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Approximate combinatorial optimisa-
tion has emerged as one of the most
promising application areas for quantum
computers, particularly those in the near
term. In this work, we focus on the quan-
tum approximate optimisation algorithm
(QAOA) for solving the Max-Cut problem.
Specifically, we address two problems in
the QAOA, how to initialise the algorithm,
and how to subsequently train the param-
eters to find an optimal solution. For
the former, we propose graph neural net-
works (GNNs) as a warm-starting tech-
nique for QAOA. We demonstrate that
merging GNNs with QAOA can outper-
form both approaches individually. Fur-
thermore, we demonstrate how graph neu-
ral networks enables warm-start generali-
sation across not only graph instances, but
also to increasing graph sizes, a feature not
straightforwardly available to other warm-
starting methods. For training the QAOA,
we test several optimisers for the Max-Cut
problem up to 16 qubits and benchmark
against vanilla gradient descent. These
include quantum aware/agnostic and ma-
chine learning based/neural optimisers.
Examples of the latter include reinforce-
ment and meta-learning. With the incor-
poration of these initialisation and optimi-
sation toolkits, we demonstrate how the
optimisation problems can be solved us-
ing QAOA in an end-to-end differentiable
pipeline.

1 Introduction
Among the forerunners for use cases of near-term
quantum computers, dubbed noisy intermediate-
scale quantum (NISQ) [1] are the variational

quantum algorithms (VQAs). The most well
known of these is the variational quantum eigen-
solver [2] and the quantum approximate opti-
misation algorithm (QAOA) [3]. In their wake,
many new algorithms have been proposed in this
variational framework tackling problems in a va-
riety of areas [4–6]. The primary workhorse in
such algorithms is typically the parameterised
quantum circuit (PQC), and due to the heuristic
and trainable nature of VQAs they have also be-
come synonymous with ‘modern’ quantum ma-
chine learning [7]. This is particularly evident
with the adoption of PQCs as the quantum ver-
sion of neural networks [8, 9].

In this work, we focus on one particular VQA
- the QAOA - primarily used for approximate
discrete combinatorial optimisation. The canon-
ical example of such a problem is finding the
‘maximum cut’ (Max-Cut) of a graph, where (for
an unweighted graph) one aims to partition the
graph nodes into two sets such that the sets
have as many edges connecting them as possible.
Discrete optimisation problems such as Max-Cut
are extremely challenging to solve (specifically
NP-Hard) and accurate solutions to such prob-
lems take exponential time in general. Aside
from its theoretical relevance, Max-Cut finds ap-
plications across various fields such as study of
the spin glass model, network design, VLSI and
other circuit layout designs [10], and across data
clustering [11]. While it is not believed quan-
tum computers can solve NP-Hard problems effi-
ciently [12], it is hoped that quantum algorithms
such as QAOA may be able to outperform clas-
sical algorithms by some benchmark. Given the
ubiquity of combinatorial optimisation problems
in the real world, even incremental improvements
may have large financial and quality impacts.

Due to this potential, there has been a rapid
development in the study of the QAOA algo-
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rithm and its components, including (but not
limited to) theoretical observations and limita-
tions [13–20], variations on the circuit structure
(ansatz) [21–25] used, the cost function [26–28]
and initialisation and optimisation methods [29–
34] used for finding optimal solutions. Since the
algorithm is suitable for near-term devices, there
has also been substantial progress in experimen-
tal or numerical benchmarks [34–38] and the ef-
fect of quantum noise on the algorithm [39,40].

However, due to the limitations in running real
experiments on small and unreliable NISQ de-
vices, which currently are typically only accessi-
ble via expensive cloud computing platforms [41],
it is important to limit the quantum resource (i.e.
the overall number of runs, or the time for a sin-
gle run on quantum hardware) required to solve
a problem to the bare minimum. Therefore, ef-
fective initialisation and optimisation strategies
for VQAs can dramatically accelerate the search
for optimal problem solutions. The former en-
sures the algorithm begins ‘close’ to a solution
in the parameter space (near a local or global
optimum), while the latter enables smooth and
efficient traversal of the landscape. This is espe-
cially relevant given the existence of difficult op-
timisation landscapes in VQAs plagued by bar-
ren plateaus [42–45], local minima [46, 47] and
narrow gorges [48]. To avoid these, and to enable
efficient optimisation, several initialisation tech-
nique have been proposed for VQAs, including
using tensor networks [49], meta-learning [50–52]
and algorithm-specific techniques [29,30].

Returning to the specifics of combinatorial op-
timisation, the use of machine and deep learn-
ing has been shown to be effective means of
solving this family of problems, see for example
Refs. [53–56]. Of primary interest for our pur-
poses are the works of [53, 56]. The former [53]
trains a graph neural network (GNN) to solve
Max-Cut, while the latter [56] extends this to
more general optimisation problems, and demon-
strates scaling up to millions of variables. Based
on these insights and the recent trend in the
quantum domain of incorporating VQAs with
neural networks (with software libraries devel-
oped for this purpose [57, 58]) indicates that us-
ing both classical and quantum learning archi-
tectures synergistically has much promise. We
extend this hybridisation in this work.

This paper is divided into two parts. In the

first part (Sections 2-4), we discuss the previ-
ous works in QAOA initialisation and give our
first contribution: an initialisation strategy using
graph neural networks. Specifically, we merge
GNN solvers with the warm-starting technique
for QAOA of [29], and demonstrate the effective-
ness of this via numerical results in Section 4.
By then examining the conclusion of [56], we
can see how our GNN approach would allow
QAOA initialisation to scale far beyond the ca-
pabilities of current generation near-term quan-
tum devices. In the second part of the paper
(Section 5), we then complement this by evalu-
ating several methods of optimisation techniques
for the QAOA proposed in the literature, includ-
ing quantum-aware, quantum-agnostic and neu-
ral network based optimisation approaches.

1.1 QAOA for solving Max-Cut
For concreteness in this work, we focus on
the discrete optimisation problem known as
Max-Cut. It involves finding a division (a cut)
of the vertices of a (weighted) graph into two
sets, which maximises the sum of the weights
over all the edges across the vertex subsets. For
unweighted graphs, this cut will maximise simply
the number of edges across the two subsets.

The problem can be recast to minimising the
weighted sum of operators acting on the vertices
of a given graph. Mathematically, this can be
stated as follows. Given a graph G := (V, E) with
vertices V and edges E = {(i, j)|i, j ∈ V and i 6=
j}, the Max-Cut can be found by minimising the
following cost function,

C(z) = −
∑
〈i,j〉∈E

wij(1− zizj) (1)

where z := z1z2 . . . zn are variables for each
vertex, i, such that zi ∈ {+1,−1} and wij is
the corresponding weight of the edge between
vertices i and j. In this case, the value (sign)
of zi determines on which side of the cut the
node resides. The Max-Cut problem is a canon-
ical NP-complete problem [60], meaning there
is no known efficient polynomial time algorithm
in general. Further, Max-Cut is also known
to be APX-hard [61], meaning there is also no
known polynomial time approximate algorithm.
The current best known polynomial time ap-
proximate classical approach is the Goemans-
Williamson (GW) algorithm which is able to
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Figure 1: Initialisation techniques for QAOA. (a) This part highlights the difference between the warm-starting
techniques (using semi-definite programming (SDP) relaxations [29] or graph neural networks (GNNs)) and Trotterised
quantum annealing [30] (TQA). TQA produces initial angles, {β,γ}, whereas warm-starting techniques initialise the
QAOA state. ‘Init’ here refers to any parameter initialisation scheme. In this work, we choose a specific initialisation
technique called the Xavier initialisation [59] for warm-starting techniques. (b) GNNs take an embedding of the
initial graph and applies updates to the embeddings based on the neighbours of each node, using an parameterised
function, fθ. In this case, the GNN outputs a probability for each node being on either side of the cut. (c) A unified
p-layer QAOA circuit for all initialisation schemes. In TQA, fixed choices for angles θ, φ initialise vanilla QAOA with
the standard mixer, whereas warm-starting produces an initial state and mixer encoding a probabilistic solution given
by the SDP or GNN. Here, x∗ implicitly encodes the regularisation parameter ε discussed in [29]. Note that both the
GNN and QAOA parameters can be trained in an end-to-end differentiable manner, in contrast to other schemes.

achieve an approximation ratio, r ≈ 0.878,
where:

r = Approximate cut

Optimal cut
(2)

= 2
π

(
min

0≤θ≤π

θ

1− cos θ

)
≈ 0.878 (3)

Assuming the unique games conjecture
(UGC) [62, 63] classically, then the GW al-
gorithm achieves the best approximation ratio
for Max-Cut. Without this conjecture, it has
been proven that it is NP-hard to approximate
the Max-Cut value with an approximation ratio
better than 16

17 ≈ 0.941.
To address Max-Cut quantum mechanically,

one can quantise the cost function Eq. (1) by
replacing the variables with operators, zi → Zi,
where Z is the Pauli-Z matrix. The cost function
can now be described with a Hamiltonian:

HC(z) =
∑
〈i,j〉∈E

wij(1− ZiZj) (4)

where the actual cost - corresponding to the cut
size - is extracted as the expectation value of this
Hamiltonian with respect to a quantum state,

|ψ〉:
C(z) := −〈ψ|HC |ψ〉 (5)

The goal of a quantum algorithm is then to find
the ground state, |ψ〉G := argmin|ψ〉 〈ψ|HC |ψ〉,
i.e. the state which minimises the energy of the
Hamiltonian, HC. Constructing the Hamiltonian
as in Eq. (4), ensures that the minimum energy
state is exactly the state encoding the Max-Cut
of the problem graph:

|ψ〉G = |ψ〉Max-Cut (6)

However, since the Max-Cut problem is NP-
Hard, we expect that finding this ground state,
|ψ〉Max-Cut, will also be hard in general. The
QAOA algorithm attempts to solve this by initial-
ising with respect to an easy Hamiltonian (also
called a ‘mixer’ Hamiltonian):

HM =
n∑
i=1

Xi (7)

which has as an eigenstate the simple prod-
uct state, |ψ〉init = |+〉⊗n = H |0〉⊗n where X
and H are the Pauli-X and Hadamard operators
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respectively. This can be viewed as an initialisa-
tion which is a superposition of all possible can-
didate solutions. The QAOA then attempts to
simulate adiabatic evolution from |ψ〉init to the
target state |ψ〉Max-Cut by an alternating bang-
bang application of two unitaries derived from
the Hamiltonians, Eq. (4), Eq. (7), which are
respectively:

UC(γ) = e−iγHC and UM(β) = e−iβHM (8)

In the QAOA, the parameters, γ, β, are train-
able, and govern the length of time each opera-
tor is applied for. These two unitaries are alter-
nated in p ‘layers’ acting on the initial state, so
the final state is prepared using 2p parameters,
{β,γ} := {β1, β2, . . . , βp, γ1, γ2, . . . , γp}:

|ψβ,γ〉 = UM(βp)UC(γp) . . . UM(β1)UC(γ1) |+〉⊗n
(9)

Optimising the parameters, {β,γ} serves as
a proxy for finding the ground state, and so we
aim that after a finite depth, p, we achieve a
state |ψβ,γ〉 which is close to the target state
|ψ〉Max-Cut.

2 Initialising the QAOA
Since searching over the non-convex parameter
landscape for an optimal setting of the {γ,β}
parameters directly on quantum hardware may
be expensive and/or challenging, any attempts to
initialise the QAOA parameters near a candidate
solution are extremely valuable as the algorithm
would then begin its search from an already
good approximate solution. Such approaches are
dubbed as ‘warm-starts’ [29], in contrast to ‘cold-
starts’. One could consider a cold-start to be a
random initialisation of {γ,β}, or by using an
initial state which encodes no problem informa-
tion, e.g. |+〉⊗n, as in vanilla QAOA. In this
work, we refer to cold-start as the latter, and
‘random initialisation’ to mean a random setting
of the parameters, {γ,β}. We first revisit and
summarise two previous approaches [29, 30], be-
fore presenting our approach to QAOA initialisa-
tion. We illustrate these previous initialisation
approaches in Fig. 1, which we review briefly
in Section 2.1 and Section 2.2, and also our ap-
proach based on graph neural networks, which
we introduce in Section 3. For simplicity, we fo-
cus on the simplest version of QAOA, but the

methods could be extended to other variants, for
example recursive QAOA (RQAOA) [29,64,65].

2.1 Continuous relaxations

The first approach of [29] proposed a warm-
start for QAOA method which can be applied
to Max-Cut as a special case of a quadratic un-
constrained binary optimisation (QUBO) prob-
lem. In this work, two sub-approaches were dis-
cussed. The first converts the QUBO into its con-
tinuous quadratic relaxation form which is effi-
ciently solvable and directly uses the output of
this relaxed problem to initialise the QAOA cir-
cuit. The second approach applies the random-
hyperplane rounding method of the GW algo-
rithm to generate a candidate solution for the
QUBO. For Max-Cut, this QUBO can be written
in terms of the graph Laplacian, LG = D − A
(where D is the diagonal degree matrix, and A is
the adjacency matrix of G) as follows (we utilise
this form later in this work):

max
z∈{−1,1}n

zTLGz (10)

However, by removing the requirement that each
zi is binary, one can obtain an efficiently solvable
continuous relaxation that can serve as warm-
start for solving Eq. (10). Since LG is a positive
semidefinite (PSD) matrix, the relaxed form can
be trivially written as,

max
x∈[0,1]n

(2x− 1)TLG(2x− 1), (11)

using the translation zi ∈ {−1, 1} → zi =
(2xi− 1), xi ∈ {0, 1} and then allowing xi to be
continuous in this interval. If the matrix in the
QUBO is not PSD however, then one can obtain
another continuous relaxation, as a semidefinite
programme (SDP) [29, 66]. The output of this
optimisation is a real vector x∗ which, when a
rounding procedure is performed (i.e. the GW
algorithm), is a candidate solution for the origi-
nal Max-Cut. In order to use this relaxed solution
to initialise QAOA, Ref. [29] also demonstrated
that the initial state from Eq. (9) and the mixer
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Hamiltonian Eq. (7) must also be altered as:

|ψ〉CS
init = |+〉⊗n → |ψ〉WS

init =
n⊗
i=1

Ry(θi) |0〉⊗n .

HM →
n∑
i=1

HWS
M,i ,

HWS
M,i =

 2x∗i − 1 −2
√
x∗i (1− x∗i )

−2
√
x∗i (1− x∗i ) 1− 2x∗i


(12)

where θi = 2 sin−1(
√
x∗i ). One can immediately

see that |ψ〉WS
init is the ground state of HM with

eigenvalue −n. One possible issue that may arise
with this warm-start is if the relaxed solution x∗i
is either 0 or 1. When this happens, the qubit
i would be initialised to state |0〉 or |1〉, respec-
tively. This means the qubit would be unaffected
by the problem Hamiltonian Eq. (4) which only
contains Pauli Z terms. To account for this pos-
sibility, [29] modifies θi in Eq. (12) with a regu-
larisation parameter, ε ∈ [0, 0.5] if the candidate
solution, x∗i is too close to 0 or 1.

Examining Fig. 1, this initialisation scheme
is achieved by setting the angles in the initial
state, ϕi = 0 and θi = 2 sin−1(

√
x∗i ) ∀i where

the initial state can be expressed as |ψ〉WS
init =⊗

Rx(ϕi)Ry(θi) |0〉⊗n. The ‘Init’ in this figure
implies that one is free to choose any QAOA pa-
rameter initialisation method as this warm-start
approach only modifies the input state and the
mixer Hamiltonian.

2.2 Trotterised quantum annealing
A second proposed method [30] to initialise
QAOA uses concepts from quantum anneal-
ing [67,68], which is a popular method of solving
QUBO problems of the form Eq. (10). QAOA was
proposed as a discrete gate-based method to em-
ulate quantum adiabatic evolution, or quantum
annealing. Therefore, one may hope that insights
from quantum annealing may be useful in setting
the initial angles for the QAOA circuit parame-
ters. In a method proposed by [30] (dubbed Trot-
terised quantum annealing (TQA)), one fixes the
QAOA circuit depth, p, and sets the parameters
as:

γk = k

p
δt βk =

(
1− k

p

)
δt (13)

where k = 1, · · · , p and δt is a time interval which
is a-priori unknown and given as a fraction of

the (unknown) total optimal anneal time, T ∗,
resulting in δt = T ∗/p. The authors of [30] ob-
served an optimal time step value δt to be ≈ 0.75
for 3-regular graphs and O(1) for other graph
ensembles. In [30], the QAOA was initialised
with δt = 0.75 and observed to help avoid local
minima and find near-optimum minima close to
the global minimum. We also choose this value
generically in our numerical results later in the
text, although one should ideally pre-optimise
the value for each graph instance.

Note that in contrast to the warm-starting
method from the previous section, the TQA ap-
proach initialises the parameters, {β,γ} rather
than the initial QAOA state (and mixer Hamil-
tonian) which is set as in vanilla QAOA as
|+〉. Again, revisiting Fig. 1, this initial
state can be achieved by choosing ϕj =
π,θj = π/2, ∀j. This is due to the fact that
Ry (π/2) Rx(π) |0〉 ∝ XRx (π/2) |0〉 = H |0〉 = |+〉.
Similarly, for the mixer Hamiltonian, we have
Ry (π/2) Rz(−2βk)Ry (−π/2) ∝ HXRz(−2βk)XH =
HRz(2βk)H = Rx(2βk), which is the single qubit
mixer unitary from vanilla QAOA, up to a redef-
inition of βk.

3 Graph neural network warm-starting
of QAOA

Now that we have introduced the QAOA, and
alternative methods for warm-starting its initial
state and/or initial algorithm parameters, let us
turn now to our proposed method; the use of
graph neural networks. This approach is closest
to the relaxation method of Section 2.1 in that
the GNN provides an alternative initial state to
vanilla QAOA, and so it is to this method which
we primarily compare. One of the main draw-
backs of using SDP relaxations and the GW algo-
rithm, is that every graph for which the Max-Cut
must be found generates a new problem instance
to be initialised. However, on the other hand,
the GW algorithm comes equipped with perfor-
mance guarantees (generating an approximate
solution within 88% of the optimal answer).

As we shall see, using graph neural networks as
an initialiser allows a generalisation across many
graph instances at once. Importantly, even in-
creasing the number of qubits will not signif-
icantly affect the time complexity of such ap-
proaches as it can be interpreted as a learned
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prior over graphs. We also demonstrate how
the model can be trained on a small number
of qubits, and still perform well on larger prob-
lem instances (size generalisation), a feature not
present in any of the previous initialisation meth-
ods for QAOA. Furthermore, the incorporation
of a differentiable initialisation structure allows
the entire pipeline of QAOA to become end-to-
end differentiable, which is particularly advan-
tageous since it makes the problem ameanable
to the automatic differentiation functionality of
many deep learning libraries [69, 70]. First, let
us begin by introducing graph neural networks.

3.1 Graph neural networks

Graph neural networks (GNNs) [71] are a spe-
cific neural network model designed to operate
on graph-structured data, and typically func-
tion via some message passing process across the
graph. They are example models in geometric
deep learning [72], where one incorporates prob-
lem symmetries and invariants into the learning
protocol. Examples have also been proposed in
the field of quantum machine learning [50,73–75].
Specifically, graph neural networks operate by
taking an encoding of the input graph describ-
ing a problem of interest and outputting a trans-
formed encoding. Each graph node is initially
encoded as a vector, which are then updated by
the GNN to incorporate information about the
relative features of the graph in the node. This
is done by taking into account the connections
and directions of the edges within the graph, us-
ing quantities such as the node degree, and the
adjacency matrix. This transformed graph in-
formation is then used to solve the problem of
interest. There are many possible architectures
for how this graph information is utilised in the
GNN, including attention based mechanisms [76]
or graph convolutions [77] for example, see e.g.
Ref. [78] for a review.

In order to transform the feature embeddings,
the GNN is trained for a certain number of it-
erations (a hyperparameter). For a given graph
node, nν , we associate a vector, hnνt , where t is
the current iteration. In the next iteration (t+1),
to update the vector for node nν , we first com-
pute some function of the vector embeddings of
the nodes in a neighbourhood of nν , denoted as
N (nν) = {nj}j:nj∼nν . A-priori, there is no limi-
tation on how large this neighbourhood can be,

making it larger will increase training time and
difficulty, but increase representational power.
These function values are then aggregated (for
example by taking an average) and combined
with the node vector (with perhaps a non-linear
activation function) at the previous iteration to
generate hnνt+1. Each nodes update increases the
information contained relative to a larger subset
of nodes in the graph. The collective action of
these operations can be described by a parame-
terised, trainable function, fθ(hnνt , {h

nj
t }j:nj∼nν )

(see Fig. 1), whose parameters, θ, are suitably
trained to minimise a cost function. In all cases
here, we initialise all the elements of the fea-
ture vectors, hnν0 to be the degree of the node,
nν . For the specific GNN architecture we use
in the majority of this work, we choose the line
graph neural network (LGNN) [79], shown to be
competitive on combinatorial optimisation prob-
lems [53]. However we also incorporate the graph
convolutional network (GCN) proposed for com-
binatorial optimisation by [56] in some numeri-
cal results in Section 4. We give further details
about these two architectures in Appendix A.

Once we have a trained GNN for a certain
number of iterations, T , we can use the infor-
mation encoded in {hnjT }j for the problem at
hand. A simple example would be to attach
a multi-layer perception and perform classifica-
tion on each node, where {hnjT } behaves as fea-
ture vectors encoding the graph structure. For
our purposes, we use these vectors to generate
probabilities on the nodes. These are the prob-
abilities that the node is in a given side of the
Max-Cut, which are then taken as the values x∗ in
warm-started QAOA circuit and its mixer Hamil-
tonian Eq. (12).

3.2 Graph neural networks for Max-Cut

To attach this probability, there are at least
two possible methods one could apply. Firstly,
one could consider using reinforcement learning
or long short term memories (LSTMs) [80, 81].
These methods generate probabilities in a step-
wise fashion by employing a sequential depen-
dency. To train these, one may use a policy gra-
dient method [82] (dubbed as an ‘autoregressive
decoding ’ approach [83]).

The second (simpler) method is to treat edge
independently, and generate the probability of
each edge being present in the Max-Cut or not
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(a ‘non-autoregressive decoding’). This can be
formulated as a vector, p, where each element
corresponds to a node, nν , generated by applying
a softmax to the final output feature vectors of
the GNN, {hnjT }j [53, 56]:

pnν (θ) =
exp

(
hnν ,0T

)
∑
j∈{0,1} exp

(
hnν ,jT

) (14)

In [53], for each node, nν , the final output is
the two dimensional vector [hnν ,0T ,hnν ,1T ], con-
structed as the output of a final two-output lin-
ear layer. The probability for each node is then
taken as one of these outputs (say j = 0) via the
softmax in Eq. (14) and then used in the cost
function described in the next section.

3.2.1 Unsupervised training

Now that we have defined the structure and out-
put of the GNN, it must be suitably trained.
One approach is to use supervised training, how-
ever this may require a large number of example
graphs to serve as the ground truth. Instead,
following [53,56], we opt for an unsupervised ap-
proach, bypassing the need for labels. To do so,
we choose the cost function as [53], which is given
by the Max-Cut QUBO itself in terms of the graph
Laplacian (Eq. (10)):

CGNN = −min
θ

1
T

T∑
t=1

(−CtGNN(θ)) (15)

CtGNN(θ) = 1
4(2p− 1)TLG(2p− 1) (16)

where p ∈ [0, 1]n is the probability vector from
the GNN Eq. (14). In Eq. (15), we define the
cost function as an average over a training set of
T graphs, {Gt}Tt=1. Note, that the graphs in the
training set do not have to be the same size as
the graphs of interest; the GNN can be trained
on an ensemble of graphs of different sizes, or
graphs which are strictly smaller (or larger) than
the test graph. We utilise this feature to improve
GNN training in Section 4.1 and to demonstrate
the generalisation capabilities of the GNN in Sec-
tion 4.2. See Ref. [56] for how the cost function
and GNN structure could be adapted to alter-
nate QUBO type problems.

4 Initialisation numerical results
Let us first study the impact of the initialisation
schemes discussed above on the QAOA numer-
ically. In all of the below, the approximation
ratio, r, will be the figure of merit. We also use
Xavier initialisation [59] for the QAOA parame-
ters in all cases except for the TQA initialisation
method. This initialises each parameter from a
uniform distribution over an interval depending
on the number of parameters in the QAOA cir-
cuit.

70 80 90 1000

10

20

Cut size (% of true Max-Cut)

%
of

gr
ap

hs

LGNN QAOA
Cold-start QAOA

Figure 2: Success probability of the graph neural
network on 3-regular graphs for Max-Cut. Histogram
shows the number of graphs on which GNN QAOA ver-
sus cold-start QAOA can achieve a certain ratio of the
optimal cut. Here, we set p = 5 and n = 12 qubits
and generate the percentages over 50 random graphs.
The GNN initialised version is able to generate larger
cut values than the vanilla version of QAOA.

We begin by benchmarking the graph neu-
ral network QAOA against a random cold start
initialisation for the two architectures discussed
above, the line graph neural network (LGNN)
and the graph convolutional network (GCN). To
demonstrate feasibility, Fig. 2 shows the success
probability of the vanilla (cold-started) QAOA
against the (LGNN-)QAOA initialisation over 50
random 3-regular graphs with 12 qubits and p =
5 QAOA depth. We observe the GNN-QAOA is
capable of generating larger cuts on average than
the vanilla version.

Next, Fig. 3 compares the approximation ratio
directly output by the GNN, against the GNN
initialised solution which is then further opti-
mised by QAOA. To generate discrete Max-Cut
solutions from the GNN probability vectors, we
choose the same simple rounding scheme as [56],
assigning x∗i = int(pi) ∈ {0, 1} for each node,
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i. We leave the incorporation and comparison
of more complex rounding techniques to future
work.

We first plot as function of qubit number
(graph size), for QAOA depths scaling propor-
tionally with the number of qubits (p = 3n/4
in (a) and p = n/2 in (b)). We see that the
GNN QAOA outperforms both the GNN and
vanilla QAOA individually. This advantage is
more pronounced at lower relative depth, but is
diminished at higher depth. This is confirmed
by Fig. 3(c) where we fix the qubit number at
16 and plot the results as a function of QAOA
depth. However, since the depth of quantum
circuits is limited by decoherence in NISQ de-
vices, the advantage of the GNN in the low-depth
regime is promising. Finally, since we observe
in these results that the LGNN appears to out-
perform the GCN architecture (due to the more
complex message passing functionality), we opt
to use the former primarily in the remainder of
this work. However, for larger problem sizes, the
LGNN may be less scalable [56].

4.1 Graph neural network versus SDP relax-
ations

Next, we benchmark the GNN against the SDP
relaxation approach directly in Fig. 4. We be-
gin in Fig. 4a by comparing the quality of the
Max-Cut solution produced by the GW algorithm
(rGW) against the solution from the (line-)GNN
(rGNN). We observe comparable quality between
the two methods (as remarked previously [56])
with the GNN generating solutions which are
between 85-90% the quality of the GW algo-
rithm. However, we note that for these small
graph instances, the training set becomes satu-
rated as all possible 3-regular graphs eventually
appear. Naively increasing the size (say from
Ntrain = 1000 to Ntrain = 5000) of training set
with graphs of the same size as the test case
does not improve performance of the GNN dra-
matically. Therefore, in order to non-trivially
increase the amount of training data, we include
graphs of different sizes (taking Ntrain = 5000
graphs which are 1×-5× the size of the test
graph) in the training set. Doing so increases the
performance ratio of GNN over GW to ∼ 95%,
at the expense of a greater training time. How-
ever, if we then examine Fig. 4b and Fig. 4c,
then the tradeoff we are making becomes appar-

ent. With a small sacrifice in solution quality,
the GNN (once trained) is able to generate can-
didate solutions significantly faster than SDP re-
laxations and the GW algorithm.

Firstly, in Fig. 4b and show that the infer-
ence time (time to produce a warm-started so-
lution) is significantly higher with the SDP re-
laxation method than using a trained GNN. For
this plot we focus graphs relevant to the QAOA
problem sizes we study in this paper. Next, we
show in Fig. 4c how the GNNs speed advantage
enables the scalable production of warm-started
solutions for QAOA into millions of variables,
far beyond the capability of near term quan-
tum devices. Specifically, we reproduce the re-
sults of [56] comparing the full time taken by the
SDP relaxation and the GW algorithm against
the GCN architecture (even including training
time) to solve Max-Cut (see [56] for details). The
runtime of the GW algorithm is limited by the
interior-point method used to solve SDPs which
scales as Õ(n3.5) [56]. In Section 4.2, we take
this even further and demonstrate how the GNN
approach is able to generalise not only across test
graph instances of the same size as in the train-
ing set, but also to larger test graph instances,
which is a feature clearly not possible via the
relaxation method.

As a final comparison, we compare the GNN
initialisation technique against all other tech-
niques in Fig. 5. We compare against the
warm-starting technique using relaxations of [29]
(‘Warm-start’), and the Trotterised quantum an-
nealing (‘TQA’) based approach of [30], as a
function of depth and training epochs.

4.2 Generalisation capabilities of GNNs

A key feature of using neural networks for cer-
tain tasks is capability to generalise. This gener-
alisation ability is one of the driving motivations
behind machine learning, and tests the ability of
an algorithm to actually learn (rather than just
memorise a solution). Similarly, we can test the
generalisation ability of GNNs in warm-starting
the QAOA. To do so, we train instantiations of
GNNs on small graph instances, and then di-
rectly apply them to larger test instances. We
test this for examples of between 6 to 14 nodes
in Table 1. Here, we see this generalisation fea-
ture directly, as the GNN is capable of perform-
ing well on graphs larger than those in the train-
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Figure 3: Performance of the graph neural network on 3-regular graphs for Max-Cut. We compare the Max-Cut
approximation ratios achieved with LGNN/GCN initialisation versus cold-start (vanilla) QAOA. We also plot the raw
values outputted by the LGNN with a simple rounding scheme. In (a), the QAOA depth is set to be p = 3n/4, while
in (b), p = n/2. Each datapoint is generated via 1000 runs of the LGNN/GCN on random instances of 3-regular
graphs, of the appropriate size to the number of qubits. Finally, in (c), we fix the number of qubits to be 16 and plot
each method as a function of the QAOA depth, demonstrating monotonic improvement as a function of p. Each
datapoint is generated via 1000 runs of the LGNN/GCN on random instances of 3-regular graphs, of the appropriate
size to the number of qubits.
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Figure 4: Time versus quality tradeoff between GNN versus relaxation initialisation methods. (a) Max-Cut
approximation ratios generated by GNN and the continuous relaxation (without QAOA), as a function of graph size.
rj is the approximation ratio generated by method j ∈ {GW,GNN}. We use a simple rounding technique to generate
the discrete values from the soft outcomes from the (line-)GNN (see main text) and plot results for 1000 and 5000
training graphs. (b) Comparison of time to produce a warm-start taken by relaxation initialisation versus (line-)GNN
initialisation as a function of qubit number, averaged over 10 random graph instances. The GNN enables much faster
inference for Max-Cut. This does not include pre-training time for the GNN, but as an example, training on 1000
graphs for 18 qubits takes only 6 minutes for the LGNN. Finally, (c) reproduces results taken from [56] demonstrating
the scalability of the GNN initialisation (for the GCN) over solving the SDP relaxation with the GW algorithm. The
GNN can provide warm-starts for QAOA on graphs with millions of nodes. Note, these plots do not include QAOA
runtime after the warm-start.

ing set. Note a related generalisation behaviour
was demonstrated via meta-learning [50, 51] for
the parameters of a variational circuit. The work
of [50] utilises recurrent neural networks (we re-
visit this strategy in Section 5.3.2) for training
the QAOA, but generalisation in this case was

possible due to the structure of the algorithm and
parameter concentration [18]. The FLexible Ini-
tializer for arbitrarily-sized Parametrized quan-
tum circuits (FLIP) [51], also has related pa-
rameters generalisation capabilities, which would
be interesting to compare and incorporate with
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Figure 5: Comparison of all initialisation techniques. We use 3-regular graphs over 8 qubits and for TQA we
choose δt = 0.75 as in [30]. (a) Convergence of initialisations as a function of training iteration. The depth of QAOA
is fixed to 5. (b) Comparison of initialisations as a function of QAOA depth p. We plot the average for each method
over 10 runs.

warm-starting initialisers in future work.

The rows in Table 1 correspond to the graph
size on which the model was trained, and the
columns correspond to the graph size on which
the GNN was then tested. For example, both
training and testing on graphs with 10 nodes
gives an approximation ratio of ≈ 0.93, whereas
if we train the GNN using only graphs of 6 nodes,
there is no drop in performance. In contrast,
if we reduce from 14 to 6 training nodes, we
only see a drop in the approximation ratio of
7%. Again, we mention the limitation to small
problem sizes due to the QAOA circuit simula-
tion overhead. As with the discussions above, it
has been observed that GNNs trained on 30 node
graphs have the ability to generalise to 300 nodes
and larger [53, 56]. Note that this generalisation
is the reverse situation to that in Fig. 4a, where
we include larger graphs in the training set to im-
prove solution quality in smaller graphs, rather
than including larger graphs in the test set, as
we do here.

5 Optimisation of the QAOA

Now, we move to the second focus of this work,
which is a comparison between a wide range of
different optimisers which can be used to train
the QAOA when solving the Max-Cut problem.
A large variety of optimisers for VQAs have
been proposed in the literature, and each has
their own respective advantages and disadvan-

Train size
Test size 8 10 12 14

6 0.91 0.93 0.89 0.89
8 0.93 0.92 0.89 0.91
10 0.93 0.90 0.89
12 0.90 0.89
14 0.96

Table 1: Value of approximation ratio, r, as a function
of training and test graph size. In each case, both the
train and test set consists of 1000 random graphs of the
appropriate sizes. Bold indicates the instances where
the train graph size is the same as the test size.

tages when solving a particular problem. Due to
the hybrid quantum-classical nature of these al-
gorithms, many of optimisation techniques have
been taken directly from classical literature in,
for example, the training of classical neural net-
works. However, due to the need to improve the
performance of near term quantum algorithms,
there has also been much effort put into the dis-
covery of quantum-aware optimisers, which may
include many non-classical hyperparameters in-
cluding, for example, the number of measure-
ment shots to be taken to compute quantities
of interest from quantum states [84, 85]. In the
following sections, we implement and compare a
number of these optimisers. We begin by eval-
uating gradient-based and gradient-free optimis-
ers in Section 5. We then compare quantum and
classical methods for simultaneous perturbation
stochastic optimisation in Section 5.2, which typ-
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ically have lower overheads than the gradient-free
or gradient-based optimisers since all parameters
are updated in a single optimisation step, as op-
posed to parameter-wise updates. Finally, we
then implement some neural network based opti-
misers in Section 5.3 which operate via reinforce-
ment learning and the meta-learning optimiser
mentioned above. In all of the above cases, we
use vanilla stochastic gradient descent optimisa-
tion as a benchmark.

5.1 Gradient-based versus gradient-free opti-
misation

For a given parameterised quantum circuit in-
stance, equipped with parameters at iteration
(epoch), t, θt, the parameters at iteration t + 1
are given by an update rule:

θt+1 = θt −∆C(θt) (17)

∆C(θt) is the update rule, which contains infor-
mation about the cost function to be optimised
at epoch t, C(θt). In gradient-based optimisers,
the update contains information about the gradi-
ents of C(θt) with respect to the parameters, θt.
In contrast, gradient-free (or zeroth order) op-
timisation methods use only information about
C(θt) itself. One may also incorporate second-
order derivative information also, which tend to
outperform the previous methods, but are typi-
cally more expensive as a result. In the following,
we test techniques which fall into all of these cat-
egories, for a range of qubit numbers and QAOA
depths.

A general form of this update rule when in-
corporating gradient information can be written
as:

θt+1 = θt − η(t,θ)g(θ)−1∇C(θt) (18)

where η(t,θ) is a learning rate, which deter-
mines the speed of convergence, and may de-
pend on the previous parameters, θ and t. The
quantity g(θ) ∈ Rd×d is a metric tensor, which
incorporates information about the parameter
landscape. This tensor can be the classical, or
quantum Fisher information (QFI) for example.
In the case of the latter, the elements of g(θ)
when dealing with a parameterised state, |ψθ〉

are given by:

gij(θ) := Re

{〈
∂ψθ
∂θi

∣∣∣∣∂ψθ∂θj

〉

−
〈
∂ψθ
∂θi

∣∣∣∣ψθ〉〈ψθ∣∣∣∣∂ψθ∂θj

〉}
(19)

In this form, the gradient update Eq. (18) up-
dates the parameters according to the quantum
natural gradient (QNG) [86].

If we further simplify by taking g = 1 to be
the identity and choosing different functions for
η(θ, t), we recover many popular optimisation
routines such as Adam [87] or Adadelta [88],
which incorporates notions such as momentum
into the update rule, and makes the learning rate
time-dependent. Such behaviour is desired to,
for example, allow the parameters to make large
steps at the beginning of optimisation (when far
from the target), and take smaller steps towards
the latter stage when one is close to the opti-
mal solution. The simplest form of gradient de-
scent is vanilla, which takes η(θ, t) := η to be
a constant. The ‘stochastic’ versions of gradient
descent use an approximation of the cost gradi-
ent computed with only a few training examples.
In Fig. 6, we begin by comparing some examples
of the above gradient-based optimisation rule
(specifically using QNG, Adam and RMSProp)
to a gradient-free method (COBYLA) [89]. We
also add a method known as model gradient de-
scent (MGD) which is a gradient-based method
introduced by [37] that involves quadratic model
fitting as a gradient estimation (see Appendix A
of [90] for pseudocode). The results are shown
in Fig. 6 for Max-Cut on 3 regular graphs for up
to 14 qubits. We observe that optimisation using
the QNG outperforms other methods, however it
does so with a large resource requirement, which
is needed to compute the quantum fisher infor-
mation (QFI) using quantum circuit evaluations.

We next examine the convergence speed of
the ‘quantum-aware’ QNG optimiser, versus the
standard Adam and RMSProp in Fig. 7. Again,
QNG significantly reduces convergence time, but
again at the expense of being a more computa-
tionally taxing optimisation method [86].
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Figure 6: Gradient-based versus gradient-free opti-
misers. We set the depth of QAOA depth to p = 4 and
vary the number of qubits. All optimisers have been run
10 times and average values have been plotted.
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Figure 7: Comparison of optimisers relative to conver-
gence speed. We fix QAOA depth at p = 6 with 14
qubits.

5.2 Simultaneous perturbation stochastic ap-
proximation optimisation

From the above, using the QNG as an optimisa-
tion routine is very effective, but it has a large
computational burden due to the evaluation of
the quantum Fisher information. A strategy to
bypass this inefficiency was proposed by [91],
who suggested combining the QNG gradient with
the simultaneous perturbation stochastic approx-
imation (SPSA) algorithm. This algorithm is an
efficient method to bypass the linear scaling in
the number of parameters using the standard pa-
rameter shift rule [7, 92], to compute quantum
gradients. For example, in the expression Eq.
(18) when restricted to vanilla gradient descent,
one gradient term must be computed for each of
the d (d = 2p in the case of the QAOA) parame-
ters. In contrast, SPSA approximates the entire
gradient vector by choosing a random direction

in parameter space and estimating the gradient
in this direction using, for example, a finite dif-
ference method. This requires a constant amount
of computation relative to the number of param-
eters. To incorporate the quantum Fisher infor-
mation, [91] to SPSA actually uplifts a second
order version of SPSA (called 2-SPSA), which
exploits the Hessian of the cost function to be
optimised. The update rules for 1-, 2-SPSA and
QN-SPSA are given by:

θt+1 = θt − η ×


∇̃C(θt) 1-SPSA

H̃−1(θt)∇̃C(θt) 2-SPSA

g̃−1(θt)∇̃C(θt) QN-SPSA

(20)

where stochastic approximation to the Hessian1,
H̃(θ), and the quantum Fisher information are
given by:

H̃t := −1
2
δC
2ε2

∆t
1(∆t

2)T + ∆t
2(∆t

1)T

2 (21)

δC := C(θt + ε∆t
1 + ε∆t

2)− C(θt + ε∆t
1)

− C(θt − ε∆t
1 + ε∆t

2) + C(θt − ε∆t
1) (22)

and

g̃t = −1
2
δF

2ε2
∆t

1(∆t
2)T + ∆t

2(∆t
1)T

2 (23)

δF := F (θt,θt + ε∆t
1 + ε∆t

2)−F (θt,θt + ε∆t
1)

− F (θt,θt − ε∆t
1 + ε∆t

2) + F (θt,θt − ε∆t
1)
(24)

respectively. Here, F (θ,θ + α) = |〈ψθ|ψθ+α〉|2
is the fidelity between the parameterised state
prepared with angles, θ, and a ‘shifted’ version
with angles θ+α. The quantities ∆1,∆2 are uni-
formly random vectors sampled over {−1, 1}d.
Also, ε is a small constant arising from finite dif-
ferencing approximations of the gradient, for ex-
ample, we approximate the true gradient, ∇C(θ)
by ∇̃C(θ), given by:

∇̃C(θt) := C(θt + ε∆t)− C(θt − ε∆t)
2ε ∆t (25)

We compare all these three perturbation meth-
ods in Fig. 8 against SGD once again, with a
fixed learning rate of η = 0.01. Notice that SGD
performs comparably to 1-SPSA, but with the
expense of more cost function evaluations.

1The actual quantity used in [91] is a weighted quan-
tity combining these approximations at all previous time
steps.
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Figure 8: Simultaneous perturbation stochastic approximation (1-, 2- and QN-SPSA) for Max-Cut with
QAOA. Plots show approximation ratio as a function of (a) depth (qubit number fixed at 10), (b) number of qubits
(QAOA depth is fixed to p = 5) and (c) training iteration (qubit number and QAOA depth fixed to 10 and 7
respectively). In all cases, the average is taken over 10 independent optimisation runs.

5.3 Neural optimisation

In this section, we move to a different methodol-
ogy to find optimal QAOA parameters than those
presented in the previous section. Specifically, as
with the incorporation of graph neural networks
in the initialisation of the algorithms, we can test
neural network based methods for the optimi-
sation itself. Specifically, we test two proposals
given in this literature to optimise parameterised
quantum circuits. The first, based on a reinforce-
ment learning approach, uses the method of [33].
The second is derived from using meta learning
to optimise quantum circuits, proposed by [50].
Both of these approaches involve neural networks
outputting the optimised parameters by either
predicting the update rule or directly predicting
the QAOA parameters.

5.3.1 Reinforcement learning optimisation

The work of [33] frames the QAOA optimisa-
tion as a reinforcement learning problem, adapt-
ing [93] to the problem specific nature of QAOA.
The primary idea is to construct and learn a pol-
icy, π(a, s), via which an reinforcement learning
agent associates a state, st ∈ S to an action, at ∈
A. In [33], an action is the update applied to the
parameters (similarly to Eq. (17)), ∆γ,∆β. A
state, st = S, consists of the finite differences
of the QAOA cost, ∆C(θtl) and the parameters,
∆γtl,∆βtl. Here, l ∈ {t − 1, . . . , t − L} ranges
over the previous L history iterations to the cur-
rent iteration, t. The possible corresponding ac-
tions, at ∈ A, are the set of parameter differ-

ences, {∆γtl,∆βtl}l=t−1. The goal of the re-
inforcement learning agent is to maximise the
reward, R(st,at, st+1) which in this case is the
change of C between two consecutive iterations,
t and t + 1. The agent will aim to maximise a
discounted version of the total reward over iter-
ations.

The specific approach used to search for a pol-
icy proposed by [33] is an actor-critic network
in the proximal policy optimisation (PPO) al-
gorithm [94], and a fully connected two hidden
layer perceptron with 64 neurons for both ac-
tor and critic. The authors observed an eight-
fold improvement in the approximation ratio
compared to the gradient-free Nelder-Mead opti-
miser2. Furthermore, the ability of this method
to generalise across different graph sizes is rem-
iniscent of our above QAOA initialisation ap-
proach using GNNs.

5.3.2 Meta-learning optimisation

A second method to incorporate neural networks
is via meta-learning. In the classical realm, this is
commonly used in the form of one neural network
predicting parameters for another. The method
we adopt here is one proposed by [50, 95] which
uses a neural optimiser that, when given infor-
mation about the current state of the optimisa-
tion routine, proposes a new set of parameters
for the quantum algorithm. Specifically, [50, 95]

2This was achieved by a hybrid approach where
Nelder-Mead was applied to optimise further after a near-
optimal set of parameters were found by the RL agent.
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adopts a long short term memory (LSTM) as a
neural optimiser (with trainable parameters, ϕ),
an example of a recurrent neural network (RNN).
Using this architecture, the parameters at itera-
tion, t+ 1, are output as:

st+1,θt+1 = RNNϕ(st,θt,Ct) (26)

Here, st is the hidden state of the LSTM at
iteration t, and the next state is also suggested
by the neural optimiser with the QAOA parame-
ters. Ct is used as a training input to the neural
optimiser, which in the case of a VQA is an ap-
proximation to the expectation value of the prob-
lem Hamiltonian, i.e. Eq. (4). The cost function
for the RNN chosen by [50] incorporates the av-
eraged history of the cost at previous iterations
as well as a term that encourages exploration of
the parameter landscape. We compare this ap-
proach against SGD (with a fixed learning rate
of η = 0.01) in Fig. 9 and the previous RL based
approach.

0 25 50 75 100 1250
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Epochs

A
pp

ro
xi

m
at

io
n

ra
tio

,r

SGD
Meta-learning + SGD
RL + SGD

Figure 9: Comparison of neural optimisers. We com-
pare the LSTM based meta-learning against a reinforce-
ment learning optimiser, with vanilla stochastic gradient
descent (SGD) used as a benchmark. Once each neu-
ral optimiser has converged, we continue the optimisa-
tion with SGD. Here we use 10 qubits for Max-Cut and
QAOA depth p = 6. The results are also averaged over
independent 10 runs.

6 Conclusion and Outlook
The work presented in this paper builds new
techniques into analysing the QAOA algorithm
- a quantum algorithm for constrained optimi-
sation problems. Here, we build an efficient and
differentiable process using the powerful machin-
ery of graph neural networks. GNNs have been

extensively studied in the classical domain for a
variety of graph problems and we adopt them
as an initialisation technique for the QAOA, a
necessary step to ensure the QAOA is capable of
finding solutions efficiently. Good initialisation
techniques are especially crucial for variational
algorithms to achieve good performance when
implemented on depth-limited near term quan-
tum hardware. Contrary to the previous works
on QAOA initialisation, our GNN approach does
not require separate instances each time one
encounters a new problem graph and therefore
can speed up inference time across graphs. We
demonstrated this in the case of the QAOA by
showing good generalisation capabilities on new
(even larger) test graphs than the family of
graphs they have been trained on. To comple-
ment the initialisation of the algorithm, we in-
vestigate the search for optimal QAOA param-
eters, or optimisation, with a variety of meth-
ods. In particular, we incorporate gradient-
based/gradient-free classical and quantum-aware
optimisers along with more sophisticated opti-
misation methods incorporating meta- and rein-
forcement learning.

There is a large scope for future work, par-
ticularly in the further incorporation and inves-
tigation of classical machine learning techniques
and models to improve near term quantum al-
gorithms. One could consider alternative GNN
structures for initialisation, other neural opti-
misers or utilising transfer learning techniques.
For example, one could study the combination
of warm-starting abilities of GNNs with generic
quantum circuit initialisers such as FLIP [51],
both of which exhibit generalisation capabilities
to larger problem sizes.

A second extension of our proposal could be
the extension to other graph problems besides
simply Max-Cut, and at much larger scales fol-
lowing [56]. Finally, one could consider the use
of truly ‘quantum’ machine learning models such
as quantum graph neural networks [73] or oth-
ers [9, 96].
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and Petar Veličković. Combinatorial Opti-
mization and Reasoning with Graph Neu-
ral Networks. In Zhi-Hua Zhou, editor,
Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence,
IJCAI-21, pages 4348–4355. International
Joint Conferences on Artificial Intelligence
Organization, August 2021. doi:10.24963/
ijcai.2021/595.

[55] James Kotary, Ferdinando Fioretto, Pascal
Van Hentenryck, and Bryan Wilder. End-
to-End Constrained Optimization Learn-
ing: A Survey. In Zhi-Hua Zhou, edi-
tor, Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intel-
ligence, IJCAI-21, pages 4475–4482. Inter-
national Joint Conferences on Artificial In-
telligence Organization, August 2021. doi:
10.24963/ijcai.2021/610.

[56] Martin J. A. Schuetz, J. Kyle Brubaker,
and Helmut G. Katzgraber. Combina-
torial optimization with physics-inspired
graph neural networks. Nature Ma-
chine Intelligence, 4(4):367–377, April
2022. URL: https://www.nature.com/
articles/s42256-022-00468-6,
doi:10.1038/s42256-022-00468-6.

Accepted in Quantum 2022-10-13, click title to verify. Published under CC-BY 4.0. 19

https://proceedings.mlr.press/v139/you21c.html
https://proceedings.mlr.press/v139/you21c.html
https://doi.org/10.48550/arXiv.2110.02479
https://doi.org/10.48550/arXiv.2110.02479
http://arxiv.org/abs/2104.02955
https://doi.org/10.48550/arXiv.2104.02955
http://iopscience.iop.org/article/10.1088/2058-9565/ac7d06
http://iopscience.iop.org/article/10.1088/2058-9565/ac7d06
https://doi.org/10.1088/2058-9565/ac7d06
https://doi.org/10.1088/2058-9565/ac7073
https://doi.org/10.1088/2058-9565/ac7073
http://arxiv.org/abs/1907.05415
https://doi.org/10.48550/arXiv.1907.05415
http://arxiv.org/abs/2103.08572
https://doi.org/10.48550/arXiv.2103.08572
https://link.aps.org/doi/10.1103/PRXQuantum.2.020329
https://link.aps.org/doi/10.1103/PRXQuantum.2.020329
https://doi.org/10.1103/PRXQuantum.2.020329
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11138/111380S/Experimental-performance-of-graph-neural-networks-on-random-instances-of/10.1117/12.2529608.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11138/111380S/Experimental-performance-of-graph-neural-networks-on-random-instances-of/10.1117/12.2529608.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11138/111380S/Experimental-performance-of-graph-neural-networks-on-random-instances-of/10.1117/12.2529608.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11138/111380S/Experimental-performance-of-graph-neural-networks-on-random-instances-of/10.1117/12.2529608.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11138/111380S/Experimental-performance-of-graph-neural-networks-on-random-instances-of/10.1117/12.2529608.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11138/111380S/Experimental-performance-of-graph-neural-networks-on-random-instances-of/10.1117/12.2529608.short
https://doi.org/10.1117/12.2529608
https://doi.org/10.1117/12.2529608
https://doi.org/10.24963/ijcai.2021/595
https://doi.org/10.24963/ijcai.2021/595
https://doi.org/10.24963/ijcai.2021/610
https://doi.org/10.24963/ijcai.2021/610
https://www.nature.com/articles/s42256-022-00468-6
https://www.nature.com/articles/s42256-022-00468-6
https://doi.org/10.1038/s42256-022-00468-6


[57] Ville Bergholm, Josh Izaac, Maria Schuld,
Christian Gogolin, Shahnawaz Ahmed,
Vishnu Ajith, M. Sohaib Alam, Guillermo
Alonso-Linaje, B. AkashNarayanan, Ali
Asadi, Juan Miguel Arrazola, Utkarsh
Azad, Sam Banning, Carsten Blank,
Thomas R. Bromley, Benjamin A. Cordier,
Jack Ceroni, Alain Delgado, Olivia Di Mat-
teo, Amintor Dusko, Tanya Garg, Diego
Guala, Anthony Hayes, Ryan Hill, Aroosa
Ijaz, Theodor Isacsson, David Ittah, Soran
Jahangiri, Prateek Jain, Edward Jiang,
Ankit Khandelwal, Korbinian Kottmann,
Robert A. Lang, Christina Lee, Thomas
Loke, Angus Lowe, Keri McKiernan,
Johannes Jakob Meyer, J. A. Montañez-
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A Graph neural network architectures
A.1 Line graph neural network
As mentioned in the main text, the primary GNN architecture we choose is a line graph neural
network, also adopted by [53] for combinatorial optimisation and proposed by [79]. Given a graph,
G := (VG , EG) with vertices VG and edges EG = {(i, j)|i, j ∈ VG and i 6= j}, the line graph, denoted
L(G), is then constructed by taking the edges of G which become the nodes of L(G), EG → VL(G).
L(G) only has an edge between two vertices if the vertices shared a node in the original graph, G. For
example, if we had three nodes in G, a, b and c which were connected as a− b and b− c, the vertex set
of L(G) would contain nodes labelled (a − b) and (b − c) and would have a edge between them since
they both contain the vertex b. This behaviour is described by a ‘non-backtracking’ operator [53, 79]
introduced by [97] and enables information to propagate in a directed fashion on L(G).

The LGNN then actually contains two separate graph neural networks, one defined on G and another
defined on L(G). The GNN on G has feature vectors, hnνt ∈ Rd for each node nν and each iteration,
t. Similarly the GNN on L(G) has feature vectors, g

nµ
t for every node nµ in L(G).

Without the information from the line graph, the feature vectors for G would be updated as:

ȳnνt+1 := hnνt θ
0
t +Dhnνt θ1

t +
J∑
j=1
Ajhnνt θ

j
t (27)

ynνt+1 := f
(
ȳnνt+1

)
(28)

hnνt+1 = [ynνt+1, ȳ
nν
t+1] (29)

Where hnνt+1 results from the concatenation of the two vectors, ynνt+1, ȳ
nν
t+1. D is the degree matrix

of G and [Aj ]lm := min(1, [A2j ]lm) are power graph adjacency matrices (where A is the adjacency
matrix of G), which allows information to be aggregated from different neighbourhoods. The matrix
element [A2j ]lm gives the number of walks between node l and node m of length 2j and Aj converts
this information into a binary matrix describing whether a walk exists (of length 2j) between l and
m. f is a nonlinear function, taken in [53,79] to be ReLu, f(x) = max(0, x)

Now, including updates from the line graph into the GNN, the feature vectors from each graph are
updated in tandem as follows:

ȳnνt+1 := hnνt θ
0
t +Dhnνt θ1

t +
J∑
j=1
Ajhnνt θ

j
t + Sgnµt θJ+1

t + Ugnµt θJ+2
t (30)

z̄
nµ
t+1 := g

nµ
t ϕ

0
t +DL(G)g

nµ
t ϕ

1
t +

J∑
j=1
Bjg

nµ
t ϕ

j
t + Shnνt ϕJ+1

t + Uhnνt ϕJ+2
t (31)

ynνt+1 := f
(
ȳnνt+1

)
, z

nµ
t+1 := f

(
z̄
nµ
t+1
)

(32)
hnνt+1 = [ynνt+1, ȳ

nν
t+1], g

nµ
t+1 = [znµt+1, z̄

nµ
t+1] (33)

Here, θ,ϕ are the trainable parameters of the GNN over G and the GNN over L(G) respectively. The
matrices, S,U are signed and unsigned incidence matrices. These are defined for every node i of G
and the nodes (k → l) of L(G) (which are the edges of G) as:

Ui,(k→l) =
{

1 if i = k

0 otherwise
, Si,(k→l) =


1 if i = k

−1 if i = l

0 otherwise

(34)

Finally, B is the non-backtracking operator describing L(G), defined as:

B(i→j),(k→l) =
{

1 if j = k and i 6= l

0 otherwise
(35)

with its power graphs, Bj , defined analogously to Aj .
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A.2 Graph convolutional network
The alternative architecture chosen by [56] is the graph convolutional network architecture, which
is simpler than the line graph neural network above. Here, the embedding vector updates have the
following form:

hnνt+1 = f

θ0
t

∑
j:nj∈N (nν)

h
nj
t

|N (nν)| + θ1
th

nν
t

 (36)

where N (nν) is the local neighbourhood of nν , N (nν) = {nj ∈ V|(nν , nj) ∈ E} and | · | denotes
cardinality. This is a simpler architecture since the updates in a single step only involve information
passing from the immediately local nodes to a given one, whereas the LGNN involves contributions
across the graph in a single step.
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