Extraction of ergotropy: free energy bound and application to open cycle engines

Tanmoy Biswas1, Marcin Łobejko1, Paweł Mazurek1, Konrad Jałowiecki2, and Michał Horodecki1

1International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
2Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The second law of thermodynamics uses change in free energy of macroscopic systems to set a bound on performed work. Ergotropy plays a similar role in microscopic scenarios, and is defined as the maximum amount of energy that can be extracted from a system by a unitary operation. In this analysis, we quantify how much ergotropy can be induced on a system as a result of system's interaction with a thermal bath, with a perspective of using it as a source of work performed by microscopic machines. We provide the fundamental bound on the amount of ergotropy which can be extracted from environment in this way. The bound is expressed in terms of the non-equilibrium free energy difference and can be saturated in the limit of infinite dimension of the system's Hamiltonian. The ergotropy extraction process leading to this saturation is numerically analyzed for finite dimensional systems. Furthermore, we apply the idea of extraction of ergotropy from environment in a design of a new class of stroke heat engines, which we label open-cycle engines. Efficiency and work production of these machines can be completely optimized for systems of dimensions 2 and 3, and numerical analysis is provided for higher dimensions.

► BibTeX data

► References

[1] Åberg J. Truly work-like work extraction via a single-shot analysis. Nature Communications. 2013 Jun;4(1):1925. Available from: https:/​/​doi.org/​10.1038/​ncomms2712.

[2] Seifert U. First and Second Law of Thermodynamics at Strong Coupling. Phys Rev Lett. 2016 Jan;116:020601. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.116.020601.

[3] Strasberg P, Esposito M. Non-Markovianity and negative entropy production rates. Phys Rev E. 2019 Jan;99:012120. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.99.012120.

[4] Brandão F, Horodecki M, Ng N, Oppenheim J, Wehner S. The second laws of quantum thermodynamics. Proceedings of the National Academy of Sciences. 2015;112(11):3275-9. Available from: https:/​/​doi.org/​10.1073/​pnas.1411728112.

[5] Skrzypczyk P, Short AJ, Popescu S. Work extraction and thermodynamics for individual quantum systems. Nature Communications. 2014;5(1):4185. Available from: https:/​/​doi.org/​10.1038/​ncomms5185.

[6] Biswas T, Junior AdO, Horodecki M, Korzekwa K. Fluctuation-dissipation relations for thermodynamic distillation processes. Phys Rev E. 2022 May;105:054127. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.105.054127.

[7] Jarzynski C. Nonequilibrium Equality for Free Energy Differences. Phys Rev Lett. 1997 Apr;78:2690-3. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.78.2690.

[8] Esposito M, Harbola U, Mukamel S. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev Mod Phys. 2009 Dec;81:1665-702. Available from: https:/​/​doi.org/​10.1103/​RevModPhys.81.1665.

[9] Campisi M, Hänggi P, Talkner P. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev Mod Phys. 2011 Jul;83:771-91. Available from: https:/​/​doi.org/​10.1103/​RevModPhys.83.771.

[10] Alhambra AM, Masanes L, Oppenheim J, Perry C. Fluctuating Work: From Quantum Thermodynamical Identities to a Second Law Equality. Phys Rev X. 2016 Oct;6:041017. Available from: https:/​/​doi.org/​10.1103/​PhysRevX.6.041017.

[11] Allahverdyan AE, Balian R, Nieuwenhuizen TM. Maximal work extraction from finite quantum systems. Europhysics Letters (EPL). 2004 aug;67(4):565-71. Available from:.

[12] Ruch E, Mead A. The principle of increasing mixing character and some of its consequences. Theoretica chimica acta. 1976 Apr;41:042110. Available from: https:/​/​doi.org/​10.1007/​BF01178071.

[13] Alicki R, Fannes M. Entanglement boost for extractable work from ensembles of quantum batteries. Physical Review E. 2013 Apr;87(4). Available from: http:/​/​doi.org/​10.1103/​PhysRevE.87.042123.

[14] Binder FC, Vinjanampathy S, Modi K, Goold J. Quantacell: powerful charging of quantum batteries. New Journal of Physics. 2015 jul;17(7):075015. Available from: https:/​/​doi.org/​10.1088/​1367-2630/​17/​7/​075015.

[15] Campaioli F, Pollock FA, Binder FC, Céleri L, Goold J, Vinjanampathy S, et al. Enhancing the Charging Power of Quantum Batteries. Phys Rev Lett. 2017 Apr;118:150601. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.118.150601.

[16] Monsel J, Fellous-Asiani M, Huard B, Auffèves A. The Energetic Cost of Work Extraction. Phys Rev Lett. 2020 Mar;124:130601. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.124.130601.

[17] Hovhannisyan KV, Barra F, Imparato A. Charging assisted by thermalization. Phys Rev Research. 2020 Sep;2:033413. Available from: https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033413.

[18] Alimuddin M, Guha T, Parashar P. Structure of passive states and its implication in charging quantum batteries. Phys Rev E. 2020 Aug;102:022106. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.102.022106.

[19] Alimuddin M, Guha T, Parashar P. Bound on ergotropic gap for bipartite separable states. Phys Rev A. 2019 May;99:052320. Available from: https:/​/​doi.org/​10.1103/​PhysRevA.99.052320.

[20] Puliyil S, Banik M, Alimuddin M. Thermodynamic Signatures of Genuinely Multipartite Entanglement. Phys Rev Lett. 2022 Aug;129:070601. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.129.070601.

[21] Alimuddin M, Guha T, Parashar P. Independence of work and entropy for equal-energetic finite quantum systems: Passive-state energy as an entanglement quantifier. Phys Rev E. 2020 Jul;102:012145. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.102.012145.

[22] Francica G, Binder FC, Guarnieri G, Mitchison MT, Goold J, Plastina F. Quantum Coherence and Ergotropy. Phys Rev Lett. 2020 Oct;125:180603. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.125.180603.

[23] Sone A, Deffner S. Quantum and Classical Ergotropy from Relative Entropies. Entropy. 2021;23(9). Available from: https:/​/​doi.org/​10.3390/​e23091107.

[24] Pusz W, Woronowicz SL. Passive states and KMS states for general quantum systems. Comm Math Phys. 1978;58(3):273-90. Available from: https:/​/​doi.org/​10.1007/​BF01614224.

[25] Sparaciari C, Jennings D, Oppenheim J. Energetic instability of passive states in thermodynamics. Nature Communications. 2017 Dec;8(1):1895. Available from: https:/​/​doi.org/​10.1038/​s41467-017-01505-4.

[26] Łobejko M, Mazurek P, Horodecki M. Thermodynamics of Minimal Coupling Quantum Heat Engines. Quantum. 2020 Dec;4:375. Available from: https:/​/​doi.org/​10.22331/​q-2020-12-23-375.

[27] Łobejko M. The tight Second Law inequality for coherent quantum systems and finite-size heat baths. Nature Communications. 2021 Feb;12(1):918. Available from: https:/​/​doi.org/​10.1038/​s41467-021-21140-4.

[28] Scovil HED, Schulz-DuBois EO. Three-Level Masers as Heat Engines. Phys Rev Lett. 1959 Mar;2:262-3. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.2.262.

[29] Scully MO. Quantum Afterburner: Improving the Efficiency of an Ideal Heat Engine. Phys Rev Lett. 2002 Jan;88:050602. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.88.050602.

[30] Jacobs K. Quantum measurement and the first law of thermodynamics: The energy cost of measurement is the work value of the acquired information. Physical Review E. 2012 Oct;86(4). Available from: http:/​/​doi.org/​10.1103/​PhysRevE.86.040106.

[31] Goold J, Huber M, Riera A, Rio Ld, Skrzypczyk P. The role of quantum information in thermodynamics—a topical review. Journal of Physics A: Mathematical and Theoretical. 2016 Feb;49(14):143001. Available from: http:/​/​doi.org/​10.1088/​1751-8113/​49/​14/​143001.

[32] Wilming H, Gallego R, Eisert J. Second law of thermodynamics under control restrictions. Physical Review E. 2016 Apr;93(4). Available from: http:/​/​doi.org/​10.1103/​PhysRevE.93.042126.

[33] Perarnau-Llobet M, Wilming H, Riera A, Gallego R, Eisert J. Strong Coupling Corrections in Quantum Thermodynamics. Phys Rev Lett. 2018 Mar;120:120602. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.120.120602.

[34] Alicki R. The quantum open system as a model of the heat engine. Journal of Physics A: Mathematical and General. 1979 may;12(5):L103-7. Available from: https:/​/​doi.org/​10.1088/​0305-4470/​12/​5/​007.

[35] del Rio L, Åberg J, Renner R, Dahlsten O, Vedral V. The thermodynamic meaning of negative entropy. Nature. 2011 jun;474(7349):61-3. Available from:.

[36] Horodecki M, Horodecki P, Oppenheim J. Reversible transformations from pure to mixed states and the unique measure of information. Phys Rev A. 2003 Jun;67:062104. Available from: https:/​/​doi.org/​10.1103/​PhysRevA.67.062104.

[37] Horodecki M, Oppenheim J. Fundamental limitations for quantum and nanoscale thermodynamics. Nature Communications. 2013;4(1):2059. Available from: https:/​/​doi.org/​10.1038/​ncomms3059.

[38] Åberg J. Catalytic Coherence. Phys Rev Lett. 2014 Oct;113:150402. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.113.150402.

[39] Ng NHY, Mancinska L, Cirstoiu C, Eisert J, Wehner S. Limits to catalysis in quantum thermodynamics. New Journal of Physics. 2015 aug;17(8):085004. Available from:.

[40] Brunner N, Linden N, Popescu S, Skrzypczyk P. Virtual qubits, virtual temperatures, and the foundations of thermodynamics. Phys Rev E. 2012 May;85:051117. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.85.051117.

[41] Linden N, Popescu S, Skrzypczyk P. The smallest possible heat engines. arXiv:10106029. 2010. Available from: https:/​/​doi.org/​10.48550/​arXiv.1010.6029.

[42] Monsel J, Elouard C, Auffèves A. An autonomous quantum machine to measure the thermodynamic arrow of time. npj Quantum Information. 2018 Nov;4:59. Available from: https:/​/​doi.org/​10.1038/​s41534-018-0109-8.

[43] Roulet A, Nimmrichter S, Arrazola JM, Seah S, Scarani V. Autonomous rotor heat engine. Phys Rev E. 2017 Jun;95:062131. Available from: https:/​/​doi.org/​10.1103/​PhysRevE.95.062131.

[44] Kosloff R, Levy A. Quantum Heat Engines and Refrigerators: Continuous Devices. Annual Review of Physical Chemistry. 2014;65(1):365-93. Available from: https:/​/​doi.org/​10.1146/​annurev-physchem-040513-103724.

[45] Niedenzu W, Huber M, Boukobza E. Concepts of work in autonomous quantum heat engines. Quantum. 2019 Oct;3:195. Available from: https:/​/​doi.org/​10.22331/​q-2019-10-14-195.

[46] von Lindenfels D, Gräb O, Schmiegelow CT, Kaushal V, Schulz J, Mitchison MT, et al. Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. Phys Rev Lett. 2019 Aug;123:080602. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.123.080602.

[47] Singh V. Optimal operation of a three-level quantum heat engine and universal nature of efficiency. Phys Rev Research. 2020 Nov;2:043187. Available from: https:/​/​doi.org/​10.1103/​PhysRevResearch.2.043187.

[48] Andolina GM, Farina D, Mari A, Pellegrini V, Giovannetti V, Polini M. Charger-mediated energy transfer in exactly solvable models for quantum batteries. Phys Rev B. 2018 Nov;98:205423. Available from: https:/​/​doi.org/​10.1103/​PhysRevB.98.205423.

[49] Andolina GM, Keck M, Mari A, Campisi M, Giovannetti V, Polini M. Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries. Phys Rev Lett. 2019 Feb;122:047702. Available from: https:/​/​doi.org/​10.1103/​PhysRevLett.122.047702.

[50] Janzing D, Wocjan P, Zeier R, Geiss R, Beth T. Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law. Int J Theor Phys. 2000 Dec;39(12):2717-53. Available from: https:/​/​doi.org/​10.1023/​A:1026422630734.

[51] Streater RF. Statistical Dynamics: A Stochastic Approach To Nonequilibrium Thermodynamics (2nd Edition). World Scientific Publishing Company; 2009. Available from: https:/​/​books.google.pl/​books?id=Is42DwAAQBAJ.

[52] Barra F. Dissipative Charging of a Quantum Battery. Physical Review Letters. 2019 may;122(21). Available from:.

[53] Mazurek P, Horodecki M. Decomposability and convex structure of thermal processes. New Journal of Physics. 2018 may;20(5):053040. Available from: https:/​/​doi.org/​10.1088/​1367-2630/​aac057.

[54] Mazurek P. Thermal processes and state achievability. Phys Rev A. 2019 Apr;99:042110. Available from: https:/​/​doi.org/​10.1103/​PhysRevA.99.042110.

Cited by

[1] R. R. Rodriguez, B. Ahmadi, G. Suarez, P. Mazurek, S. Barzanjeh, and P. Horodecki, "Optimal Quantum Control of Charging Quantum Batteries", arXiv:2207.00094.

The above citations are from SAO/NASA ADS (last updated successfully 2022-11-30 05:53:14). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2022-11-30 05:53:13).