Probing sign structure using measurement-induced entanglement

Cheng-Ju Lin1, Weicheng Ye1,2, Yijian Zou3, Shengqi Sang1,2, and Timothy H. Hsieh1

1Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
2Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
3Stanford Institute for Theoretical Physics, Stanford University, Palo Alto, CA 94305, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The sign structure of quantum states is closely connected to quantum phases of matter, yet detecting such fine-grained properties of amplitudes is subtle. Here we employ as a diagnostic measurement-induced entanglement (MIE): the average entanglement generated between two parties after measuring the rest of the system. We propose that for a sign-free state, the MIE upon measuring in the sign-free basis decays no slower than correlations in the state before measurement. Concretely, we prove that MIE is upper bounded by mutual information for sign-free stabilizer states (essentially CSS codes), which establishes a bound between scaling dimensions of conformal field theories describing measurement-induced critical points in stabilizer systems. We also show that for sign-free qubit wavefunctions, MIE between two qubits is upper bounded by a simple two-point correlation function, and we verify our proposal in several critical ground states of one-dimensional systems, including the transverse field and tri-critical Ising models. In contrast, for states with sign structure, such bounds can be violated, as we illustrate in critical hybrid circuits involving both Haar or Clifford random unitaries and measurements, and gapless symmetry-protected topological states.

Does a sign-free wavefunction have any physical property that allows us to distinguish it from a generic wavefunction? In our work, we show that “measurement induced entanglement" (MIE) can serve as a diagnostic: we ask how much entanglement can be generated on average between two parties after measuring the rest of the system.
We find that measuring sign-free states in a sign-free basis cannot generate significantly more entanglement than the correlations existing before measurement. In particular, we show that for a sign-free stabilizer state, its MIE is upper-bounded by its mutual information, while for a more general sign-free qubit state, its MIE is upper-bounded by a correlation function. We also verify the MIE diagnostic in various critical systems, including the recently discovered “measurement induced phase transitions" and the ground states of several one-dimensional critical spin chains. Indeed, we find the numerical results from the above sign-free critical states support our finding, while the non-sign-free critical states can generate unbounded MIE.

► BibTeX data

► References

[1] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino, and R. L. Sugar. Sign problem in the numerical simulation of many-electron systems. Phys. Rev. B, 41 (13): 9301–9307, May 1990. 10.1103/​PhysRevB.41.9301.
https:/​/​doi.org/​10.1103/​PhysRevB.41.9301

[2] Matthias Troyer and Uwe-Jens Wiese. Computational complexity and fundamental limitations to fermionic quantum monte carlo simulations. Phys. Rev. Lett., 94 (17): 170201, May 2005. 10.1103/​PhysRevLett.94.170201.
https:/​/​doi.org/​10.1103/​PhysRevLett.94.170201

[3] Masuo Suzuki. Relationship between D-Dimensional quantal spin systems and (D+1)-Dimensional ising systems: Equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Prog. Theor. Phys., 56 (5): 1454–1469, November 1976. ISSN 0033-068X. 10.1143/​PTP.56.1454.
https:/​/​doi.org/​10.1143/​PTP.56.1454

[4] James Gubernatis, Naoki Kawashima, and Philipp Werner. Quantum Monte Carlo Methods: Algorithms for Lattice Models. Cambridge University Press, Cambridge, 2016. 10.1017/​CBO9780511902581.
https:/​/​doi.org/​10.1017/​CBO9780511902581

[5] Sergey Bravyi, David P. DiVincenzo, Roberto I. Oliveira, and Barbara M. Terhal. The complexity of stoquastic local hamiltonian problems. arXiv e-prints, art. quant-ph/​0606140, June 2006a.
arXiv:quant-ph/0606140

[6] M. B. Hastings. How quantum are non-negative wavefunctions? J. Math. Phys., 57 (1): 015210, January 2016. 10.1063/​1.4936216.
https:/​/​doi.org/​10.1063/​1.4936216

[7] Zohar Ringel and Dmitry L. Kovrizhin. Quantized gravitational responses, the sign problem, and quantum complexity. Sci. Adv., 3 (9): e1701758, 2017. 10.1126/​sciadv.1701758.
https:/​/​doi.org/​10.1126/​sciadv.1701758

[8] Adam Smith, Omri Golan, and Zohar Ringel. Intrinsic sign problems in topological quantum field theories. Phys. Rev. Research, 2 (3): 033515, September 2020. 10.1103/​PhysRevResearch.2.033515.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033515

[9] Giacomo Torlai, Juan Carrasquilla, Matthew T. Fishman, Roger G. Melko, and Matthew P. A. Fisher. Wave-function positivization via automatic differentiation. Phys. Rev. Research, 2 (3): 032060, September 2020. ISSN 2643-1564. 10.1103/​PhysRevResearch.2.032060.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.032060

[10] Tyler D. Ellison, Kohtaro Kato, Zi-Wen Liu, and Timothy H. Hsieh. Symmetry-protected sign problem and magic in quantum phases of matter. Quantum, 5: 612, December 2021. ISSN 2521-327X. 10.22331/​q-2021-12-28-612.
https:/​/​doi.org/​10.22331/​q-2021-12-28-612

[11] Tarun Grover and Matthew P. A. Fisher. Entanglement and the sign structure of quantum states. Phys. Rev. A, 92 (4): 042308, October 2015. 10.1103/​PhysRevA.92.042308.
https:/​/​doi.org/​10.1103/​PhysRevA.92.042308

[12] M. Popp, F. Verstraete, M. A. Martín-Delgado, and J. I. Cirac. Localizable entanglement. Phys. Rev. A, 71 (4): 042306, April 2005. 10.1103/​PhysRevA.71.042306.
https:/​/​doi.org/​10.1103/​PhysRevA.71.042306

[13] Dominic V. Else, Ilai Schwarz, Stephen D. Bartlett, and Andrew C. Doherty. Symmetry-protected phases for measurement-based quantum computation. Phys. Rev. Lett., 108 (24): 240505, June 2012. 10.1103/​PhysRevLett.108.240505.
https:/​/​doi.org/​10.1103/​PhysRevLett.108.240505

[14] Tarun Grover and Matthew P A Fisher. Quantum disentangled liquids. J. Stat. Mech. Theory Exp., 2014 (10): P10010, October 2014. 10.1088/​1742-5468/​2014/​10/​p10010.
https:/​/​doi.org/​10.1088/​1742-5468/​2014/​10/​p10010

[15] M. A. Rajabpour. Entanglement entropy after a partial projective measurement in 1 + 1 dimensional conformal field theories: Exact results. J. Stat. Mech. Theory Exp., 6 (6): 063109, June 2016. 10.1088/​1742-5468/​2016/​06/​063109.
https:/​/​doi.org/​10.1088/​1742-5468/​2016/​06/​063109

[16] Daniel Ben-Zion, John McGreevy, and Tarun Grover. Disentangling quantum matter with measurements. Phys. Rev. B, 101 (11): 115131, March 2020. 10.1103/​PhysRevB.101.115131.
https:/​/​doi.org/​10.1103/​PhysRevB.101.115131

[17] Iman Marvian. Symmetry-protected topological entanglement. Phys. Rev. B, 95 (4): 045111, January 2017. 10.1103/​PhysRevB.95.045111.
https:/​/​doi.org/​10.1103/​PhysRevB.95.045111

[18] Sagar Vijay. Measurement-driven phase transition within a volume-law entangled phase. arXiv e-prints, art. arXiv:2005.03052, May 2020.
arXiv:2005.03052

[19] Yaodong Li, Xiao Chen, Andreas WW Ludwig, and Matthew PA Fisher. Conformal invariance and quantum nonlocality in critical hybrid circuits. Phys. Rev. B, 104 (10): 104305, 2021a. 10.1103/​PhysRevB.104.104305.
https:/​/​doi.org/​10.1103/​PhysRevB.104.104305

[20] Adam Nahum and Brian Skinner. Entanglement and dynamics of diffusion-annihilation processes with Majorana defects. Phys. Rev. Research, 2 (2): 023288, June 2020. 10.1103/​PhysRevResearch.2.023288.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.023288

[21] Shengqi Sang and Timothy H. Hsieh. Measurement-protected quantum phases. Phys. Rev. Research, 3 (2): 023200, June 2021. 10.1103/​PhysRevResearch.3.023200.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.023200

[22] Ali Lavasani, Yahya Alavirad, and Maissam Barkeshli. Measurement-induced topological entanglement transitions in symmetric random quantum circuits. Nat. Phys., 17 (3): 342–347, 2021. 10.1038/​s41567-020-01112-z.
https:/​/​doi.org/​10.1038/​s41567-020-01112-z

[23] Matteo Ippoliti, Michael J. Gullans, Sarang Gopalakrishnan, David A. Huse, and Vedika Khemani. Entanglement phase transitions in measurement-only dynamics. Phys. Rev. X, 11 (1): 011030, February 2021. 10.1103/​PhysRevX.11.011030.
https:/​/​doi.org/​10.1103/​PhysRevX.11.011030

[24] Nicolai Lang and Hans Peter Büchler. Entanglement transition in the projective transverse field Ising model. Phys. Rev. B, 102 (9): 094204, 2020. 10.1103/​PhysRevB.102.094204.
https:/​/​doi.org/​10.1103/​PhysRevB.102.094204

[25] Yaodong Li, Xiao Chen, and Matthew PA Fisher. Measurement-driven entanglement transition in hybrid quantum circuits. Phys. Rev. B, 100 (13): 134306, 2019a. 10.1103/​PhysRevB.100.134306.
https:/​/​doi.org/​10.1103/​PhysRevB.100.134306

[26] Brian Skinner, Jonathan Ruhman, and Adam Nahum. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X, 9 (3): 031009, July 2019. 10.1103/​PhysRevX.9.031009.
https:/​/​doi.org/​10.1103/​PhysRevX.9.031009

[27] Amos Chan, Rahul M. Nandkishore, Michael Pretko, and Graeme Smith. Unitary-projective entanglement dynamics. Phys. Rev. B, 99 (22): 224307, June 2019. 10.1103/​PhysRevB.99.224307.
https:/​/​doi.org/​10.1103/​PhysRevB.99.224307

[28] Andrew C. Potter and Romain Vasseur. Entanglement dynamics in hybrid quantum circuits. arXiv e-prints, art. arXiv:2111.08018, November 2021.
arXiv:2111.08018

[29] Thomas Scaffidi, Daniel E. Parker, and Romain Vasseur. Gapless symmetry-protected topological order. Phys. Rev. X, 7 (4): 041048, November 2017. 10.1103/​PhysRevX.7.041048.
https:/​/​doi.org/​10.1103/​PhysRevX.7.041048

[30] Ruben Verresen, Ryan Thorngren, Nick G. Jones, and Frank Pollmann. Gapless topological phases and symmetry-enriched quantum criticality. Phys. Rev. X, 11 (4): 041059, December 2021. 10.1103/​PhysRevX.11.041059.
https:/​/​doi.org/​10.1103/​PhysRevX.11.041059

[31] A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist. Phys. Rev. A, 54 (2): 1098–1105, August 1996. 10.1103/​PhysRevA.54.1098.
https:/​/​doi.org/​10.1103/​PhysRevA.54.1098

[32] Andrew Steane. Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A, 452 (1954): 2551–2577, November 1996. 10.1098/​rspa.1996.0136.
https:/​/​doi.org/​10.1098/​rspa.1996.0136

[33] Sergey Bravyi, David Fattal, and Daniel Gottesman. GHZ extraction yield for multipartite stabilizer states. J. Math. Phys., 47 (6): 062106, June 2006b. 10.1063/​1.2203431.
https:/​/​doi.org/​10.1063/​1.2203431

[34] Chao-Ming Jian, Yi-Zhuang You, Romain Vasseur, and Andreas W. W. Ludwig. Measurement-induced criticality in random quantum circuits. Phys. Rev. B, 101 (10): 104302, March 2020. 10.1103/​PhysRevB.101.104302.
https:/​/​doi.org/​10.1103/​PhysRevB.101.104302

[35] Patrick Hayden, Sepehr Nezami, Xiao-Liang Qi, Nathaniel Thomas, Michael Walter, and Zhao Yang. Holographic duality from random tensor networks. J. High Energy Phys., 2016 (11): 9, November 2016. 10.1007/​JHEP11(2016)009.
https:/​/​doi.org/​10.1007/​JHEP11(2016)009

[36] Romain Vasseur, Andrew C. Potter, Yi-Zhuang You, and Andreas W. W. Ludwig. Entanglement transitions from holographic random tensor networks. Phys. Rev. B, 100 (13): 134203, October 2019. 10.1103/​PhysRevB.100.134203.
https:/​/​doi.org/​10.1103/​PhysRevB.100.134203

[37] Yimu Bao, Soonwon Choi, and Ehud Altman. Theory of the phase transition in random unitary circuits with measurements. Phys. Rev. B, 101 (10): 104301, March 2020. 10.1103/​PhysRevB.101.104301.
https:/​/​doi.org/​10.1103/​PhysRevB.101.104301

[38] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov. Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B, 241 (2): 333–380, July 1984. ISSN 0550-3213. 10.1016/​0550-3213(84)90052-X.
https:/​/​doi.org/​10.1016/​0550-3213(84)90052-X

[39] Shengqi Sang, Yaodong Li, Tianci Zhou, Xiao Chen, Timothy H. Hsieh, and Matthew P. A. Fisher. Entanglement negativity at measurement-induced criticality. PRX Quantum, 2 (3): 030313, July 2021. 10.1103/​PRXQuantum.2.030313.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.030313

[40] Timothy H. Hsieh, Gábor B. Halász, and Tarun Grover. All majorana models with translation symmetry are supersymmetric. Phys. Rev. Lett., 117 (16): 166802, October 2016. 10.1103/​PhysRevLett.117.166802.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.166802

[41] Yaodong Li, Xiao Chen, and Matthew P. A. Fisher. Measurement-driven entanglement transition in hybrid quantum circuits. Phys. Rev. B, 100 (13): 134306, October 2019b. 10.1103/​PhysRevB.100.134306.
https:/​/​doi.org/​10.1103/​PhysRevB.100.134306

[42] Yaodong Li, Romain Vasseur, Matthew P. A. Fisher, and Andreas W. W. Ludwig. Statistical mechanics model for clifford random tensor networks and monitored quantum circuits. arXiv e-prints, art. arXiv:2110.02988, October 2021b.
arXiv:2110.02988

[43] Aidan Zabalo, Michael J Gullans, Justin H Wilson, Romain Vasseur, Andreas WW Ludwig, Sarang Gopalakrishnan, David A Huse, and JH Pixley. Operator scaling dimensions and multifractality at measurement-induced transitions. Phys. Rev. Lett., 128 (5): 050602, 2022. 10.1103/​PhysRevLett.128.050602.
https:/​/​doi.org/​10.1103/​PhysRevLett.128.050602

[44] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A, 70 (5): 052328, 2004. 10.1103/​PhysRevA.70.052328.
https:/​/​doi.org/​10.1103/​PhysRevA.70.052328

[45] Aidan Zabalo, Michael J Gullans, Justin H Wilson, Sarang Gopalakrishnan, David A Huse, and JH Pixley. Critical properties of the measurement-induced transition in random quantum circuits. Phys. Rev. B, 101 (6): 060301, 2020. 10.1103/​PhysRevB.101.060301.
https:/​/​doi.org/​10.1103/​PhysRevB.101.060301

[46] William K. Wootters. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 80 (10): 2245–2248, March 1998. 10.1103/​PhysRevLett.80.2245.
https:/​/​doi.org/​10.1103/​PhysRevLett.80.2245

[47] Pasquale Calabrese, John Cardy, and Erik Tonni. Entanglement entropy of two disjoint intervals in conformal field theory. J. Stat. Mech. Theory Exp., 2009 (11): P11001, November 2009. ISSN 1742-5468. 10.1088/​1742-5468/​2009/​11/​p11001.
https:/​/​doi.org/​10.1088/​1742-5468/​2009/​11/​p11001

[48] Khadijeh Najafi and M. A. Rajabpour. Entanglement entropy after selective measurements in quantum chains. J. High Energy Phys., 2016 (12): 124, December 2016. 10.1007/​JHEP12(2016)124.
https:/​/​doi.org/​10.1007/​JHEP12(2016)124

[49] Jean-Marie Stéphan. Emptiness formation probability, Toeplitz determinants, and conformal field theory. J. Stat. Mech. Theory Exp., 2014 (5): 05010, May 2014. 10.1088/​1742-5468/​2014/​05/​P05010.
https:/​/​doi.org/​10.1088/​1742-5468/​2014/​05/​P05010

[50] John L. Cardy. Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories. Nucl. Phys. B, 275: 200–218, 1986. 10.1016/​0550-3213(86)90596-1.
https:/​/​doi.org/​10.1016/​0550-3213(86)90596-1

[51] Edward O'Brien and Paul Fendley. Lattice supersymmetry and order-disorder coexistence in the tricritical ising model. Phys. Rev. Lett., 120 (20): 206403, May 2018. 10.1103/​PhysRevLett.120.206403.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.206403

[52] David Fattal, Toby S. Cubitt, Yoshihisa Yamamoto, Sergey Bravyi, and Isaac L. Chuang. Entanglement in the stabilizer formalism. arXiv e-prints, art. quant-ph/​0406168, June 2004.
arXiv:quant-ph/0406168

Cited by

[1] Samuel J. Garratt, Zack Weinstein, and Ehud Altman, "Measurements Conspire Nonlocally to Restructure Critical Quantum States", Physical Review X 13 2, 021026 (2023).

[2] Gilles Parez, Clément Berthiere, and William Witczak-Krempa, "Separability and entanglement of resonating valence-bond states", SciPost Physics 15 2, 066 (2023).

[3] Kai Klocke and Michael Buchhold, "Majorana Loop Models for Measurement-Only Quantum Circuits", Physical Review X 13 4, 041028 (2023).

[4] Zack Weinstein, Rohith Sajith, Ehud Altman, and Samuel J. Garratt, "Nonlocality and entanglement in measured critical quantum Ising chains", Physical Review B 107 24, 245132 (2023).

[5] Abhishek Kumar, Kemal Aziz, Ahana Chakraborty, Andreas W. W. Ludwig, Sarang Gopalakrishnan, J. H. Pixley, and Romain Vasseur, "Boundary transfer matrix spectrum of measurement-induced transitions", Physical Review B 109 1, 014303 (2024).

[6] Yijian Zou, Shengqi Sang, and Timothy H. Hsieh, "Channeling Quantum Criticality", Physical Review Letters 130 25, 250403 (2023).

[7] Sara Murciano, Pablo Sala, Yue Liu, Roger S. K. Mong, and Jason Alicea, "Measurement-Altered Ising Quantum Criticality", Physical Review X 13 4, 041042 (2023).

[8] Zhou Yang, Dan Mao, and Chao-Ming Jian, "Entanglement in a one-dimensional critical state after measurements", Physical Review B 108 16, 165120 (2023).

[9] Yifan Zhang and Sarang Gopalakrishnan, "Nonlocal growth of quantum conditional mutual information under decoherence", arXiv:2402.03439, (2024).

[10] Alexey Milekhin and Fedor K. Popov, "Measurement-induced phase transition in teleportation and wormholes", arXiv:2210.03083, (2022).

[11] Ruochen Ma, "Exploring critical systems under measurements and decoherence via Keldysh field theory", arXiv:2304.08277, (2023).

[12] Stefano Antonini, Gregory Bentsen, ChunJun Cao, Jonathan Harper, Shao-Kai Jian, and Brian Swingle, "Holographic measurement and bulk teleportation", Journal of High Energy Physics 2022 12, 124 (2022).

[13] Shengqi Sang, Zhi Li, Timothy H. Hsieh, and Beni Yoshida, "Ultrafast Entanglement Dynamics in Monitored Quantum Circuits", PRX Quantum 4 4, 040332 (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-02-27 19:22:15) and SAO/NASA ADS (last updated successfully 2024-02-27 19:22:16). The list may be incomplete as not all publishers provide suitable and complete citation data.