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One of the key ways in which quan-
tum mechanics differs from general relativ-
ity is that it requires a fixed background
reference frame for spacetime. In fact,
this appears to be one of the main con-
ceptual obstacles to uniting the two the-
ories. Additionally, a combination of the
two theories is expected to yield ‘indefi-
nite’ causal structures. In this paper, we
present a background-independent formu-
lation of the process matrix formalism—
a form of quantum mechanics that al-
lows for indefinite causal structure—while
retaining operationally well-defined mea-
surement statistics. We do this by im-
posing that the probabilities arising in the
formalism—which we ascribe to measure-
ment outcomes across the points of a dis-
crete spacetime—be invariant under per-
mutations of spacetime points. We find (a)
that one still obtains nontrivial, indefinite
causal structures with background inde-
pendence, (b) that we lose the idea of local
operations in distinct laboratories, but can
recover it by encoding a reference frame
into the physical states of our system, and
(c) that permutation invariance imposes
surprising symmetry constraints that, al-
though formally similar to a superselection
rule, cannot be interpreted as such.

1 Introduction

In a quantum theory of gravity it is expected that
spacetime itself will be quantised, giving rise to
indefinite, or ‘quantum’, causal structures [1, 2].
The process matrix formalism was developed to
describe these causal structures [3]. In fact, it de-
scribes the most general causal relations between
a finite set of regions, or ‘parties’, compatible
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with the local validity of quantum mechanics in
each region. However, the framework relies on an
a priori labelling of the parties, which tacitly pre-
supposes the existence of a background reference
frame. This is in conflict with the background
independence of general relativity, which asso-
ciates no absolute meaning to individual space-
time points or regions [4, 5]. Incorporating back-
ground independence into the quantum formal-
ism is in fact one of the main challenges in the de-
velopment of a theory of quantum gravity [6, 7].

In order to represent a viable approach to
quantum gravity, the process matrix formalism
should be able to describe indefinite causal struc-
tures without reference to a fixed background.
Here, we show how this can be done within a toy
model, where we treat a process matrix as a par-
ticular configuration of a discretised spacetime,
with laboratories that correspond to the discrete
units of that spacetime. A process matrix will
be background independent if it is invariant un-
der any arbitrary permutation of ‘laboratories’ or
points of spacetime.

In this paper, we introduce background in-
dependent processes and describe some of their
properties. First, we note that indefinite causal
structures still arise in permutation-invariant
processes. We show that imposing permutation
invariance results in the loss of a distinction be-
tween spacetime points. As in general relativ-
ity, one recovers a distinction between spacetime
points by using a material reference frame (a ref-
erence frame made up of physically observable
systems, the ‘rods and clocks’ picture).

Finally, we discuss the symmetry properties of
permutation-invariant processes. We expect, in
analogy to symmetries in ordinary quantum me-
chanics, that permutation invariance should give
rise to a superselection rule for some ‘charge’—a
property that can only take definite values, with
coherence between different charge values forbid-
den (but classical probabilistic mixtures allowed).
However, we find that, while indeed coherence
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between charge sectors is suppressed, processes
cannot in general be understood as mixtures
of different charge values, as the definite-charge
components of the mixture are not valid pro-
cesses. We show explicitly why this occurs in
the case of a bipartite qubit process (where a
‘qubit’ process is just one with two-dimensional
local Hilbert spaces). We also present a partial
proof generalising that result to any process ma-
trix dwelling in the symmetric or antisymmetric
subspaces of the symmetric group. Our results
suggest that no invariant processes with a defi-
nite charge may exist, although more work will
be needed to substantiate this conjecture. The
breakdown in the association between symme-
tries and superselection rules may indicate that
background independence in quantum mechan-
ics cannot be interpreted analogously to other
known symmetries of nature.

2 Quantum processes in spacetime

We will first review the process matrix formal-
ism in its most common presentation—using a
language borrowed from quantum information.
Afterwards, we will discuss how this formalism
can be used as a model of discretised spacetime.

2.1 The process matrix formalism

The process matrix formalism is a framework
for quantum mechanics that does not assume
any global background causal structure, just that
quantum mechanics is obeyed locally. Conceptu-
ally, it extends quantum mechanics in a similar
way in which, relaxing global Lorentz invariance,
one can extend special relativity to general rela-
tivity. Relaxing the assumption of causal struc-
ture allows one to obtain new, ‘indefinite’ causal
relations that are incompatible with a fixed or-
dering of events. Relationships of this type have
been observed in the laboratory [8–16], where
the lack of causal order arises from temporally
delocalised events, rather than from a quantum
spacetime [17, 18]. Much of the experimental in-
terest derives from the applications of indefinite
causal relations to computation and communica-
tion [19–27]. Here, we briefly describe the aspects
of the process formalism that are relevant to this
work. For more details, see references [3, 28, 29].

The simplest way to think of process matrices

is as follows. Consider a system of N laborato-
ries. Each laboratory is occupied by an exper-
imenter capable of performing all of the prepa-
rations, operations, and measurements compati-
ble with the standard measurement formalism of
quantum mechanics. Formally, this means that
each experimenter has the ability to perform a
quantum instrument—a set Ix = {MX

i }ni=1 of
completely positive (CP) maps that sum to a
completely positive and trace preserving (CPTP)
map. The superscript X denotes that the maps

MX : L
(
HXI

)
→ L

(
HXO

)
act on laboratory

X. The Hilbert spaces HXI , HXO , respectively
represent the incoming and outgoing state-spaces
of laboratory X, with L (H) denoting the linear
operators on H.

Consider the case where we have two parties,
Alice and Bob, who respectively have access to
instruments IA = {MA

i } and IB = {NB
j }. The

probability that Alice and Bob realise a particu-
lar combination of operations MA

i ,NB
j is given

by some probability distribution P (MA
i ,NB

j ).
To be consistent with quantum mechanics, P
must be a multilinear map [28]. The Choi-
Jamio lkowski isomorphism [30, 31] allows us to
represent these operations by sending CP maps
MX to positive semidefinite linear operators
MXIXO

i := [I ⊗ MX
i (
∣∣φ+〉〈φ+∣∣)]T ∈ L(HXI ⊗

HXO ), where
∣∣φ+〉 =

∑
i |i〉

XI ⊗ |i〉XI is a non-
normalised maximally entangled state and T de-
notes transposition in the computational basis.
These operators act over an input Hilbert space
XI and an output Hilbert space XO. In this rep-
resentation, the trace preserving condition reads
TrXO

MXIXO = 1
XI ; this means that, for a set

of maps that form an instrument, we must have
TrXO

[
∑

iM
XIXO
i ] = 1

XI .
Our complete list of probabilities P now be-

comes a multilinear map over linear operators.
This map is equivalent to [32, prop. 2.38]

P (MAIAO
i ⊗NBIBO

j )

= Tr
[
WAIAOBIBO · (MAIAO

i ⊗NBIBO
j )

]
, (1)

for some linear operator WAIAOBIBO ∈
L(HAIAOBIBO ).
WAIAOBIBO is called a process matrix, and is

the generalisation of a joint quantum state (from
the point of view of a probability measure) to
correlations that can be spacelike, timelike, or
neither—those with indefinite causal structure.
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Figure 1: A graphical depiction of a process matrix W =
WAB with two laboratories, A and B. Operations MA

i

and NB
j are performed on the systems entering laborato-

ries A and B, respectively. The probability of MA
i and

NB
j being realised out of their respective instruments

is given by P (MA
i , N

B
j ) = Tr

[
WA · (MA

i ⊗NB
j )
]

(Eq. (1). Note that we have shortened the laboratory
labellings from those used in Eq. (1), so that, in the
superscripts, A = AIAO and B = BIBO.

Process matrices must satisfy the constraints

WAIAOBIBO ≥ 0, (2)

Tr
[
WAIAOBIBO · (MAIAONBIBO )

]
= 1, (3)

∀M,N ≥ 0,
TrAO

[MAIAO ] = 1
AI ,TrBO

[NBIBO ] = 1
BI ,

which ensure that probabilities are nonnegative
and sum to one. We have left out tensor product
symbols for convenience, and will continue to do
so where it is clear.

In a Hilbert-Schmidt basis, i.e., a basis {σX
i } of

L (H) satisfying σX
0 = 1

X , Tr
[
σX

i σ
X
j

]
= dXδij ,

(dX := dim(HX)) and Tr
[
σX

i

]
= 0 for i > 0, a

process matrix can be represented as

WAIAOBIBO =
∑
ijkl

wijklσ
AI
i σAO

j σBI
k σBO

l , (4)

where wijkl ∈ R since WAIAOBIBO is hermitian.
The probability normalisation requirement for-

bids certain Hilbert-Schmidt terms from appear-
ing in the decomposition of an allowed process.
We call terms with identity on all outputs except
X type X process terms, all outputs except X,Y
terms of type XY etc. Forbidden bipartite pro-
cess terms are terms of the form AO, BO, AOBO,
AIAOBO, AOBIBO, and AIAOBIBO. The pro-
cess constraint, Eq. (3), requires that Tr[Wσ] = 0

for any such terms σ. Thus, we effectively have
linear constraints on the matrix elements of al-
lowed processes.

One consequence of not making a priori as-
sumptions about the causal structure is the ap-
pearance of novel types of causal order that can-
not be expressed in the standard formalism of
quantum mechanics. Process matrices can be
causally ordered, which corresponds to the fa-
miliar situation where A comes before B comes
before C, or they can be causally separable, con-
vex combinations of processes that have different
causal orders such as ‘A before B’ and ‘B before
A’, representing classical ignorance of causal or-
der. One novel aspect of the process matrix for-
malism is that one can also have indefinite causal
order, where it does not make sense to say that ‘A
is before B’ or vice versa: there are signalling cor-
relations from A to B and also from B to A, which
cannot be interpreted as classical ignorance.

Throughout this section we have only discussed
bipartite processes, for simplicity. Everything
we have discussed generalises straightforwardly
to an arbitrary number of parties. We refer the
reader to references [3, 28, 29, 33–35] for a more
complete discussion.

2.2 Process matrices as toy spacetime config-
urations

The crux of this paper is in the fact that we can
use process matrices as toy models of spacetime.
It is worth going into some detail about what
exactly this means.

Most of the literature on quantum causal struc-
tures, in particular that concerned with experi-
ments or practical applications, regards a process
matrix as a representation of a finite number of
finite-size ‘regions’, which can be thought of as
physical laboratories in which measurements are
made on some quantum state. This is the inter-
pretation that has been used in our discussion of
the process matrix formalism so far.

It is now time to move beyond this interpreta-
tion. For the rest of this paper, we will treat a
given process matrix as a toy model of a discre-
tised spacetime. This is consistent with several
approaches to quantum gravity, which stipulate
that spacetime is discrete at a fundamental level
[36–40]. However, here we do not consider any
explicit model, but simply a generic framework

3



that allows us to avoid the complications associ-
ated with continuous spacetime.

Within this framework, each of what we have
been referring to as ‘laboratories’ now corre-
sponds to a fundamental, indivisible unit of our
discrete spacetime —in other words, to a sin-
gle spacetime point. Each indivisible point can
be understood as the theoretical maximal spatio-
temporal resolution of a measurement apparatus.
Occasionally, we will still refer to the elementary
spacetime points as ‘laboratories’ or ‘parties’, in
keeping with the terminology in the literature,
but it must be remembered that this does not
entail the existence of a physical laboratory at
each point.

We can make the connection with the more
ordinary conception of spacetime more explicit.
This is usually defined as a differentiable mani-
fold, consisting of an uncountable set M that is
locally diffeomorphic to Minkowski space. Any
classical physical property, including the metric,
is represented in the form of fields, namely as
functions φ(x) defined at each spacetime point
x ∈ M. In a quantum theory, the fields at each
point are not uniquely defined: a measurement at
x can yield a (possibly uncountable) set of out-
comes {φi(x)}i, where i labels the outcomes. A
measurement at the point x is clearly an ideal-
isation, with any physical measurement extend-
ing to a finite region, but the basic operational
meaning of a spacetime point is still the (limit
of) the smallest possible region where a measure-
ment can be made.

Our model simply replaces the uncountable set
M with a finite set of spacetime points, which
we label x = 1, . . . , n. (In section 2.1 above,
we used x = A,B, . . . Other labellings will be
used below according to convenience). As be-
fore, physical quantities can be defined at each
point. Importantly, pairs of points in spacetime
can be timelike separated (or even have unde-
fined causal relations), meaning that a measure-
ment at one point can influence measurements
at different points. An instrument is the most
general representation of a measurement (or op-
eration), including how it affects the measured
system. An individual CP mapM1

i1 within an in-
strument represents the measurement of a physi-
cal quantity at point 1, yielding outcome i1, with
a transformation of the system described byM1

i1 .
The Born rule for processes—Eq. (1) extended

A

B

C

B

A

C

 ϕ:

σ:

Figure 2: A visual representation of a diffeomorphisms
φ (smooth relabelling of points in a manifold) and a
permutation σ (relabelling of elements in a finite set).
A permutation is the discrete analogue of a diffeomor-
phism.

to n points—governs the probability distribution
P (i1, . . . , in) to observe outcomes i1, . . . , in at
spacetime points 1, . . . , n. Note that it is not
necessary to imagine an observer acting at each
point in spacetime: We can have points where
no operation is performed, corresponding to an
instrument with a single element—the identity
map.

The process matrix contains all the informa-
tion relevant for evaluating the probabilities for
arbitrary operations at any spacetime point. In
a traditional model, such information would be
encoded in an initial state, in the dynamical
laws describing the propagation of systems across
spacetime, and in the metric encoding the causal
connections between points. In a successful for-
mulation of quantum gravity, the process matrix
should unify such information in a way that does
not depend on a background causal structure.
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3 Why permutation invariance?

By thinking of a process matrix as representing a
particular configuration of a discrete spacetime,
we can make an analogy between background in-
dependence in the process matrix formalism and
background independence in general relativity.

In general relativity, background independence
is a consequence of the fact that observable quan-
tities must be invariant under any arbitrary co-
ordinate transformation1. Formally, these trans-
formations are smooth, invertible mappings from
a manifold to itself, and are called diffeomor-
phisms. In a discrete spacetime model, the
smoothness requirement does not apply. Hence, a
discrete coordinate transformation is any invert-
ible map from the set of spacetime points onto
itself. As our spacetime toy model contains only
a finite set of points, its coordinate relabellings
are defined as arbitrary permutations. Therefore,
our task is to characterise invariance of observ-
able quantities under permutations in the process
matrix formalism.

In the process matrix formalism, the statistical
properties of observables are given by e.g. Eq. (1),
the Born-rule generalisation for processes. In
general, Eq. (1) generates a multipartite proba-
bility distribution P (i1, ..., in) given a particular
process W , where P (i1, ..., in) denotes the prob-
ability that measurement at point 1 obtains out-
come i1, measurement at point 2 obtains out-
come i2, etc. Although P does not assume any
causal structure, it does in general assume that
it is possible to distinguish between and label the
different points. Operationally, this implies the
existence of some background reference frame,
which allows one to determine that outcome i1
corresponds to party 1, outcome i2 to party 2,
and so on. In other words, the labels of the par-
ties form a (discrete) system of coordinates. In a
background-independent theory, no background
reference frame is available, so it is not possible

1Note that this is a much stronger requirement than
simply stating that we can use arbitrary coordinate sys-
tems. Indeed, most theories include observables that are
not invariant under coordinate transformations. For ex-
ample, in relativistic quantum field theory, we can mea-
sure the value of a field at a point x or at a different point
y, and these are different observables that can yield differ-
ent outcomes. Such observables are not allowed in general
relativity, as coordinate transformations act both on the
fields and on the background spacetime.

to identify a point in spacetime with a coordi-
nate. Therefore, the theory should be invariant
under relabelling.

As discussed above, in a discrete spacetime
model relabellings are simply permutations. As
a consequence, in order for observable quantities
to be invariant under relabellings, the probabil-
ity distribution P must be invariant under per-
mutations of the parties, i.e. P (i1, i2, ..., in) =
P (ig(1), ig(2), ..., ig(n)), for all permutations g ∈
Sn. Permutation invariance as a discrete ana-
logue of diffeomorphism invariance is also dis-
cussed, for example, in Ref. [41].

Invariance under permutations is a particular
case of invariance under an arbitrary symmetry
group. A general framework for dealing with this
has been developed in Ref. [42]. Although this
framework deals with Lie groups rather than fi-
nite groups (such as permutations), the main re-
sults, which we will use below, also hold for finite
groups.

First, we must introduce a mathematical rep-
resentation for permutations, which we will use
throughout the paper. Just as the group of dif-
feomorphisms are represented by a (continuous)
diffeomorphism group, the (finite) group of per-
mutations of a set of n elements is known as the
symmetric group and is denoted Sn.

We define the representation of the symmetric
group Sn on the space of n-party process matrices
as the map from elements g ∈ Sn to operators
Ug such that UgWU †g performs a permutation on
the laboratories. For example, the action of the
‘swap’ permutation UAB on a bipartite process in
the Hilbert-Schmidt basis is

UAB

∑
ijkl

αijklσ
AI
i σAO

j σBI
k σBO

l

U †AB

=
∑
ijkl

αijklσ
AI
k σAO

l σBI
i σBO

j . (5)

Note that input and output spaces are always
swapped together. In order to make permu-
tations well-defined, we assume that the input
spaces of all laboratories have equal dimensions,
and similarly all output spaces. It is not difficult
to generalise, but we will not do so here [43].

We say that a linear operator A (which can
be a process matrix or a measurement, or more
generally even a quantum state or POVM ele-
ment) is permutation invariant if it is unchanged
by the action of any permutation, i.e. UgAUg

† =

5



A, ∀g ∈ Sn. Equivalently, A is permutation in-
variant if G[A] = A, where G is the twirl opera-
tion,

G[W ] := 1
n!
∑

g∈Sn

UgWUg
†. (6)

4 Process matrices without spacetime
events.

Now we can formalise the ideas we introduced in
the previous section. Our overarching goal is to
develop a framework for processes in which mea-
surement statistics are permutation-invariant, so
that the processes are background-independent.
We find that there are different ways to achieve
this.

One way to ensure permutation invariant
statistics is to restrict measurements to be per-
mutation invariant. As we will discuss below, in-
variant measurements are not necessarily of the
product form. Therefore, we will denote a gen-
eral measurement operator across all labs with
a single symbol Mi, where Mi ≡ MA

i1M
B
i2 ... for

the particular case of product measurements and
i ≡ (i1, i2, . . . ) denotes the collection of out-
comes (which are still associated with the distinct
labs/spacetime points). If Mi is invariant, we

have P (ig(1), ig(2), ..., ig(n)) = Tr
[
WUgMiU

†
g

]
=

Tr[WMi] = P (i1, i2, ..., in), as required. How-

ever, Tr
[
WUgMiU

†
g

]
= Tr

[
U †gWUgMi

]
, so W =

G[W ] also implies that measurement statistics are
invariant, even if Mi 6= G[Mi]. Finally, the mea-
surement statistics will be permutation-invariant
if both W and Mi are permutation-invariant. Al-
though they all represent the same physics, each
choice is suggestive of a different way to describe
permutation invariance.

If measurement operators are permutation-
invariant, but not the processes themselves, then
we might think of processes as being described
relative to some fixed background that we can-
not access, so that we are restricted to using
permutation-invariant measurements.

If process matrices are permutation-invariant,
but not the measurement operators, then we
might instead say that we are making mea-
surements relative to some background reference
frame, but that what we observe is permutation-
invariant—choosing a different reference frame
will give us the same statistics.

If both process and measurements are
permutation-invariant, then we have totally
abandoned the concept of a fixed, absolute
reference frame. As in General Relativity,
any reference frame must be defined using the
available degrees of freedom of the system, the
‘rods and clocks’ picture. The ordering with
respect to which we describe our system is not
a physically relevant aspect of the theory, just
like the description of spacetime relative to
a particular choice of coordinates in General
Relativity. In other words, the original ordering,
implied by the tensor product of local Hilbert
spaces, merely represents a fictitious, rather than
physical, reference frame, and permutations only
represent transformations relative to such a
fictitious reference frame.

The three pictures we just described are op-
erationally equivalent, and it is sometimes help-
ful to work in one picture over another. For
example, by requiring that process matrices W
are permutation-invariant, W = G[W ], we can
see that even with as strict a constraint as
permutation-invariance one still obtains nontriv-
ial behaviour of processes. Consider the process
matrix

W = 1
4
[
1
⊗4 + a′0σz1σz1− a′1(σz111+ 11σz1)

−a′2(σz11σz +1σzσz1)+a′3(σz1σzσz +σzσzσz1)
+a′4(σz1σxσx−σz1σyσy+σxσxσz1−σyσyσz1)

]
,
(7)

which was presented in Ref. [44], with coefficients
a′ = (0.0390, 0.3355, 0.2451, 0.4291, 0.2097). In
Eq. (7) we have omitted labels, so that ABCD =
AAIBAOCBIDBO . As shown in [44], this pro-
cess can violate a causal inequality—a device-
independent test for indefinite causal order simi-
lar to a Bell inequality. Therefore, it represents a
minimal example of permutation-invariant pro-
cess with no definite causal order (in the sense
that it involves only two parties, each with a
single-qubit system).

Another important consequence that arises is
that permutation-invariant process matrices can-
not be causally ordered. We will demonstrate
this with an example. Consider, for simplic-
ity, the framework in which we impose permu-
tation invariance on processes but not on mea-
surements. Take a process representing a state
% prepared in laboratory A and sent to labora-
toryB through a channel T , W = %AITAOBI1

BO .
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This is not permutation-invariant: A can sig-
nal to B, but B cannot signal to A. We can
make the process invariant by taking the mixture
W inv = (%AITAOBI1

BO +%BITBOAI1
AO )/2, not-

ing the change in superscripts in the second term.
W inv may be permutation-invariant, but we have
lost the ability to determine whether the state %
was prepared in laboratory A and then sent to
laboratory B, or the reverse: we cannot perform
a measurement that will tell us where the state
preparation occurred. We have lost a way to la-
bel laboratories or, equivalently, a definition of
spacetime points—we no longer have a reference
frame for spacetime. This appears to be a gen-
eral feature of background-independence, as it is
also found in general relativity.

A related phenomenon is that one can-
not have an instrument where all operations
are (a) products of local operations, and (b)
permutation-invariant (aside from the degenerate
case where each of the measurement operators
Mi = NiNi...Ni act identically on every labora-
tory). This arises because any permutation in-
variant product of local measurement operators
Mi1Mi2 ...Min must satisfy M = UgMU †g for all
Ug and therefore Mi = Mj for all i, j. This might
appear alarming: one of the fundamental tenets
of the process matrix formalism is that measure-
ments can be performed locally. However, in the
next section we will discuss how a definition of
locality can be recovered.

5 Invariance with a reference frame.

Although in the previous section we found that
permutation invariance removes the distinction
between points in spacetime, it is possible to
recover a definition of spacetime points using
a material reference frame—a ‘rods and clocks’
reference frame constructed out of physical sys-
tems. This corresponds to techniques used in
other frameworks for relational quantum theory,
such as [45–51]. In this way, we can encode all
non-invariant processes, such as those typically
studied in the literature, into invariant ones.

The idea of a material reference frame is to
take a non-invariant process matrix, which iden-
tifies the Hilbert spaces (e.g. AIAO, BIBO etc.)
with local laboratories labelled by some external
reference frame, and add to each laboratory a
physical reference system whose quantum state

encodes a label uniquely specifying that labora-
tory. Then, a local observer can measure this ref-
erence system to obtain information about which
point of spacetime they occupy. In this way, we
have encoded the information from the old ab-
stract reference frame into a physical, observable
reference frame.

This being done, we remove the external refer-
ence by making the joint process invariant under
permutations. The invariant process is simply
the sum of all possible permutations acting on
the extended process (consisting of the system
and reference frame), which gives

W inv = 1
n!R(W ), (8)

where

R(A) :=
∑

g∈Sn

USR
g AS [01...(n− 1)]RI1

ROU †g
SR

(9)
is a superoperator that applies to arbitrary op-
erators (not necessarily process matrices). In
Eq. (9), the superscript on AS denotes that it is a
part of the system space S = S1

IS
1
O...S

n
I S

n
O, while

the superscripts R = RIRO = R1
IR

1
O...R

n
IR

n
O de-

note the reference frame space, which contains
inputs and outputs. We have used the nota-
tion [ψ] = |ψ〉〈ψ|, so that [01...(n − 1)]RI =
|0〉〈0|R

1
I ... |n− 1〉〈n− 1|R

n
I . Finally, USR

g =
US

g U
R
g , which acts separately on the system and

reference frame spaces. Ug is a representation of
the permutation g. This means that a given per-
mutation will act on the input and output spaces
of both the system and the reference frame to-
gether, so that each reference system remains as-
sociated with its corresponding laboratory, and
each output space remains associated with its
corresponding input space.

Essentially, we have moved from a particular
process W to an equivalence class of processes
(the terms in Eq. (9), related by permutations)
described by R(W ), which we treat as the funda-
mentally meaningful physical object, just as we
consider equivalence classes of diffeomorphism-
invariant spacetimes as the meaningful physical
system in relativity.

Using Eq. (9), we can construct permutation-
invariant processes that reproduce the statistics
of arbitrary, non-invariant processes. However,
as a consequence of adding a locally observable
reference system to each laboratory, instruments

7



now need to be extended so that the probabil-
ity of some measurement occurring is one. This
completion turns out to be somewhat arbitrary,
suggesting that there exist physically distinct in-
struments that are indistinguishable when using
any reference frame.

To obtain permutation-invariant processes and
measurements, we use the following maps:

W →W inv ≡ 1
n!R(W ), (10)

MS
i1...in

≡MS1
i1 ...M

Sn

in

→M inv
i1...in

≡ R(MS1
i1 ...M

Sn

in
)

+ 1
NdO

(
1

SR −R
(
1

S
))
, (11)

where the instrument is composed of N mea-
surements. The additional term included in the
invariant measurement operators is an arbitrary
completion required in order for the instrument
to be CPTP. W inv and M inv

i1...in
are now invariant

under the action of Sn.
In the appendix, we prove that W inv are valid

processes, that the M inv
i1,...,in

are each valid ele-
ments of instruments, and that

∑
{i}M

inv
i1,...,in

is
a CPTP map. In addition, we can show that
the Born rule is maintained by the permutation
invariance. Using Lemma 2 from the appendix,

Tr
[
W invM inv

i

]
= Tr

[ 1
n!R(W )(R(Mi) + 1

N
(1SR −R(1S))

]
= Tr

[ 1
n!R(WMi)

]
+ Tr

[ 1
n! (R(W )−R(W ))

]
= Tr

[ 1
n!R(WMi)

]
= Tr[WMi].

(12)

In the previous section, we mentioned that it
is impossible to have an instrument in which all
elements are both permutation-invariant and de-
compose into a product of local measurements.
Since one of the central ideas of the process ma-
trix formalism is locality, this was surprising.
Here, we see that, conditionally on measuring in
a particular reference frame, the elements of a
permutation-invariant instrument once more de-
compose into local measurements. This is be-
cause conditioning on a reference frame config-
uration [R0R1...RN ] is equivalent to projecting
onto 1 ⊗ [R0R1...RN ], which removes all terms
that have a reference frame state that is differ-
ent to the one being projected onto. Thus, we

recover our definition of locality and see that it
is only meaningful relative to a physical reference
frame.

6 Symmetry and superselection.

Usually, symmetry constraints in quantum me-
chanics give rise to superselection rules on al-
lowed states. That is, states have some ‘defi-
nite property’ and coherences between different
‘types’ of that property cannot exist.

The archetypal example of a superselection
rule is a U(1) gauge symmetry. For example,
electromagnetism obeys a global U(1) symme-
try. This symmetry is associated with a supers-
election rule for electric charge: states can have
any integer value of charge, but they cannot be
in a superposition of two different charge values.
However, it is possible to have a classical statisti-
cal mixture of positive and negative charge, such
as for example when there is some classical un-
certainty as to the nature of the particle being
prepared such as an electron or positron.

The reason superselection rules arise can be
seen by decomposing the Hilbert space of states
in terms of copies of irreducible representations
of the symmetry group (in our case the group of
permutations Sn).

A Hilbert space with a representation Ug of a
group G can be decomposed into a direct sum of
charge sectors Hq, each containing an inequiva-
lent representation of G. Each charge sector can
in turn be decomposed into a tensor product of
a gauge space Mq, carrying an irreducible repre-
sentation of G, and a multiplicity space Nq, car-
rying an identity representation of G. The entire
space decomposes as

H =
⊕

q

Mq ⊗Nq, (13)

so that each charge sector contains a number of
copies of a particular irreducible representation.
Each inequivalent representation corresponds to
a different ‘type’ of charge (in the U(1) example,
the number of elementary electric charges). In
this decomposition, the twirl - which, we recall,
is the ‘average over all transformations’ superop-
erator - can be expressed as [42]

G =
∑

q

(DMq ⊗ INq ) ◦ Pq, (14)
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where D is the completely depolarising map that
sends each state to the maximally mixed state,
I is the identity map, and Pq is the projector
onto Hq. Eq. (14) tells us that linear opera-
tors that are G-invariant (and therefore twirl-
invariant) must decompose as

A =
∑

q

1
dMq

1Mq ⊗ANq , (15)

where dMq = dim(Mq). This restriction is a
superselection rule: requiring that allowed op-
erators are block-diagonal in the different in-
equivalent representations is the same as saying
that there can be no coherences between different
charges. Additionally, Eq. (15) gives us informa-
tion about the physical degrees of freedom asso-
ciated with each ‘type’ of charge: for a charge q,
the physical state space reduces to the invariant
subspace Nq.

So goes the typical interpretation of a super-
selection rule: physical objects have some well-
defined charge that can be subject to classical
uncertainty but not quantum indeterminacy. It
turns out that, for processes, this standard in-
terpretation fails2. The reason it fails is because
some inequivalent representations do not contain
any valid processes (whether there are no repre-
sentations that contain valid processes is an open
question). Here, we will show that for any n-
partite process with two-dimensional (qubit) lo-
cal Hilbert spaces, the symmetric and antisym-
metric representations never contain valid pro-
cesses. First, we will consider the base case of
a bipartite process, and then prove by induction
that this will hold for a process with any number
of laboratories, as long as each laboratory carries
a single qubit.

A bipartite process with two-dimensional
input and output spaces gives rise to a
16-dimensional Hilbert space spanned by
|i〉AI |j〉AO |k〉BI |l〉BO ≡ |ijkl〉 , i, j, k, l ∈ {0, 1}.
Permutations of the two laboratories are ob-
tained by the action of S2, which has two

2Strictly speaking, the concept of superselection rule
does not apply directly to process matrices, because the
normalisation constraint, Eq. (3), implies that not all vec-
tors in the underlying Hilbert space represent valid pro-
cesses. However, we retain a decomposition of the space
of processes into charge sectors, with coherence possible
between sectors. Symmetries should still imply loss of
coherence; one could expect that this corresponds to a
superselection rule.

elements: the identity element and the swap
element UAB |ijkl〉 = |klij〉. There are two
ineqivalent representations, the symmetric and
antisymmetric representations (denotedW+ and
W−), which are respectively spanned by∣∣∣ψ(1)

S

〉
= |ijij〉 , i, j ∈ {0, 1}, (16)∣∣∣ψ(2)

S

〉
= 1√

2
(|ijkl〉+ |klij〉), i, j 6= k, l, (17)

for the ‘symmetric representation’, and

|ψA〉 = 1√
2

(|ijkl〉 − |klij〉), i, j 6= k, l, (18)

for the ‘anti-symmetric’. In all, the symmetric
representation is 10-dimensional, and the anti-
symmetric is 6-dimensional. The superselection
rule tells us that any physically realisable (per-
mutation invariant) process must have the form

WAIAOBIBO = W+ +W−, (19)

where W+ =
∑

i,j αij

∣∣∣w+
i

〉〈
w+

j

∣∣∣ and W− =∑
ij βij

∣∣∣w−i 〉〈w−j ∣∣∣, where w±i are respectively ba-

sis elements of the symmetric (+) or antisymmet-
ric (−) representations given in eqs. (16)-(18).

Matrices of the form of Eq. (19) will not in gen-
eral be valid processes. Process matrices must
also satisfy Eq. (3). Solving algebraically for a
closed-form constraint on the diagonals (which
can be done with a computer algebra program
such as Mathematica, or by hand) reveals that
the trace of any W+ or W− containing no for-
bidden causal terms and belonging solely to one
of the two inequivalent representations must be
zero. This violates the normalisation constraint
of Eq. (3). However, there are matrices W =
W+ + W− where the W± individually contain
some causally forbidden terms, but W+ + W−

does not, allowing W to be a valid process satis-
fying the normalisation constraint.

We can use the result for bipartite qubit pro-
cesses as the base case to show that for any
number of qubit laboratories, there will be no
valid processes living in the symmetric or anti-
symmetric representations. There are two essen-
tial parts to this argument. The first is that,
given a process matrix W , tracing out any num-
ber of laboratories must result in a valid process.
In particular, for a process WS1...Sn

with n lab-
oratories, 1

d
S1...Sn\SiSj

TrS1...Sn\SiSj [WS1...Sn ] =

9



∼
WSiSj

, where TrS1...Sn\SiSj denotes the trace

over all laboratories except Si and Sj and
dS1...Sn\SiSj is the dimension of all the spaces ex-

cept Si, Sj , must be a valid process.
∼
WSiSj

is
known as a reduced process.

The second part of the argument is that for
any state living in the symmetric (antisymmet-
ric) representation of Sn, any (n−1)-dimensional
subsystem of that state will be in the symmetric
(antisymmetric) representation of Sn−1. To see
this, observe that we can write any n-dimensional
state |ψ〉 as

|ψ〉 =
∑

j

cj |ψj〉S
1...Sn−1

|j〉S
n

, (20)

where |ψj〉 is an (n− 1)-dimensional state, cj are
some coefficients, and |j〉, j = 1, ..., n is a basis
state of Sn. Then, we have

〈k|S
n

|ψ〉 = 〈k|S
n ∑

j

cj |ψj〉S
1...Sn−1

|j〉S
n

= ck |ψk〉S
1...Sn−1

. (21)

If |ψ〉 lives in the symmetric representation, then
Ug |ψ〉 = |ψ〉 ∀g ∈ G. In particular, this holds

for all g that leave the state |j〉S
n

in system Sn

unchanged. From this, we can see that, for g ∈
Sn−1 and Ug acting on the first n−1 subsystems,

Ug |ψ〉 = |ψ〉

⇒
∑

j

cjUg |ψj〉S
1...Sn−1

|j〉S
n

=
∑

j

cj |ψj〉S
1...Sn−1

|j〉S
n

⇒ 〈k|S
n ∑

j

cjUg |ψj〉S
1...Sn−1

|j〉S
n

= 〈k|
∑

j

cj |ψj〉S
1...Sn−1

|j〉S
n

⇒ ckUg |ψk〉S
1...Sn−1

= ck |ψk〉S
1...Sn−1

⇒ Ug |ψk〉S
1...Sn−1

= |ψk〉S
1...Sn−1

.

(22)

Therefore, the |ψj〉S
1...Sn−1

will all be in the sym-
metric subspace, and TrSn [|ψ〉〈ψ|]/dSn will be a
linear combination of operators on the symmet-
ric subspace. This holds analogously for the anti-
symmetric subspace, where Ug |ψ〉 = sgn(g) |ψ〉.
The same result holds if we ‘project out’ any
number of subspaces. Taking the partial trace
of a matrix in the (anti)symmetric subspace will

therefore result in a matrix that is still in the
(anti)symmetric subspace, where we define the
(anti)symmetric subspace for matrices as the
space of matrices that act on the (anti)symmetric
subspace for states. We will equivalently say that
these matrices belong to the (anti)symmetric rep-
resentation.

Combining these two arguments, we see that
for an n-partite process W living in the symmet-

ric (antisymmetric) representation of Sn,
∼
WSiSj

must be a valid bipartite process and live in the
symmetric (antisymmetric) representation for all
i, j = 1, .., n, i 6= j. But, we saw that there are no
valid symmetric or antisymmetric bipartite pro-
cesses, so this is a contradiction. This tells us
that there are no symmetric or antisymmetric n-
partite qubit processes. This proof generalises to
any local Hilbert space dimension once one has
proved the base case.

7 Conclusion

In this paper, we have used the process ma-
trix formalism to show that it is possible to de-
scribe quantum causal order with background in-
dependence built in, under the assumption of a
discretised spacetime. We have also seen that
some properties of background independent pro-
cesses have counterparts in general-relativistic
background independence, e.g. the ‘washing out’
of spacetime and the need to construct a material
reference frame to recover a definition of space-
time points.

Our results show that background indepen-
dence is consistent with the principles of the pro-
cess matrix formalism, including, with some rein-
terpretation, locality—which must be defined rel-
ative to a reference frame. This follows from our
discussion on local vs. background independent
measurements.

We also investigated the general symmetry
constraints imposed on processes by permutation
invariance, and discovered that the constraint is
different to the typical superselection rule: the
standard interpretation is simply that physical
systems must have a well-defined ‘charge’, but
for permutation-invariance not all charges corre-
spond to physically realisable processes. Instead,
valid processes can be block-diagonal combina-
tions of matrices that are not themselves valid
processes. This implies that background inde-

10



pendence in quantum mechanics cannot be in-
terpreted analogously to other known symmetries
of nature, and that a new interpretation may be
necessary. Whether or not this ‘charge’ can be
taken seriously as a physical quantity is, for the
moment, an open question.

Finally, our attention has focused on
permutations—namely relabellings of labo-
ratories. These can be understood as ‘classical’
coordinate transformations, which do not change,
for example, whether a particle is localised at a
point or in a superposition. It has been proposed
that combining quantum mechanics and general
relativity requires considering more general,
‘quantum’ coordinate transformations [52, 53].
It is an interesting open question whether it is
possible to extend our treatment to include such
‘quantum relabellings’.

Acknowledgments

This work was partially supported through an
Australian Research Council (ARC) Discovery
Early Career Researcher Award (DE170100712)
and by the ARC Centre of Excellence for En-
gineered Quantum Systems (CE17010000). The
University of Queensland (UQ) acknowledges the
Traditional Owners and their custodianship of
the lands on which UQ operates.

References

[1] Jeremy Butterfield and Christopher J.
Isham. “Space-time and the philosophical
challenge of quantum gravity”. Pages 33–
89. Cambridge University Press. (1999).
arXiv:gr-qc/9903072.

[2] Lucien Hardy. “Probability theories
with dynamic causal structure: A New
framework for quantum gravity” (2005).
arXiv:gr-qc/0509120.

[3] Ognyan Oreshkov, Fabio Costa, and Časlav
Brukner. “Quantum correlations with no
causal order”. Nat. Commun.3 (2012).

[4] C. Rovelli. “What is observable in classical
and quantum gravity?”. Class. Quantum
Grav.8 (1991).

[5] John D. Norton. “The Hole Argument”.
In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics

Research Lab, Stanford University (2019).
Summer 2019 edition.

[6] Abhay Ashtekar and Jerzy Lewandowski.
“Background independent quantum grav-
ity: a status report”. Classical and Quan-
tum Gravity 21, R53–R152 (2004).

[7] Lee Smolin. “The Case for Background
Independence”. In The Structural Founda-
tions of Quantum Gravity. Oxford Univer-
sity Press (2006). arXiv:hep-th/0507235.

[8] L. Procopio, A. Moqnaki, M. Araujo,
F. Costa, I. Calafell, E. Dowd, D. Hamel,
L. Rozema, C. Brukner, and P. Walther.
“Experimental superposition of orders of
quantum gates”. Nat. Comms.6 (2015).

[9] Giulia Rubino, Lee A Rozema, Adrien
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8 Appendix
Here, we prove some results stated in the main text.

8.1 Some facts about the R map.

It’s useful to first prove two properties of the R map, namely that R(A) + R(B) = R(A + B) and
R(A)R(B) = R(AB). For the first, we see that

Lemma 1. R(A) +R(B) = R(A+B), for A and B linear operators.

Proof.

R(A) +R(B) =
∑

g∈Sn

USR
g AS [01...(n− 1)]RU †g

SR +
∑

g∈Sn

USR
g BS [01...(n− 1)]RU †g

SR

=
∑

g∈Sn

USR
g

(
AS [01...(n− 1)]R +BS [01...(n− 1)]R

)
U †g

SR

=
∑

g∈Sn

USR
g

(
AS +BS

)
[01...(n− 1)]RiU †g

SR = R(A+B).

(23)
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The second takes slightly more work, but we obtain

Lemma 2. R(A)R(B) = R(AB), for A and B linear operators.

Proof.

R(A)R(B) =
∑

g∈Sn

∑
h∈Sn

(USR
g AS [01..(n− 1)]RU †g

SR)(USR
h BS [01...(n− 1)]RU †h

SR
)

=
∑

g∈Sn

∑
h∈Sn

(US
g A

SU †g
S
US

h B
SU †h

S
)(UR

g [01..(n− 1)]RU †g
R
UR

h [01...(n− 1)]RU †h
R

)

=
∑

g∈Sn

∑
h∈Sn

(US
g AU

†
g

S
US

h BU
†
h

S
)(δ(g−1h)UR

g [01..(n− 1)]U †g
R)

=
∑

g∈Sn

USR
g (AB)S [01...(n− 1)]RU †g

SR = R(AB),

(24)

using Ug[01...(n − 1)]U †gUh[01...(n − 1)]U †h = [g(0)g(1)...g(n − 1)][h(0)h(1)...h(n − 1)] =
δg(0)h(0)...δg(n−1)h(n−1)[g(0)...g(n − 1)] = δ(g−1h)Ug[01...(n − 1)]U †g , with δij being the kronecker
delta and δ(g−1h) being 1 if g−1h is identity and 0 otherwise (the delta function on Sn).

8.2 Permutation-invariant processes.

For W inv to be a valid process, it must be a positive semi-definite matrix that has trace 1 when
multiplied with any tensor product of CPTP maps. The positive semidefinite requirement is satis-
fied by Eq. (10) because both the tensor product and the sum of positive semidefinite matrices is
positive semidefinite. We can also demonstrate that W inv gives normalised probabilities.

First, note that a permutation of a valid process is again a valid process. This is because

Tr
[
UWU †M

]
= Tr

[
WU †MU

]
(where M denotes the tensor product of local CP maps). Therefore,

evaluating the Born rule for a permuted process is the same as evaluating it for the original process
and permuted maps. If Tr[WM ] = 1 for arbitrary CPTP maps, then the same is true for permuted
CPTP maps, meaning that the normalisation condition is preserved under permutations. Further-
more, convex combinations preserve process normalisation, so all we need is to prove that adding
the reference frame systems to a valid process we get a valid process.

Let us then consider the operator WS [01...(n− 1)]RI1
RO , where WS is a valid process. For arbitrary

CPTP maps acting on local systems and reference frames, MS1R1
1 · · ·MSnRn

n , we have

Tr
[
WS [01...(n− 1)]RI1

RO ·
(
MS1R1

1 · · ·MSnRn

n

)]
= TrS

[
WS ·

(
M̄S1

1 · · · M̄Sn

n

)]
, (25)

where

M̄Sj

j := TrRj

[(
[j − 1]R

j
I1

Rj
O

)
·MSjRj

j

]
, j = 1, . . . n. (26)

We see that each M̄Sj

j is CPTP, which, in the Choi representation, means that Tr
Sj

O
M̄Sj

j = 1
Sj

I .

Indeed,

Tr
Sj

O
M̄Sj

j = Tr
Rj

I

[
[j − 1]R

j
I ·
(
Tr

Sj
ORj

O
MSjRj

j

)]
= Tr

Rj
I

[
[j − 1]R

j
I1

Sj
I

]
= 1

Sj
I , (27)

where we have used the CPTP property of the extended maps, Tr
Sj

ORj
O
MSjRj

j = 1
Sj

I Rj
I , and the

normalisation of the reference frame state, Tr [j − 1] = 1. As the M̄Sj

j are CPTP, and WS is
a valid process, the rhs of Eq. (25) is equal to 1, which means the lhs is 1 too. This proves that
WS [01...(n− 1)]RI1

RO satisfies the process normalisation condition.
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8.3 Permutation-invariant instruments.
Here we show that the M inv

i1...in
, as defined in Eq. (11), is a valid instrument. To do this, we show

that each element is a CP map, and that the trace over the combined system-reference frame output
is TrSORO

[M inv] = 1
SIRI , so that the maps sum to a CPTP map:

TrSORO
[
∑

i1...in

M inv
i1...in

] = TrSORO
[
∑

i1...in

R(MS
i1...in

) + 1
NdO

(
1

SR −R(1S
)
]

= TrSORO
[R(

∑
i1...in

MS
i1...in

)] + 1
dO

TrSORO
[1SR]− 1

dO
TrSORO

[R(1S)]

= TrSORO
[R(MS)] + 1

SIRI − TrSORO
[
∑

g

USR
g 1

S [01...(n− 1)]RI1
ROU †g

SR]

= TrSORO
[
∑

g

USR
g MS [01...(n− 1)]RI1

ROU †g
SR] + 1

SIRI

− TrSORO
[
∑

g

USR
g 1

S [01...(n− 1)]RI1
ROU †g

SR]

= TrSORO
[
∑

g

U †g
SR
USR

g MS ⊗ [01...(n− 1)]RI1
RO ] + 1

SIRI

− TrSORO
[
∑

g

U †g
SR
USR

g 1
S ⊗ [01...(n− 1)]RI1

RO ]

=
∑

g

TrSO
[MS ] TrRO

[[01...(n− 1)]RI1
RO ] + 1

SIRI

−
∑

g

TrSO
[1S ] TrRO

[[01...(n− 1)]RI1
RO ]

= (n!dSO
1

SI TrRO
[[01...(n− 1)]RI1

RO ]− n!dSO
1

SI TrRO
[[R]RI1

RO ]) + 1
SIRI

= 1
SIRI .

(28)

We now show that the M inv
i1...in

are all positive semidefinite. Observe that

M inv
i1...in

= R(MS1
i1 ...M

Sn

in
) + 1

NdO

(
1

SR −R
(
1

S
))

(29)

is a sum of two terms. It suffices to show that both of the two terms are positive semidefinite. For
the first, we see that

R(MS1
i1 ...M

Sn

in
) =

∑
Ug(MS1

i1 ...M
Sn

in
)U †g [R], (30)

which, as Ug(MS1
i1 ...M

Sn

in
)U †g and [R] are both positive semidefinite, is just a sum of positive

semidefinite operators. Therefore, it is positive semidefinite. For the second term, note that 1SR

is simply the sum of all projectors, while R(1S) =
∑
1

RI [R]RO is a sum containing only projectors,
so that

1
NdO

(
1

SR −R
(
1

S
))
≥ 0 (31)

because 1SR contains all terms that appear in R(1S), but the reverse is not true. Since both terms
are diagonal, we can see that this results in all eigenvalues being positive or zero.
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