiroga, and Neil F. Johnson. ``Decoherence of quantum registers''. Phys. Rev. A 65, 032326 (2002).
https:/​/​doi.org/​10.1103/​PhysRevA.65.032326

[38] Katarzyna Roszak. ``Criteria for system-environment entanglement generation for systems of any size in pure-dephasing evolutions''. Phys. Rev. A 98, 052344 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.052344

[39] Jan Tuziemski, Aniello Lampo, Maciej Lewenstein, and Jarosław K. Korbicz. ``Reexamination of the decoherence of spin registers''. Phys. Rev. A 99, 022122 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.022122

[40] Avshalom C Elitzur and Lev Vaidman. ``Quantum mechanical interaction-free measurements''. Foundations of Physics 23, 987–997 (1993).
https:/​/​doi.org/​10.1007/​BF00736012

[41] Giacomo Mauro D'Ariano, Chiara Macchiavello, and Paolo Perinotti. ``Superbroadcasting of mixed states''. Phys. Rev. Lett. 95, 060503 (2005).
https:/​/​doi.org/​10.1103/​PhysRevLett.95.060503

Cited by

[1] Małgorzata Strzałka, Radim Filip, and Katarzyna Roszak, "Qubit-environment entanglement in time-dependent pure dephasing", Physical Review A 109 3, 032412 (2024).

[2] Tymoteusz Salamon, Marcin Płodzień, Maciej Lewenstein, and Katarzyna Roszak, "Qubit-environment entanglement outside of pure decoherence: Hyperfine interaction", Physical Review B 107 8, 085428 (2023).

[3] Mateusz Krawczyk, Jarosław Pawłowski, Maciej M. Maśka, and Katarzyna Roszak, "Data-driven criteria for quantum correlations", Physical Review A 109 2, 022405 (2024).

[4] Bartosz Rzepkowski and Katarzyna Roszak, "Signature of quantumness in pure decoherence control", Physical Review A 108 1, 012412 (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 12:45:43) and SAO/NASA ADS (last updated successfully 2024-06-22 12:45:43). The list may be incomplete as not all publishers provide suitable and complete citation data.