Classically Replaceable Operations

Guoding Liu, Xingjian Zhang, and Xiongfeng Ma

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084 China

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum information science provides powerful technologies beyond the scope of classical physics. In practice, accurate control of quantum operations is a challenging task with current quantum devices. The implementation of high fidelity and multi-qubit quantum operations consumes massive resources and requires complicated hardware design to fight against noise. An approach to alleviating this problem is to replace quantum operations with classical processing. Despite the common practice of this approach, rigorous criteria to determine whether a given quantum operation is replaceable classically are still missing. In this work, we define the classically replaceable operations in four general scenarios. In each scenario, we provide their necessary and sufficient criteria and point out the corresponding classical processing. For a practically favorable case of unitary classically replaceable operations, we show that the replaced classical processing is deterministic. Beyond that, we regard the irreplaceability of quantum operations by classical processing as a quantum resource and relate it to the performance of a channel in a non-local game, as manifested in a robustness measure.

Implementation of high-fidelity multi-qubit quantum operations is still challenging with current quantum devices. On the contrary, classical processing is generally easier to implement and has higher accuracy. The tractability of classical processing motivates us to replace some quantum operations in a task with classical ones. Such an idea has helped quantum key distribution become the earliest practical application in quantum information science. It is also implicitly employed in recent-developed quantum-classical-hybrid algorithms, such as variational quantum algorithms.

In our work, we consolidate the concept of “classical replacement” with a mathematical definition and provide necessary and sufficient criteria for the replaceability of a quantum operation. Based on this, we apply this classical replacement to variational quantum algorithms. From the quantum foundation point of view, the clarification of classical replaceability and classical irreplaceability manifests a new kind of quantumness. Using the characterization of classically replaceable operations, we reveal the links between classical replaceability, coherence, and entanglement. Regarding irreplaceability as a quantum resource, we establish a channel resource theory. Additionally, we use a robustness measure to quantify the irreplaceability and link this measure to the advantage that a quantum channel can provide over classically replaceable operations in a nonlocal game.

► BibTeX data

► References

[1] C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE Press, New York, 1984), pp. 175–179, URL https:/​/​​10.1016/​j.tcs.2014.05.025.

[2] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991), URL http:/​/​​10.1103/​PhysRevLett.67.661.

[3] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, et al., Nature 574, 505 (2019), ISSN 1476-4687, URL https:/​/​​10.1038/​s41586-019-1666-5.

[4] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, et al., Science 370, 1460 (2020), URL https:/​/​​10.1126/​science.abe8770.

[5] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan, et al., Phys. Rev. Lett. 127, 180501 (2021), URL https:/​/​​10.1103/​PhysRevLett.127.180501.

[6] H.-K. Lo and H. F. Chau, Science 283, 2050 (1999), ISSN 0036-8075, URL https:/​/​​10.1126/​science.283.5410.2050.

[7] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000), URL https:/​/​​10.1103/​PhysRevLett.85.441.

[8] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Rev. Mod. Phys. 92, 025002 (2020), URL https:/​/​​10.1103/​RevModPhys.92.025002.

[9] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).

[10] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, et al., Nat. Rev. Phys. 3, 625 (2021), ISSN 2522-5820, URL https:/​/​​10.1038/​s42254-021-00348-9.

[11] H.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020), ISSN 1745-2481, URL https:/​/​​10.1038/​s41567-020-0932-7.

[12] E. Chitambar and G. Gour, Phys. Rev. Lett. 117, 030401 (2016), URL https:/​/​​10.1103/​PhysRevLett.117.030401.

[13] Z.-W. Liu, X. Hu, and S. Lloyd, Phys. Rev. Lett. 118, 060502 (2017), URL https:/​/​​10.1103/​PhysRevLett.118.060502.

[14] G. Gour, Phys. Rev. A 95, 062314 (2017), URL https:/​/​​10.1103/​PhysRevA.95.062314.

[15] M. Horodecki, P. W. Shor, and M. B. Ruskai, Rev. Math. Phys. 15, 629 (2003), URL https:/​/​​10.1142/​S0129055X03001709.

[16] D. Rosset, F. Buscemi, and Y.-C. Liang, Phys. Rev. X 8, 021033 (2018), URL https:/​/​​10.1103/​PhysRevX.8.021033.

[17] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014), URL https:/​/​​10.1103/​PhysRevLett.113.140401.

[18] J. Åberg, Ann. Phys. (N. Y.) 313, 326 (2004), ISSN 0003-4916, URL https:/​/​​10.1016/​j.aop.2004.04.013.

[19] J. Aberg, Quantifying superposition (2006), URL https:/​/​​10.48550/​arXiv.quant-ph/​0612146.

[20] A. M. Turing, Proc. Lond. Math. Soc. s2-43, 544 (1938), URL https:/​/​​10.1112/​plms/​s2-43.6.544.

[21] J. E. Savage, J. ACM 19, 660 (1972), URL https:/​/​​10.1145/​321724.321731.

[22] E. S. Santos, Proceedings of the American mathematical Society 22, 704 (1969), URL https:/​/​​10.1145/​800119.803889.

[23] J. Gill, SIAM J. Comput. 6, 675 (1977), URL https:/​/​​10.1137/​0206049.

[24] F. Bischof, H. Kampermann, and D. Bruß, Phys. Rev. Lett. 123, 110402 (2019), URL https:/​/​​10.1103/​PhysRevLett.123.110402.

[25] Z.-X. Shang, M.-C. Chen, X. Yuan, C.-Y. Lu, and J.-W. Pan, Schrödinger-heisenberg variational quantum algorithms (2021), URL https:/​/​​10.48550/​arXiv.2112.07881.

[26] D. Litinski, Quantum 3, 128 (2019), ISSN 2521-327X, URL https:/​/​​10.22331/​q-2019-03-05-128.

[27] E. Knill, Nature 434, 39 (2005), ISSN 1476-4687, URL https:/​/​​10.1038/​nature03350.

[28] C. Chamberland, P. Iyer, and D. Poulin, Quantum 2, 43 (2018), ISSN 2521-327X, URL https:/​/​​10.22331/​q-2018-01-04-43.

[29] Y. Suzuki, S. Endo, K. Fujii, and Y. Tokunaga, PRX Quantum 3, 010345 (2022), URL https:/​/​​10.1103/​PRXQuantum.3.010345.

[30] A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys. 89, 041003 (2017), URL https:/​/​​10.1103/​RevModPhys.89.041003.

[31] E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001 (2019), URL https:/​/​​10.1103/​RevModPhys.91.025001.

[32] Y. Liu and X. Yuan, Phys. Rev. Res. 2, 012035 (2020), URL https:/​/​​10.1103/​PhysRevResearch.2.012035.

[33] G. Gour and M. M. Wilde, Phys. Rev. Res. 3, 023096 (2021), URL https:/​/​​10.1103/​PhysRevResearch.3.023096.

[34] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997), URL https:/​/​​10.1103/​PhysRevLett.78.2275.

[35] G. Vidal and R. Tarrach, Phys. Rev. A 59, 141 (1999), URL https:/​/​​10.1103/​PhysRevA.59.141.

[36] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. Gühne, Phys. Rev. Lett. 122, 130404 (2019), URL https:/​/​​10.1103/​PhysRevLett.122.130404.

[37] R. Takagi and B. Regula, Phys. Rev. X 9, 031053 (2019), URL https:/​/​​10.1103/​PhysRevX.9.031053.

[38] X. Yuan, Y. Liu, Q. Zhao, B. Regula, J. Thompson, and M. Gu, Npj Quantum Inf. 7, 108 (2021), ISSN 2056-6387, URL https:/​/​​10.1038/​s41534-021-00444-9.

[39] J. Eisert, Phys. Rev. Lett. 127, 020501 (2021), URL https:/​/​​10.1103/​PhysRevLett.127.020501.

[40] F. G. S. L. Brandão and G. Gour, Phys. Rev. Lett. 115, 070503 (2015), URL https:/​/​​10.1103/​PhysRevLett.115.070503.

[41] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization (Cambridge university press, 2004).

Cited by

[1] Yizhi Huang, Zhenyu Du, and Xiongfeng Ma, "Source‐Replacement Model for Phase‐Matching Quantum Key Distribution", Advanced Quantum Technologies 7 3, 2300275 (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 06:22:19). The list may be incomplete as not all publishers provide suitable and complete citation data.

On SAO/NASA ADS no data on citing works was found (last attempt 2024-06-22 06:22:19).