
Simple and practical DIQKD security analysis via BB84-type
uncertainty relations and Pauli correlation constraints
Michele Masini, Stefano Pironio, and Erik Woodhead

Laboratoire d’Information Quantique, Université libre de Bruxelles (ULB), Belgium

According to the entropy accumulation the-
orem, proving the unconditional security of a
device-independent quantum key distribution
protocol reduces to deriving tradeoff functions,
i.e., bounds on the single-round von Neumann
entropy of the raw key as a function of Bell lin-
ear functionals, conditioned on an eavesdrop-
per’s quantum side information. In this work,
we describe how the conditional entropy can
be bounded in the 2-input/2-output setting,
where the analysis can be reduced to qubit sys-
tems, by combining entropy bounds for vari-
ants of the well-known BB84 protocol with
quantum constraints on qubit operators on the
bipartite system shared by Alice and Bob. The
approach gives analytic bounds on the entropy,
or semi-analytic ones in reasonable computa-
tion time, which are typically close to opti-
mal. We illustrate the approach on a variant of
the device-independent CHSH QKD protocol
where both bases are used to generate the key
as well as on a more refined analysis of the orig-
inal single-basis variant with respect to losses.
We obtain in particular a detection efficiency
threshold slightly below 80.26%.

1 Introduction
Based on Bell’s theorem [1, 2], device-independent
quantum key distribution (DIQKD) aims to allow
cryptographic keys to be generated and proved secure
based on minimal assumptions about the quantum
devices [3]. Following its proposal fifteen years ago,
realizing a working DIQKD protocol has long pre-
sented a significant challenge both to theorists, due
to the mathematical difficulty of devising practical
and rigorous security proofs, and to experimental re-
searchers, due to the difficulty of distributing entan-
gled quantum systems with low noise and high de-
tection rates over long distances. Recent advances
paved the way to three successful proof-of-principle
experiments demonstrating the feasibility of this tech-
nology [4–6]. However, there is still a long way
from these proof-of-principle experiments to practical
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DIQKD implementations, with the necessity to im-
prove the distance and the rate at which the keys are
distributed.

One major theoretical advance introduced a few
years ago is the entropy accumulation theorem [7],
and the related technique of quantum probability es-
timation [8], which reduces proving the unconditional
security of a generic DIQKD protocol in the finite-
key regime to the problem of obtaining a lower bound
(called a min-tradeoff function in [7]) on the condi-
tional von Neumann entropy H(KA|E) of Alice’s raw
key variable KA conditioned on an eavesdropper’s pos-
sible quantum side information E, as a function of the
expected value of a Bell expression. For instance the
security of the simplest DIQKD protocol based on
the CHSH inequality follows from the following lower
bound on the conditional von Neumann entropy of
Alice’s measurement outcome A1

H(A1|E) ≥ 1− φ
(√

S2/4− 1
)
, (1)

where φ(x) = h
( 1

2 + 1
2x
)
, h(x) is the binary entropy,

and S = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 is the
expected value of the CHSH Bell expression [3].

The basic CHSH protocol based on the above lower
bound is, however, not optimal in a number of re-
spects. There has thus been in the last few years
a search for ways to bound the conditional entropy
for more general DIQKD protocols, either focusing on
the 2-input/2-output setting [9–11], or finding numer-
ical methods to tackle the problem in a more general
way [12, 13]. Despite these efforts, bounding the en-
tropy can be a numerically-intensive problem, with
one recent approach [11] notably requiring thousands
of processor core-hours of computing time to numeri-
cally bound the average entropy for a two-basis vari-
ant [10] of the CHSH-based DIQKD protocol. This
has significant drawbacks, reducing confidence in the
results (as they are harder for others to reproduce),
increasing the difficulty to optimize over parameters
in simulations, and generally increasing the time and
computing resources necessary just to calculate a key
rate.

In this work, we present a new and versatile
approach to bound the conditional entropy in the
2-input/2-output device-independent setting that is
conceptually and technically relatively simple. It is a
generalization of the approach in [14] that was used
to derive an analytical bound on the conditional en-
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tropy for a family of asymmetric CHSH inequalities.
As we explain here, the main conceptual steps of this
security analysis are not specific to the protocol con-
sidered in [14] but can actually be easily adapted to
other 2-input/2-output device-independent protocols.

The starting point is, as usual in the 2-input/2-
output scenario, to use Jordan’s lemma to reduce the
analysis to convex combinations of qubit strategies.
From there, our approach is based on three steps.
First, as in a standard qubit QKD protocol like BB84,
we bound the conditional entropy of Alice’s key gen-
erating measurement, say, A1 through an uncertainty
relation involving the correlations 〈Ā1 ⊗ B〉 between
an orthogonal measurement Ā1 on Alice’s subsystem
and a binary observable B on Bob’s system. In a
device-independent setting, though, and contrarily to,
e.g., BB84, we cannot have direct access to the cor-
relations 〈Ā1 ⊗ B〉 as we cannot assume that Alice’s
measurement devices perform measurements in two
orthogonal bases A1, Ā1. The second step is then
to establish a device-independent qubit constraint on
〈Ā1 ⊗ B〉 which is based on correlations between Al-
ice and Bob that are actually observed in the protocol,
e.g., the CHSH expectation value or some other Bell
expression. Combining the first and second step, we
obtain a bound on the conditional entropy which is
device-independent, apart from the assumptions that
Alice and Bob are measuring qubits. The third step
then involves a convexity analysis: either the result-
ing bound happens to be convex or, if this is not the
case, we convexify it. In this way, we get a lower
bound that is valid for convex combination of qubit
strategies, and thus by Jordan’s lemma, for arbitrary,
dimension-free strategies.

We illustrate this new approach in detail on two
variants of the CHSH-based DIQKD protocol: the
two-basis variant [10] and a new variant that incor-
porates, in addition to the CHSH value, information
about the bias in the key generating measurement A1.
This last feature is particularly relevant for photonic
implementations of DIQKD where no-click outcomes
∅ are mapped to a given key bit value, say ∅ 7→ +1,
resulting in highly biased outcomes. The bounds that
we obtain are optimal or close to optimal and signif-
icantly simpler technically and less computationally
demanding than other approaches. We show in par-
ticular that a qubit DIQKD protocol can tolerate de-
tector efficiencies as low as 80.26%.

We first provide in Section 2 a high-level description
of our approach to bounding the conditional entropy
in 2-input/2-output scenarios and then illustrate it in
detail on the two-basis variant of the CHSH DIQKD
protocol in Section 3.1 and on the variant optimized
for losses in Section 3.2.

2 Description of our approach
We start by specifying the class of problems that we
aim to solve. We consider a tripartite setup involv-
ing a state ρABE shared among Alice, Bob, and the
eavesdropper Eve. We assume that Alice can measure
one of two ±1-valued observables A1 or A2 on her sys-
tem, and similarly Bob can measure one of two ±1-
valued observables B1 or B2. We refer to the tuple
Q ≡ (ρABE , A1, A2, B1, B2) as a strategy.

A strategy Q can be seen as describing a single
round of a multi-round DIQKD protocol. The mea-
surements by Alice and Bob serve two purposes: gen-
erating some random variable KA on Alice’s side
(which will constitute Alice’s copy of the raw key in
the DIQKD protocol) and establishing some correla-
tions between Alice and Bob (which will be estimated
in a parameter estimation step of the DIQKD proto-
col). Any strategy Q implies some tradeoff between
how random KA is to Eve and how correlated Alice’s
and Bob’s measurement outcomes are. This tradeoff
can be formalized as follows.

Eve’s information on the raw key KA. Let us
assume that Alice uses the following general proce-
dure to generate a random key value KA: she first
selects a measurement choice X = 1, 2 according to
a probability distribution µX , she measures the corre-
sponding observable A1 or A2, she gets the classical
output A = ±1, and finally she applies to A a (pos-
sibly stochastic) map $x : {±1} → KA : A 7→ KA

to obtain a value KA in some finite alphabet KA. A
measure of how random KA is to Eve, given knowl-
edge of the measurement choice X, is the conditional
von Neumann entropy

H(KA|XE) = H(ρKAXE)−H(ρXE) (2)

where H(ρ) = −Tr[ρ log2(ρ)] is the von Neumann
entropy and ρXE = TrKA

[ρKAXE ] where

ρKAXE =
∑
kA,x

µ(x)|kA, x〉〈kA, x| ⊗ ρkA,x
E (3)

is the classical-quantum state describing the correla-
tions between KA, X, and E. In the above expression,
the reduced states of Eve are given by

ρkA,x
E =

∑
a=±1

px(kA|a)

TrAB
[
ρABE

1 + aAx
2 ⊗ 1B ⊗ 1E

]
(4)

where px(k|a) are the transition probabilities of the
map $x.

In this paper, we will often be interested in the case
where KA is simply obtained as the outcome of one of
Alice’s measurement, e.g., A1 (i.e., there is no random
input choice X and no classical preprocessing.) By a
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slight abuse of notation, we write A1 both for the ran-
dom variable denoting the measurement outcome of
A1 and for the measurement A1 itself. We thus write
in such cases KA = A1 and H(KA|XE) = H(A1|E).
We will also consider noisy preprocessing [15, 16],
where Alice’s raw key bit KA is again the outcome
of the measurement A1, but with probability q she
flips it and with probability 1 − q she keeps it as it
is. We write KA = Aq1 for the corresponding random
variable and thus H(KA|XE) = H(Aq1|E) for the con-
ditional entropy. Finally, the last case we will consider
is one where KA is obtained by choosing the observ-
ables A1 and A2 with probabilities p and p̄ = 1−p, re-
spectively, and applying noisy preprocessing with flip
probability q to the measurement output. We then
write KA = AqX and H(KA|XE) = H(AqX |XE).

Alice-Bob correlations. In a device-independent
setting, the correlations between Alice and Bob can be
characterized through Bell linear functionals, which
are linear functions of 1-body and 2-body correlators.
In the 2-input/2-output scenario, 1-body and 2-body
correlators can all be written in the common form

〈Ax ⊗By〉 = Tr
[
ρAB Ax ⊗By

]
for x = 0, 1, 2 (5)

if we define A0 = 1A and B0 = 1B . A Bell linear
functional S is then specified by 9 real coefficients
{Sxy}x,y=0,1,2 (x, y = 0, 1, 2) and its value on a given
set of correlators {〈Ax ⊗By〉} is given by

S =
2∑

x,y=0
Sxy〈Ax ⊗By〉 . (6)

We refer to S as a Bell expectation. We will particu-
larly be interested in the following in the CHSH func-
tional

S = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 . (7)

Tradeoff between Eve’s information on the raw
key and Alice-Bob correlations. Assume that a
procedure for generating a raw key value (as specified
by a measurement probability distribution µX and
preprocessing maps $x) and a series of m ≥ 1 Bell
expectation values S = (S1, . . . , Sm)1 are fixed. Our
objective is to establish a lower bound

H(KA|XE) ≥ f(S) (8)

that is device independent, in the sense that it is sat-
isfied by every quantum strategy Q. For technical
reasons, we require f to be a convex function of its
arguments2.

1This can range from a single Bell functional, such as CHSH,
to the entire set of correlators {〈Ax ⊗ By〉}, or anything in
between.

2This is required for application of the entropy accumulation
theorem, and follows naturally when reducing the analysis to

Relation to the security of DIQKD protocols.
In a typical DIQKD protocol, Alice’s and Bob’s de-
vices are successively used for n rounds. Some of the
rounds are used to generate raw key values KA on Al-
ice’s side and KB on Bob’s side. Some of the rounds
are used to gather statistical data to decide, based
on whether one or several Bell statistics are above
some thresholds, if the protocol should be aborted
or if it can proceed. In the latter case, error correc-
tion and privacy amplification are applied to the final
raw key string. Following the application of the en-
tropy accumulation theorem [7], the security of such a
generic multi-round protocol can be reduced to deriv-
ing a tradeoff bound (8), which can be understood as
characterizing the behavior of a single round3 in ex-
pectation. In particular a tradeoff bound allows one
to compute the key rate in the finite-key regime and
in the asymptotic one, where it simply reduces to the
Devetak-Winter formula [17]

r = H(KA|XE)−H(KA|KB) , (9)

where H(KA|KB) is the conditional Shannon entropy
of the classical random variables KA and KB .

2.1 Reduction to qubits
The lower bounds (8) we aim to derive must
be proven valid for any quantum strategy Q =
(ρABE , A1, A2, B1, B2), defined a priori on Hilbert
spaces of arbitrary dimension. However, because the
strategies we consider involve only two binary mea-
surements for Alice and for Bob, it is well-known that
it is sufficient, thanks to Jordan’s lemma, to consider
pure qubit strategies [18].

More specifically, suppose that we have derived a
lower bound H(KA|XE) ≥ f(S), that is valid for
any strategy Q = (|Ψ〉ABE , A1, A2, B1, B2) where i)
Alice’s and Bob’s systems are two-dimensional, ii)
|Ψ〉ABE is a pure state, iii) A1, A2, B1, B2 are qubit,
non-degenerate Pauli observables constrained to the
Z–X plane on the Bloch sphere, and where iv) the
function f is convex. Then this lower bound is valid
for arbitrary strategies. For details, see for instance
[14].

Note that the “2-input/2-output” restriction, which
allows to make this qubit simplification, only applies
to Alice’s measurements and to those measurements
of Bob that are involved in the definition of the Bell
functionals S, as these are the only measurements
involved in the relation (8). The raw key genera-
tion procedure on Bob’s side leading to the raw key

qubits. Furthermore, if f defines a bound on H(K|XE) that
is tight, it must necessarily be convex by concavity of the
conditional entropy and because any convex mixture of two
strategies defines a valid strategy.

3The raw key generation procedure and the set of Bell statis-
tics to be used in the single-round bound (8) should obviously
coincide with those of the multi-round protocol.

Accepted in Quantum 2022-10-07, click title to verify. Published under CC-BY 4.0. 3



value KB can, however, involve further measurement
choices with more outputs, see examples in the Sec-
tion 3.

We now assume the above simplification and
present our approach to deriving tradeoff bounds,
which follows three technical steps described in the
next three subsections.

2.2 BB84-type uncertainty relations
The first non-trivial step in our approach is device-
dependent and consists in deriving a qubit uncertainty
relation akin to those used in the analysis of the stan-
dard entanglement-based BB84 protocol and variants
of it. Let us illustrate this on several examples. In
the following, φ(x) = h

( 1
2 + 1

2x
)
, where h(x) is the

binary entropy.

Consider first the simple situation where Alice’s raw
key bit KA = A1 is simply obtained as the outcome
of the measurement A1, i.e., there is no random input
choiceX and no classical preprocessing. We then have
the following bound.

Entropy bound 1 (BB84).

H(A1|E) ≥ 1− φ
(
|〈Ā1 ⊗B〉|

)
, (10)

where Ā1 is a Pauli observable orthogonal to A1 on the
Bloch sphere and B any given ±1-valued observable
on Bob’s subsystem.

This bound is simply a reexpression of the one-
sided device-independent entropy bound H(Z|E) ≥
1 − φ

(
|〈X ⊗ B〉|

)
for the BB84 protocol [19] that re-

lates the information Eve has about the outcome of a
Z measurement by how much Bob is correlated to the
complementary X measurement. The bound (10) di-
rectly follows from the fact that A1 and Ā1 are Pauli
operators, which we can identify with the Z and X
operators.

As a second example, let us add noisy preprocessing
[15, 16] to the raw key procedure: Alice’s raw key bit
KA = Aq1 is again the outcome of the measurement A1,
but with probability q she flips it and with probability
1− q she keeps it as it is.

Entropy bound 2 (BB84 bound with noisy pre-
processing).

H(Aq1|E) ≥ fq(|〈Ā1 ⊗B〉|) , (11)

where

fq(x) = 1 + φ
(√

(1− 2q)2 + 4q(1− q)x2
)

− φ(x) , (12)

and Ā1 is a Pauli observable orthogonal to A1 on the
Bloch sphere and B any given ±1-valued observable
on Bob’s subsystem.

This again follows by identifying A1 and Ā1 with
the Z and X operators and reusing a one-sided device-
independent bound known for BB84 with noisy pre-
processing [14, 20].

The two above bounds were used in [14] to analyze
the security of a family of CHSH-based DIQKD proto-
cols. But more generally, it is also possible to obtain
other bounds, such as the two ones below, which we
will apply to other variants of CHSH-based DIQKD
protocols in Section 3.

Entropy bound 3 (BB84 with noisy preprocess-
ing and bias).

H(Aq1|E) ≥ gq
(
|〈A1〉|, |〈Ā1 ⊗B〉|

)
, (13)

where

gq(z, x) = φ
( 1

2 (R+ +R−)
)

+ φ
( 1

2 (R+ −R−)
)

− φ
(√

z2 + x2
)
, (14)

with

R± =
√

(1− 2q ± z)2 + 4q(1− q)x2 , (15)

and Ā1 is a Pauli observable orthogonal to A1 on the
Bloch sphere and B any given ±1-valued observable
on Bob’s subsystem.

This bound represents a refinement of the bound 2,
as it depends not only on 〈Ā1 ⊗ B〉, but also on the
value of the 1-body correlator 〈A1〉 measuring how
much Alice’s raw output is biased.

Our last example is one where Alice’s raw key bit
KA = AqX is obtained by choosing the observables A1
and A2 with probability p and p̄ = 1− p, respectively,
and applying noisy preprocessing with flip probabil-
ity q to the measurement output. The conditional
entropy is then

H(AqX |XE) = pH(Aq1|E) + p̄H(Aq2|E) , (16)

and one has the following bound.

Entropy bound 4 (Two-basis bound).

H(AqX |XE) ≥ fq
(√

p〈Ā1 ⊗B〉2 + p̄〈Ā2 ⊗B′〉2
)
(17)

where Ā1 and Ā2 are observables orthogonal to A1, A2,
respectively and fq(x) is the function defined in (12).

The above bounds are essentially similar to those
used in the analysis of standard entanglement-based
QKD. They are valid for arbitrary entangled states
|Ψ〉ABE where Alice’s and Bob’s systems are two di-
mensional and are expressed in terms of correlators
〈A ⊗ B〉 between Alice and Bob that involve (con-
trarily to the device-independent case) specific, fixed
observables, such as Ā1 on Alice’s side. As such they
can be derived using existing techniques.
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We remark that all of these bounds can be de-
rived from bound 3, which we derive in detail in Ap-
pendix A. In particular, bound 2 is a special a case
of bound 3 evaluated with 〈A1〉 = 04, while bound 1
is obtained by further setting q = 0. Bound 4 follows
from bounding both contributions to the average en-
tropy separately using bound 2,

H(AqX |XE) = pHq(A1|E) + p̄Hq(A2|E) (18)
≥ pfq

(
|〈Ā1 ⊗B〉|

)
+ p̄fq

(
|〈Ā2 ⊗B′〉|

)
,

and then using that the function x 7→ fq(
√
x) is con-

vex (see Appendix B of [14] for a proof of this prop-
erty).

Importantly, we also show in Appendix A that all
the above bounds satisfy a type of monotonicity prop-
erty. We say that a bound H(KA|XE) ≥ f(x) is
monotone in x if the bound H(KA|XE) ≥ f(x−)
holds for all x− ≤ x and similarly in the mul-
tivariate case for each variable independently, e.g.,
H(KA|XE) ≥ f(x, y) is monotone in x and y if the
bound H(KA|XE) ≥ f(x−, y−) hold for all x− ≤ x
and y− ≤ y. Note that this monotonicity property
is weaker than monotonicity of the function f itself:
if the function f is monotonically increasing then the
bound H(KA|XE) ≥ f(x) is monotone, but the con-
verse does not necessarily hold.

Monotonicity property. The entropy bounds (10)
and (11) are monotone in |〈Ā1 ⊗B〉|, the bound (13)
is monotone in |〈A〉1| and |〈Ā1 ⊗B〉|, and the bound
(17) is monotone in p〈Ā1 ⊗B〉2 + p̄〈Ā2 ⊗B′〉2.

The monotonicity of the bound (13) is established
in Appendix A from which the monotonicity of the
other bounds follows5. This property will be impor-
tant in Section 2.3 as it allows replacing in the entropy
bounds the correlators on which they depend in the
right-hand side by a lower bound on these correlators
and in Section 2.4 where it allows the systematic com-
putation of a convex envelope based on a discrete set
of points.

2.3 Pauli correlation constraints
The bounds on the conditional entropy H(KA|XE)
that we have given in the previous subsection are ex-
pressed in terms of correlators involving observables
which are not necessarily accessible through the de-
vices, e.g., the correlator 〈Ā1 ⊗ B〉 involving the ob-
servable Ā1. The second step of our approach consists
in deriving a constraint on these correlators in terms

4The resulting bound holds independently of the actual value
of 〈A1〉 thanks to the monotonicity property discussed below:
if we make in bound 3 the replacement |〈A1〉| 7→ 0 we obtain a
bound that remains valid.

5In the case of bounds (10), (11), (17), it also follows from
the stronger property that the function fq(x) is monotonically
increasing in x, as shown in Appendix B. of [14].

of correlators involving only the observables A1, A2,
B1, B2 actually measured by the devices.

For instance, it is a straightforward exercise, see
[14], to show the following bound.

Correlation bound 1 (CHSH).

|〈Ā1 ⊗B〉| ≥
√
S2/4− 1 , (19)

where S = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉−〈A2B2〉 is the
expected value of the CHSH statistic and B ∝ B1−B2.

More generally, one can also consider a family of
asymmetric versions of the CHSH statistic for which
the following bounds are shown in [14].

Correlation bound 2 (asymmetric CHSH). Let
Sα = α〈A1B1〉 + α〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉 be a
variant of CHSH depending on a given parameter α ∈
R. Then for some appropriate choice of a ±1-valued
observable B,

|〈Ā1 ⊗B〉| ≥ Eα(Sα) , (20)

where
Eα(Sα) =

√
Sα

2/4− α2 (21)

if |α| ≥ 1 or |Sα| ≥ 2
√

1 + α2 − α4 and

Eα(Sα) =
√

1−
(

1− 1
|α|

√
(1− α2)(Sα2/4− 1)

)2

(22)
otherwise.

The correlation bounds (19) and (20) can be de-
rived analytically. But more generically, one can de-
rive numerical lower bounds on polynomial functions
of arbitrary qubit correlators, such as 〈Ā1 ⊗ B〉 or
〈Ā2 ⊗B′〉, in terms of Bell functionals involving only
the accessible correlators 〈Ax ⊗ By〉 (x, y = 0, 1, 2),
using the Lasserre hierarchy of semidefinite program-
ming relaxations for polynomial optimization [21, 22].
This can be done by parameterizing explicitly all qubit
operators in the Z–X plane.

We illustrate this general idea on the specific prob-
lem of deriving a lower bound for the expression

p〈Ā1 ⊗B〉2 + p̄〈Ā2 ⊗B′〉2 (23)

appearing on the right-hand side of (17) in terms of
the CHSH expectation value S.

We first recall that we can use any ±1-valued ob-
servables B and B′ in (17). Taking these to be of the
form

B(′) = cos
(
ϕ

(′)
B

)
Z + sin

(
ϕ

(′)
B

)
X (24)

and then choosing the angles ϕB and ϕ′B that maxi-
mize (23) we obtain

p〈Ā1 ⊗B〉2 + p̄〈Ā2 ⊗B′〉2

= p
(
〈Ā1 ⊗ Z〉2 + 〈Ā1 ⊗X〉2

)
+ p̄
(
〈Ā2 ⊗ Z〉2 + 〈Ā2 ⊗X〉2

)
. (25)
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We then choose Alice’s basis such that

A1 = cos
(
ϕA

2
)
Z− sin

(
ϕA

2
)
X , (26)

A2 = cos
(
ϕA

2
)
Z + sin

(
ϕA

2
)
X (27)

and the complementary operators are

Ā1 = sin
(
ϕA

2
)
Z + cos

(
ϕA

2
)
X , (28)

Ā2 = − sin
(
ϕA

2
)
Z + cos

(
ϕA

2
)
X (29)

for some unknown angle ϕA. Using these in the above
expression we obtain, explicitly,

p〈Ā1 ⊗B〉2 + p̄〈Ā2 ⊗B′〉2

= sin
(
ϕA

2
)2(E 2

zz + E 2
zx ) + cos

(
ϕA

2
)2(E 2

xz + E 2
xx )

+ 2(2p− 1) sin
(
ϕA

2
)

cos
(
ϕA

2
)
(EzzExz + EzxExx) ,

(30)

where we note the expectation values of products of
Pauli operators Exx = 〈X⊗X〉 and similarly for Exz,
Ezx, and Ezz.

We wish to constrain (30) for a given value of the
CHSH expectation value which, in the choice of basis
made above, takes the form

S = 〈(A1 +A2)⊗B1〉+ 〈(A1 −A2)⊗B2〉
= 2 cos

(
ϕA

2
)
〈Z⊗B1〉 − 2 sin

(
ϕA

2
)
〈X⊗B2〉 . (31)

Maximizing the second line over (nondegenerate) ±1-
valued observables B1 and B2 in the Z–X plane gives

S/2 ≤ |cos
(
ϕA

2
)
|
√
E 2

zz + E 2
zx

+ |sin
(
ϕA

2
)
|
√
E 2

xz + E 2
xx , (32)

which can be read as a constraint on the unknown
angle ϕA and Pauli correlations Exx, Exz, Ezx, and
Ezz appearing in (30).

To complete the problem, we finally remark that
Exx, Exz, Ezx, and Ezz can be interpreted as expecta-
tions of products of the Z and X Pauli operators for
some underlying state only if they satisfy

E 2
zz + E 2

zx ≤ 1 , (33)
E 2

xz + E 2
xx ≤ 1 , (34)

and (
1− E 2

zz − E 2
zx
)(

1− E 2
xz − E 2

xx
)

≥
(
EzzExz + EzxExx

)2 (35)

as shown in Section 4.3 of [14].
To get a valid lower bound on (40), it is thus suffi-

cient to minimize the left-hand side of (30) given the
constraints (32)–(35). The problem can be simplified
by introducing the new variables

Ezz = λ cos(z) , Ezx = λ sin(z) , (36)
Exz = µ cos(x) , Exx = µ sin(x) , (37)
s = sin

(
ϕA

2
)
, c = cos

(
ϕA

2
)
, (38)

∆ = cos(x− z) . (39)

Using the trigonometric identity cos
(
ϕA

2
)2 +

sin
(
ϕA

2
)2 = 1 and that we can drop the abso-

lute values from (32) without substantially changing
the problem, we arrive at the following.

Correlation bound 3 (two-basis). There exist ±1-
valued qubit operators B and B′ acting on Bob’s sub-
system such that

p〈Ā1 ⊗B〉2 + p̄〈Ā2 ⊗B′〉2 ≥ Ep(S)2 , (40)

where Ep(S)2 is the solution to the minimization prob-
lem

Ep(S)2 = min s2λ2 + c2µ2 + 2(2p− 1)scλµ∆
s.t. cλ+ sµ ≥ S/2

λ2 ≤ 1
µ2 ≤ 1

(1− λ2)(1− µ2) ≥ λ2µ2∆2

c2 + s2 = 1
∆2 ≤ 1 (41)

in the five variables λ, µ, c, s,∆ ∈ R.

As the above is a polynomial optimization prob-
lem, it can be reduced to a sequence of semidefinite
programs using the Lasserre hierarchy [21, 22]. Impor-
tantly, every SDP relaxation at a given order in the hi-
erarchy provides a valid lower bound to the optimiza-
tion problem and consequently a valid lower bound of
the form (40). At level 3 of the Lasserre hierarchy, the
problem takes less than a second to solve and appears
to already give the optimal solution.

In the case in which p = 1/2, the above problem
can actually be solved analytically, as shown in Ap-
pendix B. The result in that case is

E 1
2
(S)2 = 1 + x 2

∗
1− x∗

+ S2

4
1 + x∗
1− x∗

− S√
2

(1 + x∗)3/2

1− x∗
,

(42)
where the variable x∗ is the solution of

4x(2− x) + 2(S2 + 2) +S(x− 5)
√

2(1 + x) = 0 (43)

in the range

− S

4
√

8− S2 ≤ x ≤ S

4
√

8− S2 . (44)

Eq. (43) can be rearranged to a root-finding problem
for a degree 4 polynomial in x and can thus be solved
analytically, though the solution is quite lengthy and
we do not explicitly report it here.

2.4 Convexity and fully device-independent
bounds
Combining the above correlation bounds and the en-
tropy bounds of the previous section, one obtains
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bounds on the conditional entropy that are device in-
dependent modulo the qubit reduction. For instance,
using the CHSH correlation bound (19) in the BB84
entropy bound (10), where the substitution of (19) in
(10) is possible thanks to the monotonicity property
of the BB84 entropy bound, we recover the CHSH
entropy bound

H(A1|E) ≥ 1− φ
(√

S2/4− 1
)

(45)

given in the introduction and originally derived in [3].
Using (20) in the BB84 bound with noisy preprocess-
ing (11), one obtains the more general qubit bound

H(Aq1|E) ≥ fq
(
Eα(Sα)

)
(46)

derived in [14].
But other combinations are also possible, such as

the two original following ones, which we are going to
consider in more detail in Section 3.

The first, which gives a bound on the entropy in
terms of 〈A1〉 in addition to CHSH, is simply obtained
by combining (19) and (13):

H(Aq1|E) ≥ gq
(
|〈A1〉|,

√
S2/4− 1

)
. (47)

For the second, let Ẽp(S)2 denote any lower bound
to Ep(S)2 obtained by solving analytically or numer-
ically the polynomial optimization problem (41) or
any of its relaxations in the Lasserre hierarchy. Then
using such a bound in (17), we obtain

H(AqX |XE) ≥ fq
(
Ẽp(S)

)
(48)

with Ẽp(S) ≡
√
Ẽp(S)2.

2.4.1 Convexity analysis

Regardless of the combination used, the result is a
bound on the conditional entropy valid for two-qubit
systems, which can only be extended to give a fully
device-independent bound, valid in arbitrary dimen-
sion, if it is convex. The third and final step thus
consists of a convexity analysis.

If we obtain a qubit bound on the conditional en-
tropy with a reasonably simple analytic expression
then it may be feasible to study its properties directly.
Either we simply prove it is convex, as can be done
for (45), or more generally as was done in [14] for (46)
for |α| ≥ 1. Or we analytically establish that it is
not convex and determine its convex envelope, as was
done in [14] for (46) for |α| < 1.

More generally, however, the qubit bound may be
obtained numerically or it may be analytic but of a
form that does not easily lend itself to an analytic
convexity analysis, as is the case for the bounds (47)
and (48). In such cases, we need a way of constructing
a convex lower bound on whatever qubit bound we
obtain.

2.4.2 Convex lower bounds through linear programming

A simple solution that we can use, provided our en-
tropy bounds satisfy the monotonicity property intro-
duced in subsection 2.2, is based on a discretization of
the qubit bound, similar to the approach used in [10].
In the following, let us generically write the bound
valid for two-qubit systems as

H(KA|XE) ≥ f(S) , (49)

where f : D → R is a function, defined on some do-
main D, that we either know analytically or can com-
pute numerically, of one or more Bell expectation val-
ues S = (S1, S2, . . . , Sn) ∈ D.

Let us introduce a covering K = {K} of the do-
main D by polytopes {K}, such that every S ∈ D
is contained in at least one of the polytopes K. In
practice, we would typically use a grid partition in
terms of hyperrectangles where each point (outside of
vertices and shared edges) is contained in only one hy-
perrectangle K (but this is not strictly necessary for
the method to work).

Let us suppose, furthermore, that for every K we
have a way of identifying a value f [K] that we can
use as a lower qubit bound on the conditional entropy
valid for the entire polytope, i.e., such that

H(KA|XE) ≥ f [K] , ∀S ∈ K . (50)

We can then define a discretized qubit bound,

H(KA|XE) ≥ fK(S) (51)

where fK is defined as

fK(S) = min
K3S

f [K] , (52)

where the minimization is taken over all polytopes K
that contain S. This, in particular, associates unique
values fK(Sj) to the vertices Sj of the polytopes. The
convex envelope of the discretized function fK, finally,
is readily given by the solution to the following linear
programming problem,

f̄K(S) = minimize
∑
j

θj fK(Sj)

subject to
∑

j

θjSj = S∑
j

θj = 1

θj ≥ 0 , (53)

where the Sj are the combined vertices of all the poly-
topes K in K. We thus obtain a bound

H(KA|XE) ≥ f̄K(S) (54)

on the conditional entropy that is convex and extends
to the fully device-independent setting.
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Figure 1: Convex lower bound f̄K of a function f constructed
on n (in the figure n = 10) equally spaced subdivisions of
its domain, i.e., the polytopes K are here n consecutive line
segments between x = 0 and x = 1. We actually used this
method on the qubit bound (48), but the function fq(Ẽp(S))
is too close to convex to make a visually interesting example.
The construction is thus illustrated on the figure for the visibly
non-convex function f(x) = 0.6

√
x+ 0.4x4.

We have not explained, however, how one can iden-
tify in (50) the lower-bound values f [K] for each poly-
tope K, which is crucial to define a discretized qubit
bound. This can be done if the bound (49) is mono-
tone in |S| = (|S1|, |S2|, . . . , |Sn|), i.e., if the bound
still holds if we replace in (49) any of the n Bell ex-
pectation values Si by a value si that is smaller in
absolute value, |si| ≤ |Si|. This is in particular the
case for all the bounds (45)–(48) presented above since
they are obtained by combining the monotone entropy
bounds of subsection 2.2 with the monotonically in-
creasing correlation bounds of subsection 2.3. Using
this monotonicity property, we can now simply divide
the domain D into hyperrectangles K and use as the
lower-bound value f [K] for each hyperrectangle K,
the value of the qubit bound evaluated at the corner
that is closest to the origin.

Finally, in the special case that we are working with
a qubit entropy bound H(KA|XE) ≥ f(S) of a single
variable S, we remark that one can avoid the linear
program and compute fK(S) very rapidly essentially
by eliminating the redundant vertices and interpolat-
ing between the remaining ones, as illustrated in Fig-
ure 1. This can be done in linear time in the num-
ber of vertices [23, 24]. We in particular applied this
technique to the two-basis bound (48) to compute the
key-rate bounds obtained in Section 3.1 below.

2.4.3 Certifying an affine tradeoff bound

While we can always use the above approach when we
have a qubit entropy bound satisfying the monotonic-
ity property, it is not always necessary to solve the

linear programming problem to obtain a valid convex
lower bound on the conditional entropy. An alterna-
tive approach, which would ultimately lend itself to
more direct use in the entropy accumulation theorem,
is to certify a linear or affine lower bound on the en-
tropy.

Here, let us suppose we believe that the conditional
entropy respects an affine lower bound

H(KA|XE) ≥ β +α · S − ε , (55)

that we wish to certify up to some precision ε. Such
a bound may be obtained, for example, by computing
at a particular point the tangent of a function f̄(S)
that we believe to be the convex hull of a known qubit
bound f(S). As above, we introduce a covering K =
{K} of the domain D with polytopes K and assume
for every K a lower bound f [K] on the conditional
entropy, as defined in (50). We also define

α[K] = max
S∈K

α · S

= max
S∈Vert(K)

α · S (56)

where Vert(K) are the vertices of K. To check that
(55) holds, we then only need to verify that

β + α[K]− f [K] ≤ ε (57)

holds for all polytopes K in the covering K, which is
now a finite problem. Alternatively, we can compute
the maximal value over K of β + α[K] − f [K] to de-
termine the best possible precision ε we can achieve
given our covering choice.

An important difference with the linear program-
ming approach above is that we do not necessarily
have to decide on a covering K in advance. In fact,
this is often very wasteful as, to obtain a good bound
with a small tolerance, we would typically find we
need a fine discretization of the domain only close to
where the bound coincides with its tangent. Finding a
suitable discretization can then be done naturally, and
in practice often very rapidly, by starting by testing
(57) for the polytopes K in an initially coarse covering
(which could consist of just one polytope containing
the entire domain) and then, for each K for which
the test fails, subdividing K into smaller polytopes
and recursively applying the test to each of those (see
illustration in Figure 2).

Application to the bound (47) including the
bias 〈A1〉. We used this recursive certification
method, coupled with a guess on the optimal linear
tradeoff functions, for the qubit bound (47) which
depends on the two variables 〈A1〉 and S. The
function g̃q(〈A1〉, S) ≡ gq

(
|〈A1〉|,

√
S2/4− 1

)
defin-

ing this bound is not convex as its Hessian matrix
is not positive semidefinite everywhere. It appears,
though, to be convex in each of the parameters 〈A1〉
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Figure 2: Certification of an affine lower entropy bound
based on the qubit bound (47) depending on the CHSH
expectation value S and the one-body correlator 〈A1〉. The
blue curve represents the boundary of the domain D ⊂ [0, 1]×
[2, 2
√

2] where the values of (〈A1〉, S) are consistent with
quantum theory. We conjecture that the convex envelope of
the function g̃q(〈A1〉, S) = gq

(
|〈A1〉|,

√
S2/4− 1

)
in D is

obtained by taking a convex decomposition of the point (1, 2)
and a point on the line from (1, 2) to (〈A1〉, S). The figure
illustrates such a convex decomposition (red points) for the
point (0.5, 2.2) (green point). From this, we can compute
a candidate affine function (55) that optimally certifies the
entropy of the point (0.5, 2.2). Setting a value for ε, we then
run a recursive algorithm to find a rectangle covering, depicted
in the figure, that certifies the candidate affine function. We
chose a value ε = 0.025 such that the resultant covering is
coarse enough that it can be visualized, but much smaller
values, e.g., ε ≈ 10−8 or less can readily be used.

and S individually, and more generally in any di-
rection passing through the positive orthant in the
plane 〈A1〉–S. This implies that the convex envelope
of g̃q(〈A1〉, S) can be constructed by considering at
most convex combinations of two points in the plane,
instead of three points as follows by Carathéodory’s
theorem. Indeed, any non-trivial convex combination
of three points in the plane 〈A1〉–S would have at
least two of those points joined by a segment aligned
in the direction of the positive orthant. But since the
function is convex in that direction, one can advanta-
geously replace the two points by a mixture of those.

Furthermore, if we are interested in computing a
valid entropy bound for a point with 〈A1〉 positive,
it is sufficient to consider convex combinations in the
domain D ⊂ [0, 1]× [2, 2

√
2] of the plane 〈A1〉–S, i.e.,

points with negative values of 〈A1〉 can be neglected.
To see this, consider a convex combination

(〈A1〉, S) = t
(
〈A1〉′, S′

)
+ (1− t)

(
〈A1〉′′, S′′

)
(58)

where 〈A1〉′ < 0 is negative for the point (〈A1〉, S)
yielding a corresponding value for the entropy func-
tion

t g̃q
(
〈A1〉′, S′

)
+ (1− t) g̃q

(
〈A1〉′′, S′′

)
(59)

that is a valid lower bound for H(Aq1|E). Replace
now this convex strategy by the (valid) convex combi-
nation

(〈A1〉, S) = t (0, S′) + (1− t)
(
〈A1〉
1− t , S

′′
)
. (60)

The corresponding value for the entropy function is

t g̃q(0, S′) + (1− t) g̃q
(
〈A1〉
1− t , S

′′
)
, (61)

which is still a valid lower bound for H(Aq1|E) because
of the monotonicity property of the bound and the

fact that 〈A1〉
1−t ≤ 〈A1〉′′ (since 〈A1〉′ < 0).

Finally, we numerically observed that the convex
envelope of g̃q(〈A1〉, S) in the domain [0, 1]× [2, 2

√
2]

was always obtained by taking a convex decomposi-
tion of two particular points: the point (1, 2) and a
point on the line from (1, 2) to (〈A1〉, S). This observa-
tion gives a conjecture for the convex envelope of the
qubit bound (47), from which candidate linear trade-
off functions of the form (55) can readily be computed
as tangents to this envelope. We can then attempt to
certify that such candidates are indeed proper trade-
off functions through a rectangle covering and the re-
cursive procedure described above, as illustrated in
Figure 2. We can in principle perform such certifica-
tion to arbitrary precision ε, though, in practice, we
may be limited by the number of rectangles required
to reach a very small ε and by the limited precision of
hardware floating-point arithmetic on typical comput-
ers. The key rates and results presented in Section 3.2
have been computed using this procedure. From our
results, it appears that our conjecture on the convex
envelope of g̃q(〈A1〉, S) is correct as we are always able
to certify the resultant linear tradeoff functions up to
a precision of the order of ε ≈ 10−6 or better.

3 Applications
Here, we apply our method to bound the asymptotic
one-way key rate, given by the Devetak-Winter rate

r = H(KA|XE)−H(KA|KB) , (62)

for DIQKD in two situations of interest: white noise,
where we assume that Alice and Bob share an atten-
uated version,

ρ = vφ+ + (1− v)1/4 , (63)

depending on some visibility v, of the ideal maximally-
entangled state

|φ+〉 = 1√
2
(
|00〉+ |11〉

)
, (64)

and limited detection efficiency, where we assume that
Alice’s and Bob’s devices return one of the expected
outcomes ±1 with a probability η less than one.
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The qubit bound (45) (which is already convex)
was used in [3] to compute the key rate of the stan-
dard CHSH DIQKD protocol and the convexification
of (46) was used in [14] to generalize the analysis in
terms of the asymmetric CHSH expressions Sα and
incorporating noisy preprocessing. We will now illus-
trate the use of the two other qubit bounds (47) and
(48) given in the preceding section, in subsections 3.2
and 3.1, respectively.

In [14], the asymmetric CHSH expressions were cho-
sen for parameter estimation because they retain the
same symmetries as the version of the DIQKD pro-
tocol where only one of Alice’s measurements, A1, is
used to generate the key and they can be used to
derive the optimal one-way key rate for that proto-
col with respect to white noise. There is no analo-
gous connection between the asymmetric CHSH ex-
pressions and losses and, in fact, the lowest thresh-
old, η ≈ 82.57%, on the global detection efficiency
reported in [14] was obtained using CHSH (the spe-
cial case of Sα with α = 1).

In the following, we reanalyze these correlation
models using different setups. In particular, as [14] al-
ready does an optimal analysis for white noise using
one measurement basis for key generation and with
noisy preprocessing, the only remaining way to im-
prove the noise robustness is to use a different proto-
col. For that case, we apply our approach to a variant
of the protocol based on CHSH, proposed recently in
[10], in which both of Alice’s measurements A1 and
A2 are used to generate the key. For losses, by con-
trast, as remarked in [14] the analysis performed there
was likely not optimal as the treatment of losses intro-
duced biases in the probabilities of Alice’s and Bob’s
measurement outcomes, while the analytic bound on
the entropy used there was optimized for the case
that Alice’s outcomes are obtained equiprobably. For
losses, therefore, we concentrate on bounding the key
rate using the expectation value 〈A1〉 of Alice’s key-
generation measurement in addition to the Bell viola-
tion.

3.1 White noise analysis for the two-basis pro-
tocol
In the two-basis protocol of [10], Alice and Bob ide-
ally share a maximally-entangled state |φ+〉 and have
devices that, for Alice, ideally perform the two mea-
surements

A1 = Z , A2 = X , (65)

and, for Bob, the four measurements

B1 = Z + X√
2

, B3 = Z , (66)

B2 = Z−X√
2

, B4 = X . (67)

This ideal realization is designed so that the measure-
ments A1, A2, B1, and B2 yield a maximal violation of

the CHSH Bell inequality while Bob’s measurements
B3 and B4 yield outcomes that are perfectly corre-
lated with Alice’s when she measures, respectively, A1
and A2, i.e., 〈A1B3〉 = 〈A2B4〉 = 1.

In the protocol, Alice and Bob use rounds where
Bob measures B1 or B2 to estimate CHSH; they use
a small fraction of the rounds where Bob measures B3
and B4 to estimate how correlated the outcomes are
with A1 and A2, and use the results of the remaining
rounds where Alice and Bob measured A1 and B3
or A2 and B4 as their raw key. We also assume in
the following that Alice flips her outcomes in the key
generation rounds (i.e., applies noisy preprocessing)
with some probability q.

Let us suppose that Alice uses the measurements
A1 and A2 with probabilities p′ and p̄′ = 1 − p′ and
that Bob uses the measurements B3 and B4 with the
same relative probabilities. Then, out of the rounds
not used for parameter estimation, the asymptotic key
rate, taking into account the effect of sifting6, is

r = p′2 r13 + p̄′2 r24

= (p′2 + p̄′2)(p r13 + p̄ r24) , (68)

where

rxy = H(Aqx|E)−H(Aqx|By) (69)

and we introduced p = p′
2
/(p′2 + p̄′2) and p̄ = 1 − p

in the second line. Here, H(Aq1|B3) and H(Aq2|B4)
depend only on the correlations between Alice’s and
Bob’s measurement outcomes, which they know from
parameter estimation. Assuming Alice and Bob per-
form the ideal measurements on an attenuated state
(63), the entropies of Alice’s outcomes conditioned on
Bob are

H(Aq1|B3) = H(Aq2|B4) = h
(
q + δ(1− 2q)

)
, (70)

where the channel error rate δ is related to the visibil-
ity v in (63) by v = 1− 2δ, while the CHSH expecta-
tion value is

S = 2
√

2(1− 2δ) . (71)

Bounding the key rate thus amounts to establishing
a lower bound on the weighted average conditional
entropy

pH(Aq1|E) + p̄H(Aq2|E) = H(AqX |XE) (72)

depending on the CHSH violation. A valid qubit
bound in terms of the CHSH expectation value S
is given by (48), from which a valid, fully device-
independent, convex lower bound can be obtained us-
ing the techniques discussed in Section 2.4.2.

6In particular, the key rate is attenuated by the probability
p′2 + p̄′2 that Alice and Bob use matching bases. It has been
pointed out in [11] that this can be avoided, but this requires
the parties to either possess quantum memories or to use a very
long preshared key to coordinate the measurement choices.

Accepted in Quantum 2022-10-07, click title to verify. Published under CC-BY 4.0. 10



We can thus express the bound we obtain on the
key rate, via CHSH, in terms of δ using our approach
as

r ≥ (p′2 + p̄′2)
[
f̃q
(
2
√

2(1− 2δ)
)
− h
(
q + δ(1− 2q)

)]
,

(73)
where f̃q(S) is the convex lower bound we obtain for
the entropy, evaluated at S = 2

√
2(1− 2δ).

We remark here that we could, in principle, bound
the average entropy in terms of any correlation Bell
inequality. We use only the CHSH expectation value
here both for simplicity and because, in the most in-
teresting case where the bases are used equiprobably
(i.e., p = 1/2), we can infer from the symmetries of
the protocol that CHSH is already the optimal mea-
sure of nonlocality for white noise (see Appendix C
for details).

The key rate we obtain using our approach for
p = 0.5 and p = 0.75 are illustrated, and compared
with the known analytical bounds for p = 1, without
noisy preprocessing (i.e., q = 0) and with the optimal
amount of noisy preprocessing applied in Figures 3
and 4. The threshold noise rates up to which we ob-
tain a positive key rate are reported for different val-
ues of q in Table 1. For q = 0 and q close to 1/2, the
results essentially rigorously confirm the thresholds of
8.36% and 9.24% that were anticipated could be ob-
tained in the conclusion of [14]. For 0 < p < 1/2,
similar to [10], we did not see any improvement to
the key rate; the highest rate appeared to always be
obtained with either p = 1 or p = 1/2, depending
on the value of S. However, as it may not be realis-
tic to be sure that the measurements are used exactly
equiprobably in a real implementation, we note that
it is important to be able to bound the entropy for
values of p that may deviate a little from 0.5. The
key rate is in fact very robust against deviations of
p from 0.5, as can be seen comparing the results for
p = 0.5 and p = 0.75 in Figures 3 and 4.

The best threshold of 9.24% obtained for q close
to 1/2 using our method is close to the best thresh-
old of 9.33% recently reported in [11] and obtained
for q = 0.3, although the method we have used al-
lows the key rate to be bounded much more rapidly7.
Without noisy preprocessing, the threshold of 8.36%
we obtain is slightly better than the threshold around
8.24% found in [10] and the same as the threshold
that would be obtained using the “conjectured alter-
native proof” (after taking the convex envelope of the
result) proposed in section I.H of the supplementary
information to the same paper8.

7Ref. [11] reports requiring ∼ 5000 processor-core hours to
obtain a numerical bound on the average conditional entropy.
For comparison, using our method we could generate a plot
of the conditional entropy with 500 points in a minute or two
on a regular laptop using the Lasserre hierarchy or almost
instantaneously using the analytic method for p = 1/2 described
in Appendix B.

8This is not a coincidence. The section in question proposes
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Figure 3: Lower bound on the Devetak-Winter rate as a
function of the channel error rate δ, assuming q = 0.
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Figure 4: Lower bound on the Devetak-Winter rate as a
function of the channel error rate δ, using an optimal noisy
preprocessing.

p q = 0 q = 0.2 q = 0.3 q = 0.49 q → 1/2
1 7.1492 7.9503 8.0321 8.0848 8.0848

0.5 8.3599 9.1130 9.1923 9.2434 9.2435

Table 1: Threshold error rates (%) obtained for different
probabilities p of measuring A1 after sifting non-matching
basis.

to bound the key rate using a lower bound on the conditional
entropy in terms of the fidelity of Eve’s marginal states. This is
very closely related to the BB84 bound [25] and, in fact, all of
the lower bounds we derive on the correlation terms |〈Āx ⊗B〉|
appearing in the BB84 bounds we use are also (typically tight)
lower bounds on the fidelity of Eve’s marginals following the
qubit reduction.
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We provide an indication of how close the key-rate
bound we obtain in the case p = 1/2 is to being opti-
mal by comparing with a specific strategy, which was
already identified as a likely candidate for the opti-
mal collective attack for q = 0 in [14], and described
in Appendix D. This attack yields the following value
for the average entropy

1
2H(Aq1|E) + 1

2H(Aq2|E) = f̄q
(
S/
√

8
)
, (74)

where

f̄q(x) =
{
fq(x) if x ≥ x∗
h(q) + f ′q(x∗)(x− 1/

√
2) if x ≤ x∗

(75)

with x∗ (dependent on q) such that

h(q) + f ′q(x∗)(x− 1/
√

2) = fq(x∗) , (76)

and where fq(x) is defined in Eq. (12).
The results of numerical tests done without noisy

preprocessing in [14] and [26] strongly suggest that
(74) actually gives the optimal bound on the average
entropy for q = 0. Additional tests we did for this
work did not find a counterexample for q 6= 0. But
even without a proof of optimality, as (74) is obtained
with a known collective attack it gives an upper bound
on the one-way asymptotic key rate with noisy prepro-
cessing. A comparison of the key rates, optimized over
q, using our numerical lower bound (already given in
Figure 4) and using (74) is given in Figure 5 and shows
the two to be very close. The threshold error rate ob-
tained using (74) ranges from δ ≈ 8.4447% for q = 0
up to δ ≈ 9.4756% for q → 1/2, and is compared with
the threshold obtained using our numerical method in
Figure 6.
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Figure 5: Comparison between the conjectured optimal at-
tack and the lower bound on the Devetak-Winter rate as a
function of the channel error rate δ, using an optimal noisy
preprocessing.
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Figure 6: Thresholds for the channel error rate as a function
of the noisy preprocessing computed using the conjectured
optimal attack and our lower bound on the conditional en-
tropy.

3.2 More refined loss analysis exploiting bias
Here, we consider a setup where we suppose that the
main imperfection is that Alice’s and Bob’s devices
have a detection efficiency that is less than perfect, i.e.,
we suppose that, in each protocol round, each of their
devices outputs one of the regular outcomes ±1 with
probability η and outputs nothing, or a “nondetection”
outcome ∅, with probability 1 − η. In order to use
our approach, which strictly applies to protocols in
which the measurements in the Bell test have binary
outcomes, we map nondetection events resulting from
the measurements A1, A2, B1, andB2 used to perform
the Bell test to +1.

In this case we consider the usual, single-basis, ver-
sion of the DIQKD protocol, but with different states
and measurements. Similar to the Eberhard scheme
[27], we suppose that Alice and Bob (ideally) share a
partially-entangled two-qubit state

|ψθ〉 = cos
(
θ
2
)
|00〉+ sin

(
θ
2
)
|11〉 , (77)

and that Alice and Bob (ideally) perform, respectively,
two and three measurements

Ax = cos(ϕA,x)Z + sin(ϕA,x)X , x = 1, 2 (78)
By = cos(ϕB,y)Z + sin(ϕB,y)X , y = 1, 2, 3 , (79)

determined by angles ϕA,x and ϕB,y that we will op-
timize over when bounding the key rate9. Alice and
Bob use the measurements A1, A2, B1, and B2 to es-
timate the CHSH expectation value and use A1 and
B3 to generate the key.

As we are only considering the usual single-basis
version of the protocol, the asymptotic key rate is

r = H(Aq1|E)−H(Aq1|B3) (80)
9Note that this is a slight generalization with respect to [14],

which fixed A1 and B3 to Z.
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Figure 7: Key rate as a function of the detection efficiency
with no channel error rate and with a little error rate.

where the Shannon entropy of Alice’s outcome condi-
tioned on Bob,

H(Aq1|B3) = −
∑
a,b

p(a, b) log2
(
p(a|b)

)
, (81)

depends on the joint probability p(a, b) that Alice ob-
tains the outcome a ∈ {+1,−1} from measuring A1
after mapping nondetection events to +1 and flipping
the result with probability q, and Bob obtains the out-
come b ∈ {+1,−1, ∅} from measuring B3 and possibly
obtaining the loss outcome ∅ with probability 1− η.

To bound the key rate we need to bound H(Aq1|E).
As mentioned above, mapping nondetection events
deterministically to +1 and deliberately using a
partially-entangled state bias Alice’s and Bob’s mea-
surements to giving one of the outcomes more fre-
quently than the other. We can exploit this by taking
into account the expectation value 〈A1〉 of Alice’s key
generation measurement, in addition to the CHSH ex-
pectation value S, to derive a better lower bound on
the entropy.

The expectation value 〈A1〉 can be taken into ac-
count using the qubit bound (47) and the convexifica-
tion procedure discussed at the end of Section 2.4.3
and illustrated in Figure 2. Using this approach, we
optimized the key rate numerically over the angles
ϕAj

, ϕBk
, and θ. The optimized key rates, both as-

suming no noise and a white noise rate of δ = 0.5%
are represented both for q = 0 and with optimized q
in Figure 7.

As one can see in the figure, the highest key rate is
very small for a significant range of global detection
efficiencies close to the threshold as a result of being
obtained for values of q close to 1/2 and very weakly
entangled states. Due to this, the threshold detector
efficiency above which a positive key rate can be cer-
tified is very sensitive and, for example, significantly
worsened by the addition of even a small amount of de-
polarizing noise. To illustrate this, we plot the thresh-
old global detection efficiency as a function of the er-
ror rate δ in Figure 8, where a comparison is provided
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Exploiting biases

Exploiting asymmetric CHSH

Figure 8: Threshold detection efficiency η as a function of
the channel error rate δ.

q = 0 q = 0.2 q = 0.3 q = 0.49
Certified 84.2149 80.4642 80.3411 80.2593

Conjectured 84.2147 80.4362 80.3046 80.2283

Table 2: Threshold detection efficiencies (%) for different
probabilities q of flipping Alice’s outcome assuming no channel
noise. For q between 0.49 and 0.5, we did not observe an
improvement of the threshold up to the precision reported in
the table.

with the earlier results of [14] using the analytic en-
tropy bound for the asymmetric CHSH expressions.

Table 2 gives the thresholds on the detection effi-
ciency that we find using our approach for different
values of q assuming no additional noise. We include
in the table both the thresholds for which we can cer-
tify a positive key rate and the ones obtained using
our conjecture regarding the convex envelope of the
qubit bound. The small discrepancy between the two
values, particularly for larger values of q, is due to the
difficulty of numerically certifying the key rate accu-
rately when the key rate becomes very small (the key
rate for the last column of Table 2 is of O(10−12)).
Indeed to certify the entropy to a very high precision
using a discretized qubit bound requires using a very
dense covering, which at some point becomes too time-
consuming computationally.

This issue however only affects the certification of
extremely small asymptotic key rates, such as the long
tail observed in Figure 7, which are probably too low
to be of practical value and likely to be dwarfed by
the difference made by even small amounts of noise or
corrections due to finite-key effects. To illustrate this,
in Table 3 we report the detection efficiency thresh-
olds in the presence of a channel noise rate of δ = 0.5.
In this case, the thresholds using the conjectured con-
vex envelope and those that can be properly certified
are the same up to the precision to which we report
the results.
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q = 0 q = 0.2 q = 0.3 q = 0.49
δ = 0.5% 87.6017 86.5842 86.5013 86.4490

Table 3: Certified threshold detection efficiencies (%) obtained
for different probabilities q of flipping Alice’s outcome and
with δ = 0.5% of channel error rate. We do not observe
a difference with the conjectured case up to the precision
reported in the table.

Finally, we remark that the qubit bound (47) is
tight in 〈A1〉 and S for all q as there is an explicit
attack, described in Appendix E, that saturates it.
This means that our conjecture regarding the convex
envelope of the qubit bound represents a valid attack
yielding upper bounds on the key rate (as it corre-
sponds to an explicit mixture of two-qubit strategies).
This means that the certified bounds that we report
in Table 3 are, up to the precision we use, optimal in
terms of 〈A1〉 and S, and that the second line of Ta-
ble 2 corresponds to the minimal detection thresholds
one can hope to attain using only information about
〈A1〉 and S.

4 Discussion
Building on [14], we have introduced a flexi-
ble approach to derive practical and fully device-
independent bounds on the key rate for DIQKD in
the 2-input/2-output setting. We have illustrated it
on to the two-basis variant of the CHSH DIQKD pro-
tocol as well as to undertake a more optimized anal-
ysis of the single-basis variant when the main antici-
pated experimental imperfection is losses. Contrarily
to [14], we used numerical methods to solve part of
the problem in both cases and obtain optimal or close
to optimal bounds on the conditional entropy within
a very low amount of computation time. The results
may be used to derive bounds on the key rate in the
asymptotic limit or in the finite-key regime via the en-
tropy accumulation theorem. They may also be useful
as a point of comparison with different numerical ap-
proaches used to bound the conditional entropy in the
device-independent setting.

When considering losses we found that the global
detection efficiency can be brought under 80.26%.
This is notably below the detection efficiency of
87.49% attained in the recent experimental demon-
stration of device-independent quantum key distribu-
tion based on a photonic setup [6]. As we remarked
in the previous section, however, our threshold is at-
tained using a very weakly entangled state and in-
creases significantly if any realistic amount of noise is
added to the model we studied. (Separately, a finite-
key analysis would likely have the same effect.)

While writing this manuscript, a new promising nu-
merical method to bound the conditional entropy in
general DI scenarios was proposed [13]. Our detection
threshold, derived using only the expectation value

〈A1〉 of Alice’s key-generation measurement in addi-
tion to CHSH, is slightly lower than the threshold of
80.5% reported in [13] using full statistics. This is
not a limitation of the method of [13], but rather a
matter of using a suboptimal state and measurement
implementation parameters in that work. Indeed, run-
ning their method on the correlations achieving the
threshold of 80.2593% in Table 2, the authors of [13]
confirmed to us that they also find a positive key rate
[28] (though, again, using full statistics instead of only
〈A1〉 and S). This illustrates the interest of having
complementary methods. While [13] can in principle
be used to tackle very general problems, our method
specializing on the 2-input/2-output scenario allows
us to rapidly explore the parameter space to find a
good implementation. Moreover, there exist scenar-
ios in which our analysis can provide slightly better
bounds compared to the numerical method as one can
observe from [13, Figure 6b].

A recent result [29] obtained lower bounds on the
key rate for the finite-size case without the use of the
entropy accumulation theorem in the two-input/two-
output scenario. It might be interesting to investigate
whether our results involving different parameters to
bound the conditional Von Neumann entropy can be
used in combination with their technique.

Finally, although we discussed in detail two specific
examples illustrating our approach to bounding the
conditional von Neumann entropy, we point out that
other bounds can be derived. For instance, we could
combine the BB84-type bound (13) using bias with
the correlation bound (20) in terms of the asymmetric
CHSH expectations. As suggested by Figure 8, this
should slightly improve the analysis presented here
(are least for larger amounts of noise δ). One could
also, much more generally, use numerical techniques
[30] to derive device-dependent bounds on the con-
ditional von Neumann entropy that are more strin-
gent and combine them with correlation bounds in-
volving full-statistics obtained through relaxations of
the Lasserre hierarchy. Our method can also in princi-
ple be applied to the n-partite setting, e.g., to derive
entropy bounds based on Mermin-type Bell inequali-
ties [31, 32].

The code used to obtain the numerical results in
this paper is available on GitHub [33].
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A Derivation of BB84 bound with bias
The BB84 entropy bound (13) is a generalization of
the two bounds (10) and (11), which give the special
cases of (13) with 〈A1〉 = 0 and both with 〈A1〉 = 0
and no noisy preprocessing (q = 0). It can be derived,
in a way that also confirms the monotonicity property,
essentially by modifying the symmetrization step in
the derivation done in section 4.2 of the paper [14].
We do this in detail here.

As in the derivation of [14], we suppose that Alice,
Bob, and Eve share a pure tripartite state

|ψ〉ABE = |0〉A|ψ0〉BE + |1〉A|ψ1〉BE , (82)

where |0〉 and |1〉 are the eigenstates of A1, which we
identify here with Z, and |ψ0〉 and |ψ1〉 are arbitrary
(and not necessarily orthogonal) states shared by Bob
and Eve normalized so that

〈ψ0|ψ0〉+ 〈ψ1|ψ1〉 = 1 . (83)

After Alice measures A1 = Z and flips the outcome
with probability q, the correlations between Alice and
Eve are described by the classical-quantum state

τAE = [0]A⊗(q̄ψE0 +qψE1 )+[1]A⊗(qψE0 +q̄ψE1 ) , (84)

where q̄ = 1 − q and ψEa = TrB[ψa] are the partial
traces of the states |ψa〉 accessible to Eve.

Now, since renaming the outcomes does not change
the entropy, the conditional entropy H(Z|E) =
H(ZE) − H(E) computed on the above state is the
same as the conditional entropy computed on

τ ′AE = [1]A⊗(q̄ψE0 +qψE1 )+[0]A⊗(qψE0 +q̄ψE1 ) , (85)

which is the same state as above except that we have
swapped [0]A and [1]A. They in addition have the
same entropy as a partly symmetrized state,

τ̄AEF = p̄ τAE ⊗ [0]F + p τ ′AE ⊗ [1]F , (86)

for any probability p and p̄ = 1− p, since

H(Z|EF )τ̄ = p̄ H(Z|E)τ + pH(Z|E)τ ′ = H(Z|E)τ .
(87)

The above state, written out explicitly, is

τ̄AEF = [0]A ⊗
[
p̄(q̄ψE0 + qψE1 )⊗ [0]F

+ p(qψE0 + q̄ψE1 )⊗ [1]F
]

+ [1]A ⊗
[
p̄(qψE0 + q̄ψE1 )⊗ [0]F

+ p(q̄ψE0 + qψE1 )⊗ [1]F
]
. (88)

We rewrite this as

τ̄AEF = [0]A⊗(q̄σ= +qσ6=)+[1]A⊗(qσ= + q̄σ6=) (89)

with the (unnormalized) states

σ= = p̄ ψE0 ⊗ [0]F + pψE1 ⊗ [1]F , (90)
σ 6= = p̄ ψE1 ⊗ [0]F + pψE0 ⊗ [1]F . (91)

The state can be obtained as the marginal of an ex-
tended one,

τ̄ABEE′FF ′ = [0]A ⊗ (q̄χ= + qχ6=)
+ [1]A ⊗ (qχ= + q̄χ6=) , (92)

where |χ=〉, |χ 6=〉 ∈ HB ⊗HE ⊗HE′ ⊗HF ⊗HF ′ are
unnormalized pure states

|χ=〉 =
√
p̄|ψ0〉|φ0〉|00〉+√p|ψ′1〉|φ1〉|11〉 , (93)

|χ 6=〉 =
√
p̄|ψ′1〉|φ1〉|00〉+√p|ψ0〉|φ0〉|11〉 , (94)

in which

|ψ′1〉 = eiϕB ⊗ 1E |ψ1〉 ∈ HB ⊗HE , (95)

where B is a Hermitian unitary operator (thus satis-
fying B2 = 1B) acting on HB and ϕ is a phase chosen
such that 〈ψ0|ψ′1〉 is real and nonnegative, and

|φ0〉, |φ1〉 ∈ HE′ (96)

are normalized states chosen to have some nonnega-
tive real overlap 〈φ0|φ1〉 = λX ∈ [0, 1].

Using that the conditional entropy cannot increase
if we extend the Hilbert space being conditioned on,
direct calculation of the conditional entropy on the
state (92) gives

H(Z|E)τ = H(Z|EF )τ̄
≥ H(Z|BEE′FF ′)τ̄
= S(τ̄ABEE′FF ′)− S(χ= + χ6=)

= H(λ)− φ
(√

Z ′2 +X ′2
)
, (97)

where

Z ′ = ‖χ=‖ − ‖χ6=‖ ≡ 〈χ=|χ=〉 − 〈χ6=|χ6=〉 , (98)
X ′ = 2|〈χ=|χ6=〉| , (99)

and H(λ) = −
∑
jk λjk log2(λjk) is the Shannon en-

tropy associated to the four eigenvalues of (92),

λ11 = 1
4

[
1 +QZ ′ +

√
R′2 + 2QZ ′

]
, (100)

λ12 = 1
4

[
1−QZ ′ +

√
R′2 − 2QZ ′

]
, (101)

λ21 = 1
4

[
1−QZ ′ −

√
R′2 − 2QZ ′

]
, (102)

λ22 = 1
4

[
1 +QZ ′ −

√
R′2 + 2QZ ′

]
, (103)

where Q is related to the amount of noisy preprocess-
ing applied by

Q = q̄ − q = 1− 2q (104)

and

R′ =
√
Z ′2 +Q2 + (1−Q2)X ′2 . (105)
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We can factorize the four eigenvalues above as λjk =
pjp
′
k with

p1 = 1
2 + 1

4
(
R′+ +R′−

)
, (106)

p2 = 1
2 −

1
4
(
R′+ +R′−

)
, (107)

p′1 = 1
2 + 1

4
(
R′+ −R′−

)
, (108)

p′2 = 1
2 −

1
4
(
R′+ −R′−

)
, (109)

and
R′± =

√
R′2 ± 2QZ ′ , (110)

so that H(λ) = H(p) + H(p′). This allows us to
express the qubit entropy bound more concisely as

H(Z|E) ≥ gq(Z ′, X ′) (111)
with

gq(Z ′, X ′) = φ
( 1

2 (R′+ +R′−)
)

+ φ
( 1

2 (R′+ −R′−)
)

− φ
(√

Z ′2 +X ′2
)

(112)
and

R′± =
√

(Q± Z ′)2 + (1−Q2)X ′2 . (113)
At this point, we have recovered the form of the

function gq defined in section 2. To complete the
derivation note that, from the definitions of |χ=〉 and
|χ 6=〉 we have

Z ′ = ‖χ0‖ − ‖χ1‖
= p̄‖ψ0‖+ p‖ψ1‖ − p̄‖ψ1‖ − p‖ψ0‖
= λZ

(
‖ψ0‖ − ‖ψ1‖

)
= λZ〈A1〉 , (114)

where λZ ∈ [−1, 1] is related to the symmetrization-
step probability by λZ = p̄− p, and that

〈χ=|χ6=〉 = p̄〈ψ0|ψ′1〉〈φ0|φ1〉+ p〈ψ′1|ψ0〉〈φ1|φ0〉
= λX e

iϕ〈ψ0|B ⊗ 1E |ψ1〉
= λX

∣∣Re
[
〈ψ0|B ⊗ 1E |ψ1〉

]∣∣ , (115)
where we recall that we set 〈φ0|φ1〉 = λX ∈ [0, 1],
while

〈X⊗B〉 = 2 Re
[
〈φ0|B ⊗ 1E |φ1〉

]
, (116)

so that
2〈χ=|χ 6=〉 = λX |〈X⊗B〉| . (117)

Putting all this together and recalling that we identify
A1 with Z, and can choose Ā1 = X, means that we
finally get

H(A1|E) ≥ gq
(
λZ〈A1〉, λX|〈Ā1 ⊗B〉|

)
(118)

for all −1 ≤ λZ, λX ≤ 1 (as the derivation we have
given applies for any values of the symmetrization
probability p and overlap 〈φ0|φ1〉 we may wish to use).
This confirms that the inequality

H(A1|E) ≥ gq(Z,X) (119)
holds for any (real) numbers satisfying

|Z| ≤ |〈A1〉| and |X| ≤ |〈Ā1 ⊗B〉| . (120)

B Analytic solution for p = 1/2
Here we derive in detail the average entropy bound
for the two-basis protocol in the case that Alice’s mea-
surements are used equiprobably. When p = 1/2, the
minimization problem (41) in Section 2.3 simplifies to

minimize f(λ, µ, ϕA) = sin
(
ϕA

2
)2
λ2 + cos

(
ϕA

2
)2
µ2

subject to
∣∣cos

(
ϕA

2
)∣∣|λ|+ ∣∣sin(ϕA

2
)∣∣|µ| ≥ S/2
λ2 ≤ 1
µ2 ≤ 1 , (121)

where we have reintroduced the angle ϕA from earlier
in the section explicitly and used that the single con-
straint involving the variable ∆ becomes irrelevant.
As we stated in Section 2.3 and show here, the above
problem can be solved analytically subject to finding
the root of a degree four polynomial.

In the following, we will assume that S > 2, since
the solution to the classical case S = 2 is trivially

E
2

1
2

= 0.

First, we note that, as our problem is invariant un-
der the transformations λ 7→ −λ and µ 7→ −µ and
that, for S > 2, the points µ = 0 or λ = 0 do not
satisfy the first constraint∣∣cos

(
ϕA

2
)∣∣|λ|+ ∣∣sin(ϕA

2
)∣∣|µ| ≥ S/2 , (122)

we can replace the constraints λ2 ≤ 1 and µ2 ≤ 1 with
0 < λ ≤ 1 and 0 < µ ≤ 1.

Moreover, the problem is also invariant under the
transformation ϕA 7→ 2π − ϕA, meaning that for all
solutions such that ϕA ∈ [0, π], there exists an equiv-
alent solution in [π, 2π]. Thus, we can restrict the
domain of ϕA to be 0 < ϕA < π, where we excluded
the boundaries since the cases ϕA = 0, π are not in
agreement with S > 2.

The function that we need to minimize can be
rewritten as

f(λ, µ, ϕA) = λ2

2
(
1− cos(ϕA)

)
+ µ2

2
(
1 + cos(ϕA)

)
.

(123)

Let us look for a minimum for our function by check-
ing where its derivatives are zero. We start with

d

dµ
f(λ, µ, ϕA) = µ

(
1 + cos(ϕA)

)
. (124)

Here, d
dµf(λ, µ, ϕA) = 0 if and only if µ = 0 or ϕA = π.

These points are not part of the restricted domain that
we are considering. We conclude that the minimum
must be at the boundaries of our domain. From now
on, we will analyze this case.

Case 1: We consider the boundary λ = 1. We have

f(1, µ, ϕA) = 1 + µ2

2 + cos(ϕA)
2 (µ2 − 1) (125)
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and

d

dµ
f(1, µ, ϕA) = µ

(
1 + cos(ϕA)

)
, (126)

thus d
dµf(λ, µ, ϕA) = 0 if and only if µ = 0 or ϕA = π.

Such solutions are not in the domain.

Case 2: We consider the boundary µ = 1. Analo-
gously, we obtain non-feasible solutions.

Case 3: We consider the boundary cos
(
ϕA

2
)
λ +

sin
(
ϕA

2
)
µ = S/2. This region is the one in which

µ∗ = λ
sin(ϕA)

cos(ϕA)− 1 − S
sin
(
ϕA

2
)

cos(ϕA)− 1

= λ

√
1− x2

x− 1 − S√
2

√
1− x
x− 1 , (127)

where we made the change of variable x = cos(ϕA).
The domain of x is −1 < x < 1.

We have

f(λ, µ∗, x) = λ2 1 + x2

1− x − λ
S(1 + x)3/2
√

2(1− x)
+ S2(1 + x)

4(1− x)
(128)

and

d

dλ
f(λ, µ∗, x) = 2λ1 + x2

1− x −
S(1 + x)3/2
√

2(1− x)
. (129)

Now, recalling that we assumed x 6= 1, we have that
d
dλf(λ, µ∗, x) = 0 iff

λ = S(x+ 1)3/2

2
√

2(x2 + 1)
= λ∗ . (130)

Thus,

f(λ∗, µ∗, x) = S2

8
1− x2

1 + x2 , (131)

which is a concave function of x, meaning the mini-
mum is at the intersection between boundaries.

Case 3+1: We intersect the boundary of case 3
with λ = 1. We get

µ∗ =
√

1− x2

x− 1 − S√
2

√
1− x
x− 1 . (132)

Here, requiring µ∗ ≤ 1, we obtain the condition

− S

4
√

8− S2 ≤ x ≤ S

4
√

8− S2 . (133)

We have

f(1, µ∗, x) = x2 + 1
1− x −

S(x+ 1)3/2
√

2(1− x)
+ S2(x+ 1)

4(1− x)
(134)

and

d

dx
f(1, µ∗, x) =

4x(2− x) + 2(S2 + 2) + S(x− 5)
√

2(1 + x)
4(x− 1)2 , (135)

hence, since x 6= 1, d
dxf(1, µ∗, x) = 0 iff

4x(2−x)+2(S2 +2)+S(x−5)
√

2(1 + x) = 0 . (136)

Case 3+2: We intersect the boundary of case 3
with µ = 1. Here, one can check that we obtain the
same result as in case 3+1.

Case 1+2: We consider λ = µ = 1. With this

choice we have E
2

1
2

= 1 ∀ϕA. This region of param-

eters does not contain in general the absolute mini-
mum.

We conclude that the solution to the optimization
problem must be the one of case 3+1 (or equiva-
lently 3+2). If there is more than one solution to
Eq. (136) satisfying the constraints (133), then we
take the smallest one.

We used Mathematica to find the roots of Eq. (136)
analytically. Moreover, imposing the constraints (133)
and S > 2, we found a single solution. We used the
resulting expression for the computations for p = 1/2
done in Section 3.1.

C Optimality of CHSH for the two-
basis protocol
In the case that the bases are used equiprobably, i.e.,
p = 1/2, the symmetries of the two-basis DIQKD
protocol studied in section 3.1 imply that the CHSH
Bell expectation value alone already gives the optimal
bound on the average conditional entropy

H(Ax|XE) ∝ 1
2H(A1|E) + 1

2H(A2|E) (137)

for the optimal CHSH-violating correlations attenu-
ated by white noise. The reason for this is that, given
any quantum strategy giving a particular value of the
average entropy and CHSH expectation value, one can
construct a new symmetrized strategy giving the same
entropy and CHSH expectation value.

To see this, let us suppose we have a particular
quantum strategy Q = (ρABE , A1, A2, B1, B2). We
note first that both conditional entropies H(Ax|E)
and the CHSH expectation value S = 〈A1B1〉 +
〈A1B2〉+〈A2B1〉−〈A2B2〉 are unchanged if we flip all
the measurements, i.e., do Ax 7→ −Ax andBy 7→ −By.
By randomly and equiprobably using these two strate-
gies we can force Alice’s and Bob’s local outcomes to
become equiprobable. This corresponds to using a
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new strategy Q′ = (ρ′ABE , A′1, A′2, B′1, B′2) with

A′x = Ax ⊕−Ax , (138)
B′y = By ⊕−By , (139)

ρ′ABE = 1
2ρABE ⊕

1
2ρABE , (140)

for which the CHSH expectation value and the values
of the entropies are unchanged, but for which 〈A′x〉 =
〈B′y〉 = 0.

Next, we use that the average entropy and CHSH
both remain unchanged under the two transforma-
tions

T1 :


A1 7→ A1

A2 7→ −A2

B1 7→ B2

B2 7→ B1

T2 :


A1 7→ A2

A2 7→ A1

B1 7→ B1

B2 7→ −B2

, (141)

as well as their composition T2 ◦ T1. By randomly
using the strategy Q′ with neither, either one, or both
transformations applied, we construct a new strategy
Q′′ = (ρ′′ABE , A′′1 , A′′2 , B′′1 , B′′2 ) with

A′′1 = A′1 ⊕A′1 ⊕A′2 ⊕A′2 , (142)
A′′2 = A′2 ⊕−A′2 ⊕A′1 ⊕−A′1 , (143)
B′′1 = B′1 ⊕B′2 ⊕B′1 ⊕−B′2 , (144)
B′′2 = B′2 ⊕B′1 ⊕−B′2 ⊕B′1 , (145)

ρ′′ABE = 1
4ρ
′
ABE ⊕ 1

4ρ
′
ABE ⊕ 1

4ρ
′
ABE ⊕ 1

4ρ
′
ABE , (146)

for which

〈A′′1B′′1 〉 = 〈A′′1B′′2 〉 = 〈A′′2B′′1 〉 = −〈A′′2B′′2 〉 = S/4 .
(147)

As, given any strategy Q, we can in this way al-
ways construct a strategy Q′′ with the same average
entropy and CHSH expectation value, but satisfying
〈A′′x〉 = 〈B′′y 〉 = 0 and 〈A′′1B′′1 〉 = 〈A′′1B′′2 〉 = 〈A′′2B′′1 〉 =
−〈A′′2B′′2 〉, we can infer that these constraints, if they
are satisfied for real correlations, do not contain any
information other than the CHSH expectation value
that can be used to improve the entropy bound.

D Explicit attack for the two-basis pro-
tocol
We describe here an explicit attack for the two-basis
protocol in the case p = 1/2, which we conjecture to
be optimal.

Suppose that Alice, Bob, and Eve share the optimal
symmetric BB84 attack state

|Ψ〉ABE = 1
2

[
(1 + E)|φ+〉AB |++〉E

+
√

1− E2|φ−〉AB |+−〉E
+
√

1− E2|ψ+〉AB |−+〉E
+ (1− E)|ψ−〉AB |−−〉E

]
, (148)

where |φ±〉 and |ψ±〉 are the four Bell states, depend-
ing on some number 0 ≤ E ≤ 1. Its marginal once
Eve is traced out is

ΨAB = 1
4

[
1⊗1+EX⊗X−E2 Y⊗Y+E Z⊗Z

]
. (149)

By measuring A1 = Z, A2 = X, and B1,2 = (Z ±
X)/
√

2, the highest possible CHSH expectation value
of S = 2

√
2E with this state is obtained. Direct com-

putation of the conditional entropies after Alice mea-
sures Z and X on this state gives

1
2H(Aq1|E) + 1

2H(Aq2|E) = fq
(
S/
√

8
)

(150)

where fq is the same BB84 bound with noisy pre-
processing used earlier and given by Eq. (12). This
is too high to be the optimal bound on the aver-
age entropy for all S, as the correct bound must at-
tain h(q) at S = 2. But we can construct a plausi-
ble strategy by taking a convex mixture (similar to
the construction in Section 2 of [14]) of the strat-
egy just described with a deterministic one giving(
H(AqX |XE), S

)
= (h(q), 2). This gives

1
2H(Aq1|E) + 1

2H(Aq2|E) = f̄q
(
S/
√

8
)
, (151)

where

f̄q(x) =
{
fq(x) if x ≥ x∗
h(q) + f ′q(x∗)(x− 1/

√
2) if x ≤ x∗

(152)
with x∗ (dependent on q) such that

h(q) + f ′q(x∗)(x− 1/
√

2) = fq(x∗) . (153)

E Explicit attack saturating the qubit
entropy bound with bias (47)
One can verify that the qubit bound (47) is attained
with measurements and an initial state of the form

A1 = Z , (154)
A2 = X , (155)
B1 = cos

(
ϕB

2
)
Z + sin

(
ϕB

2
)
Z , (156)

B2 = cos
(
ϕB

2
)
Z− sin

(
ϕB

2
)
Z , (157)

and

|Ψ〉ABE = cos
(
θ
2
)
|00〉AB |ψ0〉E + sin

(
θ
2
)
|11〉AB |ψ1〉E

(158)
with

cos(θ) = 〈A1〉 , (159)
sin(θ)〈ψ0|ψ1〉 =

√
S2/4− 1 , (160)

cos
(
ϕB

2
)

= 2/S , (161)
sin
(
ϕB

2
)

=
√

1− 4/S2 . (162)
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Note that, because cos(θ)2 + sin(θ)2|〈ψ0|ψ1〉|2 ≤ 1,
(159) and (160) are only consistent with each other if

〈A1〉2 + S2/4 ≤ 2 , (163)

but this is a known boundary of the quantum set [34,
35].
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