Quantum speed limits on operator flows and correlation functions

Nicoletta Carabba1, Niklas Hörnedal1,2, and Adolfo del Campo1,3

1Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, G. D. Luxembourg
2Fysikum, Stockholms Universitet, 106 91 Stockholm, Sweden
3Donostia International Physics Center, E-20018 San Sebastián, Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Quantum speed limits (QSLs) identify fundamental time scales of physical processes by providing lower bounds on the rate of change of a quantum state or the expectation value of an observable. We introduce a generalization of QSL for unitary operator flows, which are ubiquitous in physics and relevant for applications in both the quantum and classical domains. We derive two types of QSLs and assess the existence of a crossover between them, that we illustrate with a qubit and a random matrix Hamiltonian, as canonical examples. We further apply our results to the time evolution of autocorrelation functions, obtaining computable constraints on the linear dynamical response of quantum systems out of equilibrium and the quantum Fisher information governing the precision in quantum parameter estimation.

The nature of time has always been one of the most debated subjects in human history, involving and relating different areas of human knowledge. In quantum physics, time, rather than being an observable as the position, is treated as a parameter. Accordingly, the Heisenberg uncertainty principle and time-energy uncertainty relation are of a deeply different nature. In 1945 the latter was refined by Mandelstam and Tamm as a quantum speed limit (QSL), that is, a lower bound on the time needed for the quantum state of a physical system to evolve into a distinguishable state. This new vision gave rise to a prolific series of works extending the notion of QSL to different kinds of quantum states and physical systems. Despite decades of research, QSL to date remains focused on quantum state distinguishability, natural for applications such as quantum computing and metrology. Yet, other applications involve operators flowing or evolving as a function of time. In this context, conventional QSL are inapplicable.

In this work we introduce a new class of QSL formulated for unitary operator flows. We generalize the celebrated Mandelstam-Tamm and Margolus-Levitin speed limits to operator flows, demonstrate their validity in simple and complex systems and illustrate their relevance to bound response functions in condensed matter physics. We expect our findings to find further applications including the dynamics of integrable systems, renormalization group and quantum complexity, among other examples.

► BibTeX data

► References

[1] L. Mandelstam and I. Tamm. The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. USSR, 9: 249, 1945. https:/​/​doi.org/​10.1007/​978-3-642-74626-0_8.
https:/​/​doi.org/​10.1007/​978-3-642-74626-0_8

[2] Norman Margolus and Lev B. Levitin. The maximum speed of dynamical evolution. Physica D: Nonlinear Phenomena, 120 (1): 188–195, 1998. ISSN 0167-2789. https:/​/​doi.org/​10.1016/​S0167-2789(98)00054-2. URL https:/​/​www.sciencedirect.com/​science/​article/​pii/​S0167278998000542. Proceedings of the Fourth Workshop on Physics and Consumption.
https:/​/​doi.org/​10.1016/​S0167-2789(98)00054-2
https:/​/​www.sciencedirect.com/​science/​article/​pii/​S0167278998000542

[3] Armin Uhlmann. An energy dispersion estimate. Physics Letters A, 161 (4): 329 – 331, 1992. ISSN 0375-9601. https:/​/​doi.org/​10.1016/​0375-9601(92)90555-Z. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​037596019290555Z.
https:/​/​doi.org/​10.1016/​0375-9601(92)90555-Z
http:/​/​www.sciencedirect.com/​science/​article/​pii/​037596019290555Z

[4] Francesco Campaioli, Felix A. Pollock, Felix C. Binder, and Kavan Modi. Tightening quantum speed limits for almost all states. Phys. Rev. Lett., 120: 060409, Feb 2018. 10.1103/​PhysRevLett.120.060409. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.120.060409.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.060409

[5] J. Anandan and Y. Aharonov. Geometry of quantum evolution. Phys. Rev. Lett., 65: 1697–1700, Oct 1990. 10.1103/​PhysRevLett.65.1697. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.65.1697.
https:/​/​doi.org/​10.1103/​PhysRevLett.65.1697

[6] Sebastian Deffner and Eric Lutz. Energy–time uncertainty relation for driven quantum systems. Journal of Physics A: Mathematical and Theoretical, 46 (33): 335302, jul 2013a. 10.1088/​1751-8113/​46/​33/​335302. URL https:/​/​doi.org/​10.1088/​1751-8113/​46/​33/​335302.
https:/​/​doi.org/​10.1088/​1751-8113/​46/​33/​335302

[7] Manaka Okuyama and Masayuki Ohzeki. Comment on `energy-time uncertainty relation for driven quantum systems'. Journal of Physics A: Mathematical and Theoretical, 51 (31): 318001, jun 2018a. 10.1088/​1751-8121/​aacb90. URL https:/​/​doi.org/​10.1088/​1751-8121/​aacb90.
https:/​/​doi.org/​10.1088/​1751-8121/​aacb90

[8] M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho. Quantum speed limit for physical processes. Phys. Rev. Lett., 110: 050402, Jan 2013. 10.1103/​PhysRevLett.110.050402. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.110.050402.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.050402

[9] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga. Quantum speed limits in open system dynamics. Phys. Rev. Lett., 110: 050403, Jan 2013. 10.1103/​PhysRevLett.110.050403. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.110.050403.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.050403

[10] Sebastian Deffner and Eric Lutz. Quantum speed limit for non-markovian dynamics. Phys. Rev. Lett., 111: 010402, Jul 2013b. 10.1103/​PhysRevLett.111.010402. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.111.010402.
https:/​/​doi.org/​10.1103/​PhysRevLett.111.010402

[11] Francesco Campaioli, Felix A. Pollock, and Kavan Modi. Tight, robust, and feasible quantum speed limits for open dynamics. Quantum, 3: 168, August 2019. ISSN 2521-327X. 10.22331/​q-2019-08-05-168. URL https:/​/​doi.org/​10.22331/​q-2019-08-05-168.
https:/​/​doi.org/​10.22331/​q-2019-08-05-168

[12] Luis Pedro García-Pintos and Adolfo del Campo. Quantum speed limits under continuous quantum measurements. New Journal of Physics, 21 (3): 033012, mar 2019. 10.1088/​1367-2630/​ab099e. URL https:/​/​doi.org/​10.1088/​1367-2630/​ab099e.
https:/​/​doi.org/​10.1088/​1367-2630/​ab099e

[13] B. Shanahan, A. Chenu, N. Margolus, and A. del Campo. Quantum speed limits across the quantum-to-classical transition. Phys. Rev. Lett., 120: 070401, Feb 2018. 10.1103/​PhysRevLett.120.070401. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.120.070401.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.070401

[14] Manaka Okuyama and Masayuki Ohzeki. Quantum speed limit is not quantum. Phys. Rev. Lett., 120: 070402, Feb 2018b. 10.1103/​PhysRevLett.120.070402. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.120.070402.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.070402

[15] Naoto Shiraishi, Ken Funo, and Keiji Saito. Speed limit for classical stochastic processes. Phys. Rev. Lett., 121: 070601, Aug 2018. 10.1103/​PhysRevLett.121.070601. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.121.070601.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.070601

[16] Sebastian Deffner and Steve Campbell. Quantum speed limits: from heisenberg's uncertainty principle to optimal quantum control. Journal of Physics A: Mathematical and Theoretical, 50 (45): 453001, oct 2017. 10.1088/​1751-8121/​aa86c6. URL https:/​/​doi.org/​10.1088/​1751-8121/​aa86c6.
https:/​/​doi.org/​10.1088/​1751-8121/​aa86c6

[17] S. Lloyd. Ultimate physical limits to computation. Nature, 406 (6799): 1047–1054, 2000. https:/​/​doi.org/​10.1038/​35023282.
https:/​/​doi.org/​10.1038/​35023282

[18] Seth Lloyd. Computational capacity of the universe. Phys. Rev. Lett., 88: 237901, May 2002. 10.1103/​PhysRevLett.88.237901. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.88.237901.
https:/​/​doi.org/​10.1103/​PhysRevLett.88.237901

[19] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Advances in quantum metrology. Nature Photonics, 5 (4): 222–229, 2011. ISSN 1749-4893. 10.1038/​nphoton.2011.35. URL https:/​/​doi.org/​10.1038/​nphoton.2011.35.
https:/​/​doi.org/​10.1038/​nphoton.2011.35

[20] M. Beau and A. del Campo. Nonlinear quantum metrology of many-body open systems. Phys. Rev. Lett., 119: 010403, Jul 2017. 10.1103/​PhysRevLett.119.010403. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.119.010403.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.010403

[21] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro. Optimal control at the quantum speed limit. Phys. Rev. Lett., 103: 240501, Dec 2009. 10.1103/​PhysRevLett.103.240501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.103.240501.
https:/​/​doi.org/​10.1103/​PhysRevLett.103.240501

[22] Gerhard C. Hegerfeldt. Driving at the quantum speed limit: Optimal control of a two-level system. Phys. Rev. Lett., 111: 260501, Dec 2013. 10.1103/​PhysRevLett.111.260501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.111.260501.
https:/​/​doi.org/​10.1103/​PhysRevLett.111.260501

[23] Ken Funo, Jing-Ning Zhang, Cyril Chatou, Kihwan Kim, Masahito Ueda, and Adolfo del Campo. Universal work fluctuations during shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett., 118: 100602, Mar 2017. 10.1103/​PhysRevLett.118.100602. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.118.100602.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.100602

[24] Steve Campbell and Sebastian Deffner. Trade-off between speed and cost in shortcuts to adiabaticity. Phys. Rev. Lett., 118: 100601, Mar 2017. 10.1103/​PhysRevLett.118.100601. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.118.100601.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.100601

[25] Sahar Alipour, Aurelia Chenu, Ali T. Rezakhani, and Adolfo del Campo. Shortcuts to Adiabaticity in Driven Open Quantum Systems: Balanced Gain and Loss and Non-Markovian Evolution. Quantum, 4: 336, September 2020. ISSN 2521-327X. 10.22331/​q-2020-09-28-336. URL https:/​/​doi.org/​10.22331/​q-2020-09-28-336.
https:/​/​doi.org/​10.22331/​q-2020-09-28-336

[26] Ken Funo, Neill Lambert, and Franco Nori. General bound on the performance of counter-diabatic driving acting on dissipative spin systems. Phys. Rev. Lett., 127: 150401, Oct 2021. 10.1103/​PhysRevLett.127.150401. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.127.150401.
https:/​/​doi.org/​10.1103/​PhysRevLett.127.150401

[27] Marin Bukov, Dries Sels, and Anatoli Polkovnikov. Geometric speed limit of accessible many-body state preparation. Phys. Rev. X, 9: 011034, Feb 2019. 10.1103/​PhysRevX.9.011034. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.9.011034.
https:/​/​doi.org/​10.1103/​PhysRevX.9.011034

[28] Keisuke Suzuki and Kazutaka Takahashi. Performance evaluation of adiabatic quantum computation via quantum speed limits and possible applications to many-body systems. Phys. Rev. Research, 2: 032016, Jul 2020. 10.1103/​PhysRevResearch.2.032016. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevResearch.2.032016.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.032016

[29] Adolfo del Campo. Probing quantum speed limits with ultracold gases. Phys. Rev. Lett., 126: 180603, May 2021. 10.1103/​PhysRevLett.126.180603. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.126.180603.
https:/​/​doi.org/​10.1103/​PhysRevLett.126.180603

[30] Ryusuke Hamazaki. Speed limits for macroscopic transitions. PRX Quantum, 3: 020319, Apr 2022. 10.1103/​PRXQuantum.3.020319. URL https:/​/​link.aps.org/​doi/​10.1103/​PRXQuantum.3.020319.
https:/​/​doi.org/​10.1103/​PRXQuantum.3.020319

[31] Zongping Gong and Ryusuke Hamazaki. Bounds in nonequilibrium quantum dynamics. International Journal of Modern Physics B, 36 (31): 2230007, 2022. 10.1142/​S0217979222300079. URL https:/​/​doi.org/​10.1142/​S0217979222300079.
https:/​/​doi.org/​10.1142/​S0217979222300079

[32] Jun Jing, Lian-Ao Wu, and Adolfo del Campo. Fundamental speed limits to the generation of quantumness. Scientific Reports, 6 (1): 38149, Nov 2016. ISSN 2045-2322. 10.1038/​srep38149. URL https:/​/​doi.org/​10.1038/​srep38149.
https:/​/​doi.org/​10.1038/​srep38149

[33] Iman Marvian, Robert W. Spekkens, and Paolo Zanardi. Quantum speed limits, coherence, and asymmetry. Phys. Rev. A, 93: 052331, May 2016. 10.1103/​PhysRevA.93.052331. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.93.052331.
https:/​/​doi.org/​10.1103/​PhysRevA.93.052331

[34] Brij Mohan, Siddhartha Das, and Arun Kumar Pati. Quantum speed limits for information and coherence. New Journal of Physics, 24 (6): 065003, jun 2022. 10.1088/​1367-2630/​ac753c. URL https:/​/​doi.org/​10.1088/​1367-2630/​ac753c.
https:/​/​doi.org/​10.1088/​1367-2630/​ac753c

[35] Francesco Campaioli, Chang shui Yu, Felix A Pollock, and Kavan Modi. Resource speed limits: maximal rate of resource variation. New Journal of Physics, 24 (6): 065001, jun 2022. 10.1088/​1367-2630/​ac7346. URL https:/​/​doi.org/​10.1088/​1367-2630/​ac7346.
https:/​/​doi.org/​10.1088/​1367-2630/​ac7346

[36] Todd R. Gingrich, Jordan M. Horowitz, Nikolay Perunov, and Jeremy L. England. Dissipation bounds all steady-state current fluctuations. Phys. Rev. Lett., 116: 120601, Mar 2016. 10.1103/​PhysRevLett.116.120601. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.116.120601.
https:/​/​doi.org/​10.1103/​PhysRevLett.116.120601

[37] Yoshihiko Hasegawa. Thermodynamic uncertainty relation for general open quantum systems. Phys. Rev. Lett., 126: 010602, Jan 2021. 10.1103/​PhysRevLett.126.010602. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.126.010602.
https:/​/​doi.org/​10.1103/​PhysRevLett.126.010602

[38] Schuyler B. Nicholson, Luis Pedro García-Pintos, Adolfo del Campo, and Jason R. Green. Time–information uncertainty relations in thermodynamics. Nature Physics, 16 (12): 1211–1215, Dec 2020. ISSN 1745-2481. 10.1038/​s41567-020-0981-y. URL https:/​/​doi.org/​10.1038/​s41567-020-0981-y.
https:/​/​doi.org/​10.1038/​s41567-020-0981-y

[39] Van Tuan Vo, Tan Van Vu, and Yoshihiko Hasegawa. Unified approach to classical speed limit and thermodynamic uncertainty relation. Phys. Rev. E, 102: 062132, Dec 2020. 10.1103/​PhysRevE.102.062132. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevE.102.062132.
https:/​/​doi.org/​10.1103/​PhysRevE.102.062132

[40] Luis Pedro García-Pintos, Schuyler B. Nicholson, Jason R. Green, Adolfo del Campo, and Alexey V. Gorshkov. Unifying quantum and classical speed limits on observables. Phys. Rev. X, 12: 011038, Feb 2022. 10.1103/​PhysRevX.12.011038. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.12.011038.
https:/​/​doi.org/​10.1103/​PhysRevX.12.011038

[41] Brij Mohan and Arun Kumar Pati. Quantum speed limits for observables. Phys. Rev. A, 106: 042436, Oct 2022. 10.1103/​PhysRevA.106.042436. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.106.042436.
https:/​/​doi.org/​10.1103/​PhysRevA.106.042436

[42] A.M. Perelomov. Integrable Systems of Classical Mechanics and Lie Algebras Volume I. Birkhäuser Basel, 1990. https:/​/​doi.org/​10.1007/​978-3-0348-9257-5.
https:/​/​doi.org/​10.1007/​978-3-0348-9257-5

[43] Franz J. Wegner. Flow equations for hamiltonians. Physics Reports, 348 (1): 77–89, 2001. ISSN 0370-1573. https:/​/​doi.org/​10.1016/​S0370-1573(00)00136-8. URL https:/​/​www.sciencedirect.com/​science/​article/​pii/​S0370157300001368.
https:/​/​doi.org/​10.1016/​S0370-1573(00)00136-8
https:/​/​www.sciencedirect.com/​science/​article/​pii/​S0370157300001368

[44] Pablo M. Poggi. Geometric quantum speed limits and short-time accessibility to unitary operations. Phys. Rev. A, 99: 042116, Apr 2019. 10.1103/​PhysRevA.99.042116. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.99.042116.
https:/​/​doi.org/​10.1103/​PhysRevA.99.042116

[45] Raam Uzdin. Resources needed for non-unitary quantum operations. Journal of Physics A: Mathematical and Theoretical, 46 (14): 145302, mar 2013. 10.1088/​1751-8113/​46/​14/​145302. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​10.1088/​1751-8113/​46/​14/​145302

[46] Raam Uzdin and Ronnie Kosloff. Speed limits in liouville space for open quantum systems. EPL (Europhysics Letters), 115 (4): 40003, aug 2016. 10.1209/​0295-5075/​115/​40003. URL https:/​/​doi.org/​10.1209/​0295-5075/​115/​40003.
https:/​/​doi.org/​10.1209/​0295-5075/​115/​40003

[47] C. W. von Keyserlingk, Tibor Rakovszky, Frank Pollmann, and S. L. Sondhi. Operator hydrodynamics, otocs, and entanglement growth in systems without conservation laws. Phys. Rev. X, 8: 021013, Apr 2018. 10.1103/​PhysRevX.8.021013. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.021013.
https:/​/​doi.org/​10.1103/​PhysRevX.8.021013

[48] Vedika Khemani, Ashvin Vishwanath, and David A. Huse. Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws. Phys. Rev. X, 8: 031057, Sep 2018. 10.1103/​PhysRevX.8.031057. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.031057.
https:/​/​doi.org/​10.1103/​PhysRevX.8.031057

[49] Adam Nahum, Sagar Vijay, and Jeongwan Haah. Operator spreading in random unitary circuits. Phys. Rev. X, 8: 021014, Apr 2018. 10.1103/​PhysRevX.8.021014. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.021014.
https:/​/​doi.org/​10.1103/​PhysRevX.8.021014

[50] Sarang Gopalakrishnan, David A. Huse, Vedika Khemani, and Romain Vasseur. Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems. Phys. Rev. B, 98: 220303, Dec 2018. 10.1103/​PhysRevB.98.220303. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.98.220303.
https:/​/​doi.org/​10.1103/​PhysRevB.98.220303

[51] Tibor Rakovszky, Frank Pollmann, and C. W. von Keyserlingk. Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation. Phys. Rev. X, 8: 031058, Sep 2018. 10.1103/​PhysRevX.8.031058. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.031058.
https:/​/​doi.org/​10.1103/​PhysRevX.8.031058

[52] Leonard Susskind. Computational complexity and black hole horizons. Fortschritte der Physik, 64 (1): 24–43, 2016. https:/​/​doi.org/​10.1002/​prop.201500092. URL https:/​/​onlinelibrary.wiley.com/​doi/​abs/​10.1002/​prop.201500092.
https:/​/​doi.org/​10.1002/​prop.201500092

[53] Adam R. Brown, Daniel A. Roberts, Leonard Susskind, Brian Swingle, and Ying Zhao. Holographic complexity equals bulk action? Phys. Rev. Lett., 116: 191301, May 2016a. 10.1103/​PhysRevLett.116.191301. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.116.191301.
https:/​/​doi.org/​10.1103/​PhysRevLett.116.191301

[54] Adam R. Brown, Daniel A. Roberts, Leonard Susskind, Brian Swingle, and Ying Zhao. Complexity, action, and black holes. Phys. Rev. D, 93: 086006, Apr 2016b. 10.1103/​PhysRevD.93.086006. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevD.93.086006.
https:/​/​doi.org/​10.1103/​PhysRevD.93.086006

[55] Shira Chapman, Michal P. Heller, Hugo Marrochio, and Fernando Pastawski. Toward a definition of complexity for quantum field theory states. Phys. Rev. Lett., 120: 121602, Mar 2018. 10.1103/​PhysRevLett.120.121602. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.120.121602.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.121602

[56] J. Molina-Vilaplana and A. del Campo. Complexity functionals and complexity growth limits in continuous mera circuits. Journal of High Energy Physics, 2018 (8): 12, Aug 2018. ISSN 1029-8479. 10.1007/​JHEP08(2018)012. URL https:/​/​doi.org/​10.1007/​JHEP08(2018)012.
https:/​/​doi.org/​10.1007/​JHEP08(2018)012

[57] Niklas Hörnedal, Nicoletta Carabba, Apollonas S. Matsoukas-Roubeas, and Adolfo del Campo. Ultimate speed limits to the growth of operator complexity. Communications Physics, 5 (1): 207, Aug 2022. ISSN 2399-3650. 10.1038/​s42005-022-00985-1. URL https:/​/​doi.org/​10.1038/​s42005-022-00985-1.
https:/​/​doi.org/​10.1038/​s42005-022-00985-1

[58] Daniel E. Parker, Xiangyu Cao, Alexander Avdoshkin, Thomas Scaffidi, and Ehud Altman. A universal operator growth hypothesis. Phys. Rev. X, 9: 041017, Oct 2019. 10.1103/​PhysRevX.9.041017. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.9.041017.
https:/​/​doi.org/​10.1103/​PhysRevX.9.041017

[59] J.L.F. Barbón, E. Rabinovici, R. Shir, and R. Sinha. On the evolution of operator complexity beyond scrambling. J. High Energ. Phys., 2019 (10): 264, October 2019. ISSN 1029-8479. 10.1007/​JHEP10(2019)264. URL https:/​/​doi.org/​10.1007/​JHEP10(2019)264.
https:/​/​doi.org/​10.1007/​JHEP10(2019)264

[60] E. Rabinovici, A. Sánchez-Garrido, R. Shir, and J. Sonner. Operator complexity: a journey to the edge of Krylov space. J. High Energ. Phys., 2021 (6): 62, June 2021. ISSN 1029-8479. 10.1007/​JHEP06(2021)062. URL https:/​/​doi.org/​10.1007/​JHEP06(2021)062.
https:/​/​doi.org/​10.1007/​JHEP06(2021)062

[61] Pawel Caputa, Javier M. Magan, and Dimitrios Patramanis. Geometry of Krylov Complexity. arXiv:2109.03824, September 2021. URL http:/​/​arxiv.org/​abs/​2109.03824.
arXiv:2109.03824

[62] Ryogo Kubo. Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12 (6): 570–586, 1957. 10.1143/​JPSJ.12.570. URL https:/​/​doi.org/​10.1143/​JPSJ.12.570.
https:/​/​doi.org/​10.1143/​JPSJ.12.570

[63] Gal Ness, Manolo R. Lam, Wolfgang Alt, Dieter Meschede, Yoav Sagi, and Andrea Alberti. Observing crossover between quantum speed limits. Science Advances, 7 (52): eabj9119, 2021. 10.1126/​sciadv.abj9119. URL https:/​/​www.science.org/​doi/​abs/​10.1126/​sciadv.abj9119.
https:/​/​doi.org/​10.1126/​sciadv.abj9119

[64] Philipp Hauke, Markus Heyl, Luca Tagliacozzo, and Peter Zoller. Measuring multipartite entanglement through dynamic susceptibilities. Nature Physics, 12 (8): 778–782, 2016. 10.1038/​nphys3700. URL https:/​/​doi.org/​10.1038/​nphys3700.
https:/​/​doi.org/​10.1038/​nphys3700

[65] Xiaoguang Wang, Zhe Sun, and Z. D. Wang. Operator fidelity susceptibility: An indicator of quantum criticality. Phys. Rev. A, 79: 012105, Jan 2009. 10.1103/​PhysRevA.79.012105. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.79.012105.
https:/​/​doi.org/​10.1103/​PhysRevA.79.012105

[66] Ole Andersson. Holonomy in Quantum Information Geometry. PhD thesis, Stockholm University, 2019.

[67] Gal Ness, Andrea Alberti, and Yoav Sagi. Quantum speed limit for states with a bounded energy spectrum. Phys. Rev. Lett., 129: 140403, Sep 2022. 10.1103/​PhysRevLett.129.140403. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.129.140403.
https:/​/​doi.org/​10.1103/​PhysRevLett.129.140403

[68] Lev B. Levitin and Tommaso Toffoli. Fundamental limit on the rate of quantum dynamics: The unified bound is tight. Phys. Rev. Lett., 103: 160502, Oct 2009. 10.1103/​PhysRevLett.103.160502. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.103.160502.
https:/​/​doi.org/​10.1103/​PhysRevLett.103.160502

[69] Anatoly Dymarsky and Michael Smolkin. Krylov complexity in conformal field theory. Phys. Rev. D, 104: L081702, Oct 2021. 10.1103/​PhysRevD.104.L081702. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevD.104.L081702.
https:/​/​doi.org/​10.1103/​PhysRevD.104.L081702

[70] Álvaro M. Alhambra, Jonathon Riddell, and Luis Pedro García-Pintos. Time evolution of correlation functions in quantum many-body systems. Phys. Rev. Lett., 124: 110605, Mar 2020. 10.1103/​PhysRevLett.124.110605. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.124.110605.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.110605

[71] Mark E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press, 2010. https:/​/​doi.org/​10.1002/​anie.201105752.
https:/​/​doi.org/​10.1002/​anie.201105752

[72] Masahito Ueda. Fundamentals and New Frontiers of Bose-Einstein Condensation. WORLD SCIENTIFIC, 2010. 10.1142/​7216. URL https:/​/​www.worldscientific.com/​doi/​abs/​10.1142/​7216.
https:/​/​doi.org/​10.1142/​7216

[73] Gene F. Mazenko. Nonequilibrium Statistical Mechanics. John Wiley Sons, 2006. ISBN 9783527618958. https:/​/​doi.org/​10.1002/​9783527618958.
https:/​/​doi.org/​10.1002/​9783527618958

[74] G.E. Pake. Paramagnetic Resonance: An Introductory Monograph. Number v. 1 in Frontiers in physics. W.A. Benjamin, 1962. URL https:/​/​books.google.lu/​books?id=B8pEAAAAIAAJ.
https:/​/​books.google.lu/​books?id=B8pEAAAAIAAJ

[75] Marlon Brenes, Silvia Pappalardi, John Goold, and Alessandro Silva. Multipartite entanglement structure in the eigenstate thermalization hypothesis. Phys. Rev. Lett., 124: 040605, Jan 2020. 10.1103/​PhysRevLett.124.040605. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.124.040605.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.040605

[76] Samuel L. Braunstein, Carlton M. Caves, and G.J. Milburn. Generalized uncertainty relations: Theory, examples, and lorentz invariance. Annals of Physics, 247 (1): 135–173, 1996. ISSN 0003-4916. https:/​/​doi.org/​10.1006/​aphy.1996.0040. URL https:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491696900408.
https:/​/​doi.org/​10.1006/​aphy.1996.0040
https:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491696900408

[77] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum limits to dynamical evolution. Phys. Rev. A, 67: 052109, May 2003. 10.1103/​PhysRevA.67.052109. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.67.052109.
https:/​/​doi.org/​10.1103/​PhysRevA.67.052109

[78] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. The speed limit of quantum unitary evolution. Journal of Optics B: Quantum and Semiclassical Optics, 6 (8): S807–S810, jul 2004. 10.1088/​1464-4266/​6/​8/​028. URL https:/​/​doi.org/​10.1088/​1464-4266/​6/​8/​028.
https:/​/​doi.org/​10.1088/​1464-4266/​6/​8/​028

[79] A. del Campo, J. Molina-Vilaplana, and J. Sonner. Scrambling the spectral form factor: Unitarity constraints and exact results. Phys. Rev. D, 95: 126008, Jun 2017. 10.1103/​PhysRevD.95.126008. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevD.95.126008.
https:/​/​doi.org/​10.1103/​PhysRevD.95.126008

[80] Zhenyu Xu, Aurelia Chenu, TomažProsen, and Adolfo del Campo. Thermofield dynamics: Quantum chaos versus decoherence. Phys. Rev. B, 103: 064309, Feb 2021. 10.1103/​PhysRevB.103.064309. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.103.064309.
https:/​/​doi.org/​10.1103/​PhysRevB.103.064309

[81] Manaka Okuyama and Masayuki Ohzeki. Comment on ‘energy-time uncertainty relation for driven quantum systems’. Journal of Physics A: Mathematical and Theoretical, 51 (31): 318001, jun 2018c. 10.1088/​1751-8121/​aacb90. URL https:/​/​dx.doi.org/​10.1088/​1751-8121/​aacb90.
https:/​/​doi.org/​10.1088/​1751-8121/​aacb90

Cited by

[1] Mir Afrasiar, Jaydeep Kumar Basak, Bidyut Dey, Kunal Pal, and Kuntal Pal, "Time evolution of spread complexity in quenched Lipkin-Meshkov-Glick model", arXiv:2208.10520, (2022).

[2] Yoshihiko Hasegawa, "Thermodynamic correlation inequality", arXiv:2301.03060, (2023).

[3] Farha Yasmin and Jan Sperling, "Entanglement-assisted quantum speedup: Beating local quantum speed limits", arXiv:2211.14898, (2022).

The above citations are from SAO/NASA ADS (last updated successfully 2023-02-07 09:36:47). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2023-02-07 09:36:45).