Generation of highly retrievable atom photon entanglement with a millisecond lifetime via a spatially multiplexed cavity

Minjie Wang, Shengzhi Wang, Tengfei Ma, Ya Li, Yan Xie, Haole Jiao, Hailong Liu, Shujing Li, and Hai Wang

The State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006
China Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Qubit memory that is entangled with photonic qubit is the building block for long distance quantum repeaters. Cavity enhanced and long lived spin wave photon entanglement has been demonstrated by applying dual laser beams onto optical-lattice atoms. However, owing to cross readouts by two beams, retrieval efficiency of spin wave qubit is decreased by one quarter compared to that of single mode spin wave at all storage times. Here, by coupling cold atoms to two modes of a polarization interferometer based cavity, we achieve perfect qubit retrieval in cavity enhanced and long lived atom photon entanglement. A write laser beam is applied onto cold atoms, we then create a magnetic field insensitive spin wave qubit that is entangled with the photonic qubit encoded onto two arms of the interferometer. The spin wave qubit is retrieved by a read beam, which avoids the cross readouts. Our experiment demonstrates 540$\mu$s storage time at 50% intrinsic qubit retrieval efficiency, which is 13.5 times longer than the best reported result.

Qubit memory entangled with photonic qubit is the building block for quantum repeaters. Cavity-enhanced spin-wave–photon entanglement with sub-second lifetime has been demonstrated by applying dual control modes onto optical-lattice atoms. However, owing to double-mode retrievals in that experiment, retrieval efficiency of spin-wave qubit is about one quarter lower than that for a single spin-wave mode. Here, by coupling cold atoms to two modes of a polarization-interferometer-based cavity, we achieve perfectly-enhanced qubit retrieval in long-lived atom-photon entanglement. A write-laser beam is applied onto the cold atoms to create a magnetic-field-insensitive spin-wave qubit entangled with a photonic qubit. The spin-wave qubit is retrieved with a single-mode read-laser beam, and the quarter retrieval-efficiency loss is avoided. Our experimental data shows that zero-delay intrinsic retrieval efficiency is up to 77% and 1/e lifetime 1ms. At 50% retrieval efficiency, the storage time reaches 0.54ms , which is 13.5 times longer than the best reported result.

► BibTeX data

► References

[1] N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33-80 (2011).

[2] L. M. Duan, M. D. Lukin, J. I. Cirac, a. P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413-418 (2001).

[3] C. Simon, Towards a global quantum network. Nat. Photon. 11, 678-680 (2017).

[4] H. J. Kimble, The quantum internet. Nature 453 , 1023-1030 (2008).

[5] S. Wehner, D. Elkouss, R. Hanson, Quantum internet: A vision for the road ahead. Science 362 , 303 (2018).

[6] P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, M. D. Lukin, A quantum network of clocks. Nat. Phys. 10 , 582-587 (2014).

[7] F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, W. Tittel, Prospective applications of optical quantum memories. Journal of Modern Optics 60 , 1519-1537 (2013).

[8] A. I. Lvovsky, B. C. Sanders, W. Tittel, Optical quantum memory. Nat. Photon. 3 , 706-714 (2009).

[9] T. van Leent, M. Bock, R. Garthoff, K. Redeker, W. Zhang, T. Bauer, W. Rosenfeld, C. Becher, H. Weinfurter, Long-Distance Distribution of Atom-Photon Entanglement at Telecom Wavelength. Phys. Rev. Lett. 124 ,010510 (2020).

[10] M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, G. Rempe, Decoherence-protected memory for a single-photon qubit. Nat. Photon. 12,18-21 (2017).

[11] D. L. M. B. B. Blinov, L.-M Duan, C. Monroe Observation of entanglement between a single trapped atom and a single photon. Nature 428 ,153-157(2004).

[12] B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, R. Hanson, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526 , 682-686 (2015).

[13] A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, A. Imamoğlu, Generation of heralded entanglement between distant hole spins. Nat. Phys. 12 ,218-223 (2015).

[14] N. G. Mikael Afzelius, and Hugues de Riedmatten, Quantum memory for photons. Physics Today 68 , 12, 42 (2015).

[15] K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, B. J. Sussman, Quantum memories: emerging applications and recent advances. Journal of Modern Optics 63 ,2005-2028 (2016).

[16] A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, a. H. J. Kimble, Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423 , 731-734 ( 2003).

[17] Julien Laurat, Hugues de Riedmatten, Daniel Felinto, Chin-Wen Chou, E. W., Schomburg, a. H. J. Kimble., Schomburg, and H. Jeff Kimble. Efficient retrieval of a single excitation stored in an atomic ensemble. Opt. Express 14 , 6912-6918 (2006).

[18] J. Simon, H. Tanji, J. K. Thompson, V. Vuletic, Interfacing collective atomic excitations and single photons. Phys. Rev. Lett. 98 , 183601 (2007).

[19] D. Felinto, C. W. Chou, H. de Riedmatten, S. V. Polyakov, H. J. Kimble, Control of decoherence in the generation of photon pairs from atomic ensembles. Phys. Rev. A 72 ,053809 (2005).

[20] B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, J.-W. Pan, A millisecond quantum memory for scalable quantum networks. Nat. Phys. 5 , 95-99 (2008).

[21] X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, J.-W. Pan, Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys. 8 ,517-521 (2012).

[22] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, A. Kuzmich, Long-lived quantum memory. Nat. Phys. 5 , 100-104 (2008).

[23] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, A quantum memory with telecom-wavelength conversion. Nat. Phys. 6 , 894-899 (2010).

[24] S.-J. Yang, X.-J. Wang, X.-H. Bao, J.-W. Pan, An efficient quantum light–matter interface with sub-second lifetime. Nat. Photon. 10 ,381-384 (2016).

[25] E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, P. Grangier, Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory. Phys. Rev. Lett. 112 , 033601 (2014).

[26] H. Li, J.-P. Dou, X.-L. Pang, T.-H. Yang, C.-N. Zhang, Y. Chen, J.-M. Li, I. A. Walmsley, X.-M. Jin, Heralding quantum entanglement between two room-temperature atomic ensembles. Optica 8 , 925-929 (2021).

[27] K. B. Dideriksen, R. Schmieg, M. Zugenmaier, E. S. Polzik, Room-temperature single-photon source with near-millisecond built-in memory. Nat. Commun. 12 , 3699 (2021).

[28] C. Laplane, P. Jobez, J. Etesse, N. Gisin, M. Afzelius, Multimode and Long-Lived Quantum Correlations Between Photons and Spins in a Crystal. Phys. Rev. Lett. 118 , 210501 (2017).

[29] K. Kutluer, M. Mazzera, H. de Riedmatten, Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory. Phys. Rev. Lett. 118 , 210502 (2017).

[30] S. J. Yang, X. J. Wang, J. Li, J. Rui, X. H. Bao, J. W. Pan, Highly retrievable spin-wave-photon entanglement source. Phys. Rev. Lett. 114 , 210501 (2015).

[31] Y. Yu, F. Ma, X. Y. Luo, B. Jing, P. F. Sun, R. Z. Fang, C. W. Yang, H. Liu, M. Y. Zheng, X. P. Xie, W. J. Zhang, L. X. You, Z. Wang, T. Y. Chen, Q. Zhang, X. H. Bao, J. W. Pan, Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578 , 240-245 (2020).

[32] Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. Kennedy, A. Kuzmich, Entanglement of light-shift compensated atomic spin waves with telecom light. Phys. Rev. Lett. 105 , 260502 (2010).

[33] X. J. Wang, S. J. Yang, P. F. Sun, B. Jing, J. Li, M. T. Zhou, X. H. Bao, J. W. Pan, Cavity-Enhanced Atom-Photon Entanglement with Subsecond Lifetime. Phys. Rev. Lett. 126 , 090501 (2021).

[34] S.-Z. Wang, M.-J. Wang, Y.-F. Wen, Z.-X. Xu, T.-F. Ma, S.-J. Li, H. Wang, Long-lived and multiplexed atom-photon entanglement interface with feed-forward-controlled readouts. Communications Physics 4 , 168 (2021).

[35] R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto, N. Imoto, Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network. Nat. Commun. 9 , 1997 (2018).

[36] Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, L. M. Duan, Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nat. Commun. 8 , 15359 (2017).

[37] Y.-F. Pu, S. Zhang, Y.-K. Wu, N. Jiang, W. Chang, C. Li, L.-M. Duan, Experimental demonstration of memory-enhanced scaling for entanglement connection of quantum repeater segments. Nat. Photon. 15 , 374-378 (2021).

[38] H. Tanji, S. Ghosh, J. Simon, B. Bloom, V. Vuletic, Heralded single-magnon quantum memory for photon polarization States. Phys. Rev. Lett. 103 , 043601 (2009).

[39] Liu C, Dutton Z, Behroozi C H , H. L. V, Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409 , 490–493 (2001).

[40] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, M. D. Lukin, Storage of light in atomic vapor. Phys. Rev. Lett. 86 , 783-786 (2001).

[41] M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, M. D. Lukin, Electromagnetically induced transparency with tunable single-photon pulses. Nature 438 , 837-841 (2005).

[42] T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S. Y. Lan, T. A. Kennedy, A. Kuzmich, Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438 , 833-836 (2005).

[43] K. S. Choi, H. Deng, J. Laurat, H. J. Kimble, Mapping photonic entanglement into and out of a quantum memory. Nature 452 , 67 (2008).

[44] Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, K. Peng, Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy. Phys. Rev. Lett. 111 , 240503 (2013).

[45] S-Y Zhou, S-C Zhang, C. Liu, J. F. Chen, Jianming Wen, M. M. T. Loy, G. K. L.Wong, S.-W. Du, Optimal storage and retrieval of single-photon waveforms. Optics express 20 , 24124 (2012).

[46] G. Heinze, C. Hubrich, T. Halfmann, Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett. 111 , 033601 (2013).

[47] Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, I. A. Yu, Coherent optical memory with high storage efficiency and large fractional delay. Phys. Rev. Lett. 110 , 083601 (2013).

[48] Y. F. Hsiao, P. J. Tsai, H. S. Chen, S. X. Lin, C. C. Hung, C. H. Lee, Y. H. Chen, Y. F. Chen, I. A. Yu, Y. C. Chen, Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency. Phys. Rev. Lett.120 , 183602 (2018).

[49] P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, J. Laurat, Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat. Commun. 9 , 363 (2018).

[50] Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, S.-L. Zhu, Efficient quantum memory for single-photon polarization qubits. Nat. Photon. 13 , 346-351 (2019).

[51] M. Cao, F. Hoffet, S. Qiu, A. S. Sheremet, J. Laurat, Efficient reversible entanglement transfer between light and quantum memories. Optica 7 , 1440 (2020).

[52] Z. Yan, L. Wu, X. Jia, Y. Liu, R. Deng, S. Li, H. Wang, C. Xie, K. Peng, Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles. Nat. Commun. 8 , 718 (2017).

[53] E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, W. Tittel, Broadband waveguide quantum memory for entangled photons. Nature 469 , 512-515 (2011).

[54] C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, Quantum storage of photonic entanglement in a crystal. Nature 469 , 508-511 (2011).

[55] E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, W. Tittel, Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photon. 9 , 83-87 (2015).

[56] K. R. Ferguson, S. E. Beavan, J. J. Longdell, M. J. Sellars, Generation of Light with Multimode Time-Delayed Entanglement Using Storage in a Solid-State Spin-Wave Quantum Memory. Phys. Rev. Lett. 117 , 020501 (2016).

[57] Y. W. Cho, G. T. Campbell, J. L. Everett, J. Bernu, D. B. Higginbottom, M. T. Cao, J. Geng, N. P. Robins, P. K. Lam, B. C. Buchler, Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3 , 100-107 (2016).

[58] M. Sabooni, Q. Li, S. Kroll, L. Rippe, Efficient quantum memory using a weakly absorbing sample. Phys. Rev. Lett. 110, 133604 (2013).

[59] N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett. 113 , 053603 (2014).

[60] M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, B. C. Buchler, Unconditional room-temperature quantum memory. Nat. Phys. 7 , 794-798 (2011).

[61] K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, I. A. Walmsley, Towards high-speed optical quantum memories. Nat. Photon. 4 , 218 (2010).

[62] J. Guo, X. Feng, P. Yang, Z. Yu, L. Q. Chen, C. H. Yuan, W. Zhang, High-performance Raman quantum memory with optimal control in room temperature atoms. Nat. Commun. 10 , 148 (2019).

[63] D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, G.-C. Guo, Raman quantum memory of photonic polarized entanglement. Nat. Photon. 9 , 332-338 (2015).

[64] K. T. Kaczmarek, P. M. Ledingham, B. Brecht, S. E. Thomas, G. S. Thekkadath, O. Lazo-Arjona, J. H. D. Munns, E. Poem, A. Feizpour, D. J. Saunders, J. Nunn, I. A. Walmsley, High-speed noise-free optical quantum memory. Phys. Rev. A 97 , 042316 (2018).

[65] Ran Finkelstein, Eilon Poem, Ohad Michel, Ohr Lahad, O. Firstenberg, Fast, noise-free memory for photon synchronization at room temperature. Sci. Adv. 4 , eaap8598 (2018).

[66] C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, N. Gisin, Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98 , 190503 (2007).

[67] D. G. England, P. S. Michelberger, T. F. M. Champion, K. F. Reim, K. C. Lee, M. R. Sprague, X. M. Jin, N. K. Langford, W. S. Kolthammer, J. Nunn, I. A. Walmsley, High-fidelity polarization storage in a gigahertz bandwidth quantum memory. Journal of Physics B: Atomic, Molecular and Optical Physics 45 , 124008 (2012).

[68] Chin-Wen Chou, Julien Laurat, Hui Deng, Kyung Soo Choi, Hugues de Riedmatten, Daniel Felinto, H. J. Kimble, Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316 , 1316-1319 (2007).

[69] K. C. Cox, D. H. Meyer, Z. A. Castillo, F. K. Fatemi, P. D. Kunz, Spin-Wave Multiplexed Atom-Cavity Electrodynamics. Phys. Rev. Lett. 123 , 263601 (2019).

[70] L. Heller, P. Farrera, G. Heinze, H. de Riedmatten, Cold-Atom Temporally Multiplexed Quantum Memory with Cavity-Enhanced Noise Suppression. Phys. Rev. Lett. 124 , 210504 (2020).

[71] See Supplemental Material.

[72] H. de Riedmatten, J. Laurat, C. W. Chou, E. W. Schomburg, D. Felinto, H. J. Kimble, Direct measurement of decoherence for entanglement between a photon and stored atomic excitation. Phys. Rev. Lett. 97 , 113603 (2006).

[73] S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, J. W. Pan, Demonstration of a stable atom-photon entanglement source for quantum repeaters. Phys. Rev. Lett. 99 , 180505 (2007).

[74] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, N. Gisin, Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93 , 180502 (2004).

[75] H. R. B. Markus Aspelmeyer, Tsewang Gyatso, Thomas Jennewein, Rainer Kaltenbaek, Michael Lindenthal, Gabriel Molina-Terriza, Andreas Poppe, Kevin Resch, Michael Taraba, Rupert Ursin, Philip Walther, Anton Zeilinger, Long-Distance Free-Space Distribution of Quantum Entanglement. Science 301 , 621 (2003).

[76] B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, H. de Riedmatten, A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band. Nat. Commun. 5 , 3376 (2014).

Cited by

[1] Minjie Wang, Haole Jiao, Jiajin Lu, Wenxin Fan, Zhifang Yang, Mengqi Xi, Shujing Li, and Hai Wang, "Heralded Entanglement Distribution Between Two Spin‐Wave Memories Using Temporally Multiplexed Scheme", Laser & Photonics Reviews 2300825 (2024).

[2] Can Sun, Ya Li, Yi‐bo Hou, Min‐jie Wang, Shu‐jing Li, and Hai Wang, "Decoherence of Single‐Excitation Entanglement over Duan‐Lukin‐Cirac‐Zoller Quantum Networks Caused by Slow‐Magnetic‐Field Fluctuations and Protection Approach", Advanced Quantum Technologies 6 10, 2300148 (2023).

[3] Wen-Xin Fan, Min-Jie Wang, Hao-Le Jiao, Jia-Jin Lu, Hai-Long Liu, Zhi-Fang Yang, Meng-Qi Xi, Shu-Jing Li, and Hai Wang, "Dependence of retrieval efficiency on waist ratio of read beam to anti-Stokes photon mode in cavity-enhanced quantum memory", Acta Physica Sinica 72 21, 210301 (2023).

[4] Hailong Liu, Minjie Wang, Haole Jiao, Jiajin Lu, Wenxin Fan, Shujing Li, and Hai Wang, "Cavity-enhanced and temporally multiplexed atom-photon entanglement interface", Optics Express 31 5, 7200 (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 12:06:24) and SAO/NASA ADS (last updated successfully 2024-06-22 12:06:25). The list may be incomplete as not all publishers provide suitable and complete citation data.