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Equivalent approaches to determine eigenfrequencies of the Liouvillians of
open quantum systems are discussed using the solution of the Heisenberg-
Langevin equations and the corresponding equations for operator moments.
A simple damped two-level atom is analyzed to demonstrate the equivalence of
both approaches. The suggested method is used to reveal the structure as well
as eigenfrequencies of the dynamics matrices of the corresponding equations of
motion and their degeneracies for interacting bosonic modes described by gen-
eral quadratic Hamiltonians. Quantum Liouvillian exceptional and diabolical
points and their degeneracies are explicitly discussed for the case of two modes.
Quantum hybrid diabolical exceptional points (inherited, genuine, and induced)
and hidden exceptional points, which are not recognized directly in amplitude
spectra, are observed. The presented approach via the Heisenberg-Langevin
equations paves the general way to a detailed analysis of quantum exceptional
and diabolical points in infinitely dimensional open quantum systems.

1 Introduction
Non-Hermitian Hamiltonians, for systems with properly balanced dissipation and amplifi-
cation, have real energy spectra if they exhibit the parity-time (PT ) symmetry, as shown
by Bender and Boettcher [1]. That discovery has lead to the development of non-Hermitian
quantum mechanics [2, 3, 4, 5] and has triggered impressive research interest ranging from
studying fundamental aspects of quantum physics [6, 7, 8, 9, 10, 11] to proposing appli-
cations in quantum metrology, optics, optomechanics, and photonics [12, 13, 14]. Studies
of non-Hermitian quantum mechanics include also finding quantum analogues of general
relativity concepts (like Einstein’s quantum elevator [15]), proving various no-go theorems
for information processing with non-Hermitian systems [16, 17], and even proposals to ap-
ply specific non-Hermitian systems, with energy spectra corresponding to the zeros of the
Riemann zeta function, aimed at proving the Riemann hypothesis [18].

Recently, a considerable interest in studying non-Hermitian systems has been focused
on their exceptional points (EPs), which occur, e.g., at the phase transitions between the
PT and non-PT regimes. Various applications of EPs for refined quantum control of
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dissipative and/or amplified systems have been proposed (for reviews see [19, 20, 14] and
references therein).

Most of these studies on EPs are limited to Hamiltonian EPs, which correspond to the
degeneracies of the eigenvalues of non-Hermitian Hamiltonians associated with their coales-
cent eigenvectors. We note that these EPs may be called semiclassical, because they are not
affected by quantum jumps, as explicitly discussed in [21] based on the quantum-trajectory
theory [22], which is also referred to as the Monte Carlo wave-function method [23, 24]
or the quantum-jump approach [25]. Indeed, non-Hermitian Hamiltonians describe only
a continuous nonunitary dissipation of an open system, but its full quantum description
requires also the inclusion of quantum jumps in the system evolution. Recently, these
semiclassical Hamiltonian EPs have been generalized to the quantum regime by analyz-
ing the EPs of quantum Liouvillians instead of those of non-Hermitian Hamiltonians [21].
Specifically, quantum EPs (QEPs) can be defined as the degeneracies of the eigenvalues
corresponding to coalescent eigenmatrices (eigenoperators) of the quantum Liouvillian su-
peroperator for a Lindblad master equation. Clearly, such an approach to EPs includes
the effect of quantum jumps, as it is based on the standard master-equation approach [26]
with a trivial metric for arbitrary systems. In contrast to this, a complete description of
the evolution of a non-Hermitian system within the Bender-Boettcher quantum mechanics
requires also calculating the evolution of a nontrivial metric of the system. This is rather
complicated and nonintuitive, but necessary to obtain physical results without violating
any no-go theorems [16, 17]. The effects of quantum jumps on QEPs have been recently
confirmed experimentally in [27, 28].

QEPs and Hamiltonian EPs are, in general, different, although they can be equivalent
for classical-like systems (e.g., linearly coupled harmonic oscillators [21]) or specific finite-
dimensional systems [29]. Anyway, one can experimentally observe the transition of QEPs
into Hamiltonian EPs by a proper postselection of quantum trajectories within the hybrid-
Liouvillian formalism of Ref. [30]. We also note that if the eigenvectors corresponding to
degenerate eigenvalues of Hamiltonians or Liouvillians do not coalesce, then such points
are refereed to as diabolical points. These points have also wide applications in witnessing
quantum effects including phase transitions. For example, quantum Liouvillian diabolical
points can reveal dissipative phase transitions and a Liouvillian spectral collapse [31, 32].

For the above reasons, the determination of QEPs and their properties represents an
important task, which can lead to applications in quantum technologies, including quan-
tum metrology. Unfortunately, the standard approach of finding QEPs via the eigenvalue
problem of Liouvillians becomes quite inefficient for multi-qubit or multi-level quantum
systems. For systems with infinitely-dimensional Hilbert spaces, the determination of EPs
and QEPs is even more challenging. Here, we develop an efficient method based on the
Heisenberg-Langevin equations for finding QEPs, and we show the equivalence of QEPs
found by these two approaches. We apply the developed method for the determination
of QEPs for a system of M bosonic modes mutually interacting via quadratic nonlinear
Hamiltonians. Such Hamiltonians are appealing as they lead to the linear exactly-soluble
Heisenberg operator equations and, simultaneously, allow to describe nonclassical optical
fields including squeezed [33] and sub-Poissonian fields [34]. Such fields are analyzed in the
framework of a generalized superposition of a signal and noise [35] that describes quantum
Gaussian fields.

The applied method uses the analysis of the dynamical equations for the moments of
field operators. It is based upon the equivalence of the eigenfrequency analysis of the Liou-
villian and the analysis of an arbitrary complete set of operators of measurable quantities.
In the case of quadratic Hamiltonians the field operators moments (FOMs) can be chosen
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as a suitable set of such measurable operators. These moments form specific structures
[36, 37, 38] that exhibit QEPs of varying (exceptional) degeneracies [QEP degeneracies] and
multiplicities [diabolical degeneracies (QDP degeneracies) for quantum hybrid diabolical
exceptional points (QHPs)]. Contrary to other more general Hamiltonians, the first-order
FOMs of quadratic Hamiltonians form a closed set of dynamical equations. Moreover, the
eigenfrequencies obtained from these equations allow for the determination of those for
higher-order FOMs. These FOMs then provide a complete structure of eigenfrequencies
whose numbers increase with the increasing order of the moments. Among others, this
results in the identification of eigenfrequencies with infinite QEP and QDP degeneracies
forming QEPs and QHPs. There also occur cases in which degenerate eigenfrequencies
remain the same at a QEP, i.e. this QEP is not identified by the spectrum. We may refer
to hidden quantum exceptional points (hidden QEPs).

The paper is organized as follows. The equivalence of the system eigenfrequencies
analyses based on the Liouvillian and Heisenberg equations for the operators of measurable
quantities is discussed in general in Sec. II. Both approaches are compared in Sec. III by
considering a simple system of a damped two-level atom. Section IV is devoted to the
application of the Heisenberg-Langevin equations for an M -mode bosonic system with a
quadratic Hamiltonian and the eigenfrequency analysis of the equations for FOMs. The
eigenfrequencies and their general structure are discussed in Sec. V by considering a two-
mode bosonic system with a general quadratic Hamiltonian. Conclusions are drawn in
Sec. VI. The correspondence between the generalized master equation and the Heisenberg-
Langevin equations is discussed in Appendix A.

2 Equivalence of eigenfrequency analyses in the spaces of statistical op-
erators and measurable operators

Before we address the analysis of QEPs for specific models, we show that the eigenfrequency
analysis of a Liouvillian L̂ in the space of statistical operators can be equivalently replaced
by the eigenfrequency analysis for an arbitrary complete set of measurable operators. The
equivalence of projection operator techniques, used for the derivation of generalized master
equations with their Liouvillians, and the set of the Heisenberg equations is discussed in
detail in [39, 40, 41]. The Liouvillian superoperator L̂· ≡ −i/h̄[Ĥ, ·], where · stands for an
arbitrary operator, [, ] denotes the commutator, and h̄ means the reduced Planck constant,
is defined in terms of the overall Hamiltonian Ĥ involving the system and its reservoir in
its complete description. It is used to evolve the statistical operator ρ̂(t) according to the
Liouville equation

dρ̂(t)
dt

= L̂ρ̂(t). (1)

We consider an N -dimensional Hilbert space with an arbitrary basis |j〉 for j =
1, . . . , N . The corresponding basis in the Liouville space of a statistical operator ρ̂ is
formed by vectors ρ̂jk ≡ |j〉〈k|. They allow to express ρ̂ in terms of coefficients ρjk as
follows:

ρ̂(t) =
∑
jk

ρjk(t)ρ̂jk. (2)

The Liouville equation in (1) transforms into the following set of equations for the coeffi-
cients ρjk:

dρmn(t)
dt

=
∑
jk

Lmnjk ρjk(t), (3)

Accepted in Quantum 2022-12-10, click title to verify. Published under CC-BY 4.0. 3



and Lmnjk = 〈m|(L̂|j〉〈k|)|n〉. The diagonalization of the matrix Lmnjk provides us complex
eigenvalues −iΩα that define eigenfrequencies Ωα. The corresponding eigenvectors lαjk form
the eigenoperators l̂α =

∑
jk l

α
jk|j〉〈k|. It holds for an anti-Hermitian superoperator L̂ that

for any eigenvalue −iΩα with eigenoperator l̂α there also exists the eigenvalue iΩ∗α with
the corresponding eigenoperator l̂†α. Moreover the Liouvillians L̂ have one eigenfrequency
Ω0 = 0 with the Hermitian eigenoperator l̂0 = l̂†0 and Tr{l̂0} = 1 that describes the
steady state. Contrary to l̂0, the remaining eigenoperators l̂α are non-Hermitian and obey
Tr{l̂α} = 0.

In parallel to Eq. (2), an arbitrary statistical operator ρ̂ can be decomposed in the basis
l̂α as follows

ρ̂(t) =
∑
α

[
ρα(t)l̂α + ρα∗(t)l̂α†

]
, (4)

where ρα(t) = Tr{ρ̂(t)l̂α†}. The evolution of the statistical operator ρ̂(t) is then expressed
along the formula

ρ̂(t) =
∑
α

[
exp(−iΩαt)ρα(0)l̂α + exp(iΩ∗αt)ρα∗(0)l̂α†

]
(5)

that ‘separates’ the evolution for different eigenfrequencies Ωα and −Ω∗α. The coefficients
ρα(0) in Eq. (5) characterize the initial state. The mean value 〈A〉(t) of an arbitrary
Hermitian operator Â(0) of a measurable quantity is then determined in the Schrödinger
picture as

〈A〉(t) ≡ Tr{ρ̂(t)Â(0)} =
∑
α

[
exp(−iΩαt)ρα(0)Aα∗(0) + exp(iΩ∗αt)ρα∗(0)Aα(0)

]
, (6)

using Eq. (5) and the coefficients Aα(0) = Tr{Â(0)l̂α†}.
Now let us consider an arbitrary Hermitian operator Â(t) of a measurable quantity and

its evolution in the Heisenberg picture according to the Heisenberg equation

dÂ(t)
dt

= −L̂Â(t). (7)

The eigenoperators of the superoperator −L coincide with those of L and the corresponding
eigenvalues differ by sign. Decomposing the operator Â(0) at t = 0 into the basis l̂α,

Â(0) =
∑
α

[
Aα(0)l̂α +Aα∗(0)l̂α†

]
, (8)

we may express the solution of the Heisenberg equation (7) as follows:

Â(t) =
∑
α

[
exp(iΩαt)Aα(0)l̂α + exp(−iΩ∗αt)Aα∗(0)l̂†α

]
. (9)

Using Eq. (9), the mean value 〈A〉(t) of the operator Â in the Heisenberg picture is ex-
pressed in terms of the coefficient ρα(0) of the initial statistical operator ρ̂(0):

〈A〉(t) ≡ Tr{ρ̂(0)Â(t)} =
∑
α

[
exp(iΩαt)ρα∗(0)Aα(0) + exp(−iΩ∗αt)ρα(0)Aα∗(0)

]
. (10)

Provided that the Liouvillian L̂ is constructed using a Hermitian Hamiltonian Ĥ the eigen-
frequencies Ωα are real and the formulas for the mean values 〈A〉(t) in Eqs. (6) and (10)
coincide. This means that the time evolution of the operator Â(t) is described only by
the eigenfrequencies Ωα and −Ωα known from the evolution of the statistical operator ρ̂
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fulfilling Eq. (1). Once we construct an arbitrary basis from the Hermitian operators Â of
measurable quantities and analyze the evolution of their mean values 〈A〉(t), we reveal all
the eigenfrequencies Ωα. The used basis can even be chosen more generally involving also
non-Hermitian operators Â.

When deriving a master equation for the reduced statistical operator ρ̂s, by tracing out
the part of the whole statistical operator ρ̂ belonging to the reservoir, we apply the per-
turbation solution of the general Liouville equation (1) valid up to the second power of the
interaction Hamiltonian between the system and its reservoir. This results in a new Liou-
villian L̂s that has a more general form compared to that expressed as a commutator with
the Hamiltonian Ĥ. We may diagonalize this more general form of the system Liouvillian
L̂s to reveal, in general, complex eigenvalues −Ωα and Ω∗α and the accompanying eigenop-
erators l̂α and l̂α†. Alternatively, we convert the system Liouville equation in Eq. (1) into a
coupled set of differential equations for the mean values 〈A〉(t) of operators Â that form a
basis in the space of system operators of measurable quantities. According to Eq. (6), the
complex eigenfrequencies of the dynamics matrix of this set of differential equations coin-
cide with the eigenfrequencies revealed by a direct diagonalization of the system Liouvillian
L̂s. For details, see Appendix A. The differential equations for the mean values 〈A〉(t) can
alternatively be derived from a closed set of the Heisenberg equations written for both
the system operators Â forming the basis and operators of the reservoir. The reservoir
operators can suitably be eliminated keeping the validity of the solution up to the second
power of the interaction Hamiltonian. This leads to the Heisenberg-Langevin equations.
This method known as the Wigner-Weisskopf model of damping [35] for a bosonic mode
interacting with bosonic reservoir provides equivalent derivation of the differential equa-
tions for the mean values 〈A〉(t). This stems from the above discussed equivalence of both
descriptions in the Schrödinger and Heisenberg pictures, and equivalent approximations
when eliminating the reservoir degrees of freedom [42].

The use of the Heisenberg equations for suitable operators instead of the master equa-
tion may provide qualitative advantage compared to the eigenfrequency analysis of the
Liouvillian. We demonstrate this by analysing two important examples: a damped two-
level atom in Sec. III and the system of mutually interacting bosonic modes with the
quadratic interaction Hamiltonian in Secs. IV and V. Whereas the analysis of a damped
two-level atom in a finite-dimensional Liouville space leads to a deeper insight into the
method based on the Heisenberg equations by its comparison with a direct diagonalization
of the Liouvillian, we reveal the structure and values of eigenfrequencies in the model of
bosonic modes relying just on the Heisenberg equations.

3 Eigenfrequency analyses of a damped two-level atom
We demonstrate the above discussed equivalence of both approaches in the determination
of the system eigenfrequencies by analyzing, probably, the simplest possible physical system
— a damped two-level atom. Its Liouville space of statistical operators has dimension 4 and
so its Liouvillian L has 4 eigenfrequencies and eigenoperators. Moreover, as the system
is finite dimensional, powers of the operators of measurable quantities do not play an
important role in the eigenfrequency analysis because they are just a linear superposition of
operators from any chosen basis in the space of measurable operators. The eigenfrequency
analysis performed by both approaches also results in their detailed comparison.

The considered two-level atom has the ground state |0〉 and the excited state |1〉. It
is described by the Pauli operators σ̂x = σ̂+ + σ̂−, σ̂y = (σ̂+ − σ̂−)/i and σ̂z = σ̂1 − σ̂0;
σ̂0 ≡ |0〉〈0|, σ̂1 ≡ |1〉〈1|, σ̂+ ≡ |1〉〈0|, and σ̂− ≡ |0〉〈1|. Hamiltonian Ĥs of the two-level
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atom with the excitation energy h̄ω is written as

Ĥs = h̄ωσ̂z/2. (11)

3.1 Analysis via the Liouvillian superoperator
We begin with the eigenfrequency analysis of the corresponding Liouvillian. We assume
that the atom is damped via the interaction with a reservoir based on the σ̂x operator.
The corresponding Liouvillian L̂x is derived in the form

L̂x· = γx [σ̂x · σ̂x − 1·] , (12)

where the dot · stands for an arbitrary operator. For a more general form of damping and
the corresponding analysis of the Liouvillian, see [21].

Expressing the statistical operator ρ̂s of the two-level atom in a suitable basis,

ρ̂s = ρs
00|0〉〈0|+ ρs

01|0〉〈1|+ ρs
10|1〉〈0|+ ρs

11|1〉〈1|, (13)

we transform the Liouville equation (1) into the following set of linear differential equations
for the coefficients of the decomposition:

d

dt


ρs

00
ρs

01
ρs

10
ρs

11

 = −iM


ρs

00
ρs

01
ρs

10
ρs

11

 , (14)

M =


−iγx 0 0 iγx

0 −ω − iγx iγx 0
0 iγx ω − iγx 0
iγx 0 0 −iγx

 . (15)

The dynamics matrix M defined in Eq. (15) has 4 eigenfrequencies:

Ωs
0 = 0, Ωs

1,2 = ±Ωs − iγx, Ωs
3 = −2iγx, (16)

where Ωs =
√
ω2 − γ2

x. The eigenfrequencies Ωs
1,2 identify a possible QEP for

ω = γx. (17)

We may also determine the corresponding eigenvectors that are conveniently written as
columns of the transformation matrix P:

P = 1
2


1 0 0 1
0 iγx iγx 0
0 ω + Ωs ω − Ωs 0
1 0 0 −1

 . (18)

We note that the first eigenvector ρ̂s
0 for Ωs

0 that describes the stationary state is normalized
such that Tr{ρ̂s

0} = 1. All other eigenvectors are traceless (Tr{ρ̂s
j} = 0 for j = 1, 2, 3) and

no specific norm is introduced to normalize them. We have Ωs = 0 for the condition in
Eq. (17) and so the second and third eigenvectors (columns) in the matrix P in Eq. (18)
coalesce confirming the presence of an QEP.
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3.2 Analysis via the Heisenberg-Langevin equations
Now let us apply the second approach. To derive the appropriate Heisenberg-Langevin
equations we need to specify the system interaction with the reservoir represented by a large
group of two-level atoms. Their Hamiltonian Ĥr

0 and a suitable interaction Hamiltonian
Ĥr

int are expressed as:

Ĥr
0 = h̄

∑
j

ωr
j σ̂

r
j,z/2, Ĥr

int = h̄
∑
j

κr
j σ̂

r
j,xσ̂x, (19)

where ωr
j stands for the frequency of the jth reservoir two-level atom that is coupled with

the analyzed two-level atom via the real coupling constant κr
j . The Pauli operators of the

reservoir two-level atoms are introduced in analogy to those of the analyzed system.
We may write the Heisenberg equations for both analyzed two-level atom and reser-

voir two-level atoms described by the overall Hamiltonian Ĥs + Ĥr
int + Ĥr

0. A systematic
elimination of the reservoir operators then results in the following Heisenberg-Langevin
equation for an arbitrary operator X̂ [42]:

dX̂(t)
dt

= i

h̄
[Ĥs(t), X̂(t)]− γx/2[[X̂(t), σx(t)], σx(t)]− i[X̂(0), σx(0)]F̂x(t). (20)

In Eq. (20) the Langevin operator force F̂x(t), defined as

F̂x(t) = exp(−iĤr
0t/h̄)

∑
j

κr
j σ̂

r
j,x(0) exp(iĤr

0t/h̄), (21)

represents the back-action of the reservoir two-level atoms to the analyzed atom. The
damping constant γx is derived from the properties of the reservoir Langevin operator
force F̂x(t) along the formula:

γx = 2
∫ ∞

0
dτ 〈F̂x(τ)F̂x(0)〉r exp(−iωτ). (22)

Moreover, the reservoir properties imply that 〈F̂x(t)〉 = 0.
Using the general formula in Eq. (20), we write the Heisenberg-Langevin equations for

the four operators σ̂0, σ̂1, σ̂+, and σ̂− that form a basis in the space of operators of the
measurable quantities:

dσ̂0(t)
dt

= −dσ̂1(t)
dt

= −γxσ̂0(t) + γxσ̂1(t)− σ̂y(0)F̂x(t),

dσ̂+(t)
dt

=
[
dσ̂−(t)
dt

]†
= iωσ̂+(t)− γxσ̂+(t) + γxσ̂−(t)− iσ̂z(0)F̂x(t). (23)

Applying averaging over the reservoir operators in Eq. (23), we arrive at the following
equations for the mean values of the system operators:

d

dt


〈σ̂0〉
〈σ̂+〉
〈σ̂−〉
〈σ̂1〉

 = −iM


〈σ̂0〉
〈σ̂+〉
〈σ̂−〉
〈σ̂1〉

 , (24)

where the dynamics matrix in Eq. (24) coincides with that in Eq. (14) because, using the
representation of the statistical operator ρ̂ in Eq. (13), we have 〈σ̂0〉 = ρs

00, 〈σ̂+〉 = ρs
01,
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〈σ̂−〉 = ρs
10, and 〈σ̂1〉 = ρs

11. Thus, the eigenfrequencies obtained by both approaches are
identical.

We may also exploit the transformation matrix P in Eq. (18) to express the evolution
of the mean values of the above operators:[

〈σ̂0〉(t)
〈σ̂1〉(t)

]
= exp(−γxt)

[
ch(γxt) sh(γxt)
sh(γxt) ch(γxt)

] [
〈σ̂0〉(0)
〈σ̂1〉(0)

]
,[

〈σ̂+〉(t)
〈σ̂−〉(t)

]
= exp(−γxt)

[
c(t) + i ωΩs s(t) γx

Ωs s(t)
γx

Ωs s(t) c(t)− i ωΩs s(t)

] [
〈σ̂+〉(0)
〈σ̂−〉(0)

]
, (25)

where c(t) = cos(Ωst), s(t) = sin(Ωst), and Ωs =
√
ω2 − γ2

x; sh and ch denote the hy-
perbolic sine and cosine functions. We can see from the solution in Eq. (25) that there
exist two subspaces in the space of the operators of measurable quantities whose dynamics
differ. Whereas there occurs only damped dynamics in the subspace spanned by operators
σ̂0 and σ̂1, the oscillatory evolution at frequency Ωs in the subspace spanned by vectors σ̂+
and σ̂− allows to identify an QEP (Ωs = 0). We may conclude in general that to identify
a QEP we need to follow the dynamics of an operator that has a nonzero overlap with the
subspace spanned by σ̂+ and σ̂−.

For a real atom, monitoring the dynamics of the mean values 〈σ̂+〉(t) and 〈σ̂−〉(t) via
the observation of field polarization generated by the atom is a natural choice. It can
be accomplished by measuring, e.g., optical nutation or free induction decay [43]. The
presence of a QEP can also be confirmed by measuring the amplitude spectra of the field
emitted from the atom or, in case of continuous-wave fields, by spectral analysis of field
intensity correlation functions [44, 45].

We note that the consideration of powers of operators in any basis in finite-dimensional
spaces does not bring advantage into the eigenfrequency analysis, because these operators
can be expressed as linear combinations of the operators from this basis. This, among oth-
ers, also implies that only the first- and second-order correlation functions of the reservoir
operator forces F̂ are needed. This contrasts with the behavior of systems defined in the
infinitely dimensional Liouville spaces in which moments of operators are the most useful,
as we can see below in Sec. IV.

4 Eigenfrequency analysis of an M -mode bosonic system
We apply the above discussed equivalence of eigenfrequency analyses in the Schrödinger
and the Heisenberg pictures to discuss the system of the eigenfrequencies of M mutually
interacting bosonic modes described by their annihilation (âj , j = 1, . . .M) and creation
(â†j) operators. To avoid approximations, when solving nonlinear differential equations, we
assume that the M -mode system is described by the general quadratic Hamiltonian Ĥ0:

Ĥ0 = h̄
M∑

j,k=1
εjkâ

†
j âk + h̄

M∑
j,k=1

(κjkâj âk + H.c.) , (26)

where the elements of matrix ε (ε∗ij = εji) describe the linear coupling between pairs
of modes, whereas the elements of the matrix κ characterize the nonlinear interactions
between pairs of modes (the annihilation and creation of photon pairs). Such Hamilto-
nian allows to describe both squeezed-light generation and production of entangled states.
Symbol H.c. in Eq. (26) replaces the Hermitian conjugated term.

Accepted in Quantum 2022-12-10, click title to verify. Published under CC-BY 4.0. 8



The modes may be either damped or amplified. The system Liouvillian L̂0 ≡ −i/h̄[Ĥ0, ·]
has to be extended by the terms L̂d

j ,

L̂d
j · =

γd
j

2
[
2âj · â†j − â

†
j âj · − · â

†
j âj
]
, (27)

provided that the jth mode is damped with damping constant γd
j . On the other hand, the

amplification of the mode k is described by the following additional terms L̂a
k,

L̂a
k· =

γa
k

2
[
2â†k · âk − âkâ

†
k · − · âkâ

†
k

]
, (28)

using the amplification constant γa
k .

The master equation for the statistical operator ρ̂(t) of the M -mode bosonic system
comprising the Liouvillians L̂0, L̂d

j and L̂a
k is equivalently replaced [42, 35] by the following

system of the Heisenberg-Langevin equations conveniently written in the matrix form:

dâ(t)
dt

= −iMΩâ(t) + L̂(t), (29)

where

â(t) ≡



â1(t)
â†1(t)
...

âM (t)
â†M (t)

 , L̂(t) ≡



L̂1(t)
L̂†1(t)
...

L̂M (t)
L̂†M (t)


. (30)

The dynamics matrix MΩ is derived from the Hamiltonian Ĥ0 in Eq. (26) using the
canonical commutation relations. Moreover, for the jth damped mode it includes ad-
ditional terms −γd

j âj(t)/2 and −γd
j â
†
j(t)/2 on the r.h.s. of equations for dâj(t)/dt and

dâ†j(t)/dt, respectively. The stochastic Langevin operator forces L̂j and L̂†j obey the re-
lations 〈L̂j(t)L̂†j(t′)〉 = γd

j δ(t − t′) and 〈L̂†j(t)L̂j(t′)〉 = 0 in this case. Similarly, concern-
ing the kth amplified mode the dynamics matrix MΩ contains the terms γa

k âk(t)/2 and
γa
k â
†
k(t)/2 on the r.h.s. of equations for dâk(t)/dt and dâ†k(t)/dt, respectively. The relations

〈L̂k(t)L̂†k(t′)〉 = 0 and 〈L̂†k(t)L̂k(t′)〉 = γa
kδ(t − t′) are obtained in this case. The Dirac δ

functions characterizing the temporal correlations of Langevin forces reflect the Markovian
character of the interaction with spectrally broadband reservoirs in individual modes [43].
More details are given in Appendix A.

The frequency analysis of the dynamics matrices of the differential equations for the
FOMs allows us to completely determine all the eigenfrequencies of the Liouvillian L̂ and
to reveal their structure. This is owing to the linear form of the corresponding Heisenberg-
Langevin equations in Eq. (30).

We first transform the original field operators âj and â†j , grouped in the vector a,
to field operators b̂j and b̂†j forming the vector bT = (b̂1, b̂†1, . . . , b̂M , b̂

†
M ) via a suitable

transformation P such that the resulting Heisenberg-Langevin equations have a diagonal
dynamics matrix Ω = diag{Ω1,−Ω∗1, . . . ,ΩM ,−Ω∗M}:

db̂(t)
dt

= −iΩb̂(t) + K̂(t), (31)

where
Ω = P−1MΩP, b̂(t) = P−1â(t), K̂(t) = P−1L̂(t). (32)
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The stochastic Langevin operator forces, which are grouped in the vector K̂T = (K̂1, K̂
†
1, . . . ,

K̂M , K̂
†
M ), induce their Gaussian and Markovian character from the original stochastic op-

erator Langevin forces, as written in the vector L̂. The set of equations in Eq. (31) can be
solved as follows:

b̂(t) = exp(−iΩt)b̂(0) +
∫ t

0
dt′ exp[−iΩ(t− t′)]K̂(t′). (33)

Now let us analyze the equations for FOMs step by step by increasing the order of
FOMs. The analysis of equations for the first-order FOMs written for either the original
operators,

d〈â〉(t)
dt

= −iMΩ〈â〉(t), (34)

or the transformed operators,

d〈b̂〉(t)
dt

= −iΩ〈b̂〉(t), (35)

immediately gives us the basic set of eigenfrequencies contained on the diagonal of the
matrix Ω.

Combining Eqs. (31) and (33), we arrive at the following differential equations for the
second-order FOMs (for the case without the Langevin forces, see [36]):

d〈b̂kb̂l〉(t)
dt

= −iΩ(2)
kl 〈b̂kb̂l〉(t) + K̃kl, (36)

Ω(2)
kl = Ωkk + Ωll, (37)

in which the matrix K̃ contains time-independent second-order correlation functions of the
Langevin forces written in vector K̂:

K̃klδ(t− t′) = 〈K̂k(t)K̂l(t′)〉. (38)

The solution of the ‘diagonal’ form of the equations for the second-order FOMs, written in
Eq. (36), is obtained in the form similar to that of Eq. (33). This reveals that the emerging
eigenfrequencies Ωkk + Ωll can be expressed in terms of the sums of those from the basic
set.

The structure of differential equations for the third-order FOMs is more general, as it
contains also the time-dependent first-order FOMs on their r.h.s.:

d〈b̂kb̂lb̂m〉(t)
dt

= −iΩ(3)
klm〈b̂kb̂lb̂m〉(t) + K̃kl〈b̂m〉(t) + K̃km〈b̂l〉(t) + K̃lm〈b̂k〉(t),(39)

Ω(3)
klm = Ωkk + Ωll + Ωmm. (40)

The solution to the set of equations in Eq. (39) can again be expressed in the form of
Eq. (33). Whereas the homogeneous part of the solution to Eq. (39) oscillates at frequencies
Ωkk+Ωll+Ωmm, the nonhomogeneous part of the solution contains additional frequencies
Ωnn, as it can be checked by a direct calculation.

The general structure of the differential equations for the fourth- and higher-order
FOMs is the same as that for the third-order FOMs. To demonstrate this, we derive the
following equations for the fourth-order FOMs:

d〈b̂kb̂lb̂mb̂n〉(t)
dt

= −iΩ(4)
klmn〈b̂kb̂lb̂mb̂n〉(t) + K̃kl〈b̂mb̂n〉(t) + K̃km〈b̂lb̂n〉(t)

+K̃kn〈b̂lb̂m〉(t) + K̃lm〈b̂kb̂n〉(t) + K̃ln〈b̂kb̂m〉(t) + K̃mn〈b̂kb̂l〉(t), (41)
Ω(4)
klmn = Ωkk + Ωll + Ωmm + Ωnn. (42)
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The solution to Eq. (41) in the form of Eq. (33) reveals the two types of eigenfrequencies:
Ωkk + Ωll + Ωmm + Ωnn and Ωkk + Ωll.

In general, the analysis of differential equations for pth-order FOMs (for p > 3) reveals
the sums of p (for the homogeneous solution) and p−2 (for the nonhomogeneous solution)
eigenfrequencies from the basic set.

The analysis of differential equations for the FOMs of increasing order gradually reveals
all the eigenfrequencies and their degeneracies. At a general level, we may determine the
number n(p)

Ω of different eigenfrequencies provided by the analysis of the homogeneous
solution of the set of equations for pth-order FOMs. This number is given by the number of
independent pth-order moments. The overall number of pth-order moments equals (2M)p.
However, the mean values of the products of commuting field operators are insensitive to
their ordering [e.g., 〈â1â2〉 = 〈â2â1〉 for the field operators â1 and â2]. Also, if two field
operators do not commute, the mean values of the products of p operators with different
ordering of noncommuting operators differ by the mean value of the product of p − 2
operators [e.g., 〈x̂ââ†ŷ〉 = 〈x̂â†âŷ〉 + 〈x̂ŷ〉 for the field operators â and â† and arbitrary
operators x̂ and ŷ]. Such lower-order FOMs form the r.h.s. of the differential equations
for the pth-order FOMs, together with the terms arising from the interaction with the
reservoirs.

The numbers of independent FOMs and, thus, the numbers n(p)
Ω of eigenfrequencies can

be easily determined using the combinations of numbers. Considering the moments up to
the fourth order, we arrive at the following formulas:

n
(1)
Ω = 2M,

n
(2)
Ω = 2M + C(2M, 2),

n
(3)
Ω = 2M + 2C(2M, 2) + C(2M, 3),

n
(4)
Ω = 2M + 3C(2M, 2) + 3C(2M, 3) + C(2M, 4), (43)

where C(k, l) = k!/[(k − l)!l!] is the binomial coefficient.
The eigenfrequencies arising from the equations for the FOMs of different orders form

specific structures. Their analysis then allows to identify QEPs and QHPs and their
degeneracies. In the following section, we study this structure for a system composed of
M = 2 modes and exhibiting both damping and amplification.

The eigenvalue analysis of the dynamics matrices of different FOMs provides also the
corresponding eigenvectors. Whereas the obtained eigenvalues coincide with those revealed
by the eigenvalue analysis of the corresponding Liouvillian L, the obtained eigenvectors
do not allow to construct the eigenvectors of the Liouvillian L. The reason is that the
appropriate equations are of a different kind. Whereas the influence of the reservoir noise is
involved in the set of equations for second-order FOMs, in Eq. (36), via its nonhomogeneous
solution, it is directly embedded in the form of the Liouvillian L whose eigenvalue problem
is solved. Also, the presence of reservoir noise leads to the coupling of equations for the
odd [and similarly even] orders of FOMs, as shown in Eq. (39) [Eq. (41)]. However and
most importantly, this coupling is specific and, as discussed above, keeps the eigenvalues
obtained for the homogenenous solutions unchanged.
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Ωi
gen Ωr

gen Moments Moment Partial
deg. QDP x

QEP deg.
Ωi ±Ωr

1 〈b̂1〉, 〈b̂†1〉 1 1x2
2Ωi Ωr

2 ± Ωr
1 〈b̂1b̂2〉, 〈b̂†1b̂2〉 2 2x2

−Ωr
2 ± Ωr

1 〈b̂1b̂†2〉, 〈b̂
†
1b̂
†
2〉 2 2x2

Ωr
1 − Ωr

1 〈b̂†1b̂1〉 2 1x4
±2Ωr

1 〈b̂21〉, 〈b̂
†2
1 〉 1

3Ωi ±Ωr
1 〈b̂1b̂2b̂†2〉, 〈b̂

†
1b̂
†
2b̂2〉 6 6x2

2Ωr
2 ± Ωr

1 〈b̂1b̂22〉, 〈b̂
†
1b̂

2
2〉 3 3x2

−2Ωr
2 ± Ωr

1 〈b̂1b̂†22 〉, 〈b̂
†
1b̂
†2
2 〉 3 3x2

Ωr
2 + Ωr

1 − Ωr
1 〈b̂†1b̂1b̂2〉 6 3x4

Ωr
2 ± 2Ωr

1 〈b̂21b̂2〉, 〈b̂
†2
1 b̂2〉 3

−Ωr
2 + Ωr

1 − Ωr
1 〈b̂†1b̂1b̂

†
2〉 6 3x4

−Ωr
2 ± 2Ωr

1 〈b̂21b̂
†
2〉, 〈b̂

†2
1 b̂
†
2〉 3

Ωr
1 − Ωr

1 ± Ωr
1 〈b̂21b̂

†
1〉, 〈b̂

†2
1 b̂1〉 3 1x8

±3Ωr
1 〈b̂31〉, 〈b̂

†3
1 〉 1

4Ωi Ωr
2 ± Ωr

1 〈b̂1b̂†2b̂22〉, 〈b̂
†
1b̂
†
2b̂

2
2〉 12 12x2

−Ωr
2 ± Ωr

1 〈b̂1b̂†22 b̂2〉, 〈b̂
†
1b̂
†2
2 b̂2〉 12 12x2

3Ωr
2 ± Ωr

1 〈b̂1b̂32〉, 〈b̂
†
1b̂

3
2〉 4 4x2

−3Ωr
2 ± Ωr

1 〈b̂1b̂†32 〉, 〈b̂
†
1b̂
†3
2 〉 4 4x2

Ωr
1 − Ωr

1 〈b̂†1b̂1b̂
†
2b̂2〉 24 12x4

±2Ωr
1 〈b̂21b̂

†
2b̂2〉, 〈b̂

†2
1 b̂
†
2b̂2〉 12

2Ωr
2 + Ωr

1 − Ωr
1 〈b̂†1b̂1b̂22〉 12 6x4

2Ωr
2 ± 2Ωr

1 〈b̂21b̂22〉, 〈b̂
†2
1 b̂

2
2〉 6

−2Ωr
2 + Ωr

1 − Ωr
1 〈b̂†1b̂1b̂

†2
2 〉 12 6x4

−2Ωr
2 ± 2Ωr

1 〈b̂21b̂
†2
2 〉, 〈b̂

†2
1 b̂
†2
2 〉 6

Ωr
2 + Ωr

1 − Ωr
1 ± Ωr

1 〈b̂†1b̂21b̂2〉, 〈b̂
†2
1 b̂1b̂2〉 12 4x8

Ωr
2 ± 3Ωr

1 〈b̂31b̂2〉, 〈b̂
†3
1 b̂2〉 4

−Ωr
2 + Ωr

1 − Ωr
1 ± Ωr

1 〈b̂†1b̂21b̂
†
2〉, 〈b̂

†2
1 b̂1b̂

†
2〉 12 4x8

−Ωr
2 ± 3Ωr

1 〈b̂31b̂
†
2〉, 〈b̂

†3
1 b̂
†
2〉 4

2Ωr
1 − 2Ωr

1 〈b̂†21 b̂
2
1〉 6 1x16

+Ωr
1 − Ωr

1 ± 2Ωr
1 〈b̂†1b̂31〉, 〈b̂

†3
1 b̂1〉 4

±4Ωr
1 〈b̂41〉, 〈b̂

†4
1 〉 1

Table 1: Real and imaginary parts of the complex eigenfrequencies Ωr
gen − iΩi

gen derived from the
equations for the FOMs up to fourth order which reveal QEPs and QHPs for g 6= 0. The corresponding
moments in the ‘diagonalized’ field operators are written together with their degeneracy coming from
different orderings of field operators. QDP degeneracy of QHPs (partial QDP degeneracy) derived from
the indicated FOMs and QEP degeneracy of the constituting QEPs are given.
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5 Spectral eigenfrequencies of a two-mode system with damping and
amplification

In this section, we analyze the system of two interacting modes: one exhibiting damping
(γd

1 > 0), the other being amplified (γa
2 > 0). We consider both linear exchange of photons

between the modes (real ε), as well as emission and annihilation of photon pairs in these
modes. Photon pairs can be annihilated and created either inside both modes (real g) or
their photons belong to different modes (real κ). The corresponding Hamiltonian Ĥ0 is
written as follows:

Ĥ0 = (h̄εâ†1â2 + H.c.) + (h̄κâ1â2 + H.c.) + 1
2
∑
j=1,2

(h̄gâ†2j + H.c.), (44)

which leads to the following Heisenberg-Langevin equations:

d

dt


â1(t)
â†1(t)
â2(t)
â†2(t)

 = −iM̃


â1(t)
â†1(t)
â2(t)
â†2(t)

+


L̂1(t)
L̂†1(t)
L̂2(t)
L̂†2(t)

 , (45)

M̃ =


−iγd

1/2 g ε κ
−g −iγd

1/2 −κ −ε
ε κ iγa

2/2 g
−κ −ε −g iγa

2/2

 . (46)

The only nonzero second-order correlation functions of the stochastic Langevin operator
forces L̂1, L̂

†
1, L̂2, and L̂

†
2 are

〈L̂1(t)L̂†1(t′)〉 = γd
1 δ(t− t′), 〈L̂†2(t)L̂2(t′)〉 = γa

2δ(t− t′). (47)

The diagonalization of the dynamics matrix M̃ in Eq. (46) reveals four eigenfrequencies
from the basic set:

Ω = diag{Ωr
1,−Ωr

1,Ωr
2,−Ωr

2} − iΩidiag{1, 1, 1, 1}, (48)

Ωr
1,2 =

√
β2 − g2 ± 2g

√
κ2 + γ2

+,

Ωi = γ−,

where γ− = (γd
1 − γa

2)/4, β =
√
ε2 − α2, α =

√
κ2 + γ2

+, and γ+ = (γd
1 + γa

2)/4. According
to Eq. (48), all the imaginary parts of four eigenfrequencies are equal. When damping in
mode 1 is stronger (weaker) than amplification in mode 2 [γd

1 > γa
2 (γd

1 < γa
2)], the overall

system is damped (amplified).
We note that the constant g is assumed real without the loss of generality: It corre-

sponds to a suitable choice of the phases of the field operators â1 and â2 in Eq. (44). On
the other hand, the phases of possibly complex constants ε and κ have a good physical
meaning and influence the system dynamics to a certain extent. The derivation of eigen-
frequencies Ω in this most general case results in the formulas that are derived from those
in Eq. (48) by the formal replacement |ε| → ε and |κ| → κ. This means that the spectrum
of eigenfrequencies with its QEPs, QDPs, and QHPs discussed below, remains the same.
However, the formulas for eigenvectors in Eq. (49), given below, have to be replaced by
more general ones in this case. We also note that no QEP can be observed when different
frequencies of the modes are considered.
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Figure 1: Two doubled cones with the shared axis defined by κ/ε = γ+/ε = 0 identify the positions of
QEPs in the space spanned by the parameters γ+/ε, κ/ε, and g/ε. At g/ε = 0, the two cones intersect
which gives rise to the QHPs whose positions form a circle. We note that the surfaces of QEPs are
symmetric with respect to the plane g/ε = 0.

The unnormalized eigenvectors Y1, Ȳ1, Y2, and Ȳ2 belonging in turn to the eigenfre-
quencies written in Eq. (48) are derived as follows (assuming g ≥ 0):

YT
1,2(Ωr

1,2) =
{
− εκ+ iγ+(g ∓ α)∓ αΩr

1,2, α
2 ∓ gα

−iγ+Ωr
1,2,±εα+ κΩr

1,2, κ(g ∓ α)− iγ+ε
}
,

Ȳ1,2(Ωr
1,2) = Y1,2(−Ωr

1,2). (49)

Assuming g 6= 0 and provided that the condition

ε2 −
(√

κ2 + γ2
+ − g

)2
= 0, (50)

or the condition

ε2 −
(√

κ2 + γ2
+ + g

)2
= 0, (51)

for the system parameters is fulfilled, two of the eigenfrequencies coincide. This identifies
a QEP for which the eigenvectors corresponding to both eigenfrequencies coalesce. Each
of the above conditions forms a hypersurface of dimension 4 in the space of independent
parameters (γd

1 , γ
a
2 , ε, κ, g). Replacing the parameters γd

1 and γa
2 by γ+ and considering

linearity of the dynamics equations, the positions of QEPs form two doubled concentric
cones in the 3-dimensional space (γ+/ε, κ/ε, g/ε) plotted in Fig. 1.

If g = 0, two-fold degeneracy in eigenfrequencies occurs. Real nonzero eigenfrequencies
Ωr

1,2 exist only for ε2 − κ2 − γ2
+ > 0. When

ε2 − κ2 − γ2
+ = 0, (52)

all the four eigenfrequencies coincide. They form doubly degenerate QEPs localized at a
hypersurface of dimension 3 in the parameter space (γd

1 , γ
a
2 , ε, κ) defined by the condition

in Eq. (52). The positions of the QEPs fulfilling Eq. (52) form the circle with radius 1
in the space of parameters γ+/ε and κ/ε shown in Fig. 1 (the intersection of the yellow
and blue cones). At these QEPs, there exist two different eigenvectors each arising from
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the original collapsing two dimensional spaces [46]. We have the QHPs in this case. We
note that the nonclassical properties of optical fields generated at and around these QHPs
were analyzed in [46] where even a more general Hamiltonian involving the additional Kerr
nonlinear terms was considered.

Now let us have a deeper look at the eigenfrequencies and their spectral bifurcations
that identify QEPs. To correctly identify QEPs, we also need to know the eigenvectors that
correspond to the analyzed eigenfrequencies. The eigenvectors Y1, Ȳ1, Y2, and Ȳ2 given in
Eq. (49), arising in the diagonalization of the dynamics matrix of the Heisenberg-Langevin
equations (45), and belonging in turn to the eigenfrequencies Ω1, −Ω∗1, Ω2, and −Ω∗2, may
be used to form the eigenvectors of the dynamics matrices of FOMs with increasing order.
They directly represent the eigenvectors of the first-order FOMs dynamics matrix and,
when formed into the supervector YT ≡ (Y1, Ȳ1,Y2, Ȳ2), they allow to express the eigen-
vectors of the dynamics matrix of a pth-order FOMs via the tensor product Y ⊗ . . .⊗ Y︸ ︷︷ ︸

p

[38]. This allows us, among other properties, to identify the number of eigenfrequencies
for a given order of FOMs and their degeneracies occurring at QEPs.

The spectra of the eigenfrequencies and the numbers of eigenvectors differ in the above-
discussed two cases (g 6= 0 and g = 0). Whereas three independent eigenvectors of the
dynamics matrix of the Heisenberg-Langevin equations occur at the QEPs for g 6= 0, only
two of the eigenvectors are found at the QHPs when g = 0. We note that, in both cases, all
the eigenvalues contribute to the dynamics of the original field operators â1, â

†
1, â2, and â

†
2

and so the analysis of the evolution of any of them allows, in principle, to identify QEPs. In
the following eigenfrequency analysis, we pay a detailed attention to the eigenfrequencies
belonging to the FOMs up to the fourth order and draw some conclusions concerning
general orders.

5.1 Spectra of eigenfrequencies for a single nondegenerate QEP
We first consider the case for g 6= 0, in which a single QEP with a double QEP degeneration
occurs in the spectrum of the dynamics matrix of the Heisenberg-Langevin equations. At
this QEP, three independent eigenvectors suffice in describing the system evolution. In
general, the eigenfrequency analysis of the equations for the first-order FOMs provides
four eigenfrequencies ±Ωr

1,2 − iΩi. Two of them (say ±Ωr
1 − iΩi) reveal the position of a

QEP identified by the condition Ωr
1 = 0.

This position of the QEP is also indicated by the eigenfrequencies originating in the
analysis of higher-order FOMs. We have in turn 4, 16, 64, and 256 moments of the first,
second, third, and fourth orders. However, as discussed above, some of these moments differ
just in the positions of field operators. This means that they are either equal or differ by
the moments of lower orders if the involved field operators do not commute. Taking into
account this moment degeneracy, we may expect at maximum 4, 10, 20, and 35 different
eigenfrequencies from the analysis of moments of the first, second, third, and fourth order.
Degeneracy of the moments is given in Tables 1 and 2 for this case. This degeneracy is
either mapped into the multiplicity of the corresponding QEPs (forming QHPs from QEPs
and being characterized by a QDP degeneracy) or results in higher QEP degeneracies of
QEPs (higher-order QEPs [36]). Whereas the moments 〈b̂1b̂2〉, 〈b̂2b̂1〉, 〈b̂†1b̂2〉, and 〈b̂2b̂

†
1〉

serve as examples in the former case, the moments 〈b̂†1b̂1〉 and 〈b̂1b̂
†
1〉 participate in forming

a four-fold degenerated QEP (see Table 1). The eigenfrequencies attained by the analysis
of the first-, second-, third- and fourth-order FOMs are summarized in Tables 1 and 2
depending on their ability to form QEPs. We note that some of the eigenfrequencies
summarized in Table 2, that do not form QEPs, are degenerated, i.e. they exhibit QDP
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degeneracy.
Provided that Ωi 6= 0, we observe in the spectra of eigenfrequencies in turn 1, 3, 6, and

10 bifurcations coming from the behavior of the first-, second-, third-, and fourth-order
FOMs, as listed in Table 1. Following Table 1, there occur QHPs with QDP degeneracies
2, 6, and 12 considering in turn the moments of the second, third, and fourth order. On
the other hand, the maximal QEP degeneracy of QEPs reached for the first-, second-,
third-, and fourth-order FOMs equals 2, 4, 8 and 16. Here, we conclude that, in general,
the analysis of pth-order FOMs gives QEPs with a 2p-fold degeneracy. We note that some
eigenfrequencies remain single as seen in Table 2. In Tables 1 and 2, we mention, side
by side with the eigenfrequencies, the corresponding moments of the ‘diagonalized’ field
operators, as there is one-to-one mapping between these moments and the structure of the
eigenfrequencies.

We note that, at the QEPs observed in the dynamics matrix of the Heisenberg-Langevin
equations, the number of independent eigenvectors, given in Eq. (49), decreases from 4 to
3. This is so as two eigenvectors have to coalesce at a nondegenerate QEP. This results
in the reduction of the complexity of the system dynamics and leads to all physical effects
discussed in relation to QEPs. Considering higher-order FOMs, the number of independent
eigenvectors arising from the dynamics matrix of pth-order FOMs decreases from 4p to 3p,
which also gives the maximal number of possibly different eigenfrequencies. Thus, the
dynamics of higher-order field-operator correlation functions is more simplified at QEPs
than that of the field mean operator amplitudes.

The eigenfrequencies that are related to the moments containing the ‘building block’
b̂†1b̂1 (e.g., the moments 〈b̂†1b̂1〉 and 〈b̂

†
1b̂1b̂2〉 in Table 1) form hidden QEPs. The contribution

to the overall eigenfrequency of a higher-order FOM from this ‘building block’ equals zero
as Ωr

1−Ωr
1 = 0 independently of whether there is a QEP or not. However, the presence of

a QEP is identified by the reduction of the number of eigenvectors by one that happens in
this case without any manifestation in the eigenfrequencies spectrum. Thus, no spectral
bifurcation commonly used for identifying QEPs is observed. We note that, for the QEPs
listed in Table 1, such eigenfrequencies form QEPs more than doubly degenerated, together
with other eigenfrequencies, and so these QEPs are still identified in the spectrum by
bifurcations.

In the usually discussed PT -symmetric systems, gain and loss are in balance giving
Ωi = 0. In this case, multiplicties (i.e., QDP degeneracies) of QEPs may even be higher
as the imaginary parts of eigenfrequencies coming from different orders of FOMs coincide.
For example, the QEPs positioned at ±Ωr

1 arise in the eigenfrequencies of both the first-
and third-order FOMs, in the latter case even with QDP degeneracy 6 (see Table 1). Such
QEPs are called genuine QEPs, as discussed below.

We note that, when describing the evolution of FOMs of a given order, we may neglect
the redundant moments and keep just the differential equations for the remaining ones.
The eigenfrequencies, originating in the analysis of such equations, remain the same as
those analyzed above and summarized in Tables 1 and 2, but their multiplicities are just
1. Also, the reduction in the number of involved moments results in the change of the
structure of the space of eigenvectors. This reduction conceals the QHPs identified in the
last column of Table 1. We may call such QHPs as the induced QHPs as they originate in
the extended space of FOMs that includes also the redundant moments. However, some
QHPs, which we refer to as the genuine QHPs, still remain. These occur for Ωi = 0 and
are formed by identical eigenfrequencies with different eigenvectors arising in the analysis
of dynamics matrices for different orders FOMs (e.g., 〈b̂1〉 and 〈b̂†1〉 versus 〈b̂1b̂2b̂

†
2〉 and

〈b̂†1b̂
†
2b̂2〉).
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Ωi
gen Ωr

gen Moments QDP deg.
Ωi Ωr

2 〈b̂2〉 1
−Ωr

2 〈b̂†2〉 1
2Ωi 0 〈b̂†2b̂2〉 2

2Ωr
2 〈b̂22〉 1

−2Ωr
2 〈b̂†22 〉 1

3Ωi Ωr
2 〈b̂†22 b̂2〉 3

−Ωr
2 〈b̂†2b̂22〉 3

3Ωr
2 〈b̂32〉 1

−3Ωr
2 〈b̂†32 〉 1

4Ωi 0 〈b̂†22 b̂
2
2〉 6

2Ωr
2 〈b̂†2b̂32〉 4

−2Ωr
2 〈b̂†32 b̂2〉 4

4Ωr
2 〈b̂42〉 1

−4Ωr
2 〈b̂†42 〉 1

Table 2: Real and imaginary parts of the complex eigenfrequencies Ωr
gen − iΩi

gen derived from the
equations for the FOMs up to fourth order which do not indicate a QEP for g 6= 0. The corresponding
moments in the ‘diagonalized’ field operators are written together with their QDP degeneracies resulting
from different orderings of field operators.

We also note that when reducing the number of necessary FOMs of given order, we
face the problem of non-commuting operators. However, the FOMs that contain non-
commuting operators at different positions mutually differ by FOMs of orders lower by
2, 4, 6, . . .: Each application of nontrivial commutation relation reduced the moments order
by two. When writing the differential equations for the set of FOMs of given order, we
arrive at the equations similar to those found in Eqs. (36), (39) and (41) that, however,
contain additional terms formed by lower-order FOMs at their r.h.s. Nevertheless, these
terms modify the nonhomogeneous solution of the equations qualitatively in the same way
as those arising in the fluctuating Langevin forces, i.e. the solution is enriched by the
terms oscillating at the eigenfrequencies appropriate to these lower-order FOMs. Thus the
terms arising from the non-commuting operators do not change the eigenfrequencies and
we may apply the above results concerning the eigenfrequencies also in this case. On the
other hand, the eigenvectors in both approaches naturally differ. Their mutual relations
[47] were discussed in relation to the quantum versus classical descriptions in [38].

5.2 Spectra of eigenfrequencies for a doubly degenerated QEP - QHP
The squeezing-effect part of the Hamiltonian Ĥ0 in Eq. (44) is often not considered (g = 0).
This leads to two doubly degenerated eigenfrequencies ±Ωr − iΩi, when the dynamics of
the first-order FOMs is investigated. They form a QHP occurring directly in the dynam-
ics matrix of the Heisenberg-Langevin equations. This QDP degeneracy is then directly
transformed into the diabolical degeneracies of eigenfrequencies arising from the analysis of
higher-order FOMs. We may call such QHP the inherited QHP. This inherited QDP degen-
eracy considerably reduces the number of different spectral eigenfrequencies provided by
higher-order FOMs, at the expense of their increasing degeneracies. We note that this be-
havior was observed in [21], where the spectrum of the Liouvillian of a simplified two-mode
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bosonic system with g = κ = 0 was numerically analyzed. The obtained eigenfrequencies,
their QDP and QEP degeneracies and the corresponding QHPs are summarized in Table 3,
together with the corresponding ‘diagonalized’ FOMs. According to Table 3, the QEPs
found for the dynamics matrix of pth-order FOMs exhibit a 2p-fold QEP degeneracy. Due
to the inherited spectral degeneracy, the frequencies of all QEPs belonging to pth-order
FOMs equal zero (Ωr = 0), which results in the occurrence of the QHP with a QDP de-
generacy 2p formed by 2p QEPs with a 2p-fold QEP degeneracy, as shown in Table 3. This
results from the fact that the number of independent eigenvectors of the dynamics matrix
of the Heisenberg-Langevin equations decreases from 4 to 2 at QHPs.

As seen in Table 3, we have the hidden QEPs/QHPs also in this case. They occur
not only in relation to the moments of a single mode (e.g., 〈b̂†1b̂1〉 and 〈b̂1b̂

†
1〉), but also

when cross moments of different modes are considered (e.g., 〈b̂†1b̂2〉 and 〈b̂1b̂
†
2〉, or 〈b̂2b̂

†
1〉

and 〈b̂†2b̂1〉). Apart from the hidden QEPs, we observe spectral bifurcations at ±pΩr,
±(p− 2)Ωr, ±(p− 4)Ωr, . . . from the pth-order FOMs.

Provided that we exclude the redundant FOMs from the description, the QDP de-
generacy of QHPs identified in Table 3, in general, lowers. Whereas it remains 2 for the
first-order FOMs, it decreases from 2p to p+ 1 for pth-order FOMs.

Finally, we discuss some properties of eigenfrequencies when the FOMs of all orders
are considered. Provided that the gain and loss are in balance, we have Ωi = 0 and we
can directly compare the eigenfrequencies arising in the dynamics matrices of FOMs of
different orders. Then the QEPs are localized with the help of pairs of eigenfrequencies
±pΩr

1 (g 6= 0) and ±pΩr (g = 0) for p = 1, 2, . . . occurring infinitely-many times in the
spectrum. For g 6= 0, the other pairs of eigenfrequencies, as explicitly written in Table 1,
are, among others, also found in the spectrum with infinite degeneration.

At the end, we note that, when the eigenfrequency analysis is accompanied by the
determination of the corresponding eigenvectors, we can discuss the modes behavior at
a general level using the quantities based on the determined FOMs. For example, phase
squeezing is revealed by the behavior of the second-order FOMs [33, 48], whereas sub-
Poissonian photon-number statistics [34] of the modes and their sub-shot-noise photon-
number correlations [49] are quantified by the fourth-order FOMs. Also different types of
nonclassicalities can be discussed [50].

We also note that our approach relies on the linear Heisenberg-Langevin equations.
Nevertheless, it may be successfully applied also in investigations of quantum systems de-
scribed by the nonlinear Heisenberg-Langevin equations provided that a suitable operator
linearization of the nonlinear operator equations is applied, e.g. around a stationary state
or a classical time-dependent solution [46, 51, 52, 53].
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Ωi
gen Ωr

gen Moments Moment Partial Partial
deg. QDP x QDP x

QEP deg. QEP deg.
Ωi ±Ωr 〈b̂1〉, 〈b̂†1〉 1 1x2 2x2

〈b̂2〉, 〈b̂†2〉 1 1x2
2Ωi ±2Ωr 〈b̂1b̂2〉, 〈b̂†1b̂

†
2〉 2 2x4 4x4

Ωr − Ωr 〈b̂†1b̂2〉 2
Ωr − Ωr 〈b̂1b̂†2〉 2
±2Ωr 〈b̂21〉, 〈b̂

†2
1 〉 1 1x4

Ωr − Ωr 〈b̂†1b̂1〉 2
±2Ωr 〈b̂22〉, 〈b̂

†2
2 〉 1 1x4

Ωr − Ωr 〈b̂†2b̂2〉 2
3Ωi ±3Ωr 〈b̂21b̂2〉, 〈b̂

†2
1 b̂
†
2〉 3 3x8 8x8

±Ωr 〈b̂21b̂
†
2〉, 〈b̂

†2
1 b̂2〉 3

〈b̂†1b̂1b̂2〉, 〈b̂
†
1b̂1b̂

†
2〉 6

±3Ωr 〈b̂1b̂22〉, 〈b̂
†
1b̂
†2
2 〉 3 3x8

±Ωr 〈b̂†1b̂22〉, 〈b̂1b̂
†2
2 〉 3

〈b̂1b̂†2b̂2〉, 〈b̂
†
1b̂
†
2b̂2〉 6

±3Ωr 〈b̂31〉, 〈b̂
†3
1 〉 1 1x8

±Ωr 〈b̂†1b̂21〉, 〈b̂
†2
1 b̂1〉 3

±3Ωr 〈b̂32〉, 〈b̂
†3
2 〉 1 1x8

±Ωr 〈b̂†2b̂22〉, 〈b̂
†2
2 b̂2〉 3

4Ωi ±4Ωr 〈b̂31b̂2〉, 〈b̂
†3
1 b̂
†
2〉 4 4x16 16x16

±2Ωr 〈b̂31b̂
†
2〉, 〈b̂

†3
1 b̂2〉 4

〈b̂†1b̂21b̂2〉, 〈b̂1b̂
†2
1 b̂
†
2〉 12

2Ωr − 2Ωr 〈b̂†1b̂21b̂
†
2〉 , 〈b̂†21 b̂1b̂2〉 12

±4Ωr 〈b̂1b̂32〉, 〈b̂
†
1b̂
†3
2 〉 4 4x16

±2Ωr 〈b̂†1b̂32〉, 〈b̂1b̂
†3
2 〉 4

〈b̂1b̂†2b̂22〉, 〈b̂
†
1b̂
†2
2 b̂2〉 12

2Ωr − 2Ωr 〈b̂1b̂†22 b̂2〉 , 〈b̂†1b̂22b̂
†
2〉 12

±4Ωr 〈b̂21b̂22〉, 〈b̂
†2
1 b̂
†2
2 〉 6 6x16

2Ωr − 2Ωr 〈b̂21b̂
†2
2 〉, 〈b̂

†2
1 b̂

2
2〉 6

±2Ωr 〈b̂21b̂
†
2b̂2〉, 〈b̂

†2
1 b̂
†
2b̂2〉 12

〈b̂†1b̂1b̂22〉, 〈b̂
†
1b̂1b̂

†2
2 〉 12

2Ωr − 2Ωr 〈b̂†1b̂1b̂
†
2b̂2〉 24

±4Ωr 〈b̂41〉, 〈b̂
†4
1 〉 1 1x16

±2Ωr 〈b̂†1b̂31〉, 〈b̂
†3
1 b̂1〉 4

2Ωr − 2Ωr 〈b̂†21 b̂
2
1〉 6

±4Ωr 〈b̂42〉, 〈b̂
†4
2 〉 1 1x16

±2Ωr 〈b̂†2b̂32〉, 〈b̂
†3
2 b̂2〉 4

2Ωr − 2Ωr 〈b̂†22 b̂
2
2〉 6

Table 3: Real and imaginary parts of the complex eigenfrequencies Ωr
gen − iΩi

gen derived from the
equations for the FOMs up to fourth order which indicate a QHP for g = 0. The corresponding
moments in the ‘diagonalized’ field operators are written together with their degeneracies coming from
different orderings of field operators. QDP degeneracies of QHPs (partial QDP degeneracies) derived
from the indicated FOMs and QEP degeneracies of the constituting QEPs are given.
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6 Conclusions
We have shown that the eigenfrequency analysis of the Liouvillians of open quantum sys-
tems can alternatively be performed in the space of operators of measurable quantities
provided that they form a complete basis. This is especially important for systems defined
in infinite-dimensional Liouville spaces including those formed by the interacting bosonic
fields. Considering a damped two-level atom, we have demonstrated the equivalence of both
approaches in obtaining the system eigenfrequencies and positions of quantum exceptional
points. Analysing the dynamical equations of field-operator moments of general M -mode
fields, we have revealed the structure of eigenfrequencies attainable from dynamical equa-
tions for a given order of the field-operator moments. This shed light to the occurrence
of quantum exceptional points identified from the obtained eigenfrequencies: All quan-
tum exceptional points are recognized already from the eigenfrequencies obtained from
the first-order field-operator moments. The eigenfrequencies obtained from higher-order
field-operator moments are important in revealing multiple (i.e., diabolical) degeneracies
of these quantum exceptional points only. We have developed a general approach to an-
alyze a two-mode bosonic system described by a general quadratic Hamiltonian. In its
general configuration, two distinct sets of quantum exceptional points occur for nonzero
mode squeezing that, however, collapse into a single set with quantum hybrid diabolical
exceptional points, when mode squeezing is not considered. In the analysis, we have ob-
served the inherited, genuine and induced quantum hybrid diabolical exceptional points.
Moreover, the hidden quantum exceptional points, whose presence is not directly inferred
from the behavior of eigenfrequency spectra, were identified.

The consideration of the Heisenberg-Langevin equations for the operators of measurable
quantities and the derived dynamical equations for field-operator moments represent a
convenient starting point for the system eigenfrequency analysis that allows to reveal the
eigenfrequencies of open quantum systems encoded in their Liouvillians. We believe that
this approach is qualitatively less demanding compared to a direct diagonalization of the
Liouvillians, at least when the linear Heisenberg-Langevin equations describe the analyzed
system. This approach paves the way to a general and detailed analysis of quantum
exceptional points in open quantum infinitely-dimensional systems.
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A Correspondence between the master equation and the Heisenberg-
Langevin equations

We consider a harmonic oscillator with frequency ω damped by the interaction with a
system of two-level atoms effectively described by an ‘average’ two-level atom with its rasing
(σ̂+) and lowering operators (σ̂−). The second-order perturbation solution of the Liouville
equation for the overall statistical operator, when traced over the reservoir stationary state,
leads to the following master equation for the reduced statistical operator ρ̂d of the damped
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oscillator [42, 43]:

∂ρ̂d

∂t
= −iω[â†â, ρ̂d] + γd′

2
(
[â, ρ̂dâ†]− [â†, âρ̂d]

)
, (53)

where â (â†) stands for the oscillator annihilation (creation) operator. We assume the
‘average’ reservoir two-level atom in the ground state, i.e. 〈σ̂−σ̂+〉R = 1 and 〈σ̂+σ̂−〉R = 0,
and so we have γd′ ≡ γd〈σ̂−σ̂+〉R = γd using the damping constant γd.

Using the Glauber-Sudarshan representation of statistical operator [54, 55]

ρ̂ =
∫
d2αΦN (α, α∗)|α〉〈α|

written in the basis of coherent states |α〉 and applying the identities [â, f(â, â†)] =
∂f(â, â†)/∂â†, [g(â, â†), â†] = ∂g(â, â†)/∂â, we transform the master equation (53) into
the corresponding Fokker-Planck equation [56, 35]:

∂Φd
N

∂t
=
(
γd′

2 − iω
)
∂(αΦd

N )
∂α

+
(
γd′

2 + iω

)
∂(α∗Φd

N )
∂α∗

. (54)

The Fokker-Planck equation (54) is then equivalent to the set of the Heisenberg-Langevin
equations,

dâ(t)
dt

=
(
−iω − γd′

2

)
â(t) + L̂d(t),

dâ†(t)
dt

=
(
iω − γd′

2

)
â†(t) + L̂d†(t), (55)

with the stochastic Langevin operator forces L̂d and L̂d† endowed with the following Gaus-
sian and Markovian properties:

〈L̂d(t)〉 = 〈L̂d†(t)〉 = 0,
〈L̂d(t)L̂d†(t′)〉 = γd′

δ(t− t′),
〈L̂d†(t)L̂d(t′)〉 = 0. (56)

On the other hand, when the harmonic oscillator interacts with the ‘average’ reservoir
two-level atom in the excited state, i.e. 〈σ̂−σ̂+〉R = 0 and 〈σ̂+σ̂−〉R = 1, it is amplified.
Its master equation for the reduced statistical operator ρ̂a is derived in the form:

∂ρ̂a

∂t
= −iω[â†â, ρ̂a] + γa′

2
(
[â†, ρ̂aâ]− [â, â†ρ̂a]

)
. (57)

In Eq. (57), γa′ ≡ γa〈σ̂+σ̂−〉R = γa, where γa denotes the amplification constant. The
corresponding Fokker-Planck equation,

∂Φa
N

∂t
=
(
−γ

a′

2 − iω
)
∂(αΦa

N )
∂α

+
(
−γ

a′

2 + iω

)
∂(α∗Φa

N )
∂α∗

+ γa′ ∂2Φa
N

∂α∂α∗
, (58)

is then equivalent to the set of the Heisenberg-Langevin equations,

dâ(t)
dt

=
(
−iω + γa′

2

)
â(t) + L̂a(t),

dâ†(t)
dt

=
(
iω + γa′

2

)
â†(t) + L̂a†(t), (59)
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with the stochastic Langevin operator forces, L̂a and L̂a†, obeying the following properties:

〈L̂a(t)〉 = 〈L̂a†(t)〉 = 0,
〈L̂a(t)L̂a†(t′)〉 = 0,
〈L̂a†(t)L̂a(t′)〉 = γa′

δ(t− t′). (60)
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