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This paper proposes a new factorization algorithm for computing the phase
factors of quantum signal processing. The proposed algorithm avoids root finding
of high degree polynomials by using a key step of Prony’s method and is numeri-
cally stable in the double precision arithmetics. Experimental results are reported
for Hamiltonian simulation, eigenstate filtering, matrix inversion, and Fermi-Dirac
operator.

1 Introduction
1.1 Background

This paper is concerned with the problem of quantum signal processing. Quantum com-
puting has been mostly working with unitary operators, since the quantum gates and circuits
are unitary. However, in recent years, we have witnessed great progress in representing non-
unitary operators efficiently with quantum circuits.

Let A be an N×N Hermitian matrix with N = 2n and ‖A‖2 < 1 (after scaling if needed).
For simplicity, we only consider Hermitian matrices in this paper and refer the readers to [6, 4]
for more general cases. One of the most successful methods for presenting A on a quantum
circuit is the Hermitian block encoding

A↔
[
A ∗
∗ ∗

]
≡ UA,

where UA is a Hermitian unitary matrix of size (2m ·N)× (2m ·N), A is the top-left corner
of UA, and UA can be implemented using a quantum circuit with n+m input qubits.

In most of the quantum problems in scientific computing, such as Hamiltonian simulation,
filtering, and quantum linear algebra [3, 10, 4, 13], one is often interested the Hermitian matrix
f(A) of A, where f(x) is a real function defined on [−1, 1] with ‖f‖∞ < 1. The block encoding
scheme requires f(A) to be represented as the top-left block of a larger unitary matrix Uf(A)
implemented by a quantum circuit

f(A)↔
[
f(A) ∗
∗ ∗

]
≡ Uf(A).

A key question is whether there is an algorithm that builds the quantum circuit Uf(A)
from the circuit UA by using only the knowledge of the function f(x) but treating UA as a
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(a) (b)

Figure 1: (a) a controlled rotation circuit CRφ with angle φ. (b) quantum eigenvalue transformation. Here
H is the Hadamard gate, UA is the block encoding of a Hermitian A, and CRφj

is with the control angle
φj . The whole circuit implements Ua(A) for a real polynomial a(x).

black box

UA ≡
[
A ∗
∗ ∗

]
⇒ Uf(A) ≡

[
f(A) ∗
∗ ∗

]
.

This question is answered by the quantum eigenvalue transformation described in [9, 6].
To simplify the discussion, we assume that all Hermitian matrices mentioned below satisfy
‖A‖2 < 1 and all functions defined on [−1, 1] satisfy ‖f‖∞ < 1. The quantum eigenvalue
transform proceeds as follows (see [8] for example for details).

• Split the polynomial f(x) into the even and odd parts f e(x) and fo(x) on x ∈ [−1, 1]

• Approximate the even part f e(x) with an even degree polynomial ae(x) and implement
ae(A) with a circuit shown in Figure 1(b) with appropriate phase factors φe0, . . . , φ

e
de

.
Here de is the equal to degree of ae(x).

• Approximate the odd part fo(x) with an odd degree polynomial ao(x) and implement
ao(A) with a circuit shown in Figure 1(b) with appropriate phase factors φo0, . . . , φ

o
do

.
Here do is the equal to degree of ao(x).

• Combine the circuits implementing each component together by linear combination of
unitaries (LCU) [2].

The key remaining step is how to construct the phase factors φ0, . . . , φd for an even or
odd polynomial a(x) of degree d. This is answered by the quantum signal processing theorem
[9, 6, 10]: Given a polynomial a(x) ∈ R[x] on [−1, 1] of degree d, parity d mod 2, and ‖a‖∞ =
maxx∈[−1,1] |a(x)| < 1, there exists a sequence of phase factors Φ = (φ0, . . . , φd) ∈ [−π, π]d+1

such that a(x) = Re(p(x)), where p(x) is defined via

U(x,Φ) =
(
p(x) r(x)
r∗(x) p∗(x)

)
= eiφ0Zei arccos(x)Xeiφ1Zei arccos(x)X · · · eiφd−1Zei arccos(x)iXeiφdZ ,

(1)
where

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
are the Pauli matrices.
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In this paper, we use the following notational convention

a(x) = Re(p(x)), c(x) = Im(p(x)), b(x) = Re(r(x)), d(x) = Im(r(x)). (2)

It is often convenient to work with variable t ∈ [−π, π] and lift these functions to the t
space via the transform x = cos(t), i.e., given f(x) for x ∈ [−1, 1], define

f(t) := f(x = cos(t))

for t ∈ [0, π] and extend to t ∈ [−π, 0] analytically. For example f(x) = x lifts to f(t) = cos(t)
and f(x) =

√
1− x2 to f(t) = sin(t). In the t variable, (1) can be written more compactly as

U(t,Φ) =
(
p(t) r(t)
r∗(t) p∗(t)

)
= eiφ0ZeitXeiφ1ZeitX · · · eiφd−1ZeitXeiφdZ . (3)

We can also use complex variable z = eit and lift f(t) analytically to a Laurent polynomial
f(z) with

f(z = eit) = f(t)

on the unit circle. For example f(t) = cos(t) lifts to f(z) = z+z−1

2 and f(t) = sin(t) to

f(z) = z−z−1

2i . In the following discussion, we often work with the lifted functions a(z), b(z),
c(z), and d(z) over the complex plane.

1.2 Previous work
There are two main approaches for computing the phase factors. The first one [6, 7, 1]

is based on polynomial factorization. Following the notation of [7], this approach starts by
choosing a function b(·) that has the right parity and satisfies a2(t) + b2(t) < 1. Let {ξj} be
the set of 2d roots of the Laurent polynomial 1− a2(z)− b2(z) inside the unit circle. Define

e(z) = z−d
∏
|ξj |<1

(z − ξj).

By setting α ≡ 1−a2(z)−b2(z)
e(z)e(1/z) , the functions c(z) and d(z) are then equal to [7]

c(z) =
(√

α · e(z) + e(1/z)
2

)
, d(z) =

(√
α · e(z)− e(1/z)2i

)
. (4)

With a(z), b(z), c(z), and d(z) available, p(z) = a(z)+ ic(z) and r(z) = b(z)+ id(z) as defined
in (2). Given p(z) and r(z), the algorithm for extracting the phase factors Φ = (φ0, . . . , φd) is
quite straightforward (see for example Theorem 3 of [5]). For completeness, it is also included
in Section 3.1 following our notation.

Though this approach is direct, the implementation requires finding roots of a high degree
Laurent polynomial, which is often unstable in double precision arithmetics. It was shown
that [7] that O(d log d/ε) classical bits are needed and the algorithms are often implemented
with variable precision. In [1], an algorithm based on the halving and capitalization techniques
is proposed to mitigate the numerical issue and it was able to scales to more than 3000 phase
factors.
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The second approach is based on optimization [4], i.e., minimizing directly

min
Φ

∫
[−1,1]

|Re(U(x,Φ)11)− a(x)|2dx,

but with the search space restricted to the symmetric phase factors Φ (i.e. φj = φd−j).
Though this minimization problem is highly non-convex, [4] demonstrates numerically that,
starting from the initial guess Φ0 = (π/4, 0, . . . , 0, π/4), a quasi-Newton method is able to
find the maximal solution that corresponds to b(t) = 0 in our notation. The numerical results
in [4] demonstrated robust computation of the phase factors up to 10000 phase factors. A
recent study [14] proves that for ‖a‖∞ ≤ O(1/d) a projected gradient method converges to
the maximal solution.

1.3 Contribution
The main contribution of this paper is a new stable algorithm of the factorization approach.

It is based on two observations. First, the factorization approach does not really need the
roots {ξj} since the function e(z) = z−d

∏
|ξj |<1(z − ξj) only depends on the characteristic

polynomial
∏
|ξj |<1(z− ξj) of these roots. We show that this characteristic polynomial can be

computed directly via a key component of Prony’s method [12, 11], without knowing the roots
{ξj}. This avoids the root-finding, which is the main source of instability of the factorization
approach. Second, in order to compute the characteristic polynomial in a robust way, we
propose to pick b(z) randomly with a dominant highest frequency, i.e., in some sense opposite
to the symmetric phase factors. This allows us to compute the characteristic polynomial using
the standard numerical linear algebra routines.

The resulting algorithm is conceptually simple and easy to implement. On the numerical
side, compared with the-state-of-the-art results in [4], our algorithm achieves comparable ac-
curacy (∼ 10−12) and has the same O(d2) computational cost. The longest sequence reported
in our experiments scales to over 50000 phase factors.

The rest of the paper is organized as follows. Section 2 reviews the Prony’s method.
Section 3 describes the main algorithms. The numerical results are given in Section 4.

2 Review of Prony’s method
Let us explain Prony’s method with a simple but key example. Let (fk)k∈Z be a sequence

of the form

f(k) =
d∑
j=1

eiωjkrj ,

where d is the number of terms, {ωj} are the frequencies, and {rj} are the weights. Assume
that d, {ωj}, and {rj} are all unknown to us. The computation problem is to recover d, {ωj}
(up to 2π), and {rj} from potentially noisy values of (fk)k∈Z.

Prony’s method starts by considering the infinite vector [eiωjk]k∈Z for some j and the
upward shift operator S. Applying S to this vector gives

S


...

eiωjk

...

 =


...

eiωj(k+1)

...

 i.e. (S − eiωj )


...

eiωjk

...

 = 0.
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Taking the product over all (S − eiωj ) leads to

d∏
s=1

(S − eiωs)


...

eiωjk

...

 = 0.

Taking a linear combination of the vectors over j with unknown weights rj gives

d∏
s=1

(S − eiωs)


...∑d

j=1 e
iωjkrj

...

 = 0⇒
d∏
s=1

(S − eiωs)


...
fk
...

 = 0.

Define the polynomial m(z) ≡ m0 + . . . + mdz
d ≡

∏d
s=1(z − eiωs). Then the last equality

becomes

m(S)


...
fk
...

 ≡ m0 ·S0


...
fk
...

+ · · ·+md ·Sd


...
fk
...

 = 0⇒


...

... · · ·
...

fk fk+1 · · · fk+d
...

... · · ·
...


m0
. . .
md

 = 0. (5)

The final linear system contains a great deal of information.

• The rank of the matrix in (5) gives d.

• Any non-zero vector in the null space of the matrix in (5) gives the coefficients of
m0, . . . ,md of the polynomial m(z).

• The roots of m(z) gives {eiωj}.

• Solving the least-squares problem

min
rj

∑
k

∣∣∣∣∣∣
d∑
j=1

eiωjkrj − fk

∣∣∣∣∣∣
2

gives {rj}.

Though we describe Prony’s method using infinite vectors, it is clear now that only d+1 rows
of the matrix is needed. Due to the shifting nature of the matrix, only 2d + 1 consecutive
values of (fk) are required.

The main advantages of the Prony’s method are that (1) it is adaptive in the sense that
{ωj} do not need to fall in any discrete grid, (2) it is conceptually simple, and (3) it leverages
standard numerical routines such as root-finding and null-space computation. The main
disadvantage is that root-finding can often be unstable when noise is present.

3 Algorithm
3.1 Key components

We start by choosing the function b(t) to be of the form

b(t) = bd sin(dt) + bd−2 sin((d− 2)t) + . . . . (6)
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Here the leading coefficient is the most dominant one and the rest of the coefficients (bd−2, . . .)
are chosen randomly. The reason for doing so will be explained below.

Recall that the key function of the factorization approach is e(z) = z−d
∏
|ξj |<1(z − ξj),

where the second term
∏
|ξj |<1(z − ξj) is the characteristic polynomial of the 2d roots {ξj} of

1− a2(z)− b2(z) inside the unit circle.

3.1.1 Characteristic polynomial.

The first idea is that it is possible to compute the characteristic polynomial directly
without first calculating the roots. This avoids the root-finding, which is the main source of
instability of the factorization approach. A simple but key observation is that these roots are
the poles of the reciprocal g(z) =

(
1− a2(z)− b2(z)

)−1
inside the unit disk.

Since g(z) is meromorphic, g(z) takes the form

g(z) =
∑
ξj

wj
ξj − z

+ constant,

where the sum is taken over the roots both inside and outside D. Let us consider the integrals

1
2πi

∫
γ

g(z)
zk

dz
z

(7)

for integer values of k ≤ −1, where γ is the boundary of D in the counter clockwise orientation.
For a fixed k ≤ −1,

1
2πi

∫
γ

g(z)
zk

dz
z

= 1
2πi

∫
γ

 ∑
|ξj |<1

+
∑
|ξj |>1

 wj
ξj − z

z−(k+1)dz

= 1
2πi

∑
|ξj |<1

wj

∫
γ

1
ξj − z

z−(k+1)dz = 1
2πi

∑
|ξj |<1

wjξ
−(k+1)
j

∫
γ

1
ξj − z

dz = −
∑
|ξj |<1

wjξ
−(k+1)
j ,

where the second equality relies on the analyticity of
wj

ξj−z in D for |ξj | > 1 and the third equal-

ity uses the residue theorem at {ξj}. This computation shows that the integrals 1
2πi
∫
γ g(z)zkdz

for k ≤ −1 contain important information about the poles inside D.
The integral 1

2πi
∫
γ
g(z)
zk

dz
z over the unit circle is also closely related to the Fourier transform

of the function g(t) ≡ g(eit):

1
2πi

∫
γ

g(z)
zk

dz
z

= 1
2πi

∫ 2π

0
g(t)e−iktidt = 1

2π

∫ 2π

0
g(t)e−iktdt = ĝk. (8)

In order to recover the characteristic polynomial
∏
|ξj |<1(z− ξj) (the key part of e(z)), we

apply Prony’s method to the Fourier coefficients. Slightly different from the description in
Section 2, we define the semi-infinite (instead of infinite) vector

ĝ− ≡

ĝ−1
ĝ−2

...

 ≡ 1
2πi

∫
γ
g(z)

z
0

z1

...

dz ≡


−
∑
|ξj |<1wjξ

0
j

−
∑
|ξj |<1wjξ

1
j

...


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Let S be the shift operator that shifts the semi-infinite vector upward (i.e., dropping the first
element). For any ξj with |ξj | < 1,

S


ξ0
j

ξ1
j
...

 =


ξ1
j

ξ2
j
...

 , i.e., (S − ξj)


ξ0
j

ξ1
j
...

 = 0.

Since the operators S − ξj all commute,

∏
|ξi|<1

(S − ξi)


ξ0
j

ξ1
j
...

 = 0. (9)

Since ĝ− is a linear combination of such semi-infinite vectors with weights {−wj},∏
|ξi|<1

(S − ξi) ĝ− = 0.

Since b(z) is chosen randomly, with probability 1 the roots {ξi} are disjoint. Therefore, the
polynomial

∏
|ξi|<1 (z − ξi) is of degree 2d. By denoting it as

m(z) = m0z
0 + · · ·+m2dz

2d,

(9) becomes m0(S0ĝ−) + · · ·+m2d(S2dĝ−) = 0, i.e.,
ĝ−1 ĝ−2 · · · ĝ−(2d+1)
ĝ−2 ĝ−3 · · · ĝ−(2d+2)

...
...

. . .
...


m0
. . .
m2d

 = 0. (10)

At this point, (m0, . . . ,m2d) can be computed as a non-zero vector in the null-space of the
matrix in (10). Once m(z) is obtained, we set e(z) = z−dm(z) as defined. Once e(z) is ready,
the Laurent polynomials c(z), d(z), p(z) = a(z) + ic(z), and r(z) = b(z) + id(z) follow from
(4).

3.1.2 Phase factors from p(z).

The construction of the actual phase factors is given as follows, essentially following The-
orem 3 of [5] but in terms of the t variable.

For each n = d down to 0, perform the following two steps

• In the t variable, p(t) and r(t) are trigonometric polynomials of degree n. Write p(t) =
pne

int + . . . and r(t) = rne
int + . . ., where pn and rn are the degree n coefficients. Solve

φn from e2iφn = pn/rn.

• Transform p(t) and r(t) via(
p(t) r(t)

)
⇐
(
p(t) r(t)

)(e−iφn 0
0 eiφn

)(
cos(t) −i sin(t)
−i sin(t) cos(t)

)
. (11)

This brings the top coefficients of p(t) and r(t) to zero, hence reducing the degree by
one.

Within this loop, the switch between the angular function p(t) and the coefficients {pj}−n≤j≤n
can be done with the fast Fourier transform (FFT). Because of the O(d log d) complexity of
the FFT, the overall cost of this loop is O(d2 log d).
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3.1.3 Robust computation of polynomial coefficients

. The remaining issue is to compute (m0, . . . ,m2d) in a numerically stable way. This is in
fact not always guaranteed. Consider for example the case that a(z) has negligible coefficients
for large frequency. If we set b(z) = 0, then g(z) = (1−a2(z)−b2(z))−1 = (1−a2(z))−1 might
lack high frequency content. This implies that all coefficients ĝk might be be negligible for
large k values. A direct consequence is that the matrix in (10) might have a numerical rank
much smaller than 2d. In order to resolve this issue, we choose b(z) to have a large leading
coefficient as suggested in (6). This is the second contribution of this paper.

Figure 2 illustrates the difference between b(t) = 0 and b(t) ∼ sin(dt) + . . . for the Fermi-
Dirac operator (the last example in Section 4) at β = 100. Notice that the leading term
sin(dt) in b(t) introduces a dominant anti-diagonal in the matrix of (10), ensuring that it has
numerical rank 2d.
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Figure 2: Comparison between b(t) = 0 and b(t) ∼ sin(dt) + . . .. The top row is for b(z) = 0 and the
bottom row is b(t) ∼ sin(dt) + . . .. Within each row, the left plot is the matrix in (10) and the right is
its singular values. Notice that the leading term sin(dt) in b(t) introduces a dominant anti-diagonal in the
matrix, ensuring that it has numerical rank 2d.

3.2 Implementation
To implement this algorithm numerically, we need to take care several issues.

• The computation (8) requires the Fourier transform of g(t) = (1 − a2(t) − b2(t))−1 for
t ∈ [−π, π]. When 1 − a2(t) − b2(t) is close to zero, g(t) is near singular and hence it
is hard for numerical quadrature. In practice, we make sure that ‖a‖∞ and ‖b‖∞ are
bounded by 1/3.

• To compute the Fourier coefficients {ĝk}, choose an evenNs and define for n = 0, . . . , Ns−
1 the point tn = exp

(
i2πn
Ns

)
on the unit circle. Using samples {g(tn)} at the points {tn}
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corresponds to approximating (7) with the trapezoidal rule. The trapezoidal rule is ex-
ponentially convergent for smooth functions when Ns is sufficient large. In the current
setting since 1 − a2(t) − b2(t) is bounded well away from zero, g(t) does not exhibit
singular behaviors. As a result, the highest non-trivial frequency in g(t) is on the same
order of the highest non-trivial frequency in a(t) and b(t). Therefore, by setting Ns to
be about 40 times d in practice, we ensure that the trapezoidal rule is exponentially
accurate. Applying the fast Fourier transform to {g(tn)} gives the Fourier coefficients
{ĝk}.

• The semi-infinite matrix in (10). In the implementation, we only pick the first l rows of
this semi-infinite matrix and define

H ≡


ĝ−1 ĝ−2 · · · ĝ−(2d+1)
ĝ−2 ĝ−3 · · · ĝ−(2d+2)

...
...

...
...

ĝ−l ĝ−(l+1) · · · ĝ−(2d+l)

 (12)

with l ≥ 2d+ 1. In practice setting l = 2d+ 2 seems to be sufficient.

• The computation of the vector m. The most straightforward way is to compute the
singular value decomposition (SVD) of H in (12) and take m to be the last column of
the V matrix, which unfortunately has O(d3) time complexity.

This complexity can be improved based on the following observation. Let s1, . . . , s2d+1
be the singular values of H. Numerically, our choice of b(t) leads to a large gap between
s2d and s2d+1 that is actually proportional to s1. As a result, we propose the following
iterative procedure

m⇐ normalize

((
εI +HTH

)−1
m

)
, (13)

where ε is small positive constant. The linear system solve within each iteration is done
with the conjugate gradient (CG) method and the iteration stops when the difference
between the new and old m is less than the machine accuracy. Due to the large spectral
gap of the matrix H, the inner CG method typically converges within a constant number
of iterations and the outer iteration stops in 3-4 iterations. Since the matrix εI +HTH
is of size (2d+1)×(2d+1), the empirical cost for computing m is O(d2). Combined with
the O(d2 log d) cost of extracting the phase factors (11), the overall cost is O(d2 log d).
The complexity for computing m can be further reduced by observing that H is a Hankel
matrix. Therefore, the matrix-vector multiplications of H and HT can be accelerated
to the O(d log d) cost via the fast Fourier transform (FFT). This improvement does not
impact the overall computational cost, since the construction of the phase factors from
p(z) (Section 3.1.2) already takes O(d2 log d) steps. On the other hand, since there is
no need to store the full H matrix, the memory cost is reduced to O(d), allowing for
working with very large d values.

A few remarks are in order here.

• The symmetric phase factors obtained in [4] correspond to b(t)=0, which helps the
optimization approach. In the current algorithm, the choice of b(t) = bd sin(dt) + . . .
helps the direct factorization method and the resulting phase factors are non-symmetric.

Accepted in Quantum 2022-10-16, click title to verify. Published under CC-BY 4.0. 9



• Whether symmetric or non-symmetric phase factors are preferred in practice is not
clear. The main part of implementing QSVT on quantum circuits as in (3) is actually
related to the terms eitX , i.e., the implementation of the circuit UA. The actual choice
of the phase factors might very well depend on the circuit architecture.

4 Results
4.1 Setup

The algorithm is implemented with the standard double precision arithmetics. All nu-
merical results are obtained on a laptop with a 2.6 GHz 6-Core Intel Core i7 CPU. The
computation of the vector m is performed via the iteration (13). The complexity is quadratic
in terms of the degree d and the actual computation typically finishes within a couple of
minutes.

As mentioned in Section 1, when the target function f(x) is not a polynomial, the first step
is to construct an accurate polynomial approximation a(x). Since polynomial approximation
in x is equivalent to trigonometric approximation in t, this task is performed the t space. Let

us introduce an equally spaced grid tn = exp
(
i2πn
Ns

)
on the unit circle, where the grid size Ns

is taken in practice to be 40 times d as before.

• First, the values of f(t) at {tn} are computed.

• After applying fast Fourier transforms to {f(tn)}, we identify a frequency d such that all
Fourier coefficients above frequency d are below a threshold multiplied by the maximum
Fourier coefficient in absolute value. In the experiments, the threshold is chosen to be
around 10−12 since this is right above the accuracy of the QSP algorithm in double
precision arithmetics [4] and further improvement below this threshold is not necessary.
Here d is enforced to have the same parity as f(x).

• The Fourier coefficients above frequency d are then set to zero and Fourier transform
back gives the desired trigonometric approximation to f(t) in the t space. The final
function a(t) is also scaled to have infinity norm equal to 0.3.

Regarding the choice of b(t), simply setting b(t) = 0.4 · sin(dt) suffices for in the examples
presented below. However, in principle, one might need to choose to b(t) according to (6) in
order to avoid identical roots.

The polynomial coefficient vector m is computed with the iterative procedure (13). The
error of the constructed phase factors is measured in the relative L∞ norm. More precisely, we
compute a function p̃(x) following (1) using the constructed phase factors Φ = (φ0, . . . , φd).
With p̃(x) as an approximation to p(x), the error of the phase factor computation is estimated
with

‖Re(p̃(x))− a(x)‖∞
‖a(x)‖∞

, (14)

over the interval [−1, 1].

4.2 Examples
In what follows, we present the numerical results for four examples: Hamiltonian sim-

ulation, eigenstate filtering, matrix inversion, and Fermi-Dirac operator. Among them, the

Accepted in Quantum 2022-10-16, click title to verify. Published under CC-BY 4.0. 10



first three examples are also studied numerically in the paper [4], arguably the most complete
numerical study on the phase factor computation. In each example, we have chosen the pa-
rameters to be on par or harder compared with those used in [4], so that the actual instances
have at least the same level of difficulty. Overall, our algorithm exhibits similar accuracy but
short wall clock time when compared with [4]. The longest sequence reported below consists
of more than 50000 phase factors.

4.2.1 Hamiltonian simulation

Assume that the Hamiltonian H satisfies ‖H‖2 ≤ 1. Hamiltonian simulation for a period
of time τ boils down to the quantum signal processing problem for f(x) = e−iτx. The even
and odd parts are

Re(f(x)) = cos(τx), Im(f(x)) = sin(τx).

In terms of the variable t,

Re(f(t)) = cos(τ cos(t)), Im(f(t)) = sin(τ cos(t)).

Since both functions are not polynomials, we first use the procedure described above to
compute trigonometric polynomial approximations aRe(t) ≈ 0.3 · Re(f(t)) and aIm(t) ≈
0.3 · Im(f(t)), both scaled so that L∞ norm is below 1/3. aRe(x) is even in x with even
degree dRe while aIm(x) is odd in x with odd degree dIm. We perform the tests with
τ = 1000, 2000, 3000, 4000, 5000 and the results are summarized in Figure 3.
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Figure 3: Hamiltonian simulation. (a) aRe(x) and aIm(x) for a smaller τ = 25. (b) degree d of the
polynomial approximation as a function of τ . (c) The total phase factor construction time in seconds as a
function of τ . (d) The relative L∞ norm error (14) as a function of τ .
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4.2.2 Eigenstate filtering

For a fixed gap ∆, we follow [4] and consider the filtering function centered at the origin

f(x) =
Tk
(
−1 + 2x2−∆2

1−∆2

)
Tk
(
−1 + 2 −∆2

1−∆2

) ,
where Tk is the Chebyshev polynomial. The parameter k is set to be 20/∆ so that the f(x)
is negligible outside the ∆ neighborhood of the origin. In terms of variable t, the function

f(t) =
Tk
(
−1 + 2 cos(t)2−∆2

1−∆2

)
Tk
(
−1 + 2 −∆2

1−∆2

) .

Since f(t) is already a trigonometric polynomial, we simply set a(t) = 0.3 · f(t). The tests
are performed with ∆ = 0.08, 0.04, 0.02, 0.01, 0.005 and the results are summarized in Figure
4.

-1 -0.5 0 0.5 1

x

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

a
(x

)

10
2

1/

10
3

10
4

d

(a) (b)

10
2

1/

10
-1

10
0

10
1

ti
m

e
(s

e
c
)

10
2

1/

10
-13

10
-12

e
rr

o
r

(c) (d)

Figure 4: Eigenstate filtering. (a) a(x) for ∆ = 0.08. (b) The degree d of the polynomial approximation
as a function of 1/∆. (c) The total phase factor construction time in seconds as a function of 1/∆. (d)
The relative L∞ norm error (14) as a function of 1/∆.

4.2.3 Matrix inversion

We consider the inversion of the matrices with spectrum resided in Dκ = [−1,−1/κ] ∪
[1/κ, 1], where κ is the condition number. The QSP problem here amounts to approximating
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the function 1/x over Dκ. We choose

f(x) = 1− e−(5κx)2

x
,

where the difference between f(x) and 1/x over Dκ is negligible under the double precision
arithmetics. In the t variable, this is

f(t) = 1− e−(5κ cos(t))2

cos(t) .

The procedure mentioned above is used to compute a trigonometric approximation a(t) to f(t)
(up to a constant factor) with ‖a‖∞ = 0.3. The tests are performed with κ = 16, 64, 256, 1024
and the results are summarized in Figure 5. The longest sequence for κ = 1024 has more
than 50000 phase factors.
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Figure 5: Matrix inversion. (a) a(x) for κ = 10. (b) The degree d of the polynomial approximation as a
function of κ. (c) The total phase factor construction time in seconds as a function of κ. (d) The relative
L∞ norm error (14) as a function of κ.

4.2.4 Fermi-Dirac operator

Finally, we consider the (shifted) Fermi-Dirac function

f(x) = 1− eβx

1 + eβx
.
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In the t variable, it takes the form

f(t) = 1− eβ cos(t)

1 + eβ cos(t) .

The procedure mentioned above is used to compute a trigonometric approximation a(t) to f(t)
(up to a constant factor) with ‖a‖∞ = 0.3. We perform the tests for β = 100, 200, 400, 800, 1600
and the results are summarized in Figure 6.
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Figure 6: Fermi-Dirac operator. (a) a(x) for β = 100. (b) The degree d of the polynomial approximation
as a function of β. (c) The total phase factor construction time in seconds as a function of β. (d) The
relative L∞ norm error (14) as a function of β.

5 Discussions
In this paper, we proposed a new factorization algorithm for computing the phase factors

of quantum signal processing. The proposed algorithm avoids root finding of high degree
polynomials by using a key component of the Prony’s method. The resulting algorithm is
numerically stable in the double precision arithmetics. We have demonstrated the numerical
performance with several important examples, including Hamiltonian simulation, eigenstate
filtering, matrix inversion, and Fermi-Dirac operator. For future work, the immediate question
is to prove theoretically the stability of the algorithm with the proposed choice of b(t).
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